
The Annals of Statistics
2017, Vol. 45, No. 6, 2708–2735
https://doi.org/10.1214/17-AOS1542
© Institute of Mathematical Statistics, 2017

ESTIMATING A PROBABILITY MASS FUNCTION
WITH UNKNOWN LABELS1

BY DRAGI ANEVSKI2, RICHARD D. GILL AND STEFAN ZOHREN3

Lund University, Leiden University and University of Oxford

In the context of a species sampling problem, we discuss a nonparametric
maximum likelihood estimator for the underlying probability mass function.
The estimator is known in the computer science literature as the high profile
estimator. We prove strong consistency and derive the rates of convergence,
for an extended model version of the estimator. We also study a sieved esti-
mator for which similar consistency results are derived. Numerical computa-
tion of the sieved estimator is of great interest for practical problems, such as
forensic DNA analysis, and we present a computational algorithm based on
the stochastic approximation of the expectation maximisation algorithm. As
an interesting byproduct of the numerical analyses, we introduce an algorithm
for bounded isotonic regression for which we also prove convergence.

1. Introduction. Assume we have a random sample that is drawn from an
infinite population of species. The goal of this paper is to, based on the random
sample, estimate the unknown relative frequencies of all the species in the popula-
tion.

Probably the most well-known estimator in the context of species sampling is
the naive estimator, which is the vector of relative frequencies of the species ob-
served in the sample. The problem of this estimator is that it assigns zero probabil-
ity to any new species which have not yet been observed in the sample. However,
when the relative frequencies are very small it is very likely that when sampling a
new element this will be a new, so far unobserved species. Such a situation arises,
for example, in forensic DNA analysis when the Y-STR profile of the suspect is not
present in the database. This makes it necessary to go beyond the naive estimator
and consider estimators for the unknown relative frequencies of all the species in
the population.

The first to have studied problems in this setting is apparently Fisher et al. [9],
who assumed that the members of each separate species are caught according to
separate Poisson processes with different intensities and allowing for the processes
to be dependent.
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The first to use a nonparametric approach is Good [10], who presented an ap-
proximate formula for the expectation of the population frequency. Good attributes
the formula to Alan Turing. His approximation becomes better for larger sample
sizes but it is not clear from the results in his paper if the formula is asymptotically
correct. As a consequence, he is also able to give an estimate of the coverage, the
sum of the population frequencies of the species observed in the sample, leading
to what is known as the Good estimator or Good Turing estimator for the prob-
ability mass of the unobserved species, which is given by the number of species
observed exactly once in a sample divided by the sample size. Next, Good and
Toulmin [11] study a similar setting but for the case when there is a second sample
drawn from the population, which can then be thought of as an enlargement of the
original sample. As an application, Efron and Thisted [6] used the result by Fisher
et al. [9] and Good and Toulmin [11] to estimate the number of words known by
Shakespeare based on the observed word frequencies in his works. Later work has
been concerned with the bias, confidence intervals as well as asymptotic normal-
ity of the Good estimator (e.g., [7, 8, 27]); see also Mao and Lindsay [15] for an
application to DNA analysis in this context.

One sees that the naive estimator and the Good estimator are complementary in
the sense that the former gives an estimate for the probability distribution of the
already observed species, while the latter gives an estimate for the total probability
mass of all unobserved species. One would like to combine both these estimators
and extend the tail of the naive estimator over the region of unobserved species.
A proposal for such an estimator has been made in [1, 18–20] for a similar prob-
lem in a computer science setting. In [19], they introduced what they call the high
profile estimator and what we refer to as the pattern maximum likelihood estima-
tor (PML) which is explained in detail below. For small models, this estimator
can be obtained analytically [1, 19] and for bigger models a Monte Carlo expec-
tation maximisation (EM) algorithm was proposed in [18]. In [20], they have also
claimed, without complete proof, consistency results for the PML, and discussed
the general problem of modelling and estimation of the distribution over “large
alphabets” when there is a small sample. Their work has been the main motivation
for the research presented here. In particular, our goals have been to give a full con-
sistency proof, as well as an extension of their model together with its numerical
implementation.

We can state the basic estimation problem of the high profile estimator or PML
in a simplified manner as follows: Given N1, . . . ,NK , a set of absolute frequen-
cies, Ni denoting the number of times a species i is observed, and ordered (by us)
in decreasing order. There is another order, provided by nature, which orders the
species in how frequent they are in nature, modelled by a set of decreasing prob-
abilities θ1, θ2, . . . that sum to one, where θα denotes how frequent the αth most
frequent species is. We can view our data N as an ordering of an underlying data
set Xα1, . . . ,Xαk

(for some indices αi, i = 1, . . . , n). There is an unobserved map,
which takes the order provided by us to the order provided by nature, which we



2710 D. ANEVSKI, R. D. GILL AND S. ZOHREN

denote by χ and which is a bijection. We will derive the likelihood for θ based
on the data N for this problem, and define the PML of θ as the maximizer of that
likelihood under the assumptions θ1 ≥ θ2 ≥ · · · ,

∑
θi = 1. However, typically, and

with high probability, the PML θ̂ will not exist in the above model.
Therefore, besides the above described, basic model, we also consider an ex-

tended model which, in addition to the discrete probability part, also includes a
continuum probability mass part. Then θ = (θ1, θ2, . . . ), corresponding to the the
discrete part of the distribution, only satisfies

∑
α θα ≤ 1, where the remaining

probability mass θ0 = 1 −∑α θα belongs to the continuum part, the blob. We will
derive the likelihood in this extended model and define the PML θ̂ as the maxi-
mizer under the assumptions θ1 ≥ θ2 ≥ · · · ,

∑∞
α=1 θα ≤ 1. In Section 3, we state

the existence of the PML θ̂ in the extended model, and give the proof of this result
in [3], Supplement A. Uniqueness is not known.

Both in the basic or extended model one can give a truncation level k = kn,
and define φ̃ = (θ1, . . . , θk) as well as φ0 = 1 −∑k

α=1 θα . Such a truncated model
we call a sieved model. Analogous to the standard PML, one can write down a
likelihood function for the sieved model and from this a PML, the so-called sieved
PML. The introduction of the sieved PML (sPML) is novel and as discussed below
is important for many applications.

The main theoretical results in the paper are almost sure consistency in an L1-
norm for the PML and sieved PML. In this connection, the Hardy–Littlewood–
Polya monotone rearrangement algorithm [12] is interesting for two reasons. The
first reason is that the algorithm is prominent in our proof of the consistency result,
since a naive estimator of the probability mass function can be seen as a monotone
rearrangement of the empirical probability mass function. In the proof, we need a
certain contraction or nonexpansivity property of the algorithm cf. [2, 14]. Another
result is the almost sure rate of convergence which is almost of the order n−1/4 for
both the standard and sieved PML, which should be compared with the rate for
the naive estimator, for which Jankowski and Wellner [13] have obtained the rate
n−1/2, but then in distribution of norms, and furthermore for which we derive the
almost sure rate in supnorm distance of order almost n−1/2; cf. Section 3.

An important question is how to calculate the estimator. The main practical re-
sult is a stochastic approximation expectation maximisation (SA-EM) algorithm
for the sieved estimator, where we use the EM algorithm to get a numeric ap-
proximation, treating the bijection χ as a latent variable; this is presented in [3],
Supplement B. In this algorithm, in the M step, assuming given χ , we will use
isotonic regression. We develop a modification of the standard PAVA algorithm for
isotonic regression (cf. Robertson et al. [23]), to allow for lower bounds on the
unknown frequencies, in [3], Supplement C. The paper is organized as follows:
In Section 2, we introduce the model, the data that arise in this type of problem
and the possible ways to estimate the probability mass function. In Section 3, we
state the existence result for the PML. In Section 4, we discuss consistency of the
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nonparametric maximal likelihood estimators: In Section 4.1, we will study an ex-
tended maximum likelihood estimator in the basic model, proving its consistency,
and deriving rates for the consistency result. In Section 4.2, we derive similar con-
sistency results for the sieved estimator. In Section 4.3, we discuss the consistency
results that we obtained in the previous two subsections and compare them with
the results for the naive estimator obtained by Jankowski and Wellner [13]. We
conclude with a discussion in Section 5. In [3], Supplement A, we prove existence
of the PML. In [3], Supplement B, we present the SA-EM algorithm for computing
the PML. In [3], Supplement C, we derive the MLE of a decreasing multinomial
probability mass function bounded below by a known constant.

2. The model, the data and the estimators.

2.1. Introduction. Imagine an area inhabited by a population of animals which
can be classified by species. Which species live in the area (many of them previ-
ously unknown to science) is a priori unknown. Let A denote the set of all possible
species potentially living in the area. For instance, if animals are identified by their
genetic code, then the species’ names α are equivalence classes of DNA sequences.
The set of all possible DNA sequences is effectively uncountably infinite, and for
present purposes so is the set of equivalence classes, each equivalence class defin-
ing one potential species.

Suppose that animals of species α ∈ A form a fraction θα ≥ 0 of the total pop-
ulation of animals. We assume that the probabilities θα are unknown. The basic
model studied in this paper assumes that

∑
α:θα>0 θα = 1 but we shall also study

an extended model in which it is allowed that (the discrete part of the distribution)∑
α:θα>0 θα < 1. In either case, the set of species with positive probability is finite

or at most countably infinite.
Imagine now an ecologist taking an i.i.d. random sample of n animals, one at

a time. The j th animal in the sample belongs to species α with probability θα .
For each animal in turn, the ecologist can only determine whether it belongs to
the same species as an earlier animal in the sample, or whether it is the first rep-
resentative in his sample of a new species. Suppose he labels the different species
observed in the sample by their number in order of discovery. His data can then be
represented as a string of n integers, where the j th integer equals r if and only if
it belongs to the r th different species observed in the sample in order of discovery.
For instance, for n = 5, the observed data could be the string 12231 meaning that
the first, second and fourth animals in the sample belonged to new species; the
third and the fifth were each occurrences of a previously observed species, namely
the same as that of the second and first animal in the sample, respectively.

2.2. Estimation in the extended model. Since we treat the α as unknown, the
parameter (θα : α ∈ A) is not identified. Since everything only depends on the or-
dered list of probabilities θα it is convenient to change notation and from now on
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refer to species by their position in this ordering. If there is only a finite num-
ber of species of positive probability, then we will append to the list a count-
able number of possibly fictitious species each of probability zero. We redefine
A = N = {1,2, . . . } and redefine θα , where α is a positive integer, as the prob-
ability of the αth most frequent species in the population. We define the deficit
θ0 = 1 −∑α≥1 θα . In the basic model, θ0 = 0, in the extended model θ0 ≥ 0.

In the extended model, the deficit θ0 equals the probability, when we observe
just one animal, that it belongs to one of those species which individually each
have zero probability. Each such species can only be observed at most once in a
sample of n animals. The converse is not true: if an animal is observed only once
in our sample, we do not know whether it belongs to a zero probability species or
to a positive probability species.

We will discuss estimation in the extended model and in a truncated, or sieved,
version of the extended model.

Let ℵ be the total number of species of positive probability. If ℵ < ∞, we take
θα = 0 for α > ℵ. Thus, from now on A = N = {1,2, . . .}, and θ = (θ1, θ2, . . .)

where the θα , the probability of occurrence of an animal belonging to the αth most
frequent species in the population, are nonnegative and nonincreasing and sum
to 1.

Since our random sample of n animals is i.i.d., it can be further reduced, by
sufficiency, to the partition, in the number-theoretic sense, of the integer n which
it induces. This is a list N = (N1,N2, . . .) where Ni ≥ 0 is the number of observed
animals belonging to the ith most frequent species in the sample, Ni ≥ 0, N1 ≥
N2 ≥ · · · , and

∑
i Ni = n. The number K of different species of animals observed

in the sample, is finite: for some K ≥ 0, NK > 0 and Ni = 0 for i > K . In the
number-theoretic sense of the word, N (more precisely, the positive part of N , of
length K) is a random partition of the number n. For instance, the string 12231
corresponds to the partition N = (2,2,1) of the integer 5, meaning that two species
were each observed twice and one species was observed once; 2 + 2 + 1 = 5. It is
convenient to append an infinite list of zero counts to N . In our example, we then
write N = (2,2,1,0,0, . . . ).

Both the data N and unknown parameter θ are represented by infinite lists of
nonincreasing nonnegative numbers, summing to n and 1, respectively; the ele-
ments of N are moreover integers. However, there is no direct connection between
the indices of the two lists. There exists a map χ from N (the species as ordered by
the sample frequencies) to A (the species as ordered by population probabilities),
defined by χ(i) = α if and only if the ith most frequent species in the sample is
the αth most frequent species in the population, with the tie-breaking rule Ni = Nj

implies χ(i) < χ(j). The map χ is random, and the essential feature of our model
is that χ is not observed.

Let us use the same symbol N to denote both the observed partition of sample
size n thought of as a random sequence, as well as the possible sample values
thereof. After reduction by sufficiency, the sample space is the set of all possible
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partitions N of the sample size n. Write P (n,θ) for the corresponding (discrete)
probability measure on the sample space when the underlying parameter is θ . The
basic model states that for any set A of partitions of n:

(1) P (n,θ)(A) = ∑
(N1,N2,...)∈A

(
n

N1 N2 · · ·
)∑

χ

∏
i

θ
Ni

χ(i).

The likelihood function for θ based on the data N is therefore

(2) lik(θ) =∑
χ

∏
i

θ
Ni

χ(i) =∑
χ

∏
α

θ
N

χ−1(α)
α .

The maximum likelihood estimator (MLE) of θ is defined as

(3) θ̂ = arg max
θ :θ1≥θ2≥··· ,∑∞

α=1 θα=1
lik(θ).

It is interesting to note that the likelihood (2) can be interpreted as a matrix

permanent of the nonnegative matrix Mij := θ
Nj

i . This relation enables one to use
several techniques of approximate inference to evaluate the likelihood [25, 26]. We
will not pursue this idea further here. This is mainly because we are interested in
the extended model, where a relation to matrix permanents is more involved.

Returning to the MLE, it is not clear that θ̂ exists nor that it is unique. In fact, it is
easy to exhibit observed data N for which it does not exist; for instance, with n = 2,
the partition N = (1,1); see [3], Supplement A for the simple demonstration. For
this reason, we study instead the extended model MLE. Define the extended model
MLE or the Pattern Maximum Likelihood estimator (PML) as

(4) θ̂ = arg max
θ :θ1≥θ2≥··· ,∑∞

α=1 θα≤1

∑
χ

n!
N0!∏i≥1 Ni !θ

N0
0

∞∏
α=1

θ
N

χ−1(α)
α ,

with N0 = n −∑∞
α=1 Nχ−1(α) and θ0 = 1 −∑α≥1 θα . The mappings χ : N →

{0,1, . . . ,∞} satisfy that for every α ≥ 1 there exists exactly one i such that
χ(i) = α, with the tie-breaking rule Ni = Nj implies χ(i) < χ(j), and such
that χ(i) = 0 implies Ni = 0 or 1. Note that since the data ends in a block of
1’s, with N0 of them belonging to blob species,

∑
i≥0 Ni = n + N0. Furthermore

n!/N0!∏i:χ(i) �=0 Ni ! = n!/N0!∏i>0 Ni !, since 1! = 1. According to Theorem 1 in
[21], it is true in this extended model that a maximum likelihood estimator does
exist; moreover they claim in Corollary 5 that the support of the PML (the num-
ber of indices for which θ̂α is positive) is finite. We prove that the PML θ̂ ex-
ists in Section 3, although the uniqueness is not known. The probability measure
corresponding to a possibly defective probability φ is given by, for any set A of
partitions of n,

(5) P (n,φ)(A) = ∑
(N1,N2,...)∈A

∑
χ

n!
N0!∏i≥1 Ni !φ

N0
0

∞∏
α=1

φ
N

χ−1(α)
α ,
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with N0 = n −∑∞
α=1 Nχ−1(α) and φ0 = 1 −∑α≥1 φα .

The underlying permutation of species generated by our finite sample of an-
imals is not observed. Had it been observed, we would have access to full data
counts X = (Xα : α ∈ A). Here, Xα = Nχ−1(α) is the number of occurrences of
species α in the sample. This “underlying data” has the multinomial distribution
with parameters n and θ .

For any summable list of nonnegative numbers a = (a1, a2, . . .), denote by T (a)

the monotone rearrangement map which rewrites the components of a in decreas-
ing order. The relation between the actually observed N and the underlying data
X is very simply N = T (X).

To the underlying multinomial count vector X, we associate the empirical cu-
mulative distribution function F (n) of the observed animals’ true species label-
numbers α, defined by F (n)(x) = n−1∑

α≤x Xα . Alongside this, we define the
empirical probability mass function f (n), thought of as a vector or list rather than
a function, f

(n)
α = Xα/n = F (n)(α) − F (n)(α − 1). Finally, we define

f̂ (n) = N/n = T
(
f (n))

the naive estimator of θ . The two ways we have expressed it, show that it is simul-
taneously the ordered empirical probability mass function of the underlying data,
as well as being a statistic in the strict sense—a function of the actually observed
data N .

The naive estimator f̂ (n) of θ is a random element on our sample space of
random partitions. Our main tool in proving L1 consistency of the PML θ̂ will be
finding an observable event A, that is, a subspace of the set of all possible sample
outcomes, which has large probability under P (n,θ), where θ is the true value of the
parameter, but small probability under P (n,φ), for all φ outside of a small L1 ball
around θ . This event A will be defined in terms of f̂ (n) and of the true parameter
θ ; in fact, it will be the event that f̂ (n) lies within a certain small L∞ ball around θ .
Since this true value of θ is fixed, even if unknown to the statistician, there is no
problem in using its value in the definition of the event A.

2.3. Sieved estimation in the extended model. In applications, maximization
of the likelihood can be computationally very demanding. In the extended model,
the parameter θ = (θ1, θ2, . . . ) satisfies

∑
α θα ≤ 1, and the total probability in

the blob is θ0 = 1 −∑α≥1 θα . Whenever an animal is drawn from “the blob”, it
represents a new species in the sample, which is only observed exactly once. Thus,
when θ0 > 0 and n is large, the observed partition N tends to terminate in a long
sequence of components Ni all equal to 1, many if not most of them—in the long
run, on average θ0n of them—corresponding to species in the blob.

A possibly clever strategy for the basic model would be to truncate the vector
θ at some finite number of components. If, however, the true ordered probability
mass function θ has a very slowly decreasing tail, truncation at too low a level
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might badly spoil the estimate. This possibility can be made less harmful by not
truncating the original model, but truncating the extended model. Thus, the pa-
rameter is taken to be θ̃ = (θ1, . . . , θk) where k < ∞ and

∑k
α=1 θα ≤ 1, and the

probability deficit θ0 = 1 −∑k
α=1 θα is supposed to be spread “infinitely thinly”

over “continuously many” remaining species.
These considerations lead to the idea of a sieved maximum likelihood estimator

which we denote the sieved PML estimator (sPML), in which we maximize the
probability of the data over probability measures corresponding to a slightly dif-
ferent model from the true model, and indexed by a slightly different parameter:
the model is both extended (to allow a blob) and truncated (θ has finite length).

For given true parameter θ of basic or of extended model, and given truncation
level k = kn, define θ̃ = (θ1, . . . , θk) and define θ0 = 1 −∑k

α=1 θα . In general,
φ̃ will denote a possibly defective probability mass function on {1, . . . , k} where
φ1 ≥ φ2 ≥ · · · ≥ φk , and φ0 = 1−∑k

α=1 φα will denote its deficit. Such parameters
correspond to what we call the sieved model.

Imagine the sieved model to be true. For any i ∈ N, the species corresponding
to the observed count Ni ≥ 0 is either one of the species α = 1, . . . , k, or it is
one of the species lumped together in the blob. The latter can only be the case if
Ni = 1 or 0. Different i can both correspond to species in the blob, but cannot
correspond to the same species in 1 ≤ α ≤ k. We denote this mapping from N

to {0,1, . . . , k} by χ . It is a surjection on N with tie-breaking defined as above.
Moreover, χ(i) = 0 implies Ni = 1 or 0. Apart from this, it is arbitrary and not
observed.

Again we can imagine the full data which we would have had, if we had ob-
served χ . According to the sieved model, there is an underlying X = (X0,X1, . . . ,

Xk) which has the multinomial distribution with parameters n and (φ0, φ̃). To
the “proper part” of X, that is to say, (X1,X2, . . . ,Xk), corresponds a parti-
tion of X+ =∑k

α=1 Xα . Denote this partition by N+ = (N1,N2, . . . ,NJ ). Thus,
J = #{1 ≤ α ≤ k : Xα > 0} and N1 ≥ N2 ≥ · · · ≥ NJ > 0. Alongside these, X+
animals of J ≤ k species from the set {1, . . . , k}, we also observed X0 animals
each of different species, where each of those species separately has probability 0,
but all such species together have probability φ0. The observed data, finally, is the
partition N = (N1,N2, . . . ,NJ ,1, . . . ,1) of n, in which we have appended exactly
X0 1’s to the partition N+ of X+.

Note that a number of the Ni in the partition of X+ can also equal 1. In the ob-
served data N , we cannot see how its block of 1’s should be split between species
inside and outside the blob.

We can now write down the “sieved likelihood” and hence define the sPML
estimator:

lik(φ̃) =∑
χ

n!
N0!∏i≥1 Ni !φ

N0
0

k∏
α=1

φ̃
N

χ−1(α)
α ,(6)

φ̂ = arg max
φ̃:φ̃1≥φ̃2≥···≥φ̃k,

∑k
α=1 φ̃α≤1

lik(φ̃),(7)
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with N0 = n −∑k
α=1 Nχ−1(α) and φ0 = 1 −∑k

α=1 φ̃α . The mappings χ : N →
{0,1, . . . , k} in the sum in (6) have the properties that for every 1 ≤ α ≤ k there
exists exactly one i such that χ(i) = α, with tie-breaking defined by Ni = Nj im-
plies χ(i) < χ(j), while χ(i) = 0 implies Ni = 0 or 1. It follows that the number
of i such that Ni ≥ 2 cannot exceed k.

Our strategy will again be to find an event A such that A has large probability
under the true parameter but small probability under all parameters some distance
from the truth. We do have to carefully distinguish between two different “true”
probability measures: the law of the data within the sieved model, under the sieved
parameter θ̃ corresponding to the truth, and the law of the data under the original,
true model.

3. Existence of the pattern maximum likelihood estimator. In this section,
we state an existence result for the PML estimator over an (extended) parameter
space of ordered probability mass distributions in which we allow for a continuous
part, the blob. We show existence by showing that this parameter space is compact,
in an appropriate metric, and that the likelihood is a continuous functional with
respect to this metric.

Recall that the extended parameter space � consists of sequences θ = (θα :
α ∈ A) where A = N = {1,2, . . . }, and where θα ≥ 0 for all α, and moreover
θ1 ≥ θ2 ≥ · · · and

∑
α θα ≤ 1.

We give � the topology of pointwise convergence. Thus, for θ(m), θ ∈ �,
θ(m) → θ as m → ∞ if and only if θ

(m)
α → θα for all α.

THEOREM 1. (i) Under the topology of pointwise convergence, the parameter
space � is compact. (ii) The functional L : � 	→R+ defined by

L(θ) =∑
χ

n!
N0!∏i≥1 Ni !θ

N0
0

∞∏
α=1

θ
N

χ−1(α)
α

with N0 = n −∑∞
α=1 Nχ−1(α), is continuous.

Thus, the extended model pattern maximum likelihood estimator, defined in (4),
exists.

4. Consistency results.

4.1. Consistency for the PML estimator. In this section, we prove the con-
sistency of the PML estimator in the extended model defined in (4), based on a
sample from the distribution P . From our result of the previous section, we know
that there exists a PML. Uniqueness is not known; however, our results below hold
for any PML, and in the sequel we let θ̂ denote any PML.
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The idea of the proof is to first exhibit a sequence of events An for which the
P (n,θ)-probability is large (converges to 1 as n → ∞), and such that for all proba-
bilities P (n,φ) such that φ is an L1-distance δ away from θ , the P (n,φ)-probability
is small (goes to zero as n → ∞). This is done in Lemma 1.

As a consequence, we show that the P (n,θ)-probability of {dP (n,φ)

dP (n,θ) > 1} is small
(goes to zero as n → ∞), by intersecting with An, for all φ that are L1-distance

more than δ away form θ . On the other hand dP (n,θ̂)

dP (n,θ) > 1, if θ̂ is the ML estimator,
for every ordered sample (n1, . . . , nk) with fixed n = n1 +· · ·+nk . Finally, we use
an asymptotic formula for the number p(n) of such (n1, . . . , nk), due to Ramanu-
jan and Hardy, to make the argument uniform over every such sample, to show that
θ̂ must be within L1-distance of δ to θ with a large probability (that goes to one as
n → ∞), that is, that θ̂ is weakly consistent. This is the content of Theorem 2.

Using the bound established in Theorem 2, we obtain almost sure consistency
of θ̂ , in Corollary 1. Finally, in Theorem 2 and Corollary 2, we derive rates of the
almost sure convergence of the L1 norm over classes of probability mass functions
with tail conditions.

Let θ be a fixed proper distribution. For δ > 0 arbitrary define the class of
(possibly defective) probability mass functions Qθ,δ = {φ : ‖φ − θ‖1 ≥ δ}, where
‖φ − θ‖1 =∑∞

i=1 |φi − θi |. Note that φ is a possibly defective probability in the
sense that

∑∞
i=1 φi ≤ 1, and note that in this case we use (5) as the measure.

LEMMA 1. Let f (n) be the empirical probability mass function based on a
sample x1, . . . , xn from some fixed decreasing probability mass function θ , and
f̂ (n) = T (f (n)). Then there is a finite r = r(δ, θ) and ε = δ/(8r) such that

P (n,θ)
(

sup
1≤x≤r

∣∣f̂ (n)
x − θx

∣∣≤ ε
)

≥ 1 − 2e−nε2/2,

sup
φ∈Qθ,δ

P (n,φ)
(

sup
1≤x≤r

∣∣f̂ (n)
x − θx

∣∣≤ ε
)

≤ 2e−nε2/2.

PROOF. Let θ be fixed and δ > 0 fixed but arbitrary, and choose an arbitrary
φ ∈ Qθ,δ . Since θ sums to one, there is an r = r(θ, δ) such that

∑∞
i=r+1 θi ≤ δ/4.

Then
r∑

i=1

|θi − φi | ≥ δ

4
.(8)

To show (8), note that either
∑∞

i=r+1 φi is smaller or larger than δ/2: (i) Assume
first that

∑∞
i=r+1 φi ≤ δ/2. Then

δ ≤
r∑

i=1

|θi − φi | +
∞∑

i=r+1

|θi − φi |



2718 D. ANEVSKI, R. D. GILL AND S. ZOHREN

≤
r∑

i=1

|θi − φi | +
∞∑

i=r+1

θi +
∞∑

i=r+1

φi

≤
r∑

i=1

|θi − φi | + δ

4
+ δ

2
,

which implies (8). (ii) Assume instead that
∑∞

i=r+1 φi > δ/2, and write the as-
sumptions as

∑r
i=1 θi > 1 − δ/4 and

∑r
i=1 φi =∑∞

i=1 φi −∑∞
i=r+1 φi ≤ 1 − δ/2.

Then
r∑

i=1

|θi − φi | ≥
r∑

i=1

(θi − φi)

> 1 − δ

4
− 1 + δ

2

= δ

4
,

which again implies (8).
From (8) follows that for some i ≤ r , we have

|θi − φi | ≥ δ

4r
:= 2ε = 2ε(δ, θ).(9)

Note that r , and thus also ε depends only on θ , and not on φ.
Recall the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [5, 16]; for every

ε > 0,

Pθ

(
sup
x≥0

∣∣F (n)(x) − Fθ(x)
∣∣≥ ε

)
≤ 2e−2nε2

,(10)

where Fθ is the cumulative distribution function corresponding to θ , and F (n)

is the empirical probability function based on i.i.d. data from Fθ . Since
{supx≥0 |F (n)(x) − Fθ(x)| ≥ ε} ⊃ {supx≥0 |f (n)

x − θx | ≥ 2ε} ⊃ {supx≥1 |f (n)
x −

θx | ≥ 2ε}, with f (n) the empirical probability mass function corresponding to
F (n), equation (10) implies

(11)
P (n,θ)

(
sup
x≥1

∣∣f (n)
x − θx

∣∣≥ ε
)

= Pθ

(
sup
x≥1

∣∣f (n)
x − θx

∣∣≥ ε
)

≤ 2e−nε2/2.

Let T be the monotone rearrangement map; cf. [14]. Then the map T is a con-
traction in the supnorm metric on N, that is, if f,g are two functions N → R and
‖f ‖∞ = supk≥1 |f (k)| is the supnorm metric, then ‖T (f )−T (g)‖∞ ≤ ‖f −g‖∞,
cf. [2] (see also [14] for a proof of the contraction property for Lp-norms). Noting
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that T (θ) = θ since θ is decreasing by assumption, and with f̂ (n) = T (f (n)), this
implies that ∥∥f̂ (n) − θ

∥∥∞ ≤ ∥∥f (n) − θ
∥∥∞,

so that {‖f̂ (n) − θ‖∞ ≥ ε} ⊂ {‖f (n) − θ‖∞ ≥ ε}, and thus by (11)

(12)
P (n,θ)

(
sup

1≤x≤r

∣∣f̂ (n)
x − θx

∣∣≥ ε
)

≤ P (n,θ)
(
sup
x≥1

∣∣f̂ (n)
x − θx

∣∣≥ ε
)

≤ 2e−nε2/2.

For an analogue argument for a sample from the (possibly defective) distribution
φ = (φ1, φ2, . . .), we first append the mass point φ0 = 1−∑∞

x=1 φx to this vector to
obtain a corresponding (proper) distribution function Fφ . Using the corresponding
cumulative empirical distribution F (n), and probability mass function f (n), and
sorted such f̂ (n) = T (f (n)) we again have a contraction in the application of T ,
and going via the DKW inequality, we obtain [recall (5)]:

P (n,φ)
(

sup
1≤x≤r

∣∣f̂ (n)
x − φx

∣∣≥ ε
)

≤ 2e−nε2/2,

which is equivalent to

P (n,φ)
(

sup
1≤x≤r

∣∣f̂ (n)
x − φx

∣∣< ε
)

≥ 1 − 2e−nε2/2.(13)

Note that

(14)

{
sup

1≤x≤r

∣∣f̂ (n)
x − φx

∣∣< ε
}

∩ {∃i ≤ r : |θi − φi | > 2ε
}

⊂ {∃i ≤ r : ∣∣f̂ (n)
i − θi

∣∣> ε
}=
{

sup
1≤x≤r

∣∣f̂ (n)
x − θx

∣∣> ε
}
.

Since the second event in (14) is deterministic, for any φ ∈ Qθ,δ , and with an ε

small enough [see (9)], this together with equation (13) implies

P (n,φ)
(

sup
1≤x≤r

∣∣f̂ (n)
x − θx

∣∣> ε
)

≥ P (n,φ)
(

sup
1≤x≤r

∣∣f̂ (n)
x − φx

∣∣< ε
)

≥ 1 − 2e−nε2/2.

Since φ ∈ Qθ,δ is arbitrary, the statement of the lemma follows. �

We next derive the almost sure consistency of (any) extended maximum likeli-
hood estimator θ̂ . Recall the definitions of P (n,θ),P (n,φ) for proper and possibly
defective distributions θ and φ in (1) and (5), respectively.
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THEOREM 2. Let θ̂ = θ̂ (n) be (any) extended maximum likelihood estimator.
Then for any δ > 0

P (n,θ)(‖θ̂ − θ‖1 > δ
)≤ 1√

3n
e
π
√

2n
3 −n ε2

2
(
1 + o(1)

)
as n → ∞,

where ε = δ/(8r) and r = r(θ, δ) such that
∑∞

i=r+1 θi ≤ δ/4.

PROOF. Now let Qθ,δ be as in the statement of Lemma 1. Then there is an r

such that the conclusion of the lemma holds, that is, for each n there is a set

A = An =
{

sup
1≤x≤r

∣∣f̂ (n)
x − θx

∣∣≤ ε
}

such that

P (n,θ)(An) ≥ 1 − 2e−nε2/2,

sup
φ∈Qθ,δ

P (n,φ)(An) ≤ 2e−nε2/2.

For any φ ∈ Qφ,δ , we can define the likelihood ratio dP (n,φ)/dP (n,θ). Then for
any φ ∈ Qφ,δ ,

P (n,θ)

(
An ∩

{
dP (n,φ)

dP (n,θ)
≥ 1
})

=
∫
An∩{ dP (n,φ)

dP (n,θ)
≥1}

dP (n,θ)

≤
∫
An

dP (n,φ)

dP (n,θ)
dP (n,θ)

= P (n,φ)(An)

≤ 2e−nε2/2,

which implies that

P (n,θ)

(
dP (n,φ)

dP (n,θ)
≥ 1
)

= P (n,θ)

(
An ∩

{
dP (n,φ)

dP (n,θ)
≥ 1
})

− P (n,θ)(An)

+ P (n,θ)

(
An ∪

{
dP (n,φ)

dP (n,θ)
≥ 1
})

≤ 2e−nε2/2 − 1 + 2e−nε2/2 + 1

= 4e−nε2/2.

If θ̂ is a PML estimator, then

dP (n,θ̂)

dP (n,θ)
≥ 1.
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For a given n = n1 + · · · + nk such that n1 ≥ · · · ≥ nk > 0, (with k varying), there
is a finite number p(n) of possibilities for the value of (n1, . . . , nk). The number
p(n) is the partition function of n, for which we have the asymptotic formula:

p(n) = 1

4n
√

3
e
π
√

2n
3
(
1 + o(1)

)
,

as n → ∞, cf. [22]. For each possibility of (n1, . . . , nk), there is a PML estimator
(for each possibility we can choose one such) and we let Pn = {θ̂ (1), . . . , θ̂ (p(n))}
be the set of all such choices of PML estimators. Then

P (n,θ)(θ̂ ∈ Qθ,δ) = ∑
φ∈Pn∩Qθ,δ

P (n,θ)(θ̂ = φ)

≤ ∑
φ∈Pn∩Qθ,δ

P (n,θ)

(
dP (n,φ)

dP (n,θ)
≥ 1
)

≤ p(n)4e−nε2/2,

which completes the proof. �

That a θ̂ is consistent in probability is immediate from Theorem 2, and in fact
we have almost sure consistency:

COROLLARY 1. The sequence of maximum likelihood estimators θ̂ (n) is
strongly consistent in L1-norm, that is,

lim
n→∞

∥∥θ̂ (n) − θ
∥∥

1
a.s.→ 0

as n → ∞.

PROOF. This follows as a consequence of the bound in Theorem 2, by the
characterization Xn

a.s.→ 0 ⇔∑∞
n=1 P(|Xn| > δ) < ∞ for all δ > 0, since

∞∑
n=1

1√
3n

e
−π

√
n(

√
n ε2

2 −
√

2
3 )

< ∞.
�

The above results are for a fixed distribution θ , and the rate depends, via ε on
the distribution. The next theorem and corollary make the dependence explicit, and
give a rate for the almost sure convergence as a function of the tail behaviour of
the distribution.

THEOREM 3. Let ε0 > 0 be arbitrary and define

�ε0 =
{
θ : ∀δ > 0,∃r ≤ δ/ε0 such that

∞∑
i=r+1

θi < δ/4

}
.
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Then, if θ ∈ �ε0 ,

nα
∥∥θ̂ (n) − θ

∥∥ a.s.→ 0

as n → ∞, for any α < 1/4.

PROOF. Let α > 0 be an arbitrary constant, to be determined below. From
Theorem 2, we get

P (n,θ)(nα
∥∥θ̂ (n) − θ

∥∥
1 > δ

)≤ 1√
3n

e
−n1/2(n1/2 δ2

128r2n2α −π
√

2
3 )

.(15)

Since δ/r ≥ ε0 > 0, the right-hand side of (15) converges to zero, and is summable,
if

n−2α+1/2 → ∞,

as n → ∞, which is true if α < 1/4. �

COROLLARY 2. Let �κ = {θ : θx = l(x)x−κ}, for κ > 1 fixed and with l some
function slowly varying at infinity. Then if θ ∈ �κ the conclusion of Theorem 3
holds.

PROOF. Assume that θ ∈ �κ . Let ε0 > 0 be fixed, and let δ > 0 be fixed but
arbitrary. Then for some r we should have

∑∞
i=r+1 θi < δ/4, which is equivalent

to

r−κ+1l1(r) ≤ δ

4
⇔ r ≥

(
δ

4

)1/(1−κ)

l2(δ),

when κ > 1, where l1 and l2 are functions which vary slowly at infinity and zero,
respectively. It is possible to take r such that ( δ

4)1/(1−κ)l2(δ) ≤ r < δ/ε0, thus θ ∈
�ε0 . �

4.2. Consistency for the sPML estimator. Let k = kn be a positive integer
(truncation level) such that kn → ∞ when n → ∞, and define the sieve:

�̃n =
{
φ̃ = (φ0, φ1, . . . , φk) where φ0 = 1 −

k∑
α=1

φα,

and φi > φi+1, i = 1, . . . k − 1

}
.

Note that for each proper distribution φ ∈ �κ there is a corresponding sieved dis-
tribution φ̃ ∈ �̃n with φ0 =∑x=kn+1 l(x)x−κ ∼ k−κ+1

n , if κ > 1.
Assume the random vector X = (X0,X1, . . . ,Xk), underlying our observations,

has a multinomial distribution with parameters n and φ̃. Define J = #{α ≥ 1 :
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Xα > 0} and let (N1,N2, . . . ,NJ ) be a partition of
∑k

α=1 Xα , with N1 ≥ N2 ≥
· · · ≥ NJ > 0. Then the observed data is the partition (N1,N2, . . . ,NJ ,1, . . . ,1,0,

0, . . .) with X0 ≥ 0 (unknown) number of 1’s appended after the J ’th position. Let
I = sup{i : Ni ≥ 2}. We observe I , the number of species observed at least twice,
and we observe (J − I )+X0, the number of species which is only observed once.
(We do not observe J − I or X0.) Note that the number of different species that we
have observed frequency counts for is J +X0 = J̃ , and that this number is known.
We will let k = kn grow fast enough with n, so that always J̃ ≤ k.

Recall that χ : {1,2, . . . , J̃ } → {0,1,2, . . . , k} is a (random) map taking the
i’th most frequently observed species to its position in the truncated list of species
ordered by population frequency, such that all species above the k’th most common
are grouped together in a “zero category”. We assume that for every α such that
1 ≤ α ≤ k there is exactly one 1 ≤ i ≤ J̃ such that χ(i) = α, with tie-breaking
Ni = Nj implies χ(i) < χ(j). All other i ∈ {1, . . . , J̃ } are mapped to the zero
category. This means that χ is zero on its complement, so χ(Ic) = 0. Since J̃ ≤ k,
χ need not be surjective. The number |I| of observed species that are mapped to
an α in {1, . . . , k} is random, although we do know that |I| ≤ k.

Define the sieved maximum likelihood estimator:

θ̂
(n)
(s) = arg max

φ̃∈�̃n

∑
χ

n!
N0!∏i≥1 Ni !φ

N0
0

k∏
α=1

φ
N

χ−1(α)
α ,(16)

with the sum running over all χ : {1,2, . . . , J̃ } → {0,1, . . . , k} such that for
every α with 1 ≤ α ≤ k there is exactly one 1 ≤ i ≤ J̃ such that χ(i) = α,
with tie-breaking rule Ni = Nj implies χ(i) < χ(j), and χ is surjective on a
subset I ⊂ {1,2, . . . , J̃ }, that is, χ(I) = {1, . . . , k} and χ(Ic) = 0, and N0 =
n −∑k

α=1 Nχ−1(α).
If χ and I are arbitrary but fixed we define the “estimator” f (n,χ) of a proba-

bility mass function on {0,1, . . . , |I|} by

f (n,χ)(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
i∈Ic

Nχ(i)

n
, for j = 0,

T

(
Nχ(i)

n
: i ∈ I

)
, for j ∈ {1, . . . , |I|}.(17)

This is not a proper estimator, since we can not calculate it only on the basis on
our data (N1,N2, . . . ,NJ ,1, . . . ,1,0,0, . . .): The map χ and, therefore, the set I
can not be determined from the sample.

For a given χ , let rχ be the restriction of a function g on {1,2, . . .} to the set
χ(I). Define the map Tχ on the set of functions g on {1,2, . . .} as the concate-
nation of the map g →∑

α∈χ(I)c gα , with the map composition of T with rχ , so
that

Tχ(g) =
( ∑

α∈χ(I)c

gα, T
(
rχ (g)

))
.
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Then

(18)
Tχ : {pmf on {1,2, . . .}} 	→ {

pmf on
{
0,1, . . . , |I|},

ordered on
{
1, . . . , |I|}}.

If f (n) is the empirical probability mass function, based on a sample x1, . . . , xn of
φ (cf. Section 2), then

f (n,χ) = Tχ

(
f (n)).

Furthermore, for every χ , the map Tχ in (18) is a contraction, with the two spaces
of probability mass functions equipped with the norms ‖θ‖ = supx≥1 |θx | and
‖θ‖ = sup0≤x≤|I| |θx |, respectively. In particular,

sup
0≤x≤|I|

∣∣Tχ

(
f (n))

x − Tχ(θ)x
∣∣≤ sup

x≥1

∣∣f (n)
x − θx

∣∣.(19)

To show (19), note first that Tχ(θ) = (
∑

α∈χ(I)c θα, θ(χ(I))), since θ itself is
sorted on χ(I) and, therefore, Tχ(θ) = θ on I . Furthermore, f (n) is mapped to

(
∑

α∈χ(I)c f
(n)
α , T (f (n)(χ(I)))).

Therefore,

sup
0≤x≤|I|

∣∣Tχ

(
f (n))

x − Tχ(θ)x
∣∣

= max
(∣∣∣∣ ∑

α∈χ(I)c

f (n)
α − ∑

α∈χ(I)c

θα

∣∣∣∣, sup
1≤x≤|I|

∣∣T (rχ (f (n)))
x − T

(
rχ (θ)

)
x

∣∣)

≤ max
(∣∣∣∣ ∑

α∈χ(I)c

f (n)
α − ∑

α∈χ(I)c

θα

∣∣∣∣, sup
x∈χ(I)

∣∣f (n)
x − θx

∣∣)

≤ max
(

sup
x∈χ(I)c

∣∣f (n)
x − θx

∣∣, sup
x∈χ(I)

∣∣f (n)
x − θx

∣∣)
= sup

x≥1

∣∣f (n)
x − θx

∣∣,
where the first inequality follows since the restriction of T to any subset, and thus
also to χ(I), is a contraction, and the second inequality by the triangle inequality
and since the l1 norm on χ(I)c is bounded by the max-norm over χ(I)c. This
shows that (19) holds.

Define next the estimator f̌ (n) of a probability mass function on the set
{0,1, . . . , I }, so on the blob together with the set of species observed at least twice,
by

f̌ (n)(j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k∑

i=I+1

Ni

n
, for j = 0,

Nj

n
, for j ∈ {1, . . . , I }.

(20)
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Note that this is a proper estimator. We extend this to an estimator on all of
{0, . . . , |I|} by defining f̌ (n)(j) = 0 for I < j ≤ |I|.

We now have the following lemma for the (extended) estimator f̌ (n).

LEMMA 2. Let fn be the empirical probability mass function based on a sam-
ple x1, . . . , xn from a fixed decreasing probability mass function θ , and let f̌ (n)

be as defined in (20). For δ > 0 arbitrary define the class of probability measures
QP,δ = {Q : ‖Q − P‖1 ≥ δ}. Then there is a finite r = r(δ,P ) and ε = δ/(8r)

such that

P (n,θ)
(

sup
1≤x≤r

∣∣f̌ (n)
x − θx

∣∣≤ ε
)

≥ 1 − 2e−n(ε− 1
n
)2/2,

sup
φ∈Qθ,δ

P (n,φ)
(

sup
1≤x≤r

∣∣f̌ (n)
x − θx

∣∣≤ ε
)

≤ 2e−n(ε+ 1
n
)2/2.

PROOF. Let χ and I be the fixed random elements that correspond to the given
sample. Recall that χ is unknown and I is known. From Lemma 1, there is an r

such that the conclusion of that lemma holds.
We first claim that

sup
1≤x≤|I|

∣∣f (n,χ)
x − f̌ (n)

x

∣∣≤ 1

n
.

To see this, note first that f (n,χ) and f̌ (n) are identical on the set of species
{1, . . . , I } that are observed at least twice. Since f̌ (n) is zero on {I + 1, . . . , |I|} it
is enough to show that f (n,χ)(j) ≤ 1/n for j ∈ {I + 1, . . . , |I|}. But this follows
by the construction of f (n,χ).

Therefore, with ‖f ‖ = sup1≤x≤k |f (x)| and recalling that |I| ≤ k, we have

‖f̌ (n) − θ‖ ≤ 1
n

+ ‖f (n,χ) − θ‖ so that

{∥∥f (n,χ) − θ
∥∥≤ ε

}⊂
{∥∥f̌ (n) − θ

∥∥≤ ε + 1

n

}
,

and from Lemma 1, with n large enough that 1/n < ε,

P (n,θ)
(

sup
1≤x≤r

∣∣f̌ (n)
x − θx

∣∣≤ ε
)

≥ 1 − 2e−n(ε− 1
n
)2/2.

Similarly, {∥∥f̌ (n) − θ
∥∥≤ ε

}⊂
{∥∥f (n,χ) − θ

∥∥≤ ε + 1

n

}
,

so that from Lemma 1

sup
φ∈Qθ,δ

P (n,φ)
(

sup
1≤x≤r

∣∣f̌ (n)
x − θx

∣∣≤ ε
)

≤ 2e−n(ε+ 1
n
)2/2.

�
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We need to get a bound on the total variation distance between the two measures
P (n,θ) and P (n,θ̃) with θ a parameter and θ̃ a sieved parameter. In order to get such
a bound, we need to make a coupling of the two measures. In particular, the two
random partitions N, Ñ of n will be defined on the same probability space.

Therefore, let θ = (θ1, . . . , θn) with θ1 ≤ θ2 ≤ · · · ≤ θk−1 ≤ θk ≤ θk+1 ≤ · · · ≤
θn be the ordered set of probabilities. Note that the cut-off point defining the sieve
is k = kn. The underlying full data is

(X1, . . . ,Xn) ∼ Multi(n, θ),

where the Xi’s can be zeros and they need not be ordered. Now let X0 =∑n
i=k+1 Xi and define the new underlying data X̃ = (X0,X1, . . . ,Xk). Then

X̃ ∼ Multi(n, θ̌),

where

θ̌ =
(

n∑
i=k+1

θi, θ̃

)
,

θ̃ = (θ1, . . . , θk).

Now N is the random partition of n, defined as the ordered (X1, . . . ,Xn), and Ñ

is the random partition of n, defined by the ordered nonzero X1, . . . ,Xk , to which
we append a list of 1’s of length X0. Note that N and Ñ are defined on the same
probability space. Next, for any set A of partitions on n we define the two measures
P (n,θ),P (n,θ̃) by

P (n,θ)(A) = ∑
(N1,N2,...)∈A

(
n

N1 N2 · · ·
)∑

χ

n∏
i=1

θ
Ni

χ(i),

P (n,θ̃)(A) = ∑
(Ñ1,Ñ2,...)∈A

(
n

Ñ1 Ñ2 · · ·
)∑

χ

∏
i

θ
Ñi

χ(i),

in the case that θ is a proper distribution, and similarly if θ is a possibly defective
distribution. Note that P (n,θ),P (n,θ̃) have total mass one, and thus are probabil-
ity measures. There is another measure, P̃ (n,θ̃) say, not necessarily a probability
measure and connected to P (n,θ̃), that is defined by distributing the sorted nonzero
values of X1, . . . ,Xk to different θi ’s and the value X0 to the blob θ0. However,
since we are only interested in when the measure P (n,θ) differs from “the mea-
sure” generated by the partition Ñ , it will not be of importance which of the two
measures P (n,θ̃), P̃ (n,θ̃) we use, and as a matter of fact using a measure with total
mass one simplifies the reasoning somewhat, therefore, we will work with P (n,θ̃).

Now P (n,θ) and P (n,θ̃) are the same if and only if all Xk+1,Xk+2, . . . ,Xn are
zero or one, and thus they differ on the set

⋃n
i=k+1{Xi ≥ 2}. The probability, under
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θ , of this is

Pθ

(
n⋃

i=k+1

{Xi ≥ 2}
)

≤
n∑

i=k+1

Pθ {Xi ≥ 2}

≤
n∑

i=k+1

Eθ(Xi)

2
= n

2

n∑
i=k+1

θi,

by Markov’s inequality.

THEOREM 4. Let θ̂
(n)
(s) be the sieved PML estimator defined in (16). Assume

the sieve cut-off k(n) satisfies
∑n

i=k(n)+1 θi ≤ Ce−βn1/2+ν
(1 + o(1)), as n → ∞,

for some ν,β > 0. Then for any δ > 0,

P (n,θ)(∥∥θ̂ (n)
(s) − θ̃

∥∥
1 > δ

)
≤ 1

2
√

3n
e
π
√

2n
3
(
e−n(ε+ 1

n
)2/2 + e−n(ε− 1

n
)2/2 + Ce−βn1/2+ν )(

1 + o(1)
)

as n → ∞, where ε = δ/(8r) and r = r(P, δ) such that
∑∞

i=r+1 θi ≤ δ/4, and
‖θ̃ − φ̃‖1 =∑k

i=1 |θ̃i − φ̃i |.
PROOF. Lemma 2 implies that there is a set

An =
{

sup
1≤x≤kn

∣∣f̌ (n)
x − θx

∣∣≤ ε
}

such that

P (n,θ)(An) ≥ 1 − 2e−n(ε− 1
n
)2/2,

sup
φ∈Qθ,δ

P (n,φ)(An) ≤ 2e−n(ε+ 1
n
)2/2.

Furthermore, under the assumption of the cut-off level k(n) we have that

P (n,θ̃)(A) − P (n,θ)(A) ≤ e−βn1/2+ν (
1 + o(1)

)
as n → ∞, for any event A, and any sieved parameter θ̃ .

Let θ̃ be a sieved parameter, derived from θ . For any φ, with corresponding
sieved parameter φ̃ we can define the likelihood ratio dP (n,φ̃)/dP (n,θ̃). Let Qθ̃ ,δ =
{φ̃ : ‖φ̃ − θ̃‖1 > δ}. Then since {‖θ −φ‖1 > δ} ⊃ {‖θ̃ − φ̃‖1 > δ}, we have that φ̃ ∈
Qθ̃ ,δ ⇒ φ ∈ Qθ,δ . Therefore, for any φ̃ ∈ Qθ̃ ,δ , the corresponding φ ∈ Qθ,δ , and

P (n,θ)

(
An ∩

{
dP (n,φ̃)

dP (n,θ̃)
≥ 1
})

− Ce−βn1/2+ν ≤ P (n,θ̃)

(
An ∩

{
dP (n,φ̃)

dP (n,θ̃)
≥ 1
})

=
∫
An∩{ dP (n,φ̃)

dP (n,θ̃)
≥1}

dP (n,θ̃)
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≤
∫
An

dP (n,φ̃)

dP (n,θ̃)
dP (n,θ̃)

= P (n,φ̃)(An)

= P (n,φ)(An) + Ce−βn1/2+ν

≤ 2e−n(ε+ 1
n
)2/2 + Ce−βn1/2+ν

,

which implies that

P (n,θ)

(
dP (n,φ̃)

dP (n,θ̃)
≥ 1
)

= P (n,θ)

(
An ∩

{
dP (n,φ̃)

dP (n,θ̃)
≥ 1
})

− P (n,θ)(An)

+ P (n,θ)

(
An ∪

{
dP (n,φ̃)

dP (n,θ̃)
≥ 1
})

≤ 2e−n(ε+ 1
n
)2/2 + 2Ce−βn1/2+ν − 1 + 2e−n(ε− 1

n
)2/2 + 1

= 2e−n(ε+ 1
n
)2/2 + 2e−n(ε− 1

n
)2/2 + 2Ce−βn1/2+ν

.

If θ̂
(n)
(s) is the sieved PML estimator then

dP
(n,θ̂

(n)
(s) )

dP (n,θ̃)
≥ 1.

For a given n = n1 + · · · + nk such that n1 ≥ · · · ≥ nk > 0, (with k varying), there
is a finite number p(n) of possibilities for the value of (n1, . . . , nk), for which the
asymptotic formula

p(n) = 1

4n
√

3
e
π
√

2n
3
(
1 + o(1)

)
,

as n → ∞ (cf. [22]) holds. For each possibility of (n1, . . . , nk), there is a sieved
PML estimator and we let Pn = {θ̂ (n),(1)

(s) , . . . , θ̂
(n),(p(n))
(s) } be the set of all possible

sieved PML estimators. Then

P (n,θ)(∥∥θ̂ (n)
(s) − θ̃

∥∥
1 > δ

)= ∑
φ̃∈Pn∩Q

θ̃ ,δ

P (n,θ)(θ̂ (n)
(s) = φ̃

)

≤ ∑
φ̃∈Pn∩Q

θ̃ ,δ

P (n,θ)

(
dP (n,φ̃)

dP (n,θ̃)
≥ 1
)

≤ 2p(n)
(
e− n

2 (ε− 1
n
)2 + e− n

2 (ε+ 1
n
)2 + Ce−βn1/2+ν )

.

This completes the proof. �

The sieved PML estimator is strongly consistent.
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COROLLARY 3. Under the assumption of Theorem 4, the sequence of sieved
maximum likelihood estimators θ̂

(n)
(s) is strongly consistent in L1-norm, that is,∥∥θ̂ (n)

(s) − θ̃
∥∥

1
a.s.→ 0

as n → ∞.

PROOF. The proof follows from Theorem 4, analogously to Corollary 3. �

Note that if θ ∈ �κ , so that θx = l(x)x−κ with l(x) a function slowly varying at
infinity and κ > 1, then the condition on the cut-off point is

Ce−βn1/2+ν ∼
n∑

i=k(n)+1

θi ∼
n∑

i=k(n)+1

i−κ = k(n)−κ
n−k(n)∑

i=1

i−κ

∼ k(n)−κ(n − k(n)
)−κ+1

≥ k(n)−κn−κ+1,

where the last inequality follows since κ > 1 and k(n) < n. There is no way that
we can have the condition of Theorem 4 satisfied if we only assume θ ∈ �κ .

THEOREM 5. Let �ν,β = {θ : θx = o(xν−1/2e−βxν+1/2
) as x → ∞} for ν >

0, β > 0 fixed. Then, if θ ∈ �ν,β ,

nα
∥∥θ̂ (n)

(s) − θ̃
∥∥ a.s.→ 0

as n → ∞, with α < 1/4.

PROOF. Assume that θ ∈ �ν,β . Then the condition on exponentially decreas-
ing tails in Theorem 4 is satisfied. Furthermore, the condition ∀δ > 0∃r < ∞ such
that

∑∞
x=r θx < δ/4, translates to

δ/4 ≥ e−βr1/2+ν ⇔ r ≥
(− log δ/4

β

)2/(1+2ν)

.

The dominant part of the exponent in the right-hand side of Theorem 4 is
then, replacing δ with δ/nα for an α to be chosen and with ε = δ/8r and
r ∼ (− log δ)2/(1+2ν),

n1/2 − nε2 − 2ε − 1/n ∼ n1/2 − n1−2αδ2

(− log δ)4/(1+2ν)
− n−αδ

(− log δ)2/(1+2ν)

= n1/2 − n1−2αc1(δ) − n−αc2(δ),

which converges to −∞ as n → ∞ if 1 − 2α > 1/2 and α > 0, that is, if 0 < α <

1/4. Thus, the rate is nα for any α < 1/4. �
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4.3. Comparison to the naive estimator. An alternative to the nonparametric
maximum likelihood estimators, studied in the previous two subsections, is the
naive estimator, consisting of estimating first the order relation from the data, and
then given that estimate the population frequency by the observed population fre-
quencies.

We can obtain stronger results for the naive estimator than for the nonpara-
metric maximum likelihood estimators. In fact, we can state almost sure supnorm
convergence of the naive estimator with an almost parametric rate.

LEMMA 3. Let f̂ (n) = T (f (n)) be the naive estimator. Then for any ε > 0,

P (n,θ)(∥∥f̂ (n) − θ
∥∥∞ > ε

)≤ 2e−nε2/2.

PROOF. We argue similarly to the proof of Lemma 1: Combining the
Dvoretzky–Kiefer–Wolfowitz inequality,

Pθ

(
sup
x

∣∣F (n)(x) − Fθ(x)
)∣∣≥ ε) ≤ 2e−2nε2

,

with {supx |F (n)(x) − Fθ(x)| ≥ ε} ⊃ {supx |f (n)
x − θx | ≥ 2ε}, we get

Pθ

(
sup
x

∣∣f (n)
x − θx

∣∣≥ ε
)

= P (n,θ)
(
sup
x

∣∣f (n)
x − θx

∣∣≥ ε
)

≤ 2e−nε2/2.

From the contraction property ‖T (f ) − T (g)‖∞ ≤ ‖f − g‖∞ of the monotone
rearrangement map T and since T (θ) = θ , with f̂ (n) = T (f (n)), this implies that
{‖f̂ (n) − θ‖∞ ≥ ε} ⊂ {‖f (n) − θ‖∞ ≥ ε} and

P (n,θ)
(
sup
x

∣∣f̂ (n)
x − θx

∣∣≥ ε
)

≤ 2e−nε2/2. �

Lemma 3 implies consistency in probability, with rate α(n) = n1/2(logn)−1/2,
since then e−nε2/2α(n)2 = e−ε2 logn/2 = n−ε2/2, which goes to zero, for every ε. Al-
most sure consistency with rate α(n) = n1/2+δ holds, since e−nε2/2α(n)2 = e−nδε2/2

which is summable (in n).
Thus, we have the almost sure convergence and convergence in probability:

n1/2−δ
∥∥f̂ (n) − θ

∥∥∞ a.s.→ 0,

n1/2

logn1/2

∥∥f̂ (n) − θ
∥∥∞ P→ 0,

for any δ > 0, as n → ∞,
For the sieved model, recall the definition (20) of the estimator f̌ (n). Then sim-

ilar to the proof of Lemma 2, we obtain the following result.
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LEMMA 4. Let fn be the empirical probability mass function based on a sam-
ple x1, . . . , xn from a fixed decreasing probability mass function θ , and let f̌ (n) be
as defined in (20). Then, for any ε > 0,

P (n,θ)(∥∥f̌ (n) − θ
∥∥∞ > ε

)≤ 2e−n(ε− 1
n
)2/2.

As a consequence, this again give above rates in the two convergence modes.

5. Discussion. We discuss a nonparametric maximum likelihood estimator
(PML) for a probability mass function with unknown labels, an estimator first in-
troduced in the computer science literature by Orlitsky et al. [19] under the name of
high profile estimator. In Section 2, we also introduced a sieved estimator which
has a truncation level on the size of the probability vector. The existence of the
PML estimator is proven in [3], Supplement A.

The possibility of extending the model to include a continuous probability mass
was already mentioned in [19]; however, it was not pursued further there. The
introduction of a sieved estimator on the extended model is new and as we discuss
below is important for many practical applications.

In Section 4, we proved strong consistency of “the” (actually any) PML (The-
orem 2 and Corollary 1) and sieved PML (Theorem 4 and Corollary 3). The con-
sistency of the PML was already claimed in [20] without complete proof. The key
ingredients to prove Theorems 2 and 4 are Lemmas 1 and 2, respectively. Both
lemmas use a novel strategy in proving consistency of the MPL by finding an ob-
servable event A, which has large probability under P (n,θ), where θ is the true
value of the parameter, but small probability under P (n,φ), for all φ outside of a
small ball around θ . Besides strong consistency, we also determined the rate of
convergence of the regular and sieved PML in Theorems 3 and 5, respectively,
which in both cases is almost of the order n−1/4. We conclude Section 4 by giving
an comparison to the naive estimator by proving a result analogous to Lemmas 1
and 2 for the latter.

REMARK 1. The obtained almost sure rate of convergence for the PML is
(almost) n−1/4. It is not clear what the optimal almost sure rate is: From the re-
sults of [13], the rate of convergence for the naive estimator is n−1/2; however,
this is the distributional rate of the Lp norms. The best possible almost sure rate
for this problem could be n−1/2, and it could be slower. From our own results in
Section 4.3, we get almost sure rates n−1/2+δ for any δ > 0 for the naive estimator,
which is faster than the rates for our estimator, it is however not clear if this is the
optimal rate. Concerning our estimator, either the rate we obtain is the right rate
for the PML which would mean that the PML is not optimal. Or else, the approach
we use for deriving the rates is not the strongest possible, and in fact the rate for
the PML is faster than n−1/4 and (perhaps) equal to the optimal.
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One should also note that the standard approach to deriving best rates for esti-
mators is to use more sophisticated methods, for instance localization techniques.
Our method consists of giving maximal inequalities for each PML and combining
the derived bounds with a bound on the number of such PML’s. This is a crude
method and it is perhaps even surprising that we obtain consistency and rates at
all.

Another major result is the introduction of an algorithm to numerically compute
the sieved PML. This is presented in [3], Supplement B where the computation is
based on the stochastic approximation of an expectation maximisation algorithm
(SA-EM). In [18], a Monte Carlo Hastings expectation maximisation algorithm
(MH-EM) of the standard PML was given. Our main advancement over this work
is that we introduced the algorithm for the sieved estimator, and that we improved
the statistical part of the EM algorithm by using the stochastic approximation.

Using the sieved estimator instead of the extended standard estimator can be
an advantage when there are many unknown species with correspondingly small
probabilities in the populations. Such a situation appears, for example, in forensic
DNA analysis.

We illustrate this advantage on a small data example: Consider the partition
6 = 3 + 1 + 1 + 1, that is, one species was observed three times and three species
were observed once. The solution to the estimation problem is intuitive and can
be proven analytically [17]: One species, say 1, has probability 1/2 and there is a
continuous probability mass with a total probability 1/2, that is, based on the data,
when sampling a new element, one expects to obtain 1 again in half of the cases
or to observe a new species in the other half of the cases. To derive this estimator
numerically, one would have to use the extended model and the here presented
algorithm. Using the algorithm for the standard model and a number of species of
order of the sample size, a uniform distribution over all species apart from species
1, would give a too big probability to each element. Similar situations occur in real
data problems, that is, situations in which one would like to choose the species
size of order of the sample size, but still account for a large number of rare species
which have a very small probability which is comparable in size among the rare
species.

REMARK 2. For the SA-EM algorithm, we note that, for a given finite value of
K we know that for a given data set a maximum likelihood estimate of θ does exist.
For each smaller value of K , there will typically correspond another, necessarily
different, maximum likelihood estimate. All these estimates, one for each value of
K up to some maximum, correspond to fixed points of the EM algorithm when run
with a larger still value of K . The SAEM algorithm therefore has many possible
limits, corresponding to all values of K not larger than the value corresponding to
the maximum likelihood estimate of K for the given data-set and also not larger
than the value of K chosen in the implementation of the algorithm. These limits
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lie on the boundary of the parameter space. Once the procedure has got rather
close to the boundary of the parameter-space, it is very difficult to move away
again, since the size of potential steps is continuously being made smaller through
the weights γ . Another troublesome part of the boundary of the parameter space
corresponds to a sequence of probabilities pa which are all equal to one another.
For large problems, once a long stretch of equal probabilities has arisen, this long
segment is very resilient to change. Only very slowly can it get longer or shorter
(at either end).

Therefore, in some cases unwanted results (i.e., local maxima of the optimi-
sation problem) can be obtained when moving close to the boundary of the pa-
rameter space, that is, when components of the probability vector become zero.
In those cases, the numerical estimation can be improved by explicitly putting a
lower bound on the allowed components of the probability vector. This means that
in the M step of the EM algorithm one should change the isotonic regression to
an isotonic regression of a probability mass function with a lower bound. It turns
out that this problem has not been addressed in the literature; see, however, Bal-
abdaoui et al. [4] for the related problem in isotonic regression of a regression
function, and also van Eeden [24] and [23], Theorem 2.1. We have given a full
solution to the lower bounded isotonic regression of a probability mass function in
[3], Supplement C.
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SUPPLEMENTARY MATERIAL

Supplement to “Estimating a probability mass function with unknown la-
bels” (DOI: 10.1214/17-AOS1542SUPP; .pdf). Supplement consisted of Supple-
ment A: Existence of the PML; Supplement B: Computation of the PML, and
Supplement C: An algorithm for estimating a decreasing multinomial probability
with lower bound.

REFERENCES

[1] ACHARYA, J., ORLITSKY, A. and PAN, S. (2009). The maximum likelihood probability of
unique-singleton, ternary, and length-7 patterns. In IIEEE International Symposium on
Information Theory 1135–1139.

[2] ANEVSKI, D. and FOUGÈRES, A.-L. (2007). Limit properties of the monotone rearrange-
ment for density and regression function estimation. Lund University. Available at
arXiv:0710.4617v1.

[3] ANEVSKI, D., GILL, R. D. and ZOHREN, S. (2017). Supplement to “Estimating a probability
mass function with unknown labels.” DOI:10.1214/17-AOS1542SUPP.

[4] BALABDAOUI, F., RUFIBACH, K. and SANTAMBROGIO, F. (2010). Least-squares estima-
tion of two-ordered monotone regression curves. J. Nonparametr. Stat. 22 1019–1037.
MR2738880

https://doi.org/10.1214/17-AOS1542SUPP
http://arxiv.org/abs/arXiv:0710.4617v1
https://doi.org/10.1214/17-AOS1542SUPP
http://www.ams.org/mathscinet-getitem?mr=2738880


2734 D. ANEVSKI, R. D. GILL AND S. ZOHREN

[5] DVORETZKY, A., KIEFER, J. and WOLFOWITZ, J. (1956). Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. Ann. Math.
Stat. 27 642–669. MR0083864

[6] EFRON, B. and THISTED, R. (1976). Estimating the number of unseen species: How many
words did Shakespeare know? Biometrika 63 435–447.

[7] ESTY, W. W. (1982). Confidence intervals for the coverage of low coverage samples. Ann.
Statist. 10 190–196. MR0642730

[8] ESTY, W. W. (1983). A normal limit law for a nonparametric estimator of the coverage of a
random sample. Ann. Statist. 11 905–912. MR0707940

[9] FISHER, R. A., CORBET, A. S. and WILLIAMS, C. B. (1943). The relation between the num-
ber of species and the number of individuals in a random sample of an animal population.
J. Anim. Ecol. 12.

[10] GOOD, I. J. (1953). The population frequencies of species and the estimation of population
parameters. Biometrika 40 237–264. MR0061330

[11] GOOD, I. J. and TOULMIN, G. H. (1956). The population frequencies of species and the esti-
mation of population parameters. Biometrika 43 45–63.

[12] HARDY, G. H., LITTLEWOOD, J. E. and PÓLYA, G. (1952). Inequalities, 2nd ed. Cambridge
University Press, Cambridge.

[13] JANKOWSKI, H. K. and WELLNER, J. A. (2009). Estimation of a discrete monotone distribu-
tion. Electron. J. Stat. 3 1567–1605. MR2578839

[14] LIEB, E. H. and LOSS, M. (1997). Analysis. Graduate Studies in Mathematics 14. Amer. Math.
Soc., Providence, RI. MR1415616

[15] MAO, C. X. and LINDSAY, B. G. (2002). A Poisson model for the coverage problem with a
genomic application. Biometrika 89 669–681. MR1929171

[16] MASSART, P. (1990). The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality. Ann.
Probab. 18 1269–1283.

[17] ORLITSKY, A. and PAN, S. (2009). The maximum likelihood probability of skewed patterns.
In IEEE International Symposium on Information Theory.

[18] ORLITSKY, A., SAJAMA, S., SANTHANAM, N. P., VISWANATHAN, K. and ZHANG, J. (2004).
Algorithms for modeling distributions over large alphabets. In Information Theory, 2004.
ISIT 2004. Proceedings. International Symposium on Information Theory 304.

[19] ORLITSKY, A., SAJAMA, S., SANTHANAM, N. P., VISWANATHAN, K. and ZHANG, J. (2004).
On modeling profiles instead of values. In Proceeding UAI’04 Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence 426–435.

[20] ORLITSKY, A., SAJAMA, S., SANTHANAM, N. P., VISWANATHAN, K. and ZHANG, J. (2005).
Convergence of profile based estimators. In Information Theory, 2005. ISIT 2005. Pro-
ceedings. International Symposium on Information Theory 1843–1847.

[21] ORLITSKY, A., SANTHANAM, N. P., VISWANATHAN, K. and ZHANG, J. (2004). On modeling
profiles instead of values. In Proceedings of the Twentieth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-04) 426–435. AUAI Press, Arlington, VA.

[22] RAMANUJAN, S. and HARDY, G. H. (1918). Asymptotic formulae in combinatorial analysis.
Proc. Lond. Math. Soc. 17 75–115.

[23] ROBERTSON, T., WRIGHT, F. T. and DYKSTRA, R. L. (1988). Order Restricted Statistical
Inference. Wiley, New York.

[24] VAN EEDEN, C. (1957). Maximum likelihood estimation of partially or completely ordered
parameters. ii. Indag. Math. 60 201–211.

[25] VONTOBEL, P. O. (2012). The Bethe permanent of a non-negative matrix. IEEE Trans. Inform.
Theory 59 1866–1901.

[26] VONTOBEL, P. O. (2014). The Bethe and Sinkhorn approximations of the pattern maximum
likelihood estimate and their connections to the Valiant–Valiant estimate. In Proceedings
of Information Theory and Applications Workshop (ITA), 9–14 Feb.

http://www.ams.org/mathscinet-getitem?mr=0083864
http://www.ams.org/mathscinet-getitem?mr=0642730
http://www.ams.org/mathscinet-getitem?mr=0707940
http://www.ams.org/mathscinet-getitem?mr=0061330
http://www.ams.org/mathscinet-getitem?mr=2578839
http://www.ams.org/mathscinet-getitem?mr=1415616
http://www.ams.org/mathscinet-getitem?mr=1929171


ESTIMATING A PROBABILITY MASS FUNCTION 2735

[27] ZHANG, C.-H. and ZHANG, Z. (2009). Asymptotic normality of a nonparametric estimator of
sample coverage. Ann. Statist. 37 2582–2595. MR2543704

D. ANEVSKI

CENTRE FOR MATHEMATICAL

SCIENCES

LUND UNIVERSITY

BOX 118
221 00 LUND

SWEDEN

E-MAIL: dragi@maths.lth.se

R. D. GILL

MATHEMATICAL INSTITUTE

LEIDEN UNIVERSITY

NIELS BOHRWEG 1
2333 CA LEIDEN

THE NETHERLANDS

E-MAIL: gill@math.leidenuniv.nl

S. ZOHREN

DEPARTMENT OF MATERIALS

UNIVERSITY OF OXFORD

PARKS ROAD

OX1 3PH, OXFORD

UNITED KINGDOM

E-MAIL: stefan.zohren@materials.ox.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2543704
mailto:dragi@maths.lth.se
mailto:gill@math.leidenuniv.nl
mailto:stefan.zohren@materials.ox.ac.uk

	Introduction
	The model, the data and the estimators
	Introduction
	Estimation in the extended model
	Sieved estimation in the extended model

	Existence of the pattern maximum likelihood estimator
	Consistency results
	Consistency for the PML estimator
	Consistency for the sPML estimator
	Comparison to the naive estimator

	Discussion
	Acknowledgements
	Supplementary Material
	References
	Author's Addresses

