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NONPARAMETRIC BAYESIAN POSTERIOR CONTRACTION
RATES FOR DISCRETELY OBSERVED SCALAR DIFFUSIONS1

BY RICHARD NICKL AND JAKOB SÖHL

University of Cambridge

We consider nonparametric Bayesian inference in a reflected diffusion
model dXt = b(Xt ) dt + σ(Xt ) dWt , with discretely sampled observations
X0,X�, . . . ,Xn�. We analyse the nonlinear inverse problem corresponding
to the “low frequency sampling” regime where � > 0 is fixed and n → ∞.
A general theorem is proved that gives conditions for prior distributions �

on the diffusion coefficient σ and the drift function b that ensure minimax
optimal contraction rates of the posterior distribution over Hölder–Sobolev
smoothness classes. These conditions are verified for natural examples of
nonparametric random wavelet series priors. For the proofs, we derive new
concentration inequalities for empirical processes arising from discretely ob-
served diffusions that are of independent interest.

1. Introduction. Many fundamental models for dynamic stochastic phenom-
ena in continuous time are based on the concept of a diffusion, whose evolution is
described mathematically by

dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0,

where Wt is a standard Brownian motion. Diffusions occur naturally in the phys-
ical and biological sciences, in economics and elsewhere, and their deep relation-
ship to stochastic and partial differential equations makes them a central object of
study in modern mathematics. Various specifications of the drift function b and
the diffusion coefficient σ lead to a flexible class of random continuous motions.
In scientific applications, a key challenge is to recover the parameters b,σ from
some form of observations of the diffusion. Unless specific knowledge is avail-
able, the resulting statistical models for the parameters σ, b and the probability
laws Pσb of the Markov process (Xt : t ≥ 0) are naturally infinite-dimensional
(= “nonparametric”).

Statistical observations in the real world usually are collected in a discrete fash-
ion, say in form of observed increments X0,X�, . . . ,Xn� of the diffusion, where
1/� is the sampling frequency. We are interested in the possibly most realistic sce-
nario where � > 0 is fixed and more information accrues in form of an increasing
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sampling horizon n� → ∞. As revealed in the seminal paper by Gobet, Hoff-
mann and Reiß [13], this “low frequency” sampling regime implies that inference
on (σ, b) constitutes a nonlinear nonparametric inverse problem, and the authors
solve this problem in a minimax way by a delicate estimation technique based on
ideas from spectral theory.

Alternative methodology for nonparametric inference in diffusion models
has been put forward recently, notably of a Bayesian flavour; see Roberts and
Stramer [23], Papaspiliopoulos et al. [19], Pokern et al. [21], van der Meulen et al.
[31], van Waaij and van Zanten [29] and references therein. While such Bayesian
methods are attractive in applications [14, 26, 30], particularly since they pro-
vide associated uncertainty quantification procedures (“credible regions”), our un-
derstanding of their frequentist sampling performance is extremely limited. This
is particularly so in the “low frequency” regime when � > 0 is thought to be
fixed: the only references we are aware of are the consistency results in [15, 16,
32], which only hold under the very restrictive assumption that σ is constant and
known, and only in a weak topology. As pointed out by Stuart [26] and van Zan-
ten [30], obtaining theoretical performance guarantees for Bayesian algorithms in
nonlinear inverse problems is, however, of key importance if such methods are
to be used in scientific applications. Only very few rigorous results are currently
available.

In this paper, we give the first proof of the fact that nonparametric prior distri-
butions on the diffusion parameters (σ, b) give rise to posterior distributions that
contract at the (minimax) frequentist optimal convergence rates over natural regu-
larity classes, in the low frequency sampling regime. This is achieved by using the
generic “testing approach” introduced in the landmark paper Ghosal et al. [9]; see
also [10] and [34]—but the adaptation to the diffusion case requires the resolution
of two major mathematical obstacles to obtain satisfactory results:

• The “small ball probability conditions” need to reflect the inverse problem
nature of the discrete sampling scheme, and the resulting perturbation of the “in-
formation theoretic distance” (KL-divergence) associated to the statistical experi-
ment needs to be precisely quantified. For linear inverse problems, this has already
been noted in the paper by Ray [22]. In the nonlinear diffusion setting here, how-
ever, the situation is much more complicated, and requires a fine analysis of the
inverse operator of the infinitesimal generator of the diffusion (which could be
viewed as the linearisation of the nonlinear inverse operator). In the case of high
frequency (� → 0) or continuous observations, small ball probabilities may be
computed for an information distance closely related to the L2-distance on b and
σ (see [33]), but to obtain optimal results in the low frequency setting one has to
show that instead small ball probabilities may be computed in a weaker norm—
precisely, as we show, in a certain negative order Besov norm. Simultaneously, one
has to ensure that the invariant measure μ is correctly modelled by the (induced)
prior too—note that the smoothness degree of μ is generally not identified by the
regularity of (σ, b). This last fact also should guide practitioners who often devise
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priors for σ and b without paying attention to the implied model for the invariant
measure.

• The construction of frequentist tests with sufficiently good exponential error
bounds for type two errors in a large enough support set of the prior in [9, 10]
relies on properties of the likelihood ratio test and the associated Hellinger distance
between experiments. In the setting of diffusions, this approach appears difficult to
implement—instead we use the “concentration of measure” approach of Giné and
Nickl [11] to the construction of such tests. To do this, we prove a Bernstein-type
inequality for empirical processes driven by discretely sampled diffusions, relying
on work of Adamczak [1], and use it to derive sharp concentration bounds for
the estimators (and resulting plug-in tests) put forward in Gobet et al. [13]. These
concentration results, which are of independent interest, are derived in Section 3.

We demonstrate that our general conditions are verified for natural nonparamet-
ric priors on (σ, b). It is convenient to give a hierarchical prior specification that
first models the inverse diffusion coefficient σ−2, and then, conditional on σ 2, the
drift function b, which explicitly generates a prior for the invariant measure μ too.
The individual prior choices are quite flexible and allow for general random series
priors, as we show, with one technically vital restriction that they are constrained to
a fixed regularity class that ensures sufficient smoothness of the individual param-
eters. This is necessary to deduce various probabilistic properties of the diffusion
that our proofs rely on. In particular, following [13], we rely on the assumption that
the diffusion considered is a reflected one, and hence lives in a compact interval
of R. This corresponds to the usual von Neumann boundary conditions required
for the infinitesimal generator L to be injective and to have a discrete spectrum.
As a consequence, to cope with these boundary conditions, we model b and σ

only in the interior of the given interval (this also has some deeper mathematical
reasons since the second eigenfunction of L identifies b,σ only in the interior of
the domain, and since our approach to construct tests is based on first estimating
this eigenfunction). Again, these are concessions to the mathematical intricacies
of the problem at hand, and further hard work will be required to alleviate those.
We discuss possible extensions and limitations of our approach in Section 2.3.3
below.

2. Main results.

2.1. A nonparametric model for diffusions on [0,1]. Consider a scalar diffu-
sion process (Xt : t ≥ 0) on [0,1] starting at X0 = x0, and whose evolution is
described by the stochastic differential equation (SDE):

(1) dXt = b(Xt) dt + σ(Xt) dWt, t ≥ 0,

where the process is reflected at the boundary points {0,1} (for a precise definition
see Section 3 below). For the pair ϑ = (σ, b) ∈ C([0,1]) × C([0,1]), we maintain
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the following model:

� :=
{
ϑ = (σ, b) : b(0) = b(1) = σ ′(0) = σ ′(1) = 0, b′, σ ′, σ ′′ exist,

max
(‖b‖∞,

∥∥b′∥∥∞,‖σ‖∞,
∥∥σ ′∥∥∞,

∥∥σ ′′∥∥∞
) ≤ D, inf

x∈[0,1]σ
2(x) ≥ d

}
,

where D,d are arbitrary fixed positive constants. For (σ, b) ∈ �, the SDE (1) has
a pathwise solution described by the Markov process (Xt : t ≥ 0) with invariant
measure μ = μσb, whose law we denote by Pσb whenever X0 ∼ μ. The obser-
vation scheme considered is such that increments X0,X�, . . . ,Xn� are sampled
at distance � > 0, and we study statistical inference on σ and b when n tends to
infinity as � > 0 remains fixed (the “low frequency sampling” regime). Thus, the
Xi�’s form an ergodic Markov chain and we write pσb(�,x, y) for the associated
transition probability density functions with respect to Lebesgue measure dy. We
shall also—in abuse of notation—write μ both for the invariant measure and its
density.

Let � be a (prior) probability distribution on some σ -field S of subsets of �,
and given (σ, b) ∼ � assume that the law of (Xt : t ≥ 0)|(σ, b) is described by
the diffusion (1) started in the invariant measure μσb. If the mapping (σ, b) 
→
pσb(�,x, y) is S-BR measurable for all x, y, then by standard arguments (as in
Chapter 7.3 in [12]), the posterior distribution given the discrete sample from the
diffusion is

(σ, b)|X0,X�, . . . ,Xn�
(2)

∼ μσb(X0)
∏n

i=1 pσb(�,X(i−1)�,Xi�)d�((σ, b))∫
� μσb(X0)

∏n
i=1 pσb(�,X(i−1)�,Xi�)d�((σ, b))

.

We wish to devise natural conditions on the prior � that imply that the posterior
distribution contracts at the optimal convergence rate δn in some distance function
d about any fixed “true” parameter pair ϑ0 = (σ0, b0) ∈ �. More precisely, we
wish to prove that, as n → ∞,

�
(
ϑ : d(ϑ0, ϑ) > δn|X0,X�, . . . ,Xn�

) → 0 in Pσ0b0-probability,

under the “frequentist” assumption that (Xt : t ≥ 0) ∼ Pσ0b0 . The rate δn will de-
pend on regularity properties of (σ0, b0) that we describe now.

2.2. Contraction theorem. In [13], it was shown that the frequentist minimax
rates for estimating the parameter (σ, b) in L2([A,B])-loss (0 < A < B < 1) are
given by

(3) n−s/(2s+3) for σ 2 and n−(s−1)/(2s+3) for b

whenever (σ, b) ∈ �s , where the regularity classes �s ⊆ � are defined as

�s := {
ϑ = (σ, b) ∈ � : ‖σ‖Hs ≤ D,‖b‖Hs−1 ≤ D

}
, s ≥ 2,
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with Hs the usual L2-Sobolev space over [0,1]. This particular coupling of the
regularities s of σ and s − 1 of b is natural; see Remark 7 below.

The above rates reflect the recovery complexity of an ill-posed problem of order
one and two, respectively. For the Bayesian posterior distribution to have good fre-
quentist properties, it is well known [9] that the prior should charge small neigh-
bourhoods of the “true pair” (σ0, b0) with sufficient probability, where “neigh-
bourhood” is understood with respect to the information distance induced by the
observations. As noted by [22] for linear inverse problems,

Y = Af + ε, A : L2 → L2 linear,

with unknown parameter f ∈ L2 and Gaussian white noise ε, a key point is to take
advantage of the fact that the usual information distance ‖f ‖L2 (when A = Id)
is transformed to ‖Af ‖L2 , which typically corresponds to a negative (or dual)
Sobolev norm ‖f ‖H−w = ‖f ‖(Hw)∗ induced by the eigen-basis of A, and where w

denotes the level of ill-posedness.
One of the key contributions of this paper is to produce a similar result in our

nonlinear and non-Gaussian setting of discretely sampling a diffusion. To obtain
sharp results, the Hilbert scale of Sobolev norms will have to be replaced by more
flexible Besov norms. To this end, for s > 0 denote by (Bs

1∞)∗ the dual space
of the Besov space Bs

1∞ = Bs
1∞([0,1]), equipped with the usual dual norm [see

(33) below]. We refer to [17, 28] or Chapter 4.3 in [12] for the usual definitions
and basic properties of Besov spaces. We further note that any prior distribution
on (σ, b) induces a prior distribution on the invariant measure μ of the diffusion
[see (10) below], and the following result implicitly requires this induced prior to
correctly model the parameter μ, also. See Remark 7 for discussion.

In what follows, for two sequences (am : m ∈ N), (bm : m ∈ N), we write am �
bm whenever am ≤ Cbm for all m ∈ N and some fixed constant C > 0, and we
write am  bm whenever both am � bm and bm � am hold.

THEOREM 1. Let � = �n be a sequence of prior distributions on �, suppose
that X0, . . . ,Xn� are discrete observations of a diffusion process (1) started in
the stationary distribution μ, and let �(·|X0, . . . ,Xn�) be the resulting posterior
distribution (2) on �.

Assume � satisfies for some (σ0, b0) ∈ �s and μ0 ∈ L2, that:

(i) �(�s) = 1 for some s ≥ 2 (and for some d > 0,D > 0),
(ii) there exists a constant C > 0 and a sequence εn satisfying

n−(s+1)/(2s+3) � εn � n−3/8(logn)−1/2

such that for all n large enough

�
(
(σ, b) ∈ � : ‖μ − μ0‖L2([0,1]) + ∥∥σ−2 − σ−2

0

∥∥
(B1

1∞)∗

+ ‖b − b0‖(B2
1∞)∗ < εn

)
(4)

≥ e−Cnε2
n .
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Then if (Xt : t ≥ 0) ∼ Pσ0b0 where X0 ∼ μ0, for true parameters (σ0, b0) with as-
sociated invariant measure μ0 = μσ0b0 , the posterior distribution contracts about
(σ 2

0 , b0) in L2 ≡ L2([A,B]) for any 0 < A < B < 1, at rates

δn ≡ nε3
n and δ′

n ≡ n2ε5
n;

that is, for some fixed constant M , as n → ∞ and in Pσ0b0-probability,

�
(
(σ, b) : ∥∥σ 2 − σ 2

0
∥∥
L2 > Mδn or ‖b − b0‖L2 > Mδ′

n|X0, . . . ,Xn�

) → 0.

REMARK 2. Optimal rates. The optimal choice of εn is of the order

εn  n−(s+1)/(2s+3)

in which case εn = O(n−3/8(logn)−1/2) is always satisfied since s ≥ 2, and the
resulting contraction rates are of the desired minimax order:

δn  n−s/(2s+3), δ′
n  n−(s−1)/(2s+3).

2.3. Examples of prior distributions.

2.3.1. Some preliminaries on function spaces. We now show how Theorem 1
applies to some concrete prior distributions. To do so, we need to define the fol-
lowing Hölder-type function spaces Ct :

DEFINITION 3. For t > 0 and �t�, the largest integer k ≤ t we define

Ct ([0,1]) := {
f ∈ C

([0,1]) : |||f |||Ct < ∞}
,

where |||f |||Ct :=
�t�∑
k=0

∥∥Dkf
∥∥∞ + sup

0≤x<x+h≤1

|D�t�f (x + h) − D�t�f (x)|
ht−�t� log(1/h)−2 .

The additional logarithmic factor in the Hölder condition is convenient as then

f ∈ Ct ⇒ f ∈ Ht ∩ Bt∞1

follows, which allows to combine knowledge of spectral properties of the diffusion
expressed in terms of Sobolev Ht -norms with wavelet characterisations of Hölder
and Besov spaces. Note that the continuous imbeddings of Ct into Ht and into
Bt∞1 follow easily from wavelet characterisations of the norms of these spaces
(see [17] or [12], Chapter 4.3, where we note that Ht = Bt

22), and these also imply
that Bt∞1, t ∈ N, is continuously imbedded into the classical spaces Ct of t-times
continuously differentiable functions.

In fact, we will work with the equivalent wavelet norm of Ct given by

(5) ‖f ‖Ct ≡ ‖f ‖Ct,2, ‖f ‖Ct,γ = sup
l,k

2l(t+1/2)lγ
∣∣〈f,ψlk〉

∣∣,
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where {ψlk : k = 0, . . . ,2l − 1, l ≥ J0 − 1}, J0 ≥ 2, J0 ∈ N, is a sufficiently regu-
lar boundary-adapted Daubechies wavelet basis of L2([0,1]) that also generates
Ht,Ct as well as the Besov spaces Bt

pq (see Chapter 4.3.5 in [12]).
We shall assume that the true pair (σ0, b0) lies in �s ∩ (Cs × Cs−1). Moreover,

to avoid tedious technicalities about boundary conditions, we assume that b0 is
supported in the interior of [0,1], and that logσ−2

0 and logμ0 have expansions into
wavelet series supported in the interior of [0,1]. Such functions can be modelled by
infinite Daubechies wavelet series ψlk that are supported in a given fixed interval
[A,B]. The minimax estimation rates over functions satisfying these constraints
are the same as those in (3) up to logn factors (see Remark 5 below), and the minor
loss in generality comes at the gain of substantial technical simplifications. Thus,
we adopt the following condition, formulated in terms of μ0 and σ0 (implicitly
defining b0).

ASSUMPTION 4. For 0 < A < B < 1 given, let I be the maximal set of double
indices (l, k) such that the Daubechies wavelet functions ψlk, (l, k) ∈ I , are all
supported in [A,B].

We assume that the invariant density μ0 ∈ Cs+1 is of the form

logμ0(x) = ∑
l,k∈I

βlkψlk(x), x ∈ [0,1],

with 2l(s+3/2)l2|βlk| ≤ B for some B > 0.
We further assume that the diffusion coefficient σ0 ∈ Cs has the form

logσ−2
0 (x) = ∑

l,k∈I
τlkψlk(x), x ∈ [0,1],

where 2l(s+1/2)l2|τlk| ≤ B .

Note that the assumptions ensure that σ−2
0 and μ0 are bounded and bounded

away from zero on [0,1], and that as a consequence, so is σ 2
0 ∈ Cs . It also implies

that 2b0 = (σ 2
0 μ0)

′/μ0 is contained in Cs−1 and supported in [A,B] (since σ 2
0 μ0

is constant outside of that interval).

REMARK 5 (Minimax rates over Cs -classes). Assumption 4 is restricting
(σ0, b0) beyond having to lie in �s . The lower bound proofs in [13] imply
that these further restrictions do not change the minimax rates, except for a
(logn)γ , γ > 0, factor induced by the weighting with the factor l2 in the wavelet
norm. Note that the lower bound in [13] is also based on wavelets that are sup-
ported in the interior of [0,1], and works with constant invariant density μ0 = 1 ∈
Cs+1, which means that 2b just equals (σ 2)′.
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2.3.2. Random wavelet series prior. We consider the following hierarchical
prior specification. Let s ≥ 2. Wavelet coefficients will be constructed from ran-
dom variables drawn i.i.d. from probability density

(6) ϕ : [−B̃, B̃] → [0,∞), B ≤ B̃ < ∞, inf
x∈[−B,B]ϕ(x) ≥ ζ, ζ > 0.

This in particular includes the cases where ϕ is the density of a uniform U [−B,B]
random variable [so that ζ = 1/(2B)], or the case where ϕ equals the density of
the truncated normal distribution given by ϕ(x)  e−x2/2 for x ∈ [−B,B] and
ϕ(x) = 0 otherwise [so that ζ ≥ (2π)−1/2e−B2/2].

We first model logσ−2 as a wavelet series, that is,

σ−2(x) = exp
{ ∑

l,k∈I,l≤Ln

2−l(s+1/2)l−2ulkψlk(x)

}
, x ∈ [0,1],

where ulk are drawn i.i.d. from density ϕ satisfying (6). Here, we can take Ln = ∞
(so that the prior is independent of n) but in our result below we also allow for Ln

to equal a sequence of integers diverging with n.
Conditional on σ we use the identity

(7) 2b = (σ 2μ)′

μ
= (

σ 2)′ + σ 2(logμ)′,

and the law of b|σ 2 is modelled by taking a wavelet prior

H(x) = ∑
l,k∈I,l≤L̄n

2−l(s+3/2)l−2ūlkψlk(x), x ∈ [0,1], L̄n ∈ N∪ {∞},

and the resulting prior eH/
∫

eH on the parameter μ, where the ūlk are drawn i.i.d.
from density ϕ̄ satisfying (6), independent of the ulk’s from above. Concretely,

b|σ 2 = ((
σ 2)′ + σ 2H ′)/2,

and the resulting prior distribution induced on (σ 2, b) = (σ 2, ((σ 2)′ + σ 2H ′)/2)

is denoted by � = �Ln,L̄n
.

PROPOSITION 6. Let σ0,μ0 satisfy Assumption 4 for some s ≥ 2,B > 0 and
choose

εn = n−(s+1)/(2s+3)(logn)η, η = s − 1

2s + 3
.

Let � = �Ln,L̄ be the preceding prior and, if ln = min(Ln, L̄n) < ∞, assume

2−ln(s+1) � εn. Then � satisfies the hypotheses of Theorem 1 for this choice of εn,
all D large and all d > 0 small enough. As a consequence, the resulting posterior
distribution contracts about the true parameter (σ 2

0 , b0) at the minimax optimal
rate within logn factors (Remark 2).
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REMARK 7 (Coupling of smoothness indices and ill-posed inverse problems).
In contrast to estimation of σ 2 and b, estimation of μ is not ill-posed and possible
at the standard nonparametric rate n−α/(2α+1), when μ is α-smooth. These estima-
tion problems are, however, interacting with each other. On the one hand σ, b and
μ are closely related by classical identities [e.g., (7) and (10)], making it natural
that σ is modelled one degree smoother than b. On the other hand, the smoothness
of μ is not identified by the smoothness of b and σ (e.g., even for nonregular b,σ

the invariant density μ can be very smooth, e.g., constant on [0,1]). Our results
rely on the assumption that μ0 is at least s + 1 smooth [whenever (σ, b) ∈ �s ],
and that the prior implicitly models the regularity of μ correctly. This is related
to the fact, made explicit in the proofs that follow, that the information distance
between samples X0,X�, . . . ,Xn� from parameters (σ, b) and (σ0, b0) does nec-
essarily involve the L2-distance ‖μσb − μσ0b0‖L2 , and the hierarchical prior from
above takes this into account.

REMARK 8 (Credible sets). While our results imply that Bayesian recovery
algorithms can be expected to work in principle in (scalar) diffusion models, we
emphasise that mere contraction theorems as those obtained here do not yet justify
the use of Bayesian posterior inference (“credible regions”) in scientific practice.
This problem is more involved; see the recent paper [27] and its discussion. An in-
teresting topic for future research in this direction would be to obtain nonparamet-
ric Bernstein–von Mises theorems as in [7, 8] for the diffusion model considered
here. While the contraction results obtained here are useful for this too, obtaining
exact posterior asymptotics will require a more elaborate analysis.

2.3.3. Choice of the prior: Extensions and perspectives. In computational
practice, the methodology closest to the one considered here is described in Sec-
tion 5.1 of [19], where a certain Gaussian prior is chosen for the drift function b,
while the diffusion coefficient is modelled parametrically. A data augmentation
method is devised that allows to sample from the posterior distribution (2) in this
situation. The random wavelet series priors on b from the previous subsection al-
low for truncated Gaussian priors—by choosing B large enough our theory can
approximate the case of a Gaussian prior on the drift function at least in practice.
From a rigorous point of view, however, our proofs rely fundamentally on the tech-
nical restriction that the prior for (σ, b) concentrates on a fixed smoothness ball in
C2 × C1, a condition not satisfied by Gaussian priors. Whether it can be relaxed
is not clear: for instance, the constant C in the Gaussian-type tails e−Cnε2

n of our
tests scales unfavourably as C ≈ e−‖b‖∞ . This is not an artefact of our concentra-
tion inequalities but corresponds precisely to the connection between mixing times
of Markov chains and their spectral gap (see also [20]).

The wavelet priors used in the present paper are convenient in our proofs.
They could be replaced by B-spline basis priors with random coefficients. In
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fact, B-spline bases generate wavelet bases by a simple Gram–Schmidt ortho-
normalisation step (see [17], Section 1.3 and page 74), so that proofs would go
through with only formal (but notationally cumbersome) changes.

Another extension of interest would be to allow for “adaptive” priors that select
the generally unknown smoothness degree s by a hyper-prior. While in principle
such results should be within the scope of our techniques, they would require sig-
nificant modification of the spectral bias estimates from [13], and this is left for
future research.

3. Proofs I: Concentration inequalities for reflected diffusions.

3.1. Definitions and transition densities. Let b : [0,1] → R be measurable
and bounded, let σ : [0,1] → (0,∞) be continuous and let ν : [0,1] → R satisfy
ν(0) = 1, ν(1) = −1. Consider the reflected diffusion on [0,1]

dXt = b(Xt) dt + σ(Xt) dWt + ν(Xt) dLt(X).(8)

Here, (Wt : t ≥ 0) is a standard Brownian motion and (Lt (X) : t ≥ 0) is a nonan-
ticipative continuous nondecreasing process which increases only for Xt ∈ {0,1}.
This model is considered in [13], and under the above conditions there exists a
weak solution (Xt : t ≥ 0) of the SDE; see [25]. An in our setting equivalent
construction of this reflected diffusion is by extending b and σ to be defined
on R as follows: First, we extend the functions to (−1,1] by σ(x) = σ(−x)

and b(x) = −b(−x) for x ∈ (−1,0) and second to R by σ(x) = σ(x + 2k) and
b(x) = b(x + 2k) for all x ∈ R and k ∈ Z such that x + 2k ∈ (−1,1]. If (σ, b) ∈ �,
then the so extended functions σ̄ and b̄ are bounded Lipschitz functions on R and
we can define the strong Markov process (Yt : t ≥ 0) as the pathwise solution of
the equation

(9) dYt = b̄(Yt ) dt + σ̄ (Yt ) dW̄t

on the whole of R (see Theorems 24.2 and 39.2 in [5]), where W̄t is another
Brownian motion. A version of the process (Xt : t ≥ 0) can then be obtained from
(Yt : t ≥ 0) by a simple projection described in the proof of the following proposi-
tion.

By standard results for one-dimensional diffusions (e.g., [4], Chapter 4), the
invariant density of the Markov process (Xt : t ≥ 0) is given by

(10) μ(x) = μσb(x) = 1

Gσ 2(x)
exp

(∫ x

0

2b(y)

σ 2(y)
dy

)
, x ∈ [0,1],

with normalising constant

(11) G := Gσb =
∫ 1

0

1

σ 2(y)
exp

(∫ y

0

2b(z)

σ 2(z)
dz

)
dy.
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We see that whenever b and σ are bounded and σ is bounded away from zero, the
invariant density is bounded and bounded away from zero. Under the stronger as-
sumption (σ, b) ∈ �, we can obtain a similar result also for the transition densities
pσb(�,x, y) of the corresponding Markov process (Xt : t ≥ 0). The proof is given
in the supplement [18].

PROPOSITION 9. Let (σ, b) ∈ �. Then there are constants 0 < K ′ < K < ∞
depending only on D,d such that K ′ ≤ pσb(�,x, y) ≤ K for all x, y ∈ [0,1].

3.2. A Bernstein type inequality.

THEOREM 10. Let the time difference between observations � > 0 and con-
stants D,d > 0 in the definition of � be given. Then there exists κ > 0 depending
only on �,D,d > 0 such that for all reflected diffusions (8) with (σ, b) ∈ � and
arbitrary initial distribution, for all bounded functions f : [0,1] → R, all r > 0,
all n ∈ N, and Z = ∑n−1

j=0(f (Xj�) −Eμ[f (X0)]),

P
(|Z| > r

) ≤ κ exp
(
−1

κ
min

(
r2

n‖f ‖2
L2(μ)

,
r

log(n)‖f ‖∞

))
.

PROOF. We make use of the concentration inequality given in Theorem 6 in
[1] with m = 1 and verify the assumptions by using results in [6]. Let X0,X1, . . .

be a Markov chain with values in (S,B). For x ∈ S and A ∈ B, we introduce the
transition kernels P(x,A) = P(X1 ∈ A|X0 = x) and P n(x,A) = P(Xn ∈ A|X0 =
x). For a measurable function V : S →R, we define PV (x) = E[V (X1)|X0 = x].
The following three assumptions are assumed in [6], where we slightly strengthen
the minorization condition to be compatible with the assumption in [1].

(A1) Minorization condition. There exists C ∈ B, β̃ > 0 and a probability mea-
sure ν on (S,B) such that for all x ∈ C and A ∈ B

P(x,A) ≥ β̃ν(A),

as well as for all x ∈ S there exists n ∈ N such that P n(x,C) > 0.
(A2) Drift condition. There exist a measurable function V : S → [1,∞) and

constants λ < 1 and K < ∞ satisfying

PV (x) ≤
{
λV (x), if x /∈ C,

K, if x ∈ C.

(A3) Strong aperiodicity condition. There exists β > 0 such that β̃ν(C) ≥ β .

The conditions (A1)–(A3) are verified for the reflected diffusion as follows: Let
C = [0,1], β̃ the uniform lower bound on the transition density given by Proposi-
tion 9 and ν be the uniform distribution on [0,1]. Then (A1) is satisfied. For (A2),
we can take V constant to one and K = 1. And (A3) is satisfied with β = β̃ .
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By Proposition 4.1(ii) and Proposition 4.4, equation (21) in [6] the constant τ

in Theorem 6 in [1] is finite. Under conditions (A1)–(A3), there exists a unique
invariant measure μ (Theorem 1 in [6]). Using Corollary 6.1 in [6] and that the
Markov chain is reversible, we obtain that for all f ∈ L2(μ)∥∥∥∥P nf −

∫
f dμ

∥∥∥∥
L2(μ)

≤ ρn

∥∥∥∥f −
∫

f dμ

∥∥∥∥
L2(μ)

(12)

for some ρ < 1.
Since we are in the case m = 1, the quantity (E[T2])−1 VarZ1 in [1] is equal to

the asymptotic variance, see the third remark after Theorem 6 there. We bound the
asymptotic variance, using (12) and the Cauchy–Schwarz inequality (see also (3)
in [18]), by

lim
n→∞n−1 Varμ

(
n−1∑
j=0

f (Xj�)

)
≤ 1 + ρ

1 − ρ
Var

(
f (X0)

) ≤ 1 + ρ

1 − ρ
‖f ‖2

L2(μ)
.

This establishes the concentration inequality for a fixed pair (σ, b) ∈ �. The con-
stants τ and ρ can be chosen uniformly for the class � since there is a common
lower bound β̃ on the transition densities. �

Note that the above proof can be generalised to diffusions on R, arguing along
the lines of [24].

The following generalisation of the previous theorem to bivariate Markov chains
(X�j ,X�(j+1) : j ∈ N) with invariant measure μ2(x, y) = p(�,x, y)μ(x) is ob-
tained in a similar way; see the supplement [18] for a proof.

THEOREM 11. Let �,D,d > 0 be given. Then there exists κ > 0 depending
only on �,D,d > 0 such that for all reflected diffusions (8) with (σ, b) ∈ � and
arbitrary initial distributions, for all bounded functions f : [0,1]2 → R, all r >

0, n ∈ N, and Z = ∑n−1
j=0(f (Xj�,X(j+1)�) −Eμ2[f (X0,X�)]),

P
(|Z| > r

) ≤ κ exp
(
−1

κ
min

(
r2

n‖f ‖2
L2(μ2)

,
r

log(n)‖f ‖∞

))
.

3.3. Concentration inequality for suprema of empirical processes. Let F be a
class of functions. For f ∈ F let either Z(f ) = ∑n−1

j=0(f (Xj�) − Eμ[f (X0)]) or

Z(f ) = ∑n−1
j=0(f (Xj�,X(j+1)�) − Eμ2[f (X0,X�)]). By a change of variables,

we can rewrite the previous concentration inequalities as

(13) P
(∣∣Z(f )

∣∣ > max
(√

v2x,ux
)) ≤ κe−x,

where u = κ log(n)‖f ‖∞ and v2 = κn‖f ‖2
L2(μ)

or v2 = κn‖f ‖2
L2(μ2)

. Let I be
a subset of a linear space of finite dimension d , and consider a class of bounded
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measurable functions F = {fi : i ∈ I } indexed by I , and such that 0 ∈ F . We de-
fine V 2 = supf ∈F v2,U = κ logn supf ∈F ‖f ‖∞ to obtain the following functional
concentration inequality.

THEOREM 12. For κ̃ = 18 and for all x ≥ 0, we have

P
(

sup
f ∈F

∣∣Z(f )
∣∣ ≥ κ̃

(√
V 2(d + x) + U(d + x)

)) ≤ 2κe−x.

Given (13), Theorem 12 follows by the usual chaining argument for empirical
processes, given for instance in the form of Theorem 2.1 in Baraud [3]. Baraud’s
proof applies directly in our setting, where we notice that his Assumption 2.1 can
be replaced by (13), since that assumption is only used to apply Bernstein’s in-
equality in the form (13).

4. Proofs II: The main contraction Theorem 1. Our strategy to prove the
main theorem of this article is as follows: In the spirit of [9, 10], we first derive
a general contraction theorem for discretely sampled diffusions that requires the
prior to charge small neighbourhoods of the true parameter measured in the infor-
mation distance (a version of the KL-divergence), and that admits the existence of
certain frequentist tests uniformly in the parameter space. We then show how the
information distance can be controlled by suitable dual Besov norms, and use the
concentration inequalities from the previous subsection to construct suitable tests.

4.1. General contraction theorem with tests. We denote by K(P,Q) :=
EP[log dP

dQ
] the Kullback–Leibler divergence between two probability measures

P and Q defined on the same σ -algebra. We write Pσb and Eσb for the probability
and the expectation with respect to the reflected diffusion started in the invariant
distribution. We also introduce the notation

KL
(
(σ0, b0), (σ, b)

) := Eσ0b0

[
log

(
pσ0b0(�,X0,X�)

pσb(�,X0,X�)

)]
,

and for every ε, κ > 0 we define

Bε,κ =
{
ϑ = (σ, b) ∈ � : KL

(
(σ0, b0), (σ, b)

) ≤ ε2,

Varσ0b0

(
log

pσb(�,X0,X�)

pσ0b0(�,X0,X�)

)
≤ 2ε2,(14)

K(μσ0b0,μσb) ≤ κ,Varσ0b0

(
log

μσb(X0)

μσ0b0(X0)

)
≤ 2κ

}
.

THEOREM 13. Let � = �n be a sequence of prior distributions on a σ -
field S of subsets of � and suppose that X0, . . . ,Xn� are discrete observations
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of a reflected diffusion process (8), started in the stationary distribution μ. Let
�(·|X0, . . . ,Xn�) be the resulting posterior distribution (2). For ϑ0 = (σ0, b0) ∈
�, εn, a sequence of positive real numbers such that εn → 0,

√
nεn → ∞, and

C,κ fixed positive constants, suppose � satisfies for all n large enough

�(Bεn,κ) ≥ e−Cnε2
n .(15)

Assume moreover that there exists 0 < L̄ < ∞ such that �(�\Bn) ≤ L̄e−(C+4)nε2
n

for some sequence Bn ⊆ � for which we can find a sequence of tests (indicator
functions) �n ≡ �(X0, . . . ,Xn�) and of distance functions dn such that for every
n ∈N, M > 0 large enough,

Eσ0b0[�n] →
n→∞ 0, sup

(σ,b)∈Bn:dn((σ,b),(σ0,b0))≥Mεn

Eσb[1 − �n] ≤ L̄e−(C+4)nε2
n .

Then the posterior distribution �(·|X0, . . . ,Xn�) contracts about (σ0, b0) at rate
εn in the distance dn, that is, in Pσ0b0 -probability, as n → ∞,

�
(
(σ, b) : dn

(
(σ, b), (σ0, b0)

)
> Mεn|X0, . . . ,Xn�

) → 0.

The proof of this theorem follows the standard pattern from [9, 10] (see also
Section 7.3.1 in [12]), and is given in the supplement [18].

4.2. Small ball lemma. Recall the sets Bε,κ defined in (14).

LEMMA 14. There exists a constant C̄ > 0 such that for every κ > 0 and for
all ε > 0 small enough{

(σ, b) ∈ � : ‖μ − μ0‖L2([0,1]) + ∥∥σ−2 − σ−2
0

∥∥
(B1

1∞)∗ + ‖b − b0‖(B2
1∞)∗ <

ε

C̄

}
⊆ Bε,κ .

A crucial step in the proof of this key lemma is the observation, partly bor-
rowed from [13], that the L2([0,1]2)-distance between the transitions densities
pσb,pσ0b0 is related to a suitable Hilbert–Schmidt (HS) norm of the difference be-
tween the corresponding transition operators. Using the semigroup representation
P� = e�L of the transition operators P�, we can then approximate the informa-
tion distance on the underlying experiment by the HS-distance between the cor-
responding inverse operators of the infinitesimal generators L of the underlying
diffusions. In turn, we can obtain analytic expressions for the Green’s function of
the inverses of these generators, which ultimately gives the reduction to the dual
Besov norms appearing above. We split the proof into several steps, given in the
following subsections.
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4.2.1. The infinitesimal generator L and its inverse. We begin by defining the
function S(·) = 1/s′(·), derived from the scale function s(·),

S(x) := 1

2
σ 2(x)μ(x) = 1

2G
exp

(∫ x

0

2b(y)

σ 2(y)
dy

)
,

with G the normalising constant of the invariant density as in (11). The infinitesi-
mal generator L = Lσb of the diffusion (8) is given by the action

(16) Lf (x) = 1

2
σ 2(x)f ′′(x) + b(x)f ′(x) = 1

μ(x)

(
S(x)f ′(x)

)′
,

where the domain of this unbounded operator on L2(μ) is the subspace of the
L2-Sobolev space H 2 with Neumann boundary conditions

dom(L) = {
f ∈ H 2([0,1]) : f ′(0) = f ′(1) = 0

}
.

We fix the invariant measure μ0 belonging to σ0 and b0 and consider L = Lσb

on L2(μ0), which by the bound from above and away from zero of the invariant
densities is the same set of functions as L2(μ). We introduce

V :=
{
f ∈ L2(μ0) :

∫ 1

0
f dμ0 = 0

}
and V ⊥ := {

f ∈ L2(μ0) : f constant
}
.

We denote by μ0(L) the operator that sends f to the constant function μ0(Lf ) =∫
Lf (x)μ0(x) dx. We observe that the operator L − μ0(L) leaves the space V

invariant, and denote by (L − μ0(L))|V its restriction to V . Next, we introduce an
integral operator J and show that J is an explicit representation of the inverse of
(L − μ0(L))|V . We define

Jf (x) =
∫ 1

0
K(x, z)f (z)μ0(z) dz, f ∈ V,

with kernel K = Kσb defined as

K(x, z) = 2G

(
H(x, z) − μ(z)

μ0(z)

∫ 1

0
H(x,y)μ0(y) dy

)
,

where

H(x, z)

= Hσb(x, z)

=
∫ 1

0

(
1[z,x](y) − 1[z,1](y)

∫ 1

y
μ0(x) dx

)
exp

(
−

∫ y

0

2b(v)

σ 2(v)
dv

)
dy

μ(z)

μ0(z)
.

Here, 1[z,x] = 0 if x < z. Writing 1[z,x](y) = 1[0,x](y)1[z,1](y) and using
1[z,1](y) = 1[0,y](z) as well as Fubini’s theorem, an alternative representation of J
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is given by

Jf (x) = 2G

∫ 1

0

∫ y

0

(
f (z) −

∫ 1

0
f dμ

)
μ(z) dz

(
1[0,x](y) −

∫ 1

y
dμ0

)

× exp
(
−

∫ y

0

2b(v)

σ 2(v)
dv

)
dy.

We compute the first two derivatives:

d

dx
(Jf )(x) = 2G

∫ x

0

(
f (z) −

∫
f dμ

)
μ(z) dz exp

(
−

∫ x

0

2b(v)

σ 2(v)
dv

)
,

d2

dx2 (Jf )(x) = 2G

(
f (x) −

∫
f dμ

)
μ(x) exp

(
−

∫ x

0

2b(v)

σ 2(v)
dv

)
(17)

+ 2G

∫ x

0

(
f (z) −

∫
f dμ

)
μ(z) dz

(
−2b(x)

σ 2(x)

)

× exp
(
−

∫ x

0

2b(v)

σ 2(v)
dv

)
.

It follows

LJf (x) = 1

2
σ 2(x)

d2

dx2 (Jf )(x) + b(x)
d

dx
(Jf )(x)

= 1

2
σ 2(x)2G

(
f (x) −

∫
f dμ

)
μ(x) exp

(
−

∫ x

0

2b(v)

σ 2(v)
dv

)
= f (x) −

∫
f dμ

and thus (L − μ0(L))Jf (x) = f (x) − ∫
f dμ0. Consequently, (L − μ0(L))J is

the identity operator on V . We see from the first derivative in (17) that Jf ∈
dom(L). Using 1[0,x](y) = 1[y,1](x) and Fubini’s theorem, one also sees that∫ 1

0 Jf (x)μ0(x) dx = 0, and consequently Jf ∈ dom(L) ∩ V .
To see that (L−μ0(L))|V is injective, suppose that for f,f1 ∈ dom(L)∩V we

have (L−μ0(L))f = (L−μ0(L))f1 or equivalently Lf = Lf1 +c0. This implies
by integration with respect to dμ(x) that S(x)f ′(x) = S(x)f ′

1(x) + c0
∫ x

0 dμ + c1
with c1 = c0 = 0 since f ′(0) = f ′

1(0) = f ′(1) = f ′
1(1) = 0. Another integration

gives f (x) = f1(x) + c2 and c2 = 0 by f,f1 ∈ V . We conclude that f = f1
showing that (L − μ0(L))|V is injective, and by what precedes the inverse map-
ping (L−μ0(L))|−1

V : V → dom(L)∩V exists, and has integral representation J .
Note that when L = Lσ0b0 then in view of (16) we have μ0(Lσ0b0)(f ) = 0 for all
f ∈ dom(L), and hence the same integral representation follows for (Lσ0b0)|−1

V =
(Lσ0b0 − μ0(Lσ0b0))|−1

V .
The following lemma bounds the HS-norm distance between the Green kernels

and is proved in the supplement [18].
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LEMMA 15. There exists C̃ > 0 such that for all (σ, b), (σ0, b0) ∈ �(∫ 1

0

∫ 1

0
(Kσb − Kσ0b0)

2(x, z)μ0(x)μ0(z) dx dz

)1/2

≤ C̃‖μσb − μ0‖L2([0,1]) + C̃

∥∥∥∥ 1

σ 2 − 1

σ 2
0

∥∥∥∥
(B1

1∞)∗
+ C̃‖b − b0‖(B2

1∞)∗ .

4.2.2. Proof of Lemma 14. We have

KL
(
(σ0, b0), (σ, b)

) = Eσ0b0

[
log

(
μ0(X0)pσ0b0(�,X0,X�)

μ0(X0)pσb(�,X0,X�)

)]
.

We see that this is the Kullback–Leibler divergence between the probability
measures corresponding to the densities μ0pσ0b0 = μ0(x)pσ0b0(�,x, y) and
μ0pσb = μ0(x)pσb(�,x, y) with respect to the Lebesgue measure on [0,1]2. By
Lemma 8.2 in [9], we have

KL
(
(σ0, b0), (σ, b)

) ≤ 2h2(μ0pσb,μ0pσ0b0)

∥∥∥∥pσ0b0

pσb

∥∥∥∥∞
,

where h2(p, q) = ∫
(
√

p−√
q)2 is the usual Hellinger distance between two densi-

ties p,q . The transition densities are bounded from above and from below in view
of Proposition 9. Thus, the Hellinger distance can be bounded by the L2-norm of
the difference between the densities

h2(μ0pσb,μ0pσ0b0) ≤
∥∥∥∥ 1

μ0pσ0b0

∥∥∥∥∞
‖μ0pσb − μ0pσ0b0‖2

L2([0,1]2)
.

We want to bound the last quantity in terms of the Hilbert–Schmidt norm distance
‖P σb

� −P
σ0b0
� ‖HS between the transition operators of the respective diffusions act-

ing on L2(μ0). We have the integral representation(
P σb

� − P
σ0b0
�

)
f =

∫ (
pσb(x, y) − pσ0b0(x, y)

)
f (y) dy

=
∫

pσb(x, y) − pσ0b0(x, y)

μ0(y)
f (y)μ0(y) dy

and thus the Hilbert–Schmidt norm is given by

∥∥P σb
� − P

σ0b0
�

∥∥2
HS =

∫ ∫ (
pσb(x, y) − pσ0b0(x, y)

μ0(y)

)2
μ0(x)μ0(y) dx dy

=
∫ ∫ (

pσb(x, y) − pσ0b0(x, y)
)2 μ0(x)

μ0(y)
dx dy.

In summary, we can bound KL((σ0, b0), (σ, b)) by a constant multiple of

‖μ0pσb − μ0pσ0b0‖2
L2([0,1]2)

≤ ‖μ0‖2∞
∥∥P σb

� − P
σ0b0
�

∥∥2
HS.
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Let (ek)k∈N be any orthonormal basis of L2(μ0) such that e0 = 1 (for instance,
we can take the eigen-basis of the operator P

σ0b0
� ). Then

∥∥P σb
� − P

σ0b0
�

∥∥
HS =

∞∑
k=0

∥∥(P σb
� − P

σ0b0
�

)
ek

∥∥2
L2(μ0)

=
∞∑

k=1

∥∥(P σb
� − P

σ0b0
�

)
ek

∥∥2
L2(μ0)

.

We denote by μ0(P
σb
� ) the operator that sends f to the constant function

μ0(P
σb
� f ) = ∫

P σb
� f (x)μ0(x) dx and write the Hilbert–Schmidt norm as

∥∥P σb
� − P

σ0b0
�

∥∥2
HS =

∞∑
k=1

∥∥(P σb
� − μ0

(
P σb

�

) − P
σ0b0
� + μ0

(
P σb

�

))
ek

∥∥2
L2(μ0)

=
∞∑

k=1

∥∥(P σb
� − μ0

(
P σb

�

) − P
σ0b0
�

)
ek

∥∥2
L2(μ0)

+
∞∑

k=1

μ0
(
P σb

� ek

)2
,

where we have used that all ek with k ≥ 1 are orthogonal to e0, and thus to all con-
stant functions, and that P σb

� −μ0(P
σb
� ),P

σ0b0
� leave the space V = {f ∈ L2(μ0) :∫

f dμ0 = 0} invariant (note that μ0 is the invariant measure for P
σ0b0
� ). By the last

observation, we can write∥∥P σb
� − P

σ0b0
�

∥∥2
HS

(18)

= ∥∥(P σb
� − μ0

(
P σb

�

))|V − P
σ0b0
� |V

∥∥2
HS +

∞∑
k=1

μ0
(
P σb

� ek

)2
.

We represent P
σ0b0
� |V = exp(�Lσ0b0 |V ) and(
P σb

� − μ0
(
P σb

�

))|V = exp
(
�

(
Lσb − μ0(Lσb)

)|V )
,

possible since, by standard properties of Markov semigroups, the derivatives

d

d�

(
P σb

� − μ0
(
P σb

�

))|V (f ) = d

d�
exp

(
�

(
Lσb − μ0(Lσb)

)|V )
(f )

coincide for all f ∈ V ∩ dom(L), and setting � = 0 gives the identity id|V on both
sides in the last but one display.

For every (σ, b), the operators Lσb have a discrete nonpositive spectrum {λk :
k ∈ N} (e.g., pages 97–100 in [2]), with eigenfunctions uk orthonormal in L2(μ).
One checks directly that the spectra of Lσ0b0 |V , (Lσb −μ0(Lσb))|V equal the ones
of Lσ0b0,Lσb but with eigenvalue {0} removed (corresponding to u0 = 1), and,
in the second case, for different eigenfunctions uk − μ0(uk), orthonormal for the
scalar product 〈·, ·〉V,μ ≡ 〈·−∫

(·) dμ, ·−∫
(·) dμ〉μ on V . Their inverses Lσ0b0 |−1

V ,
(Lσb −μ0(Lσb))|−1

V derived in Section 4.2.1 are bounded linear operators on V (in
view of their integral representations), and in view of their spectral representation
they are also symmetric, and thus self-adjoint for the scalar products 〈·, ·〉μ0 and
〈·, ·〉V,μ on V , respectively.
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Using the functional calculus and what precedes, we can hence represent
(P σb

� − μ0(P
σb
� ))|V and (P

σ0b0
� )|V as the composition of the inverses (Lσb −

μ0(Lσb))|−1
V , Lσ0b0 |−1

V and the function f : z → exp(�z−1), which is Lipschitz
continuous on (−∞,0), with Lipschitz constant �. Proposition 3 in [18] states
that if f is Lipschitz continuous with Lipschitz constant � on the union of the
spectra of two operators T1 and T2, which are self-adjoint with respect to different
scalar products 〈·, ·〉V,μ and 〈·, ·〉μ0 then we have∥∥f (T1) − f (T2)

∥∥
HS ≤ �‖T1 − T2‖HS,

where the HS-norm is for operators from (V , 〈·, ·〉μ0) to (V , 〈·, ·〉V,μ) (and where,
strictly speaking, the operators in the preceding display are composed with suit-
able identity operators between these spaces). Since 〈·, ·〉V,μ and 〈·, ·〉μ0 induce
equivalent norms on V , up to constants the same holds when the Hilbert–Schmidt
norm is interpreted for operators from (V , 〈·, ·〉μ0) to (V , 〈·, ·〉μ0). We thus obtain
from the results in Section 4.2.1 that∥∥(P σb

� − μ0
(
P σb

�

))|V − P
σ0b0
� |V

∥∥2
HS

�
∥∥(Lσb − μ0(Lσb)

)|−1
V − Lσ0b0 |−1

V

∥∥2
HS

=
∫ 1

0

∫ 1

0
(Kσb − Kσ0b0)

2(x, z)μ0(x)μ0(z) dx dz ≡ A.

Before we bound A further, let us next consider the second term in (18). Using∫ 1
0 μσb(x)pσb(�,x, y) dx = μσb(y) and Parseval’s identity, we obtain

∞∑
k=1

μ0
(
P σb

� ek

)2

=
∞∑

k=1

[
μ0

(
P σb

� ek − ek

)]2

=
∞∑

k=1

(∫ 1

0

[∫ 1

0
μ0(x)pσb(�,x, y)ek(y) dy − μ0(x)ek(x)

]
dx

)2

≤ 2
∞∑

k=1

(∫ 1

0

∫ 1

0

(
μ0(x) − μσb(x)

)
pσb(�,x, y)ek(y) dy dx

)2

+ 2
∞∑

k=1

(∫ 1

0

(
μσb(x) − μ0(x)

)
ek(x) dx

)2

= 2
∞∑

k=1

〈∫ 1
0 (μσb − μ0)(x)pσb(�,x, ·) dx

μ0
, ek

〉2

μ0

+ 2
∞∑

k=1

〈
μσb − μ0

μ0
, ek

〉2

μ0
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= 2
∫ 1

0

(∫ 1
0 (μσb − μ0)(x)pσb(�,x, y) dx

μ0(y)

)2
μ0(y) dy

+ 2
∫ 1

0

(
μσb(y) − μ0(y)

μ0(y)

)2
μ0(y) dy,

which can be bounded by B ≈ ‖μσb −μ0‖2
L2([0,1]), using that the transition density

is bounded from above and μ0 away from zero. Using Lemma 15 for term A, we
obtain, for some constant C > 0 and C̄ large enough, the overall bound

KL
(
(σ0, b0), (σ, b)

) ≤ C(A + B) ≤ ε2.

In order to see

(19) Varσ0b0

(
log

pσb(�,X0,X�)

pσ0b0(�,X0,X�)

)
≤ 2ε2

we bound the variance by the second moment and use Lemma 8.3 in [9], which
implies that

Eσ0b0

[∣∣∣∣log
μ0pσb

μ0pσ0b0

∣∣∣∣2] ≤ 4h2(μ0pσb,μ0pσ0b0)

∥∥∥∥pσ0b0

pσb

∥∥∥∥∞
.

Proceeding as for the Kullback–Leibler divergence above shows (19).
It remains to show that

K(μσ0b0,μσb) ≤ κ and Varσ0b0

(
log

μσb(X0)

μσ0b0(X0)

)
≤ 2κ.(20)

By Lemmas 8.2 and 8.3 in [9], it suffices to bound h2(μσb,μσ0b0)‖μσ0b0/μσb‖∞.
Using that μσb and μσ0b0 are bounded from above and from below and bounding
the Hellinger distance by the L2-norm, the Hellinger distance is bounded by a
multiple of ‖μσb − μσ0b0‖2

L2([0,1]). So for ε > 0 small enough we have (20).

4.3. Construction of tests. We will now construct the tests needed in Theo-
rem 13. The tests are based on the spectral estimators constructed in [13], which
are defined by

σ̂ 2(x) := 2�−1 log(κ̂1)
∫ x

0 û1(y)μ̂(y) dy

û′
1(x)μ̂(x)

,(21)

b̂(x) := �−1 log(κ̂1)
û1(x)û′

1(x)μ̂(x) − û′′
1

∫ x
0 û1(y)μ̂(y) dy

û′
1(x)2μ̂(x)

,(22)

where κ̂1, û1 are estimates of the second largest eigenvalue and associated eigen-
function of the operator P σb

� , and where μ̂ is defined in (30) below. Using the
concentration inequality Theorem 12, we can prove the following for these esti-
mators.
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THEOREM 16. Let s > 1 and let εn be such that n−(s+1)/(2s+3) � εn �
n−3/8(logn)−1/2. For all D > 0, there exists R > 0 such that for n large enough
we have uniformly in ϑ = (σ, b) ∈ �s

Pϑ

(∥∥σ̂ 2 − σ 2∥∥
L2([A,B]) ≥ Rnε3

n or ‖b̂ − b‖L2([A,B]) ≥ Rn2ε5
n

) ≤ e−Dnε2
n .

We postpone the proof of Theorem 16 to the end of the subsection, but record
how it can be used to construct tests for the separation metric

dn(ϑ,ϑ0) = n−1ε−2
n

∥∥σ 2 − σ 2
0
∥∥
L2([A,B]) + n−2ε−4

n ‖b − b0‖L2([A,B]).(23)

Given Theorem 16 the proof of the following result is elementary (see the supple-
ment [18]).

THEOREM 17. For ϑ0 ∈ �s , there exists a sequence of tests (indicator func-
tions) �n ≡ �(X0, . . . ,Xn�) such that for every n ∈ N,C > 0, there exists
M = M(C) > 0 large enough such that

Eϑ0[�n] →
n→∞ 0, sup

ϑ∈�s :dn(ϑ,ϑ0)≥Mεn

Eϑ [1 − �n] ≤ e−(C+4)nε2
n .

In the remaining part of this subsection, we derive concentration inequalities
for the successive steps in the estimation procedure and at the end of the section
we prove Theorem 16. We denote by ψλ with λ = (l, k), |λ| = l, a compactly
supported L2-orthonormal wavelet basis of L2([0,1]) as after (5). Let VJ be the
L2-closed linear spaces spanned by the wavelets up to level |λ| ≤ J . We define πJ

to be the L2-orthogonal projection onto VJ and π
μ
J to be the L2(μ)-orthogonal

projection onto VJ . We construct estimators as in [13]. We estimate the action of
the transition operator on the wavelet spaces (P J

�)λ,λ′ := 〈P σb
� ψλ,ψλ′ 〉μ by

(P̂ �)λ,λ′ := 1

2n

n∑
l=1

(
ψλ(X(l−1)�)ψλ′(Xl�) + ψλ′(X(l−1)�)ψλ(Xl�)

)
and the dim(VJ ) × dim(VJ )-dimensional Gram matrix G with entries Gλ,λ′ =
〈ψλ,ψλ′ 〉μ by

Ĝλ,λ′ := 1

n

(
ψλ(X0)ψλ′(X0)

2
+ ψλ(Xn�)ψλ′(Xn�)

2
+

n−1∑
l=1

ψλ(Xl�)ψλ′(Xl�)

)
.

Let u1 be the eigenfunction of P σb
� corresponding to the second largest eigenvalue

κ1. Let uJ
1 be the eigenfunction belonging to the second largest eigenvalue κJ

1 of
the operator π

μ
J P σb

� .

LEMMA 18. ‖uJ
1 ‖∞ is bounded uniformly in (σ, b) ∈ �s and J ∈N.
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PROOF. By Lemma 6.6 in [13], ‖u1‖Hs+1 is uniformly bounded in �s . By
Corollary 4.6 in [13], this implies that ‖uJ

1 ‖H 1 is uniformly bounded, and the
Sobolev imbedding implies the result. �

Subsequently, ‖ · ‖�2→�2 denotes the usual norm of an operator on �2.

LEMMA 19. Let uJ
1 be the vector associated with the normalised eigenfunc-

tion uJ
1 of π

μ
J P σb

� with eigenvalue κJ
1 . Let J = Jn → ∞ as n → ∞ be a sequence

of integers and let n be such that 2J ≤ cn1/2/ logn for some c > 0. For (26), as-

sume that also 2−sJ ≤ c
√

2J /n. Then for all D > 0 there exists C > 0, κ > 0 such
that uniformly over �s

P

(∥∥(P̂ � − P J
�

)
uJ

1

∥∥
�2 < C

√
2J

n

)
≥ 1 − 2κe−D2J

,(24)

P

(∥∥(Ĝ − G)uJ
1

∥∥
�2 < C

√
2J

n

)
≥ 1 − 2κe−D2J

,(25)

P

(
‖μ̂ − μ‖L2 < C

√
2J

n

)
≥ 1 − 2κe−D2J

,(26)

P

(
‖Ĝ − G‖�2→�2 < C

22J

√
n

)
≥ 1 − κ2J+2e−D2J

,(27)

P

(∥∥P̂ � − P J
�

∥∥
�2→�2 < C

22J

√
n

)
≥ 1 − κ2J+2e−D2J

.(28)

Moreover, for all δ,D > 0 there exists n0 such that we have for all n ≥ n0,

(29) P
(‖μ̂ − μ‖L∞([0,1]) < δ

) ≥ 1 − 2κe−D2J

.

PROOF. We have[(
P̂ � − P J

�

)
uJ

1
]
λ = 1

2n

n∑
l=1

(
ψλ(X(l−1)�)uJ

1 (Xl�) + uJ
1 (X(l−1)�)ψλ(Xl�)

−E
[
ψλ(X0)u

J
1 (X�) + uJ

1 (X0)ψλ(X�)
])

.

We express the �2-norm ‖(P̂ � − P J
�)uJ

1 ‖�2 by its dual representation

sup
‖v‖

�2≤1

∣∣∣∣ ∑
|λ|≤J

vλ

1

2n

n∑
l=1

(
ψλ(X(l−1)�)uJ

1 (Xl�) + uJ
1 (X(l−1)�)ψλ(Xl�)

−E
[
ψλ(X0)u

J
1 (X�) + uJ

1 (X0)ψλ(X�)
])∣∣∣∣
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= sup
‖v‖

L2≤1,v∈VJ

∣∣∣∣ 1

2n

n∑
l=1

(
v(X(l−1)�)uJ

1 (Xl�) + uJ
1 (X(l−1)�)v(Xl�)

−E
[
v(X0)u

J
1 (X�) + uJ

1 (X0)v(X�)
])∣∣∣∣.

We consider the class F = {f (x, y) = (v(x)uJ
1 (y) + uJ

1 (x)v(y))/2,‖v‖L2 ≤
1, v ∈ VJ } with dim(VJ ) = 2J+1. In order to determine V 2 and U in Theorem 12,
we use Lemma 18 and calculate for f ∈ F

‖f ‖2
L2(μ2)

= 1

4

∥∥v(x)uJ
1 (y) + uJ

1 (x)v(y)
∥∥2
L2(μ2)

≤ ∥∥uJ
1

∥∥2
∞‖v‖2

L2(μ)
≤ ∥∥uJ

1

∥∥2
∞‖μ‖∞‖v‖2

L2 ≤ C,

‖f ‖∞ = ∥∥uJ
1

∥∥∞
∥∥∥∥ ∑
|λ|≤J

〈v,ψλ〉ψλ

∥∥∥∥∞
≤ C

∥∥∥∥ ∑
|λ|≤J

|ψλ|
∥∥∥∥∞

≤ C2J/2.

We obtain the bounds V 2 ≤ C̃n and U ≤ C̃ log(n)2J/2 for some constant C̃. Ap-
plying Theorem 12 yields

P

(
sup
f ∈F

|Z(f )|
n

≥ κ̃

(√
C̃(D + 2)

2J

n
+ C̃(D + 2)

log(n)23J/2

n

))
≤ 2κe−D2J

.

By choice of J = Jn, the first term with
√

2J /n dominates the second term for

large n and this implies (24). The bound (25) for Ĝ follows in the same way by
considering the class of functions F = {f (x, y) = (v(x)uJ

1 (x) + v(y)uJ
1 (y))/2,

‖v‖L2 ≤ 1, v ∈ VJ }.
We denote the empirical measure by μn = 1

n+1
∑n

l=0 δXl�
, and define

(30) μ̂ = ∑
|λ|≤J

1

n + 1

n∑
l=0

ψλ(Xl�)ψλ,

KJ (x, y) = ∑
|λ|≤J ψλ(x)ψλ(y) and KJ (μ) = ∫

KJ (·, y)μ(y) dy. We consider
the variance term μ̂ − πJ μ and represent, for B0 a countable subset of the unit
ball B of L2([0,1]),

‖H‖L2 = sup
f ∈B0

∣∣∣∣∫[0,1]
H(t)f (t) dt

∣∣∣∣, H ∈ L2([0,1]).
Then ‖μ̂ − πJ μ‖L2 = ‖μn − μ‖K with ‖H‖K := supk∈K |H(k)| and

K :=
{
x 
→

∫
[0,1]

f (t)KJ (t, x) dt −
∫
[0,1]

f (t)KJ (μ)(t) dt : f ∈ B0

}
.

We apply the concentration inequality Theorem 12 to the class K ⊆ VJ . As in (20)
and (22) in [11], we bound supk∈K ‖k‖∞ ≤ C2J/2 and supk∈K ‖k‖2

L2(μ)
≤ C. We
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obtain

P

(
‖μ̂ − πJ μ‖L2 ≥ κ̃

(√
C(D + 2)

2J

n
+ C(D + 2)

log(n)23J/2

n

))
≤ 2κe−D2J

.

By choice of J = Jn, the term
√

2J /n dominates the second term and we have for
C > 0 large enough

P

(
‖μ̂ − πJ μ‖L2 ≥ C

√
2J

n

)
≤ 2κe−D2J

.

Since ‖μ‖Hs is uniformly bounded over �s [cf. (10)], we have ‖μ − πJ μ‖L2 ≤
C2−J s . By the triangle inequality and the assumption 2−J s ≤ c

√
2J /n, we ob-

tain (26) by possibly increasing the constant C. Claim (29) follows by a similar
empirical process type bound for μn −μ, corresponding to the case r = ∞ in Sec-
tion 3.1.2 in [11], with δn = √

nε2
n → 0 there eventually less than any δ > 0 (and

using Theorem 12 in place of Talagand’s inequality). Details are left to the reader.
Next, we use the bound

(31) ‖Ĝ − G‖�2→�2 ≤ ∑
|λ|≤J

∥∥(Ĝ − G)eλ

∥∥
�2,

where eλ are orthonormal vectors of (V ,‖ · ‖�2). We represent

∥∥(Ĝ − G)eλ

∥∥
�2 = sup

‖v‖
L2≤1,v∈VJ

∣∣∣∣∣1

n

n∑
l=1

1

2

(
v(X(l−1)�)ψλ(X(l−1)�)

+ v(Xl�)ψλ(Xl�)
) −E

[
v(X0)ψλ(X0)

]∣∣∣∣∣.
Similar as before, we consider functions of the form f (x, y) = (v(x)ψλ(x) +
v(y)ψλ(y))/2. Using ‖ψλ‖∞ ≤ C2J/2 we calculate ‖f ‖2

L2(μ2)
≤ C2J and

‖f ‖∞ ≤ C2J . For fixed λ, Theorem 12 yields the concentration inequality

P

(∥∥(Ĝ − G)eλ

∥∥
L2 ≥ κ̃

(√
C(D + 2)

22J

n
+ C(D + 2)

log(n)22J

n

))
≤ 2κe−D2J

.

The first term in the sum dominates for large n. Upon choosing a larger constant
C > 0, we obtain

P

(∥∥(Ĝ − G)eλ

∥∥
L2 ≥ C

2J

√
n

)
≤ 2κe−D2J

.

By observing that the sum in (31) is over 2J+1 summands, we obtain (27), by
enlarging the constant C if necessary.

The final bound (28) for ‖P̂ � −P J
�‖�2→�2 follows similarly by considering the

functions f (x, y) = (v(x)ψλ(y) + v(y)ψλ(x))/2. �



1688 R. NICKL AND J. SÖHL

In the following, we assume 2J ≤ cn1/4/ logn and will say that an event A

occurs with sufficiently high probability if for all D > 0 there exists C > 0 such
that P(A) is at least as large as the probability of the intersection of the events in
the previous theorem. Then for n large enough the events in (27)–(29) include the
events that ‖Ĝ − G‖�2→�2 ≤ 1

2‖G−1‖−1
�2→�2 , ‖μ̂ − μ‖L∞([0,1]) ≤ 1

2 infx∈[0,1] μ(x).

This implies that Ĝ is invertible with ‖Ĝ−1‖�2→�2 ≤ 2‖G−1‖�2→�2 and that μ̂ is
bounded away from zero on [0,1].

LEMMA 20. Assume 2J ≤ cn1/4/ logn. For n large enough, we have with
sufficiently high probability and uniformly over �s

∥∥(Ĝ−1
P̂ � − G−1P J

�

)
uJ

1

∥∥
�2 < C

√
2J

n
.

PROOF. We decompose

Ĝ
−1

P̂ � − G−1P J
� = Ĝ

−1(
P̂ � − P J

�

) + (
Ĝ

−1 − G−1)P J
�

(32)
= Ĝ

−1((
P̂ � − P J

�

) + (G − Ĝ)G−1P J
�

)
.

Using that G−1P J
�uJ

1 = κJ
1 uJ

1 and ‖Ĝ−1‖ ≤ 2‖G−1‖, we obtain∥∥(Ĝ−1
P̂ � − G−1P J

�

)
uJ

1

∥∥
�2

≤ 2
∥∥G−1∥∥(∥∥(P̂ � − P J

�

)
uJ

1

∥∥
�2 + ∥∥(G − Ĝ)κJ

1 uJ
1

∥∥
�2

)
.

The results follows from this and (24), (25). �

LEMMA 21. Assume 2J ≤ cn1/4/ logn. For n large enough, we have with
sufficiently high probability and uniformly over �s

∥∥Ĝ−1
P̂ � − G−1P J

�

∥∥
�2→�2 < C

22J

√
n

.

PROOF. From (32), we deduce∥∥Ĝ−1
P̂ � − G−1P J

�

∥∥ ≤ 2
∥∥G−1∥∥(∥∥P̂ � − P J

�

∥∥ + ‖G − Ĝ‖∥∥G−1∥∥∥∥P J
�

∥∥)
≤ C

(∥∥P̂ � − P J
�

∥∥ + ‖G − Ĝ‖).
The result follows by applying the concentration from (27) and (28). �

LEMMA 22. Assume 2J ≤ cn1/4/ logn. Let κ̂1 be the second largest eigen-

value of the matrix Ĝ
−1

P̂ � with corresponding eigenvector û1 and eigenfunction
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û1 = ∑
λ(û1)λψλ ∈ VJ . For n large enough, we have with sufficiently high proba-

bility and uniformly over �s∣∣̂κ1 − κJ
1

∣∣ + ∥∥û1 − uJ
1

∥∥
�2 < C

√
2J

n
,

∥∥û1 − uJ
1

∥∥
H 1 < C

√
23J

n
,

∥∥û1 − uJ
1

∥∥
H 2 < C

√
25J

n
.

PROOF. By Lemma 21, we have that ‖Ĝ−1
P̂ � −G−1P J

�‖�2→�2 converges to
zero. Thus, the concentration in Lemma 20 carries over to concentration of κ̂1 and
û1 by Proposition 4.2 and Corollary 4.3 in [13]. The uniform choice of ρ and R

is possible as in the proof of their Corollary 4.15. The second and third claim are
consequences of the first by the usual Bernstein inequalities for functions in VJ :
‖û1 −uJ

1 ‖H 1 ≤ C2J ‖û1 −uJ
1 ‖L2 and ‖û1 −uJ

1 ‖H 2 ≤ C22J ‖û1 −uJ
1 ‖L2 (arguing,

e.g., as in Proposition 4.2.8 in [12]). �

PROOF OF THEOREM 16. By starting with a slightly larger constant D̃ > D,
the factor in front of the exponential function can be removed and events of suffi-
ciently high probability are seen to have probability at least 1 − e−D2J

. We then
choose 2J = nε2

n. By Lemma 22, the corresponding bias estimates in [13] and the
Sobolev imbedding, we have with sufficiently high probability

|̂κ1 − κ1| + ‖û1 − u1‖H 1 < Cnε3
n,∥∥û′

1 − u′
1
∥∥
L∞([A,B]) ≤ ‖û1 − u1‖H 2 < Cn2ε5

n,

where we used that the bias term is dominated by the variance term since εn �
n−(s+1)/(2s+3). For the estimation of μ̂, we choose J̄ ≥ J differently such that
2J̄ ∼ n1/(2s+1) and obtain

‖μ̂ − μ‖L2 < Cn−s/(2s+1) = o
(
nε3

n

)
.

In addition, the event can be chosen such that μ̂ and û′
1 are bounded from below

on [A,B] uniformly over �s , since μ and u′
1 are (Proposition 6.5 in [13]). By

Lemma 6.6 in [13], we have that ‖u1‖Hs+1 , s ≥ 2, is bounded uniformly over �s .
This implies in particular uniform bounds for ‖u1‖L2 , ‖u′

1‖L2 , ‖u′′
1‖L2 , ‖u1‖∞ and

‖u′
1‖∞. By the convergence of û1 in H 2, these bounds carry over to bounds on û1.

From the expressions (21) for σ̂ and (22) for b̂ and the above bounds, we deduce
Theorem 16. �

4.4. Conclusion of the proof of Theorem 1. Theorem 1 follows from Theo-
rem 13: We choose Bn = �s for all n. By Lemma 14, there exists C̄ such that{

(σ, b) ∈ � : ‖μ − μ0‖L2([0,1]) + ∥∥σ−2 − σ−2
0

∥∥
(B1

1∞)∗ + ‖b − b0‖(B2
1∞)∗ <

ε

C̄

}
⊆ Bε,κ .
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By assumption, we have (4) and by dividing C by C̄2 we ensure (15) with a pos-
sibly different constant C. We define dn as in (23), so that the existence of tests is
guaranteed by Theorem 17. The result follows.

5. Proofs III: Wavelet series priors. We record the following technical
lemma whose proof is given in the supplement [18]. Define the dual norm

(33) ‖f ‖(Bs
1∞)∗ := sup

g:‖g‖Bs
1∞≤1

∣∣∣∣∫ 1

0
f (x)g(x) dx

∣∣∣∣, s ≥ 0,

where the norm of Bs
1∞ is defined as in (4.79) or equivalently (4.149) in [12].

LEMMA 23. (a) Let f,g have B1∞∞-norm at most B ′. Then there exists a
constant c(B ′) such that∥∥ef − eg

∥∥
(B1

1∞)∗ ≤ c
(
B ′)‖f − g‖(B1

1∞)∗ .

(b) For all f ∈ L∞, we have, for s > 0,

‖f ‖(Bs
1∞)∗ ≤ ‖f ‖B−s

∞1
≡ ∑

l

2−l(s−1/2) max
k

∣∣〈f,ψlk〉L2([0,1])
∣∣.

(c) For all (σ, b), (σ0, b0) ∈ � with corresponding invariant measures μ,μ0,
assuming also that σ,σ0,μ,μ0 are all periodic on [0,1], we have

‖b − b0‖(B2
1∞)∗ � ‖μ − μ0‖L2 + ∥∥σ−2 − σ−2

0

∥∥
(B1

1∞)∗ .

PROOF OF PROPOSITION 6. We first show that �(�s) = 1: By construction
of the priors (log(σ−2), logμ) is almost surely norm-bounded in Cs × Cs+1 by
B̃ , and this bound carries over to (σ 2,μ) up to constants. By (7), we thus have
‖b‖Cs−1 � ‖σ 2‖Cs +‖μ‖Cs � B̃ . Then by (5) and the remarks before it, we have the
continuous imbeddings (σ, b) ∈ (Cs × Cs−1) ⊆ (Hs × Hs−1) ∩ (Bs∞1 × Bs−1

∞1 ) ⊆
C2 × C1. Summarising, given B̃ , (σ, b) ∈ �s is true � almost surely for suitable
D = D(B̃) and d = d(B̃).

To verify the small ball estimate, note that by Lemma 23(c) and independence
of the priors,

�
(
ϑ = (σ, b) ∈ � : ‖μ − μ0‖L2 + ∥∥σ−2 − σ−2

0

∥∥
(B1

1∞)∗ + ‖b − b0‖(B2
1∞)∗ < εn

)
≥ �

(∥∥σ−2 − σ−2
0

∥∥
(B1

1∞)∗ + ‖μ − μ0‖L2 <
2εn

c

)
≥ �

(∥∥σ−2 − σ−2
0

∥∥
(B1

1∞)∗ <
εn

c

)
P

(
‖μ − μ0‖L2 <

εn

c

)
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for some constant c > 0. Examining the first factor, we can use Lemma 23(a), (b)
and the definition of the Besov norm to obtain the lower bound:

�

(∥∥logσ−2 − logσ−2
0

∥∥
B−1

∞1
<

εn

c′(B̃)

)
= P

(∑
l

2−l/2 max
k

∣∣τlk − 2−l(s+1/2)l−2ulk

∣∣ < εn

c′(B̃)

)
,

where ulk = 0 for all l > Ln (when Ln < ∞). We define tlk = 2l(s+1/2)l2τlk such
that |tlk| ≤ B̃ , and M(J) = ∑J

l=J0

∑2l−1
k=0 1 ≤ 2 · 2J . We choose J = Jn of order

εn ∼ 2−J (s+1)/J 2 but such that c̃εn ≥ 2−J (s+1)/J 2 for some constant c̃ > 0 to be
determined later. By choice of L = Ln, we have 2−L(s+1) � 2−J (s+1)/J 2 so that
L is eventually larger than J . By choosing c̃ > 0 small enough, the last probability
is bounded below by [all indices (l, k) are tacitly assumed to lie in I only]

P

(∑
l≤J

2−l(s+1)l−2 max
k

|tlk − ulk| < εn

c′(B̃)
− c̄2−J (s+1)/J 2

)

≥ P
(
max
l≤J

max
k

|tlk − ulk| < c′εn

)
= ∏

l≤J

∏
k

P
(|tlk − ulk| < c′εn

)
≥ (

ζc′εn

)M(J) ≥ e−c′′(logn)1−2/(s+1)/ε
1/(s+1)
n ≥ e−Cnε2

n/2

for some constant C > 0, completing the treatment of this term. For the second
term, notice that since H,H0 = logμ0 are bounded functions the exponential map
is Lipschitz on the union of their ranges, and thus ‖μ−μ0‖2 � ‖H −H0‖∞. Then
one proves, using ‖h‖∞ � ∑

l 2l/2 maxk |〈h,ψlk〉| and proceeding just as above
with ūlk = 0 for l > L̄n, that (again all indices are tacitly assumed to lie in I only)

P
(‖H − H0‖∞ < c′εn

)
≥ P

(∑
l

2l/2 max
k

∣∣βlk − 2−l(s+3/2)l−2ūlk

∣∣ < c′′εn

)
is lower bounded by e−Cnε2

n/2. We conclude overall that for n large enough,

�
(
(σ, b) ∈ � : ∥∥σ−2 − σ−2

0

∥∥
(B1

1∞)∗ + ‖μ − μ0‖L2 < εn

) ≥ e−Cnε2
n . �
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.pdf). This supplement contains several proofs of results in the main paper and
states and proves a proposition on Lipschitz properties of self-adjoint operators.
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