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NONPARAMETRIC GOODNESS-OF-FIT TESTS FOR UNIFORM
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We propose Lp distance-based goodness-of-fit (GOF) tests for uni-
form stochastic ordering with two continuous distributions F and G, both
of which are unknown. Our tests are motivated by the fact that when F

and G are uniformly stochastically ordered, the ordinal dominance curve
R = FG−1 is star-shaped. We derive asymptotic distributions and prove that
our testing procedure has a unique least favorable configuration of F and
G for p ∈ [1,∞]. We use simulation to assess finite-sample performance
and demonstrate that a modified, one-sample version of our procedure (e.g.,
with G known) is more powerful than the one-sample GOF test suggested
by Arcones and Samaniego [Ann. Statist. 28 (2000) 116–150]. We also dis-
cuss sample size determination. We illustrate our methods using data from a
pharmacology study evaluating the effects of administering caffeine to pre-
maturely born infants.

1. Introduction. Suppose X and Y are continuous random variables with
distribution functions F and G, respectively. In many applications, it is of in-
terest to compare F and G. The ordinal dominance curve (ODC), which plots
(G(t),F (t)) for −∞ ≤ t ≤ ∞, is a useful graphical tool that facilitates such a
comparison (Bamber, 1975, Hsieh and Turnbull, 1996, Carolan and Tebbs, 2005,
Davidov and Herman, 2012). The ODC can also be defined as R = FG−1, where
G−1(u) = inf{t : G(t) ≥ u} is the quantile function of G. When F = G, the ODC
follows the main diagonal of the unit square, the so-called equal distribution line.

We consider order-restricted comparisons of F and G. Define F = 1 − F and
G = 1 − G. These are the survivor functions if X and Y are lifetime random vari-
ables, although herein we do not require X and Y to be nonnegative. Denote the
corresponding densities by f and g, respectively. If F ≤ G, then X and Y are
stochastically ordered; this is written as F ≤S G and means informally that X

“tends to be smaller” than Y . Two stronger orders are the uniform stochastic or-
der and the likelihood ratio order. When F/G is nonincreasing, X and Y satisfy a
uniform stochastic order, written F ≤US G. When f/g is nonincreasing, X and Y

satisfy a likelihood ratio order, written F ≤LR G. It is easy to show these orderings
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follow the nested structure: F ≤LR G =⇒ F ≤US G =⇒ F ≤S G. A comprehen-
sive account of these and other orderings is given in Shaked and Shanthikumar
(2007).

Different stochastic orderings give rise to different functional forms of the ODC.
The weakest ordering F ≤S G holds if and only if R is at least as large as the equal
distribution line; that is, R(u) ≥ u, for 0 ≤ u ≤ 1. The strongest ordering F ≤LR G

holds if and only if R is concave. The intermediate ordering F ≤US G holds if
and only if R is star-shaped (Lehmann and Rojo, 1992). One way to characterize
a star-shaped ODC is that the slope of the secant line from the point (1,1) to
(u,R(u)); that is, r(u) = {1−R(u)}/(1−u), is nonincreasing in u. Figure 1 gives
examples of ODCs that correspond to stochastic, uniform stochastic and likelihood
ratio orderings. This figure demonstrates the utility of the ODC in characterizing
how two distributions are ordered and how the structure F ≤LR G =⇒ F ≤US
G =⇒ F ≤S G manifests itself graphically in the ODC.

This article is motivated by a pharmacology study evaluating the effects of ad-
ministering caffeine to prematurely born infants in Columbia, South Carolina; see
Section 5. Among 404 infants in the study, m = 127 were administered caffeine
and n = 277 were not. Each infant was then followed until he or she was dis-
charged from the hospital. All infants were eventually discharged and were alive
at the time of discharge; that is, no discharge times were censored. One of the
goals of the study was to understand how the distributions of discharge times F

(caffeine) and G (no caffeine) compared for the two groups. In Figure 2 (left), we
display the sample ODC for the data, which is defined as Rmn(u) = Fm{G−1

n (u)},
for 0 ≤ u ≤ 1, where Fm and Gn are the empirical distribution functions and
G−1

n (u) = inf{t : Gn(t) ≥ u} is the empirical quantile function. The sample ODC
and its large-sample properties were described in Hsieh and Turnbull (1996).

On the basis of Figure 2, which stochastic ordering, if any, characterizes the true
relationship between the discharge time distributions? There is a substantive litera-

FIG. 1. Ordinal dominance curves. Left: F ≤S G. Middle: F ≤US G. Right: F ≤LR G. In each
subfigure, the equal distribution line is shown dotted.
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FIG. 2. Premature infant data. Left: The sample ODC Rmn(u) = Fm{G−1
n (u)} for the time to

discharge (F = caffeine; G = no caffeine). Right: The least star-shaped majorant MRmn is shown
in blue. In each subfigure, the equal distribution line is shown dotted.

ture on nonparametric tests for stochastic orderings with two or more distributions;
see Davidov and Herman (2012), El Barmi and McKeague (2016), and the refer-
ences therein. In the two-sample case, most of this literature describes tests where
the equal distribution assumption F = G is treated as the null hypothesis and the
ordering (i.e., F ≤S G, F ≤US G, or F ≤LR G) is placed in the alternative. A po-
tential drawback with this type of test is that it is constructed assuming a specific
order-restricted class of alternatives; if the assumed class is incorrect, the test may
lead to misleading or vacuous conclusions. For example, applying tests of this type
to the premature infant data, we obtain the following results:

• testing F = G versus F ≤S G: p-value < 0.00002 (Davidov and Herman,
2012);

• testing F = G versus F ≤US G: p-value < 0.00001 (Arcones and Samaniego,
2000);

• testing F = G versus F ≤LR G: p-value < 0.00001 (Carolan and Tebbs, 2005).

Each test clearly dictates that the infant data are not consistent with F = G. How-
ever, we are no closer to identifying which specific ordering (if any) holds in this
setting.

In this light, we consider goodness-of-fit (GOF) testing procedures instead. By
“goodness-of-fit,” we mean the procedure places the ordering in the null hypothe-
sis and attempts to detect departures from the ordering. By comparison, the liter-
ature on nonparametric GOF tests with two distributions is more sparse, perhaps
because this type of testing problem is more difficult. The primary reason for the
added difficulty is that the ordering can hold under different configurations of F
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and G. Therefore, one must determine the least favorable configuration of the two
distributions before the test can be performed; that is, so that the probability of
type I error can be controlled. Carolan and Tebbs (2005) proposed nonparamet-
ric GOF tests for likelihood ratio ordering with two continuous distributions by
using the least concave majorant of the sample ODC. This work was generalized
and improved upon by Beare and Moon (2015) in the econometrics literature, who
considered likelihood ratio ordering and its applications in finance.

GOF tests for uniform stochastic ordering have been proposed but only in
limited settings. Dardanoni and Forcina (1998) considered likelihood-based tests
against uniform stochastic ordering in a two-way contingency table. Park, Lee
and Robertson (1998) used a nonparametric maximum likelihood approach to for-
mulate GOF tests with two or more continuous distributions, but only after data
from these distributions have been assigned to disjoint intervals in the form of
counts. This essentially discretizes the problem and results in testing against uni-
form stochastic ordering among several multinomial distributions. Furthermore,
this formulation gives rise to nonunique least favorable configurations that depend
on how the intervals are selected, the number of distributions and even the signif-
icance level used. Finally, in the two-population setting, Arcones and Samaniego
(2000) suggested a GOF test for uniform stochastic ordering based on the family
of order-restricted estimators in Mukerjee (1996). However, these authors assume
that one of the population distributions is known (e.g., G is known) and do not de-
termine the least favorable configuration for their procedure. Instead, the authors
use critical values from an upper bound asymptotic distribution which leads to a
conservative test.

In this article, we propose a family of GOF tests for uniform stochastic ordering
with two continuous distributions F and G; that is, we are interested in testing H0 :
F ≤US G versus H1 : F �US G, where both distributions are unknown. Motivated
by the ODC approaches taken in Carolan and Tebbs (2005) and Beare and Moon
(2015), we construct test statistics for H0 versus H1 based on the Lp difference
between the sample ODC and its least star-shaped majorant (defined in Section 2).
We then derive asymptotic distributions and prove that our testing procedure has a
unique least favorable configuration for p ∈ [1,∞]. Interestingly, this theoretical
result is different from the finding in Beare and Moon (2015), who showed that
when using Lp distance-based GOF tests for likelihood ratio ordering, the least
favorable configuration exists only when p ∈ [1,2]. Furthermore, unlike Park, Lee
and Robertson (1998), our approach does not require one to discretize the support
of the distributions which can only lead to a loss in power. Finally, we show that the
one-sample version of our test (e.g., with G known) is not as conservative as the
test proposed by Arcones and Samaniego (2000) and is generally better equipped
to detect departures from H0.

Formulating Lp distance-based GOF tests for uniform stochastic ordering in
the two-sample problem is technically challenging. It is not possible to simply
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modify the proofs in Carolan and Tebbs (2005) and Beare and Moon (2015) un-
der likelihood ratio ordering; see Section 3. At the same time, establishing that
such an ordering exists has great practical implications. For example, if X and Y

are lifetime random variables (and are absolutely continuous), then F ≤US G is
equivalent to the corresponding hazard rates being ordered. This is an important
characterization in reliability and survival analysis applications. Our interest in
uniform stochastic ordering is motivated by our collaboration with researchers in
the premature infant study discussed earlier. Letting X and Y denote the times to
discharge for the caffeine and no-caffeine groups, respectively, uniform stochas-
tic ordering holds if and only if pr(X > t |X > t0) ≤ pr(Y > t |Y > t0), for all t, t0
satisfying t > t0 ≥ 0. In other words, no matter how much time t0 ≥ 0 has subse-
quently passed, administering caffeine is consistent with shorter discharge times.
Note that, in this context, stochastic ordering requires that the relationship above
hold only initially (i.e., when t0 = 0). Uniform stochastic ordering guarantees this
type of dominance will hold for all t0 ≥ 0.

2. Testing procedure. Suppose that X1,X2, . . . ,Xm are independent and
identically distributed (i.i.d.) from F and that Y1, Y2, . . . , Yn are i.i.d. from G.
We assume the two samples are independent and that both F and G are unknown.
Let R = FG−1 denote the corresponding ODC. For our asymptotic results in Sec-
tion 3 to hold, as in Hsieh and Turnbull (1996), we assume F and G have con-
tinuous densities f and g and that the first derivative of R is bounded over [0,1].
Throughout this article, we denote the parameter space of R by �, the collec-
tion of nondecreasing, continuously differentiable functions from [0,1] to [0,1].
Under our assumptions, the hypotheses H0 : F ≤US G and H1 : F �US G can be
expressed equivalently as

H0 : R ∈ �0 = {θ ∈ � : θ is star-shaped} and H1 : R ∈ �1 = � \ �0.

Recall that θ ∈ � is star-shaped if and only if {1 − θ(u)}/(1 − u) is nonincreasing
in u.

Let Rmn = Rmn(u) = Fm{G−1
n (u)} denote the sample ODC, defined in Sec-

tion 1. Informally, our testing procedure is based on measuring the distance be-
tween Rmn and an estimate of R subject to the constraint that F ≤US G. Toward
defining this restricted estimator, let l([0,1]) denote the collection of bounded
functions on [0,1]. For any h ∈ l([0,1]), its least star-shaped majorant is defined
as

Mh = inf
{
h∗ ∈ l

([0,1]) : h ≤ h∗ and h∗ is star-shaped
};

that is, Mh is the smallest star-shaped function in l([0,1]) that is at least as large
as h. Throughout our work, we call M : l([0,1]) �→ l([0,1]) the least star-shaped
majorant operator. Just as Rmn is an estimator of R under no restriction (Hsieh
and Turnbull, 1996), the least star-shaped majorant MRmn is an estimator of R
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under H0 : F ≤US G. Using Lemma 1 in the Supplementary article (Tang, Wang
and Tebbs, 2017), we show that this restricted estimator can be calculated as

MRmn(u) = 1 − min
v∈V∪{0}

v≤u

{
1 − Rmn(v)

1 − v

}
(1 − u),

for 0 ≤ u < 1, where V is the set of discontinuous (jump) points of Rmn and
MRmn(1) = 1. Figure 2 (right) shows the least star-shaped majorant of the sample
ODC for the premature infant data described in Section 1.

Our testing procedure utilizes the sample ODC Rmn and its least star-shaped
majorant MRmn. Specifically, we propose the family of test statistics:

Mp
mn = cmn‖MRmn − Rmn‖p,

where cmn = {mn/(m + n)}1/2 is a normalizing constant and ‖ · ‖p is the Lp

norm with respect to Lebesgue measure. We allow for p ∈ [1,∞]; that is, ‖h‖p =
(
∫
[0,1] |h(u)|p du)1/p when p < ∞ and ‖h‖∞ = supu∈[0,1] |h(u)|. For example,

when p = 1, ‖MRmn − Rmn‖1 equals the area between the two estimators; when
p = ∞, ‖MRmn − Rmn‖∞ equals the largest vertical distance between the esti-
mators. For any p ∈ [1,∞], clearly large values of M

p
mn are evidence against H0.

3. Theoretical results. In this section, we first describe the asymptotic distri-
bution of M

p
mn for any star-shaped ODC; that is, for any R ∈ �0. We then demon-

strate that, for any p ∈ [1,∞], all null distributions are dominated stochastically by
the asymptotic distribution of M

p
mn under R(u) = u, that is, when F = G. From

this least favorable distribution, we can find the critical value cα,p that satisfies
limm,n→∞ pr(Mp

mn ≥ cα,p) = α when F = G and limm,n→∞ pr(Mp
mn ≥ cα,p) ≤ α

when H0 : F ≤US G is true. In other words, rejecting H0 when M
p
mn ≥ cα,p is an

asymptotic size α decision rule. Finally, we examine relevant asymptotic distribu-
tions when R ∈ �1 and then characterize large-sample power properties. We also
discuss sample size calculations to detect departures from H0. All theorems are
proved in Section 7. Additional technical details are provided in the Supplemen-
tary article (Tang, Wang and Tebbs, 2017).

3.1. Asymptotic results under H0. Let I denote the identity operator on
l([0,1]) and define D = M − I . When H0 is true; that is, when R ∈ �0, note
that MR = R and

Mp
mn = cmn‖MRmn − Rmn‖p = cmn‖DRmn −DR‖p.

At first glance, establishing the limiting distribution of M
p
mn under H0 might seem

to be straightforward, that is, one could simply start with the asymptotic distri-
bution of cmn(Rmn − R) described in Hsieh and Turnbull (1996) and apply the
functional delta method (see, e.g., Section 3.9 in van der Vaart and Wellner, 1996)
and continuous mapping theorem. This was the approach taken by Beare and Moon
(2015) with their Lp distance-based GOF test statistics under likelihood ratio or-
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dering. In our setting, this direct approach is not possible because whereas the least
concave majorant operator in Beare and Moon (2015) is Hadamard directionally
differentiable (Shapiro 1990, 1991), the least star-shaped majorant operator M
(and hence D) is not always so; see Lemma 5 in the Supplementary article (Tang,
Wang and Tebbs, 2017). Fortunately, this does not create insurmountable problems
because weak convergence of cmn(DRmn −DR) is not a necessary prerequisite to
derive the asymptotic distribution of cmn‖DRmn −DR‖p .

Before we state the asymptotic distribution of M
p
mn for any R ∈ �0, we need to

describe R precisely because these distributions depend completely on the shape
of R. Recall that when R ∈ �0, the slope function r(u) = {1 − R(u)}/(1 − u) is
nonincreasing in u. When r(u) is strictly decreasing over [0,1], we say that R is
strictly star-shaped. When R ∈ �0 is not strictly star-shaped, then analogously to
Beare and Moon (2015), there exists a unique collection (finite or countable) of
closed, pairwise disjoint intervals of the form [ak, bk], 0 ≤ ak < bk ≤ 1, where:

• the slope r(u) is constant over each interval (i.e., R is affine over each interval)
• no two intervals possess the same value of r(u).

In this case, we say that R ∈ �0 is nonstrictly star-shaped. The reason we bifurcate
�0 using “strictly” and “nonstrictly” descriptors is that the nondegenerate part of
the asymptotic distribution of M

p
mn depends only on those regions where R is

nonstrictly star-shaped. If R is strictly star-shaped over [0,1], the distribution of
M

p
mn collapses to zero in the limit.
To make our description of the asymptotic distributions precise, we therefore

introduce the following notation. For 0 ≤ a < b ≤ 1, define

M(1,0)
[a,b]h = inf

{
h∗ ∈ l

([0,1]) : h ≤ h∗ and h∗ is star-shaped over [a, b]
with kernel (1,0)

}
.

A general definition of what it means for a function h∗ to be star-shaped with ker-
nel (c, d) is given directly before Lemma 1 in the Supplementary article (Tang,
Wang and Tebbs, 2017). For any h ∈ l([0,1]), the function M(1,0)

[a,b]h has two defin-

ing characteristics. First, M(1,0)
[a,b]h(u) = h(u) whenever u /∈ [a, b]. Second, over

[a, b], M(1,0)
[a,b]h is the smallest function (at least as large as h) that is star-shaped

with kernel (1,0); that is, the slope function −M(1,0)
[a,b]h(u)/(1 − u) over [a, b] is

nonincreasing in u. The importance of the functional operator M(1,0)
[a,b] : l([0,1]) �→

l([0,1]) becomes clear as we state our first main result.

THEOREM 1. Suppose R ∈ �0 and let B denote a standard Brownian bridge.
The asymptotic results below hold when min{m,n} → ∞ and n/(m + n) → λ ∈
(0,1):

(a) If R is strictly star-shaped over [0,1], then M
p
mn

d−→ 0 for all p ∈ [1,∞].
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(b) If R is nonstrictly star-shaped, then for p ∈ [1,∞),

Mp
mn

d−→
{∑

k

[
λR′(ak) + (1 − λ)

{
R′(ak)

}2]p/2
∫ bk

ak

{
D(1,0)

[ak,bk]B(u)
}p

du

}1/p

;

when p = ∞,

Mp
mn

d−→ sup
k

{[
λR′(ak) + (1 − λ)

{
R′(ak)

}2]1/2 sup
u∈[ak,bk]

{
D(1,0)

[ak,bk]B(u)
}}

.

In both asymptotic distributions, R′ is the derivative of R and D(1,0)
[ak,bk] =

M(1,0)
[ak,bk] − I .

From Theorem 1, one can see that when F ≤US G, the only randomness in
the asymptotic distribution of M

p
mn arises from the nonstrictly star-shaped regions

[ak, bk] and is described probabilistically by the D(1,0)
[ak,bk]B processes. Furthermore,

when F = G, the asymptotic distribution of M
p
mn simplifies to ‖D(1,0)

[0,1]B‖p for all
p ∈ [1,∞]. When p = 1, for example, this quantity describes the distribution of
the area between the least star-shaped majorant of a standard Brownian bridge
B and B itself. When p = ∞, ‖D(1,0)

[0,1]B‖∞ describes the distribution of the sup-
norm distance between these two processes. Readers familiar with the GOF tests
for likelihood ratio ordering in Carolan and Tebbs (2005) and Beare and Moon
(2015) will no doubt recognize the homology between our Theorem 1 and the
corresponding results in these articles. However, as noted earlier, GOF tests for
uniform stochastic ordering present their own set of mathematical challenges and
different conclusions are reached about the existence of a least favorable configu-
ration.

THEOREM 2. Suppose R ∈ �0. For any p ∈ [1,∞], the asymptotic distribu-
tion of M

p
mn is ordinary stochastically smaller than ‖D(1,0)

[0,1]B‖p; that is,

lim
m,n→∞

n/(m+n)→λ

prR∈�0

(
Mp

mn ≥ t
) ≤ pr

(∥∥D(1,0)
[0,1]B

∥∥
p ≥ t

)
,

for all t ∈ R, where λ is defined in Theorem 1.

Theorem 2 establishes that when using M
p
mn to test H0 : F ≤US G versus

H1 : F �US G, the equal distribution line R(u) = u represents the least favorable
configuration of F and G for all p ∈ [1,∞]. Proving this result involves show-
ing that each of the D(1,0)

[ak,bk]B processes in Theorem 1 are mutually independent,
a somewhat startling discovery because each process shares the same Brownian
bridge B and each operator D(1,0)

[ak,bk] shares the same kernel point (1,0). The prac-
tical utility of Theorem 2 is that, for any p ∈ [1,∞], we can determine the critical
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value that maximizes the probability of type I error over all configurations of F and
G in �0. This result is different than the conclusion reached in Beare and Moon
(2015), who showed that when testing against likelihood ratio ordering using Lp

distance-based statistics involving the least concave majorant of Rmn, R(u) = u is
the least favorable configuration when p ∈ [1,2] and for p > 2 the least favorable
configuration does not exist. Careful inspection of Theorem 1 and some intuition
sheds insight on why this is true. When R is star-shaped, but not strictly star-
shaped, each of the derivatives R′(ak) in Theorem 1 satisfies R′(ak) ≤ 1. However,
when F ≤LR G, there is no guarantee these derivatives are uniformly bounded for
all concave R, and hence anomalous limiting behavior can result when p is too
large.

For given values of the significance level α and p ∈ [1,∞], denote the 1 − α

quantile of ‖D(1,0)
[0,1]B‖p by cα,p; that is, cα,p solves α = pr(‖D(1,0)

[0,1]B‖p ≥ cα,p).

To approximate the distribution of ‖D(1,0)
[0,1]B‖p , we generated 100,000 Brownian

bridge paths on a grid of 100,000 equally spaced points in [0,1], and, for each p ∈
{1,2,3,5,∞}, we calculated ‖D(1,0)

[0,1]B‖p for each path. For each p, these 100,000

values were used to approximate the density function of ‖D(1,0)
[0,1]B‖p and quantiles

cα,p , for α = 0.01, 0.05 and 0.10. These functions and the selected quantiles cα,p

are provided in the Supplementary article (Tang, Wang and Tebbs, 2017).

3.2. Asymptotic results under H1. The difference between the asymptotic dis-
tribution of M

p
mn under H0 : R ∈ �0 and that under H1 : R ∈ �1 arises from

the nonstar-shaped regions of R. To characterize a nonstar-shaped ODC R ∈ �1,
start with MR, which is star-shaped, and note that (as in Section 3.1) one can
partition the unit interval [0,1] as [0,1] = S ∪ (

⋃
k Sk), where MR is strictly

star-shaped over S and nonstrictly star-shaped over pairwise disjoint intervals of
the form Sk = [ak, bk], 0 ≤ ak < bk ≤ 1, for k = 1,2, . . . . One can further par-
tition each Sk as Sk = Sk1 ∪ Sk2, where Sk1 = {u ∈ Sk : MR(u) = R(u)} and
Sk2 = {u ∈ Sk : MR(u) > R(u)}. Each Sk1 must contain ak so it is never empty,
and the nonstar-shaped regions of R can be written as

⋃
k Sk2. In other words,

R ∈ �0 when
⋃

k Sk2 is empty and R ∈ �1 otherwise.
In general, these types of regions contribute differently to the limiting dis-

tribution of M
p
mn. Over the strictly star-shaped region S, MR(u) = R(u) for

all u and the Lp norm of cmn{DRmn(u) − DR(u)} converges in distribution to
0, as in Section 3.1. To clearly describe the contribution over the Sk regions,
we introduce new notation. For any h ∈ l([0,1]), define the functional operator
LSk

: l([0,1]) �→ l([0,1]) according to

LSk
h(u) = − inf

v∈Sk1
v≤u

{−h(v)

1 − v

}
(1 − u)ISk

(u) + h(u)ISc
k
(u) for u ∈ [0,1),

where IA(·) is the indicator function over the set A and Ac denotes the comple-
ment of A. When u = 1, LSk

h(u) = max{h(1),0} or h(1) depending on whether
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the singleton {1} ∈ Sk1 or not; see Appendix C in the Supplementary article (Tang,
Wang and Tebbs, 2017). Using this new operator, we now characterize asymptotic
distributions for any ODC R ∈ � with those in �1 = � \ �0 of particular inter-
est. A discussion on the large-sample power properties of our testing procedure
follows.

THEOREM 3. Suppose R ∈ �. Using the notation described in this subsection,

cmn‖DRmn −DR‖p
d−→

{∑
k

∫
u∈Sk

∣∣LSk
T λ

R(u) − T λ
R(u)

∣∣p du

}1/p

for p ∈ [1,∞); when p = ∞,

cmn‖DRmn −DR‖p
d−→ sup

k

sup
u∈Sk

∣∣LSk
T λ

R(u) − T λ
R(u)

∣∣.
Both results hold as min{m,n} → ∞ and n/(m + n) → λ ∈ (0,1). In both cases,
T λ

R(u) = λ1/2B1(R(u)) + (1 − λ)1/2R′(u)B2(u), 0 ≤ u ≤ 1, where B1 and B2 de-
note two independent standard Brownian bridges.

Four remarks are in order. First, the process T λ
R = {T λ

R(u),0 ≤ u ≤ 1} in Theo-
rem 3 is well known; as noted earlier, it represents the asymptotic distribution of
cmn(Rmn − R) for any R ∈ �; see, for example, Theorem 2.2 in Hsieh and Turn-
bull (1996). Second, the asymptotic distributions identified in Theorem 3 apply
for any R ∈ �, but we show in the Supplementary article (Tang, Wang and Tebbs,
2017) that they quickly reduce to those in Theorem 1 when R ∈ �0. Third, our Lp

tests are consistent for p ∈ [1,∞]. To see why, consider the sup-norm (p = ∞)

case in Theorem 3 and note that, by the triangle inequality,

prR∈�1

(
M∞

mn ≥ cα,∞
) = prR∈�1

(
cmn‖DRmn‖∞ ≥ cα,∞

)
≥ prR∈�1

(
cmn‖DRmn −DR‖∞ ≤ cmn‖DR‖∞ − cα,∞

)
which can be approximated by

prR∈�1

(
sup
k

sup
u∈Sk

∣∣LSk
T λ

R(u) − T λ
R(u)

∣∣ ≤ cmn‖DR‖∞ − cα,∞
)
.

It is easy to show that supk supu∈Sk
|LSk

T λ
R(u) − T λ

R(u)| is bounded and that, for
any R ∈ �1, cmn‖DR‖∞ → ∞, as min{m,n} → ∞, which establishes our claim.
The finite p argument is analogous. Fourth, approximate lower bounds on the
power, like the one above in the sup-norm case, can be used for sample size calcu-
lations. For an ODC R ∈ �1 deemed to be clinically relevant, one can determine
numerically the smallest m and n that solve prR∈�1

(supk supu∈Sk
|LSk

T λ
R(u) −

T λ
R(u)| ≤ cmn‖DR‖∞ − cα,∞) = 1 − β , where β ∈ (0,1). The resulting solution

will be inexorably conservative but still potentially useful for planning purposes.
We illustrate this approach with examples in Section 4.
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We conclude this section with a brief discussion on local power. This discus-
sion is ultimately not dissimilar from the local power discussion in Beare and
Moon (2015) under likelihood ratio ordering. However, our interest in local power
arises because we want to compare the one-sample version of our testing pro-
cedure to the GOF test suggested by Arcones and Samaniego (2000). This one-
sample comparison is given in Section 4.3. The two-sample discussion is given
now. Let {R(r), r = 1,2, . . . , } denote a sequence of ODCs in �1. For each r ≥ 1,
denote the corresponding distributions by F (r) and G(r) from which we have in-
dependent random samples X

(r)
1 ,X

(r)
2 , . . . ,X

(r)
m and Y

(r)
1 , Y

(r)
2 , . . . , Y

(r)
n , respec-

tively. We examine local power properties by letting R(r) approach �0 in the sense
that ‖DR(r)‖p = ‖MR(r) − R(r)‖p → 0 as r → ∞ at different rates. Using the
notation in this paragraph, our last theorem summarizes the salient results.

THEOREM 4. Suppose the first derivative of R(r) ∈ �1 is uniformly bounded
over [0,1] for all r . Suppose p ∈ [1,∞]. All limits stated below assume that
max{m,n} = O(r) and n/(m + n) → λ ∈ (0,1), as r → ∞:

(a) If lim cmn‖DR(r)‖p = ∞, then lim prR(r)∈�1
(M

p
mn > cα,p) = 1.

(b) For any β ∈ (0,1), there exists ηp(β) > 0 such that

lim inf prR(r)∈�1
(Mp

mn > cα,p) ≥ 1 − β

whenever lim inf cmn‖DR(r)‖p ≥ ηp(β).

Part (a) of Theorem 4 indicates that when ‖DR(r)‖p converges to 0 at a rate
slower than c−1

mn, cmn‖DR(r)‖p diverges and the power of our test converges to 1.
Part (b) guarantees that when cmn‖DR(r)‖p remains bounded away from zero, the
power of our test is still nontrivial; that is, it does not converge to 0. This occurs
when the “amount of information” cmn increases and the “departure” ‖DR(r)‖p

decreases, and both do so at the same rate.

4. Simulation evidence. We use simulation to assess the finite-sample per-
formance of our tests. In Section 4.1, we consider fixed ODCs under both H0 :
F ≤US G and H1 : F �US G to estimate type I error probability and power, re-
spectively, and we illustrate the sample size calculations described in Section 3.2.
In Section 4.2, we modify our testing procedure to allow for one of the popula-
tion distributions to be known and compare this modified test to the one-sample
GOF test in Arcones and Samaniego (2000). Local power results are provided in
Section 4.3.

4.1. Fixed ODC comparisons. We consider four ODCs satisfying R ∈ �0 (R1,
R2, R3 and R4) and four ODCs satisfying R ∈ �1 (R5, R6, R7 and R8). The H0
ODCs (Figure 3, left) are each members of a family of star-shaped ODCs that
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FIG. 3. Left: Star-shaped ODCs; that is, Ri ∈ �0. Right: Nonstar-shaped ODCs; that is, Ri ∈ �1.
A description of each curve is given in the Supplementary article (Tang, Wang and Tebbs, 2017).

we describe in the Supplementary article (Tang, Wang and Tebbs, 2017). The H1
ODCs (Figure 3, right) are not star-shaped and are also described in Tang, Wang
and Tebbs (2017). We also consider R0 = R0(u) = u, for u ∈ [0,1], to examine
finite-sample performance under the least favorable configuration F = G. All of
our results are based on 10,000 Monte Carlo data sets using independent samples
from F and G with sample sizes m and n, respectively. To generate the samples,
we let F(u) = Ri(u) and G(u) = u, for u ∈ [0,1]. We then sample X1,X2, . . . ,Xm

from F using the inverse cumulative distribution function technique and indepen-
dently sample Y1, Y2, . . . , Yn from a uniform(0,1) distribution. This provides in-
dependent samples for each ODC R under consideration.

Table S.2 in the Supplementary article (Tang, Wang and Tebbs, 2017) gives
Monte Carlo estimates of the probability of rejecting H0 : F ≤US G for different
sample sizes, values of p ∈ {1,2,∞}, and α = 0.05. We experimented with other
values of p (i.e., p = 3 and p = 5) but obtained results similar to those when p =
2. Of initial interest is the finite-sample performance when F = G. With 10,000
simulated data sets, the margin of error associated with the size estimates under
F = G, assuming a 99 percent confidence level, is approximately 0.006. Therefore,
one notes that our tests with p = 1 and p = 2 are slightly anticonservative with
small samples and otherwise operate closely to the nominal level. Furthermore,
examining the rejection rates for the other star-shaped ODCs (R1, R2, R3 and R4)
supports Theorem 2 which, for p ∈ [1,∞], guarantees the probability of type I
error will be at its maximum under F = G. Likewise, powers for the nonstar-
shaped ODCs (R5, R6, R7 and R8) all approach unity as m and n become large.
This reinforces our consistency claim.
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We also use the nonstar-shaped ODCs in Figure 3 to illustrate sample size de-
termination. For p ∈ [1,∞] and for a given R ∈ �1, denote by dR,β,p the 1 − β

quantile of the asymptotic distributions in Theorem 3. Using our lower bound on
the asymptotic power from Section 3.2 and taking m = n (for simplicity), we ob-
tain a closed-form expression for the minimum sample size necessary to detect the
departure ‖DR‖p = ‖MR − R‖p with probability 1 − β when using an asymp-
totic size α test; that is,

m = 2
(

dR,β,p + cα,p

‖DR‖p

)2
for p ∈ [1,∞].

With α = 0.05 and 1−β = 0.8, the Supplementary article (Tang, Wang and Tebbs,
2017) tables these solutions for each nonstar-shaped ODC in Figure 3 and for
each p ∈ {1,2,∞}. For example, for the R5 ODC, which corresponds to F and G

being stochastically ordered (but not uniformly stochastically ordered), the mini-
mum sample size solutions for p ∈ {1,2,∞}, respectively, are m = 634, m = 461
and m = 582. Such sample sizes might seem dispiritingly large; however, it is not
surprising these solutions are conservative. We describe in Section 6 alternative
approaches that should reduce this conservatism.

4.2. Comparison with Arcones and Samaniego (2000). We now turn our at-
tention to the special case of testing H0 : F ≤US G versus H1 : F �US G where
G is known. Arcones and Samaniego (2000), who focused largely on optimal es-
timation of F (with F ≤US G and G known), also suggested a conservative large-
sample procedure to test against H0. Their proposed test statistic, which we denote
by Dm, can be expressed as a function of the one-sample ODC Rm = FmG−1;
specifically,

Dm = m1/2 sup
0≤v≤u≤1

[
(1 − v)

{
1 − Rm(u)

} − (1 − u)
{
1 − Rm(v)

}]
.

However, instead of deriving a least favorable (asymptotic) distribution for infer-
ence, the authors proved that the asymptotic distribution of Dm is bounded above
by 2 supu∈[0,1] |B(u)|, where B is a standard Brownian bridge, and selected their
critical value cAS

α/2 to satisfy α = pr(supu∈[0,1] |B(u)| ≥ cAS
α/2). On the other hand,

one-sample versions of our GOF procedure are available and use the test statistics:

Mp
m = m1/2

[∫
[0,1]

{
DRm(u)

}p
du

]1/p

and M∞
m = m1/2 sup

u∈[0,1]
{
DRm(u)

}
,

where D is the operator defined in Section 3.1 and Rm(u) = Fm{G−1(u)}. The
limiting distributions in Theorem 1 also apply here as m → ∞; in addition, it is
straightforward to modify the proof of Theorem 2 to conclude that F = G admits
the least favorable configuration for p ∈ [1,∞] in the known G case.

For different sample sizes m (now corresponding to F only), Table S.3 in the
Supplementary article (Tang, Wang and Tebbs, 2017) gives small-sample rejection
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rates of our one-sample tests and the test from Arcones and Samaniego (2000),
both performed using α = 0.05. We used techniques similar to those described in
Section 3.1 to approximate the critical value cAS

α/2 = cAS
0.025 = 1.359 and performed

all simulations in the same way as before except G is now known. Clearly, there
is a price to be paid for using the test based on the Dm statistic when F = G;
type I error probability estimates remain significantly below the nominal level for
all m ≤ 200. On the other hand, our p = 1 and p = 2 tests are only minimally
conservative when m ≤ 75, and our sup-norm (p = ∞) test performs nominally
even when m = 20. In addition, the sup-norm test can be markedly more powerful
at detecting nonstar-shaped alternatives with small to moderately sized samples.

4.3. Local power analysis. A consequence of Theorem 3 is that, for any fixed
R ∈ �1, our Lp GOF tests are consistent for all p ∈ [1,∞]. To glean additional
insight on which values of p might be preferred in practice, we investigate the
power associated with local alternatives. Starting in the lower left corner, Figure 4
depicts a sequence of ODCs in �1 that approach �0 (moving from lower left to
upper right). Each ODC shown in Figure 4 belongs to a family of ODCs described
in the Supplementary article (Tang, Wang and Tebbs, 2017); the defining feature
of this family is that it is indexed by a single parameter δ ∈ [0,0.5]. The δ = 0
member, say R(0), is the initial ODC in the lower left corner of Figure 4; the δ = 0.5
member R(0.5), shown in the upper right, is the limiting ODC in �0. ODCs R(δ)

with intermediate values of δ ∈ (0,0.5) are also identified in Figure 4.

FIG. 4. Local power family of ODCs indexed by δ ∈ [0,0.5]. The δ = 0 member R(0) is the initial
ODC in �1; the δ = 0.5 member R(0.5) is the limiting ODC in �0. This family is described in the
Supplementary article (Tang, Wang and Tebbs, 2017).
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In our testing problem, a local power analysis involves examining a sequence
of ODCs {R(r), r = 1,2, . . . , } in �1 that converges to �0 at different rates. We do
so here by using the family of ODCs just described. Specifically, we consider the
rates ζr ∈ {log r, r2/5, r1/2}. For each ζr , we first choose a sequence of constants
δ(r) such that limr→∞ ζr |δ(r) − 0.5| = cζr > 0 and then select members from our
ODC family identified by R(r) = R(δ(r)), for r = 1,2, . . . . The resulting sequence
R(r) satisfies ‖DR(r)‖p = ‖MR(r) − R(r)‖p → 0 and ζr‖DR(r)‖p → c∗

ζr ,p
> 0,

both as r → ∞. This investigation allows us to learn more about the practical
aspects of Theorem 4 (i.e., with both F and G unknown). We also use these ODC
sequences, one for each rate ζr , to compare the one-sample versions of our tests
with the test in Arcones and Samaniego (2000).

For each r ∈ {50,100,500,1000,5000,10,000}, we simulated 10,000 indepen-
dent random samples, X

(r)
1 ,X

(r)
2 , . . . ,X

(r)
m from F (r) and Y

(r)
1 , Y

(r)
2 , . . . , Y

(r)
n from

G(r), where F (r)(u) = R(r)(u) and G(r)(u) = u, 0 ≤ u ≤ 1, and m = n = r . Fig-
ure 5 (top row) shows the estimated powers of our α = 0.05 tests associated with
each rate: ζr = log r (left), ζr = r2/5 (middle) and ζr = r1/2 (right). Note that with
m = n = r , considering the slower rates ζr = log r and ζr = r2/5 allows us to assess
part (a) of Theorem 4, while the fastest rate ζr = r1/2 allows us to assess part (b).
Both parts are supported by our empirical results in Figure 5. For the slower rates,
the powers approach unity as expected; however, we find that there is no decisively

FIG. 5. Local power results with α = 0.05. Left: ζr = log r . Middle: ζr = r2/5. Right: ζr = r1/2.
Top: Two-sample case. Bottom: One-sample case. Our Lp results are shown dotted for p = 1, dashed
for p = 2 and dot-dashed for p = ∞. Arcones and Samaniego (2000) results (one-sample case only)
are shown using a solid line.
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preferred value of p among p ∈ {1,2,∞}. On the other hand, when ζr = r1/2, the
p = 1 powers hover only slightly above 0.3 for all r , while the p = 2 and p = ∞
powers still approach unity.

Switching to the one-sample problem, we find quite different results. For
each rate ζr , Figure 5 (bottom row) displays the estimated powers of our one-
sample α = 0.05 tests which use M1

m, M2
m, and M∞

m . Powers were estimated in
the same way as for the two-sample case except now we treat G(r)(u) = u as
known and take m = r . In this setting, the sup-norm test consistently provides
the largest power, followed by the p = 2 test and the p = 1 test. In addition,
all three distance-based tests outperform the corresponding α = 0.05 Arcones
and Samaniego (2000) test in terms of local power, especially at the fastest rate
ζr = r1/2 where prR(r)∈�1

(Dm > cAS
0.025) appears to decrease toward zero.

5. Premature infant data. Caffeine is commonly used to treat newborn in-
fants for apnea of prematurity (Schmidt et al., 2006) and to prevent the onset of
respiratory distress syndrome, bronchopulmonary dysplasia and extubation failure
(Cox et al., 2015). Known as “the silver bullet” in the treatment of prematurely
born infants at risk for these and other acute conditions (Aranda et al., 2010),
caffeine is widely regarded within the neonatal care community to be safe and
cost effective. It has also been approved by the United States Food and Drug Ad-
ministration for use with preterm infants due to its history of providing beneficial
outcomes with no long-term adverse side effects (Dobson and Hunt, 2013).

We now analyze the data from the study described in Section 1; for complete
details, see Cox et al. (2015). Because assessing the use of caffeine with premature
infants was a central focus of this study, we consider only those infants who were
classified as “premature;” that is, newborns whose gestational age was at or below
37 weeks. With F and G denoting the discharge time distributions for the caffeine
and no-caffeine groups, respectively, recall that Figure 2 displays the sample ODC
Rmn and its least star-shaped majorant MRmn, calculated from samples of size
m = 127 from F and n = 277 from G. As noted in Section 1, we performed the
test in Davidov and Herman (2012) with these data and concluded that F ≤S G

was strongly supported over F = G. We also performed the GOF tests in Beare
and Moon (2015) and concluded that F ≤LR G would be rejected at α = 0.05; the
L1 and L2 statistics based on the least concave majorant of Rmn are 0.717 and
0.999, respectively, which are larger than the corresponding 0.95 quantiles 0.664
and 0.753 identified by their least favorable distributions.

We therefore assess whether or not the data in Figure 2 are consistent with uni-
form stochastic ordering. Testing H0 : F ≤US G versus H1 : F �US G based on
the least star-shaped majorant of Rmn, our GOF test statistics are M1

mn = 0.170,
M2

mn = 0.263, and M∞
mn = 0.949, each of which is well below the α = 0.10 criti-

cal values identified in the Supplementary article (0.496, 0.586 and 1.219, resp.),
that is, H0 cannot be discounted at any reasonable level of significance. Therefore,
not only does caffeine therapy provide point-of-care health benefits and improved
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long-term outcomes for prematurely born infants, our analysis suggests that treat-
ing these infants with caffeine may also lead to hospital discharge times that are
uniformly stochastically smaller than those for infants not treated with caffeine.

6. Concluding remarks. When two distributions F and G satisfy uniform
stochastic ordering, F and G when conditioned on the interval [t0,∞), for any
t0 ∈ R, also satisfy uniform stochastic ordering. This desirable property could be
exploited to increase the power of our tests under H1 and simultaneously reduce
the sample sizes necessary to detect departures from H0. To see how, suppose
that uniform stochastic ordering is suspected to be violated when t > t0, either
from historical information or from observing data in related applications. In this
situation, one could apply our tests after conditioning to determine if R is nonstar-
shaped over the smaller region [G−1(t0),1] and calculate sample sizes to detect
departures over it instead of over [0,1]. A similar approach was suggested by
Carolan and Tebbs (2005) for detecting departures from likelihood ratio ordering.
In the same spirit, Beare and Moon (2015) suggest that bootstrapping samples over
departure regions could help to increase the power of GOF tests for likelihood ratio
ordering. This strategy may also be fruitful in our setting, allowing one to reduce
the conservatism arising from relying on the least favorable distribution over the
entire unit interval.

We believe that our GOF tests could be generalized to allow for different types
of censored data, but the theory underpinning these extensions would not be triv-
ial. For example, with random right-censored data, there would be nothing to pre-
vent one from simply replacing the empirical survival functions Fm and Gn with
Kaplan–Meier estimators of F and G and then calculating Rmn and MRmn us-
ing these estimates. However, asymptotic distributions of the corresponding test
statistics may depend heavily on the latent censoring distributions, and there is no
guarantee that the least favorable configuration of F and G will exist. Future work
could investigate censored-data extensions of majorant-based inference−not only
with uniform stochastic ordering, but with other orderings as well.

Finally, estimating distributions under a uniform stochastic ordering assumption
has received considerable attention for two populations; see, for example, Rojo and
Samaniego (1993), Mukerjee (1996) and Arcones and Samaniego (2000). We view
the one- and two-sample tests proposed herein as helpful inference procedures to
determine if the uniform stochastic ordering assumption is plausible, and hence
restricted estimation methods for F and G are warranted. An anonymous referee
has suggested that developing pointwise confidence intervals for R(u) under a
uniform stochastic ordering constraint may be a worthwhile next step. We agree
and comment on this further after Lemma 4 in the Supplementary article (Tang,
Wang and Tebbs, 2017). Another interesting avenue for future research would be
to generalize our majorant-based tests to more than two populations. Estimation
techniques in this setting are available in Dykstra, Kochar and Robertson (1991)
and El Barmi and Mukerjee (2016).
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7. Proofs. In this section, we provide the proofs of Theorems 1–4. Lemmas
cited in this section are stated and proved in the Supplementary article (Tang, Wang
and Tebbs, 2017), henceforth referred to as “the Supplementary article.”

PROOF OF THEOREM 1. We start with the asymptotic distribution of Rmn,
suitably centered and scaled. Applying Theorem 2.2 in Hsieh and Turnbull (1996),
it follows that cmn(Rmn − R) converges weakly to T λ

R as min{m,n} → ∞ and
n/(m + n) → λ ∈ (0,1), where T λ

R satisfies T λ
R(u) = λ1/2B1(R(u)) + (1 −

λ)1/2R′(u)B2(u), for 0 ≤ u ≤ 1, and B1 and B2 are independent standard Brown-
ian bridges. When R ∈ �0, DR = 0 and M

p
mn = cmn‖DRmn − DR‖p . Define the

functional operator dDR : l([0,1]) �→ l([0,1]) by

dDRh(u) =

⎧⎪⎪⎨
⎪⎪⎩

max
{
h(1),0

} − h(1) if u = 1,

M(1,0)
[ak,bk]h(u) − h(u) if ∃k such that ak ≤ u ≤ bk,

0 otherwise,

for h ∈ l([0,1]). Denote by C([0,1]) the collection of all real continuous functions
with domain [0,1]. If D is Hadamard directionally differentiable tangentially to
C([0,1]) at R, then dDR is the Hadamard directional derivative of D. Applying

the functional delta method and continuous mapping theorem yields M
p
mn

d−→
‖dDRT λ

R‖p for p ∈ [1,∞]. Those situations in which D is Hadamard directionally
differentiable are described in Lemma 5 in the Supplementary article.

When D is not Hadamard directionally differentiable, the functional delta
method and continuous mapping theorem cannot be applied. However, by us-

ing Lemma 6 in the Supplementary article, we are able to prove that M
p
mn

d−→
‖dDRT λ

R‖p anyway. For convenience, let Zmn = cmn(Rmn − R) and Z = T λ
R .

From Theorem 12.2 in Billingsley (1999) and Skorohod’s representation theorem
(see, e.g., Theorem 6.7 in Billingsley, 1999), there exist random elements Z′

mn and

Z′ defined on a common probability space with Z′
mn

L= Zmn and Z′ L= Z such that

‖Z′
mn − Z′‖∞ → 0 almost surely. The notation “ L=” denotes that two processes

are equivalent in distribution. Define R′
mn = c−1

mnZ
′
mn + R. From Lemma 6 in the

Supplementary article, because c−1
mn decreases to 0 and ‖Z′

mn − Z′‖∞ → 0 almost
surely, then for all p ∈ [1,∞] we have

lim
m,n→∞

n/(m+n)→λ

cmn

∥∥DR′
mn −DR

∥∥
p = ∥∥dDRZ′∥∥

p

almost surely. Because cmn‖DR′
mn − DR‖p

d= cmn‖DRmn − DR‖p and also

‖dDRZ′‖p
d= ‖dDRT λ

R‖p , where the notation “ d=” means equal in distribution,
we have

lim
m,n→∞

n/(m+n)→λ

cmn‖DRmn −DR‖p
d= ∥∥dDRT λ

R

∥∥
p.
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This shows that M
p
mn

d−→ ‖dDRT λ
R‖p for all p ∈ [1,∞].

When R is strictly star-shaped over [0,1], it is easy to see that ‖dDRT λ
R‖p = 0

which quickly establishes part (a). The remainder of the proof focuses on estab-
lishing part (b). When R is nonstrictly star-shaped,

∥∥dDRT λ
R

∥∥
p =

[∑
k

∫ bk

ak

{
D(1,0)

[ak,bk]T
λ
R(u)

}p
du

]1/p

for p ∈ [1,∞) and ‖dDRT λ
R‖p = supk{supu∈[ak,bk]D

(1,0)
[ak,bk]T

λ
R(u)} for p = ∞. Us-

ing Lemma 1 in the Supplementary article, we write D(1,0)
[ak,bk]T

λ
R(u) =

supv∈[ak,u] Qk(u, v) for u ∈ [ak, bk], where

Qk(u, v) =
(

1 − u

1 − v

)
T λ

R(v) − T λ
R(u) for v ∈ [ak, u].

In Lemma 8 in the Supplementary article, we show that the processes{
Qk(u, v), ak ≤ v ≤ u < bk

}

are mutually independent across k. Therefore, {D(1,0)
[ak,bk]T

λ
R(u), u ∈ [ak, bk]} are

also mutually independent. To prove further results, we note that over each non-
strictly star-shaped region [ak, bk], we can write R(u) as a linear function; that is,
R(u) = 1 − R′(ak)(1 − u). Thus, from Lemma 2 in the Supplementary article, we
have

D(1,0)
[ak,bk]T

λ
R(u) = D(1,0)

[ak,bk]
{
Wλ

R(u) − lλR,k(1)
}
,

for all k, where Wλ
R(u) = λ1/2W1(R(u)) + (1 − λ)1/2R′(u)W2(u),

lλR,k(u) = λ1/2{
1 − R′(ak)(1 − u)

}
W1(1) + (1 − λ)1/2R′(ak)uW2(1),

and W1 and W2 are independent standard Wiener processes; that is, Wi , for i =
1,2, satisfies Bi (u) = Wi(u) − uWi(1), 0 ≤ u ≤ 1, for i = 1,2. Based on the
properties of a standard Wiener process, it follows that for u ∈ [ak, bk],

Wi

(
R(u)

) −Wi (1) = Wi

(
1 − R′(ak)(1 − u)

) −Wi (1)

L= R′(ak)
1/2{

Wi(u) −W1(1)
}
,

for i = 1,2. Furthermore, for u ∈ [ak, bk], we have R′(u) = R′(ak) and

Wλ
R(u) − lλR,k(1)

L= λ1/2R′(ak)
1/2{

W1(u) −W1(1)
}

+ (1 − λ)1/2R′(ak)
{
W2(u) −W2(1)

}
L= {

λR′(ak) + (1 − λ)R′(ak)
2}1/2{

W(u) −W(1)
}
,

where W is a standard Wiener process. The last equivalence (in distribution)
follows because both right-hand side processes above are Gaussian, they have
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the same mean E{Wλ
R(u) − lλR,k(1)} = 0, for u ∈ [ak, bk], and they have the

same covariance cov{Wλ
R(u1) − lλR,k(1),Wλ

R(u2) − lλR,k(1)} = {λR′(ak) + (1 −
λ)R′(ak)

2}min{1 − u1,1 − u2}, for u1, u2 ∈ [ak, bk]. Using Lemma 2 in the Sup-
plementary article again, we have

D(1,0)
[ak,bk]

{
λR′(ak) + (1 − λ)R′(ak)

2}1/2{
W(u) −W(1)

}

= {
λR′(ak) + (1 − λ)R′(ak)

2}1/2D(1,0)
[ak,bk]B(u),

where B is a standard Brownian bridge formed by W ; that is, B(u) = W(u) −
uW(1), for u ∈ [0,1]. We can therefore write

∫ bk

ak

{
D(1,0)

[ak,bk]T
λ
R(u)

}p
du

d= {
λR′(ak) + (1 − λ)R′(ak)

2}p/2
∫ bk

ak

{
D(1,0)

[ak,bk]B(u)
}p

du,

for p ∈ [1,∞), and

sup
u∈[ak,bk]

D(1,0)
[ak,bk]T

λ
R(u)

d= {
λR′(ak) + (1 − λ)R′(ak)

2}1/2 sup
u∈[ak,bk]

D(1,0)
[ak,bk]B(u),

for p = ∞. For p ∈ [1,∞), we have shown that
∫ bk
ak

{D(1,0)
[ak,bk]T

λ
R(u)}p du are mu-

tually independent. One can show that
∫ bk
ak

{D(1,0)
[ak,bk]B(u)}p du are also mutually

independent by replacing T λ
R(·) with B(·) in the definition of Qk(u, v) and repeat-

ing the same argument. Therefore, we have

∑
k

∫ bk

ak

{
D(1,0)

[ak,bk]T
λ
R(u)

}p
du

d= ∑
k

{
λR′(ak) + (1 − λ)R′(ak)

2}p/2
∫ bk

ak

{
D(1,0)

[ak,bk]B(u)
}p

du,

which completes the proof for p ∈ [1,∞). Completing the proof for the p = ∞
case is analogous. �

PROOF OF THEOREM 2. When F = G, the ODC is R0 = R0(u) = u, 0 ≤ u ≤
1, and T λ

R0

d= B. Because R0 is nonstrictly star-shaped over [0,1], Theorem 1 yields

M
p
mn

d−→ ‖dDR0T
λ
R0

‖p
d= ‖D(1,0)

[0,1]B‖p when F = G for p ∈ [1,∞]. It therefore

suffices to show ‖D(1,0)
[0,1]B‖p ≥S ‖dDRT λ

R‖p for p ∈ [1,∞] and for any other R ∈
�0. If R ∈ �0 is strictly star-shaped, then from Theorem 1, ‖dDRT λ

R‖p = 0 for

p ∈ [1,∞], and hence ‖D(1,0)
[0,1]B‖p ≥S ‖dDRT λ

R‖p . If R ∈ �0 is nonstrictly star-
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shaped, then for p ∈ [1,∞),

∥∥D(1,0)
[0,1]B

∥∥
p =

[∫ 1

0

{
D(1,0)

[0,1]B(u)
}p

du

]1/p

≥
[∑

k

∫ bk

ak

{
D(1,0)

[0,1]B(u)
}p

du

]1/p

(7.1)

≥
[∑

k

∫ bk

ak

{
D(1,0)

[ak,bk]B(u)
}p

du

]1/p

.

The first and second inequalities above hold because D(1,0)
[0,1]B(u) ≥ 0 and also

D(1,0)
[0,1]B(u) ≥ D(1,0)

[ak,bk]B(u) ≥ 0, for all u ∈ [0,1]. Because λ ∈ (0,1) and R′(ak) ≤
1 for all k, λR′(ak) + (1 − λ)R′(ak)

2 ≤ 1 and the rightmost side of (7.1) is greater
than or equal to[∑

k

{
λR′(ak) + (1 − λ)R′(ak)

2}p/2
∫ bk

ak

{
D(1,0)

[ak,bk]B(u)
}p

du

]1/p
d= ∥∥dDRT λ

R

∥∥
p.

Therefore, for R ∈ �0 nonstrictly star-shaped, we have ‖D(1,0)
[0,1]B‖p ≥S ‖dDRT λ

R‖p

for p ∈ [1,∞). Showing ‖D(1,0)
[0,1]B‖∞ ≥S ‖dDRT λ

R‖∞ for R ∈ �0 nonstrictly star-
shaped is analogous. �

PROOF OF THEOREM 3. When R ∈ �1, we redefine the functional operator
dDR : l([0,1]) �→ l([0,1]) in Theorem 1 by

dDRh(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−h(1) if u = 1,R(u) < 1,

max
{
h(1),0

} − h(1) if u = 1,R(u) = 1,

LSk
h(u) − h(u) if ∃k such that u ∈ Sk \ {1},

0 otherwise.

The proof proceeds in the same manner as in Theorem 1. If D is not Hadamard
directionally differentiable, one can use Skorohod’s representation theorem and
part (b) of Lemma 7 in the Supplementary article to obtain the result. �

PROOF OF THEOREM 4. For convenience, all limits stated in this proof as-
sume that max{m,n} = O(r) and n/(m+n) → λ ∈ (0,1), as r → ∞. We have in-
dependent random samples X

(r)
1 ,X

(r)
2 , . . . ,X

(r)
m and Y

(r)
1 , Y

(r)
2 , . . . , Y

(r)
n from F (r)

and G(r), respectively. The sample ODC is R
(r)
mn = F

(r)
m (G

(r)
n )−1, where F

(r)
m and

(G
(r)
n )−1 are the empirical distribution and empirical quantile functions, respec-

tively. Our test statistic is M
p
mn = cmn‖DR

(r)
mn‖p . By the triangle inequality,

prR(r)∈�1

(
Mp

mn ≥ cα,p

)

≥ prR(r)∈�1

(
cmn

∥∥DR(r)
mn −DR(r)

∥∥
p < cmn

∥∥DR(r)
∥∥
p − cα,p

)
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for all p ∈ [1,∞]. Therefore, to prove part (a), it suffices to show that cmn‖DR
(r)
mn−

DR(r)‖p = OP (1).

From Lemma 3 in the Supplementary article, it follows that ‖MR
(r)
mn −

MR(r)‖∞ ≤ ‖R(r)
mn − R(r)‖∞, which implies ‖DR

(r)
mn − DR(r)‖∞ ≤ 2‖R(r)

mn −
R(r)‖∞. Because Lp norms are dominated by the sup-norm, it therefore suf-
fices to show cmn‖R(r)

mn − R(r)‖∞ is OP (1). To accomplish this, we decompose
cmn(R

(r)
mn − R(r)) into two parts:

cmn

(
R(r)

mn − R(r)) = cmn

{
F (r)

m

(
G(r)

n

)−1 − F (r)(G(r)
n

)−1}
(7.2)

+ cmn

{
F (r)(G(r)

n

)−1 − F (r)(G(r))−1}
.

Define the two independent empirical processes

Um(u) = 1

m

m∑
i=1

I
{
F (r)(X(r)

i

) ≤ u
}

and Vn(u) = n−1 ∑n
i=1 I {G(r)(Y

(r)
i ) ≤ u}, for 0 ≤ u ≤ 1. This allows us to rewrite

F
(r)
m as UmF (r) and F (r)(G

(r)
n )−1 as R(r)V

(r)
n . Consequently, the two terms on the

right-hand side of equation (7.2) can be written as

cmn

{
F (r)

m

(
G(r)

n

)−1 − F (r)(G(r)
n

)−1}
(7.3)

= cmn

[
Um

{
F (r)(G(r)

n

)−1} − U
{
F (r)(G(r)

n

)−1}]
and

(7.4) cmn

{
F (r)(G(r)

n

)−1 − F (r)(G(r))−1} = cmn

(
R(r)Vn − R(r)V

)
,

where U(·) and V (·) both represent the cumulative distribution function of a uni-
form distribution on [0,1]. These expressions allow us to unify all random samples
(from different distributions) to be uniformly distributed.

We are now ready to show that the sup-norms of the right-hand sides of equa-
tions (7.3) and (7.4) are uniformly bounded in probability. We begin with the uni-
form processes. From Theorem 3 in Komlós, Major and Tusnády (1975), there
exist versions of independent standard Brownian bridges B(m)

1 and B(n)
2 such that,

almost surely, ∥∥√m(Um − U) −B(m)
1

∥∥∞ = o
(
m−1/2(logm)2)

(7.5)
∥∥√n(Vn − V ) −B(n)

2

∥∥∞ = o
(
n−1/2(logn)2)

.(7.6)

Because lim cmn/(λ
1/2√m) = 1, we have ‖cmn(Um − U) − λ1/2B(m)

1 ‖∞ =
o(m−1/2(logm)2) from equation (7.5). Consequently, the sup-norm of the right-
hand side of equation (7.3) is less than or equal to∥∥cmn

[
Um

{
F (r)(G(r)

n

)−1} − U
{
F (r)(G(r)

n

)−1}] − λ1/2B(m)
1

{
F (r)(G(r)

n

)−1}∥∥∞
+ ∥∥λ1/2B(m)

1

{
F (r)(G(r)

n

)−1}∥∥∞
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which is less than or equal to∥∥cmn(Um − U) − λ1/2B(m)
1

∥∥∞ + ∥∥λ1/2B(m)
1

∥∥∞ = o
(
m−1/2(logm)2) + OP (1).

The OP (1) term arises because B(m)
1 is bounded with probability 1. Likewise, the

o(m−1/2(logm)2) term comes from equation (7.5). Therefore, we have shown that
the sup-norm of the right-hand side of equation (7.3), that is, ‖cmn{F (r)

m (G
(r)
n )−1 −

F (r)(G
(r)
n )−1}‖∞ = OP (1).

For the right-hand side of equation (7.4), we use the mean value theorem to
write

R(r)Vn(u) − R(r)V (u) = Ṙ(r)(τu)
{
Vn(u) − V (u)

}
,

where Ṙ(r) denotes the derivative of R(r) and where τu is between Vn(u) and V (u).
Therefore,

sup
u∈[0,1]

∣∣√n
{
R(r)Vn(u) − R(r)V (u)

} − Ṙ(r)(τu)B(n)
2 (u)

∣∣

= sup
u∈[0,1]

∣∣Ṙ(r)(τu)
[√

n
{
Vn(u) − V (u)

} −B(n)
2 (u)

]∣∣
which is less than or equal to∥∥Ṙ(r)

∥∥∞
∥∥√n(Vn − V ) −B(n)

2

∥∥∞ = O(1)o
(
n−1/2(logn)2) = o

(
n−1/2(logn)2)

.

The O(1) term above comes from the assumption that the derivative of R(r) is
uniformly bounded for all r over [0,1]. Likewise, the o(n−1/2(logn)2) term comes
from equation (7.6). Therefore, because lim cmn/{(1 − λ)1/2√n} = 1 and because
B(n)

2 is bounded with probability 1, we have shown the sup-norm of the right-hand

side of equation (7.4), that is, cmn‖R(r)V
(r)
n − R(r)V ‖∞ = OP (1). Finally, from

equation (7.2), we have cmn‖R(r)
mn − R(r)‖∞ = OP (1) + OP (1) = OP (1), which

establishes part (a).
To prove part (b), let q

(r)
β,p denote the 1 − β quantile of the finite-sample dis-

tribution of cmn‖DR
(r)
mn − DR(r)‖p; that is, q

(r)
β,p solves prR(r)∈�1

(cmn‖DR
(r)
mn −

DR(r)‖p ≤ q
(r)
β,p) = 1 − β . We have already shown cmn‖DR

(r)
mn − DR(r)‖p =

OP (1), so supr q
(r)
β,p ≡ qβ,p < ∞. Therefore,

lim inf prR(r)∈�1

(
cmn

∥∥DR(r)
mn −DR(r)

∥∥
p < qβ,p

) ≥ 1 − β.

Set ηp(β) = qβ,p + cα,p . Whenever lim inf cmn‖DR‖p ≥ ηp(β), it follows from
the triangle inequality that lim inf prR(r)∈�1

(M
p
mn ≥ cα,p) is greater than or equal

to

lim inf prR(r)∈�1

(
cmn

∥∥DR(r)
mn −DR(r)

∥∥
p < cmn

∥∥DR(r)
∥∥
p − cα,p

)

≥ lim inf prR(r)∈�1

(
cmn

∥∥DR(r)
mn −DR(r)

∥∥
p < qβ,p

) ≥ 1 − β.

This completes the proof of part (b). �
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric goodness-of-fit tests for uniform stochastic
ordering” (DOI: 10.1214/16-AOS1535SUPP; .pdf). In the Supplementary article
(Tang, Wang and Tebbs, 2017), we state and prove lemmas that are cited in this
manuscript. These lemmas describe theoretical properties of the least star-shaped
majorant operator, including Hadamard directional differentiability. We also pro-
vide the estimated densities of ‖D(1,0)

[0,1]B‖p and critical values cα,p for our tests.
Finally, we describe the families of ODCs used in Section 4 and give finite-sample
simulation results and sample size calculations.
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