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CO-CLUSTERING OF NONSMOOTH GRAPHONS

BY DAVID CHOI

Carnegie Mellon University

Performance bounds are given for exploratory co-clustering/block-
modeling of bipartite graph data, where we assume the rows and columns
of the data matrix are samples from an arbitrary population. This is equiv-
alent to assuming that the data is generated from a nonsmooth graphon. It
is shown that co-clusters found by any method can be extended to the row
and column populations, or equivalently that the estimated blockmodel ap-
proximates a blocked version of the generative graphon, with estimation error
bounded by OP (n−1/2). Analogous performance bounds are also given for
degree-corrected blockmodels and random dot product graphs, with error
rates depending on the dimensionality of the latent variable space.

1. Introduction. In the statistical analysis of network data, blockmodeling (or
community detection) and its variants are a popular class of methods that have been
tried in many applications, such as modeling of communication patterns [Blondel
et al. (2008)], academic citations [Ji and Jin (2014)], protein networks [Airoldi
et al. (2009)] and online behavior [Latouche, Birmelé and Ambroise (2011), Traud
et al. (2011)].

In order to develop a theoretical understanding, many recent papers have es-
tablished consistency properties for the blockmodel. In these papers, the observed
network is assumed to be generated using a set of latent variables that assign the
vertices into groups (the “communities”), and the inferential goal is to recover
the correct group membership from the observed data. Various conditions have
been established under which recovery is possible and computationally tractable
[Cai and Li (2015), Chen et al. (2012), Gao et al. (2015a), Krzakala et al. (2013),
Newman (2013), Sussman et al. (2012)]. Additionally, conditions are also known
under which no algorithm can correctly recover the group memberships [Decelle
et al. (2011), Mossel, Neeman and Sly (2013)].

The existence of a true group membership is central to these results. In partic-
ular, they assume a generative model in which all members of the same group are
statistically identical. This implies that the group memberships explain the entirety
of the network structure. In practice, we might not expect this assumption to even
approximately hold, and the objective of finding “true communities” could be dif-
ficult to define precisely, so that a more reasonable goal might be to discover group
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labels which partially explain structure that is evident in the data. Comparatively,
little work has been done to understand blockmodeling from this viewpoint.

To address this gap, we consider the problem of blockmodeling under model
misspecification. We assume that the data is generated not by a blockmodel, but
by a much larger nonparametric class known as a graphon. This is equivalent to
assuming that the vertices are sampled from an underlying population, in which
no two members are identical and the notion of a true community partition need
not exist. In this setting, blockmodeling might be better understood not as a gen-
erative model, but rather as an exploratory method for finding high-level structure:
by dividing the vertices into groups, we divide the network into subgraphs that
can exhibit varying levels of connectivity. This is analogous to the usage of his-
tograms to find high and low density regions in a nonparametric distribution. Just
as a histogram replicates the binned version of its underlying distribution without
restrictive assumptions, we will show that the blockmodel replicates the blocked
version of a generative graphon.

Our results are restricted to the case of bipartite graph or binary array data. Such
data arises in many settings, such as customer-product networks where connections
may represent purchases, reviews or some other interaction between people and
products. Examples of bipartite networks include Goh et al. (2007), Jeong et al.
(2000), Newman (2001). Given nonbinary data, it may still be of practical interest
to look for biclustering patterns in the thresholded or binarized data matrix [Chen
et al. (2013), Harpaz et al. (2011), van Uitert, Meuleman and Wessels (2008)].

The organization of the paper is as follows. Related work is discussed in Sec-
tion 2. In Section 3, we define the blockmodeling problem for bipartite data gen-
erated from a graphon, and present Theorem 1 showing that the blockmodel can
detect structure in the underlying population. In Section 4, we discuss extensions
of the blockmodel, such as degree-corrected blockmodels and random dot product
graphs, and present Theorem 2 regarding the behavior of the excess risk in such
models. Section 5 contains a sketch and proof for Theorem 1. Section 6 contains
a simulation study, and Section 7 discusses future work. Auxiliary results for The-
orem 1 are proven in the Appendix, and the proof of Theorem 2 is given in the
supplemental material [Choi (2017)].

2. Related works. The papers Airoldi, Costa and Chan (2013), Borgs et al.
(2015), Choi and Wolfe (2014), Gao, Lu and Zhou (2014), Gao et al. (2015b),
Klopp, Tsybakov and Verzelen (2015), Olhede and Wolfe (2014) are most similar
to the present work, in that they consider the problem of approximating a graphon
by a blockmodel. The papers Airoldi, Costa and Chan (2013), Gao, Lu and Zhou
(2014), Klopp, Tsybakov and Verzelen (2015), Olhede and Wolfe (2014) consider
both bipartite and nonbipartite graph data, and require the generative graphon to
satisfy a smoothness condition, with Gao, Lu and Zhou (2014) establishing a min-
imax error rate, Klopp, Tsybakov and Verzelen (2015) extending the results to a
class of sparse graphon models, and Gao et al. (2015b) extending to nonbinary
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bipartite data with partial observation. In a similar vein, Sussman, Tang and Priebe
(2012) shows consistent and computationally efficient estimation assuming a type
of low rank generative model. While smoothness and rank assumptions are natural
for many nonparametric regression problems, it seems difficult to judge whether
they are appropriate for network data and if they are indeed necessary for good
performance.

In Choi and Wolfe (2014) and in this present paper, which consider only bi-
partite graphs, the emphasis is on exploratory analysis. Hence, no assumptions
are placed on the generative graphon. Unlike works which assume smoothness or
low rank structure, the object of inference is not the generative model itself, but
rather a blocked version of it (this is defined precisely in Section 3). This is rem-
iniscent of some results for confidence intervals in nonparametric regression, in
which the interval is centered not on the generative function or density itself, but
rather on a smoothed or histogram-ed version [Wasserman (2006), Section 5.7 and
Theorem 6.20]. The present paper can be viewed as a substantial improvement
over Choi and Wolfe (2014). Specfically, Lemma 2 gives a rate of convergence of
OP (n−1/2), versus the rate of OP (n−1/4) given by Theorem 4.1 of Choi and Wolfe
(2014); an exponential-time fitting algorithm is no longer assumed; and the proof
techniques extend to relatives of the blockmodel (degree-corrected and random
dot product graphs), with different rates of convergence. However, sparse graphon
models are not considered in either work.

The recent paper [Borgs et al. (2015)] also considers the problem of approx-
imating an arbitrary graphon by a blockmodel. Exponential-time fitting methods
are primarily considered, with results for a new class of sparse graphon models
that—unlike previous works—allows for heavy-tailed degree distributions.

3. Co-clustering of nonsmooth graphons. In this section, we give a formu-
lation for co-clustering (or co-blockmodeling) in which the rows and columns of
the data matrix are samples from row and column populations, and correspond to
the vertices of a bipartite graph. We then present an approximation result which
implies that any co-clustering of the rows and columns of the data matrix can be
extended to the populations. Roughly speaking, this means that if a co-clustering
“reveals structure” in the data matrix, then similar structure will also exist at the
population level.

3.1. Problem formulation.

Data generating process. Let A ∈ {0,1}m×n denote a binary m × n matrix
representing the observed data. For example, Aij could denote whether person i

rated movie j favorably, or whether gene i was expressed under condition j .
We assume that A is generated by the following model, in which each row and

column of A is associated with a latent variable that is sampled from a population.
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DEFINITION 1 (Bipartite Graphon [Diaconis and Janson (2007), Lovász
(2012)]). Given m and n, let x1, . . . , xm and y1, . . . , yn denote i.i.d. uniform
[0,1] latent variables

x1, . . . , xm
i.i.d.∼ Unif[0,1] and y1, . . . , yn

i.i.d.∼ Unif[0,1].
Let ω : [0,1]2 �→ [0,1] specify the distribution of A ∈ {0,1}m×n, conditioned the
latent variables {xi}mi=1 and {yj }nj=1,

Aij ∼ Bernoulli
(
ω(xi, yj )

)
, i ∈ [m], j ∈ [n],

where the Bernoulli random variables are independent.

We will require that ω be measurable and square-integrable, but may otherwise
be arbitrarily nonsmooth. We will use X = [0,1] and Y = [0,1] to denote the
populations from which {xi} and {yj } are sampled.

Co-clustering. In co-clustering, the rows and columns of a data matrix A are
simultaneously clustered to reveal submatrices of A that have similar values. When
A is binary valued, this is also called blockmodeling (or co-blockmodeling).

Our notation for co-clustering is the following. Let K denote the number of
clusters. Let S ∈ [K]m denote a vector identifying the cluster labels corresponding
to the m rows of A, for example, Si = k means that the ith row is assigned to
cluster k. Similarly, let T ∈ [K]n identify the cluster labels corresponding to the n

rows of A. Given (S, T ), let �A(S,T ) ∈ [0,1]K×K denote the normalized sums
for the submatrices of A induced by S and T :

[
�A(S,T )

]
st = 1

mn

m∑
i=1

n∑
j=1

Aij 1(Si = s, Tj = t), s, t ∈ [K].

Let πS ∈ [0,1]K and πT ∈ [0,1]K denote the fraction of rows or columns in each
cluster:

πS(s) = 1

m

m∑
i=1

1(Si = s) and πT (t) = 1

n

n∑
j=1

1(Tj = t).

Let the average value of the (s, t)th submatrix be denoted by θ̂st , given by

θ̂st = [�A(S,T )]st
πS(s)πT (t)

.

Generally, S and T are chosen heuristically to make the entries of θ̂ far from the
overall average of A. A common approach is to perform k-means clustering of the
spectral coordinates for each row and column of A [Rohe, Qin and Yu (2012)].
Heterogeneous values of θ̂ can be interpreted as revealing subgroups of the rows
and columns in A.
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Population co-blockmodel. Given a co-clustering (S, T ) of the rows and
columns of A, we will consider whether similar subgroups also exist in the un-
observed populations X and Y . Let σ : X �→ [K] and τ : Y �→ [K] denote map-
pings that co-cluster the row and column populations X and Y . Let �ω(σ, τ ) ∈
[0,1]K×K denote the integral of ω within the induced co-clusters, or the blocked
version of ω:[

�ω(σ, τ )
]
st =

∫
X×Y

ω(x, y)1
(
σ(x) = s, τ (y) = t

)
dx dy, s, t ∈ [K].

Let �ω(S, τ ) ∈ [0,1]K×K denote the integral of ω within the induced co-clusters,
over {x1, . . . , xn} ×Y :

[
�ω(S, τ )

]
st = 1

m

m∑
i=1

∫
Y

ω(xi, y)1
(
Si = s, τ (y) = t

)
dy.

Let π(σ) and π(τ) denote the fraction of the population in each cluster:

πσ (s) =
∫
X

1
(
σ(x) = s

)
dx and πτ (t) =

∫
Y

1
(
τ(y) = t

)
dy.

Theorem 1 will show that for each clustering S, T , there exists σ : X �→ [K]
and τ : Y �→ [K] which cluster the populations X and Y such that �A(S,T ) ≈
�ω(S, τ ) and �A(S,T ) ≈ �ω(σ, τ ), as well as πS ≈ πσ and πT ≈ πτ , implying
that subgroups found by co-clustering A are indicative of similar structure in the
populations X and Y .

3.2. Approximation result for co-clustering. Theorem 1 states that for each
(S, T ) ∈ [K]m × [K]n, there exists population co-clusters σS : X �→ [K] and τT :
Y �→ [K] such that �A(S,T ) ≈ �ω(S, τT ) ≈ �ω(σS, τT ), and also πS ≈ πσS

and
πT ≈ πτT

.

THEOREM 1. Let A ∈ {0,1}m×n be generated by some ω according to Defini-
tion 1, with fixed ratio m/n. Let (S, T ) denote vectors in [K]m and [K]n, respec-
tively, with K ≤ n1/2:

1. For each T ∈ [K]n, there exists τT : Y �→ [K], such that

(1) max
S,T ∈[K]m×[K]n

∥∥�A(S,T ) − �ω(S, τT )
∥∥+ ‖πT − πτT

‖ = OP

(√
K2 logn

n

)
.

2. For each S ∈ [K]m, there exists σS : X �→ [K], such that

(2) sup
S,τ∈[K]m×[K]Y

∥∥�ω(S, τ ) − �ω(σS, τ )
∥∥+ ‖πS − πσS

‖ = OP

(√
K2 logm

m

)
.
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3. Combining (1) and (2) yields

max
S,T ∈[K]m×[K]n

∥∥�ω(σS, τT ) − �A(S,T )
∥∥+ ‖πT − πτT

‖ + ‖πS − πσS
‖

(3)

= OP

(√
K2 logn

n

)
.

Remarks for Theorem 1. To give context to Theorem 1, suppose that A ∈
{0,1}m×n represents product–customer interactions, where Aij = 1 indicates that
product i was purchased (or viewed, reviewed, etc.) by customer j . We assume A

is generated by Definition 1, meaning that the products and customers are samples
from populations. This could be literally true if A is sampled from a larger data set,
or the populations might only be conceptual, perhaps representing future products
and potential customers.

Suppose that we have discovered cluster labels S ∈ [K]m and T ∈ [K]n produc-
ing a density matrix θ̂ with heterogeneous values. These clusters can be interpreted
as product categories and customer subgroups, with heterogeneity in θ̂ indicating
that each customer subgroup may prefer certain product categories over others. We
are interested in the following question: will this pattern generalize to the popula-
tions X and Y? Or is it descriptive, holding only for the particular customers and
products that are in the data matrix A?

An answer is given by Theorem 1. Specifically, (1) and (3) show different senses
in which the co-clustering (S, T ) may generalize to the underlying populations.
Equation (1) implies that the customer population Y will be similar to the n ob-
served customers in the data, regarding their purchases of the m observed products
when aggregated by product category. Equation (3) implies a similar result, but
for their purchases of the entire population X of products aggregated by product
category, as opposed only to the m observed products in the data.

Since Theorem 1 holds for all (S, T ), it applies regardless of the algorithm that
is used to choose the co-blockmodel. It also applies to nested or hierarchical clus-
ters. If (1) or (3) holds at the lowest level of hierarchy with K classes, then it also
holds for the aggregated values at higher levels as well, since they correspond to
K-class clusterings with one or more classes of size zero. While we have assumed
that the number of row and column classes are equal to simplify the proofs, we
remark that the theorem will also hold when this is not the case, with K equaling
the larger of the two class counts.

Theorem 1 controls the behavior of �A, πS , and πT , instead of the density
matrix θ̂ which may be of interest. However, since θ̂ is derived from the previous
quantities, it follows that Theorem 1 also implies control of θ̂ for all co-clusters
involving 	m1/2 rows or 	n1/2 columns.

All constants hidden by the OP (·) notation in Theorem 1 are universal, in that
they do not depend on ω (but do depend on the ratio m/n).
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4. Application of Theorem 1 to bipartite graph models. In many exist-
ing models for bipartite graphs, the rows and columns of the adjacency matrix
A ∈ {0,1}m×n are associated with latent variables that are not in X and Y , but in
other spaces S and T instead. In this section, we give examples of such models
and discuss their estimation by minimizing empirical squared error. We define the
population risk as the difference between the estimated and actual models, under
a transformation mapping X to S and Y to T . Theorem 2 shows that the empir-
ical error surface converges uniformly to the population risk. The theorem does
not assume a correctly specified model, but rather that the data is generated by an
arbitrary ω following Definition 1.

4.1. Examples of bipartite graph models. We consider models in which the
rows and columns of A are associated with latent variables that take values in
spaces other than X and Y . To describe these models, we will use S = (S1, . . . , Sm)

and T = (T1, . . . , Tn) to denote the row and column latent variables, and S and T
to denote their allowable values. Let � denote a parameter space. Given θ ∈ �,
let ωθ : S × T �→ [0,1] determine the distribution of A conditioned on (S, T ),
so that the entries {Aij } are conditionally independent Bernoulli variables, with
P(Aij = 1|S,T ) = ωθ(Si, Tj ).

1. Stochastic co-blockmodel with K classes: Let S = T = [K] and � =
[0,1]K×K . For θ ∈ �, let ωθ be given by

ωθ(s, t) = θst , s, t ∈ S × T ,

where s ∈ S and t ∈ T are row and column co-cluster labels.
2. Degree-corrected co-blockmodel [Karrer and Newman (2011), Zhao, Levina

and Zhu (2012)]: Let S = T = [K] × [0,1) and � = [0,1]K×K . Given u, v ∈ [K]
and b, d ∈ [0,1), let s = (u, b) and t = (v, d). Let ωθ be given by

ωθ(s, t) = bdθuv, s, t ∈ S × T .

In this model, u, v ∈ [K] are co-cluster labels, and b, d ∈ [0,1) are degree param-
eters, allowing for degree heterogeneity within co-clusters.

3. Random dot product [Hoff, Raftery and Handcock (2002), Sussman, Tang
and Priebe (2012)]: Let S = T = {c ∈ [0,1)d : ‖c‖ ≤ 1}. Let ω be given by

ω(s, t) = sT t, s, t ∈ S × T .

4. Dot product + Blockmodel: Models 1–3 are instances of a somewhat more
general model. Let D = {c ∈ [0,1)d : ‖c‖ ≤ 1}. Let S = T = [K] × D and � =
[0,1]K×K . Given u, v ∈ [K] and b, d ∈ D, let s = (u, b) and t = (v, d). Let ωθ be
given by

(4) ωθ(s, t) = bT dθuv.
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4.2. Empirical and population risk. Given a data matrix A ∈ {0,1}m×n, and a
model specification (S,T ,�), one method for estimating (S, T , θ) ∈ Sm×T n×�

is to minimize the empirical squared error RA, given by

RA(S,T ; θ) = 1

nm

m∑
i=1

n∑
j=1

(
Aij − ωθ(Si, Tj )

)2
.

Generally, the global minimum of RA will be intractable to compute, so a local
minimum is used for the estimate instead.

If a model (S, T , θ) is found by minimizing or exploring the empirical risk
surface RA, does it approximate the generative ω? We will define the population
risk in two different ways:

1. Approximation of ω by ωθ : Let σ and τ denote mappings X �→ S and
Y �→ T , and let Rω be given by

Rω(σ, τ ; θ) =
∫
X×Y

[
ω(x, y) − ωθ

(
σ(x), τ (y)

)]2
dx dy,

denoting the error between the mapping (x, y) �→ ωθ(σ (x), τ (y)) and the genera-
tive ω. If there exists θ such that Rω(σ, τ ; θ) is low for some σ : X �→ S and τ :
Y �→ T , then ωθ [or more precisely, its transformation (x, y) �→ ωθ(σ (x), τ (y))]
can be considered a good approximation to ω.

2. Approximation of σ ∗ = arg minσ Rω(σ, τ, θ) by S: Overloading notation, let
Rω(S, τ, ; θ) denote

Rω(S, τ ; θ) = 1

m

m∑
i=1

∫
Y

[
ω(xi, y) − ωθ

(
Si, τ (y)

)]2
dy.

To motivate this quantity, consider that given (τ, θ), the optimal partition σ ∗ :
[0,1] �→ [K] is the greedy assignment for each x ∈ [0,1]:

σ ∗(x) = arg min
s∈[K]

∫
0,1

[
ω(x, y) − ωθ

(
s, τ (y)

)]2
dy.

If there exists (S, θ) such that Rω(S, τ ; θ) is low for some choice of τ , then S can
be considered a good approximation to the corresponding {σ ∗(xi)}mi=1.

Theorem 2 will imply that for models of the form (4), minimizing RA is asymp-
totically a reasonable proxy for minimizing Rω (by both metrics described above),
with rates of convergence depending K and d .

4.3. Convergence of the empirical risk function. Theorem 2 gives uniform
bounds between RA and Rω for models of form (4). Specifically, for each choice
of (S, T ) ∈ Sm × T n, there exists transformations σS : X �→ S and τT : Y �→ T
such that RA(S,T ; θ) ≈ Rω(σS, τT ; θ) ≈ Rω(S, τT ; θ), up to an additive constant
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and with uniform convergence rates depending on d and K . As a result, minimiza-
tion of RA(S,T ; θ) is a reasonable proxy for minimizing Rω, by either measure
defined in Section 4.2.

In addition, the mappings σS and τT will resemble S and T , in that they will
induce similar distributions over the latent variables. To quantify this, we define the
following quantities. Given S ∈ [K]m × Dm, we will let S = (U,B), where U ∈
[K]m and B ∈ Dm, and similarly let T = (V ,D) where V ∈ [K]n and D ∈ Dn.
Likewise, given σ : X �→ [K] × D, we will let σ = (μ,β), where μ : X �→ [K]
and β : X �→ D, and similarly let τ = (ν, δ) where ν : Y �→ [K] and δ : Y �→ D.
Let �S , �T , �σ , and �τ denote the CDFs of the values given by S, T , σ and τ ,
which are functions [K] × [0,1)d �→ [0,1] equaling:

�S(k, c) = 1

m

m∑
i=1

1{Ui ≤ k,Bi ≤ c},

�σ (k, c) =
∫
X

1
{
μ(x) ≤ k,β(x) ≤ c

}
dx,

�T (k, c) = 1

n

n∑
j=1

1{Vj ≤ k,Dj ≤ c},

�τ (k, c) =
∫
Y

1
{
ν(y) ≤ k, δ(y) ≤ c

}
dy,

where inequalities of the form c ≤ c′ for c, c′ ∈ [0,1)d are satisfied if they hold
entrywise.

THEOREM 2. Let A ∈ {0,1}m×n, with fixed ratio m/n, be generated by some
ω according to Definition 1. Let (S,T ,�) denote a model of the form (4):

1. For each T ∈ T n, there exists τT : Y �→ T such that

max
S,T ,θ∈Sm×T n×�

∣∣RA(S,T ; θ) − Rω(S, τT ; θ) − C1
∣∣+ ‖�T − �τT

‖2

Kd
(5)

≤ OP

(
d1/2

(
K2 logn√

n

) 1
1+d

)
,

where C1 ∈ R is constant in (S, T , θ).
2. For each S ∈ Sm, there exists σS : X �→ S such that

sup
S,τ,θ∈Sm×T Y×�

∣∣Rω(S, τ ; θ) − Rω(σS, τ ; θ) − C2
∣∣+ ‖�S − �σS

‖2

Kd

(6)

≤ OP

(
d1/2

(
K2 logn√

n

) 1
1+d

)
,

where C2 ∈ R is constant in (S, τ, θ).
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3. Combining (5) and (6) yields

max
S,T ,θ∈Sm×T n×�

∣∣Rω(σS, τT ; θ) − RA(S,T ; θ) − C1 − C2
∣∣+ ‖�S − �σS

‖2

Kd

+ ‖�T − �τT
‖2

Kd
= OP

(
d1/2

(
K2 logn√

n

) 1
1+d

)
.

Remarks for Theorem 2. Theorem 2 states that any assignment S and T of
latent variables to the rows and columns can be extended to the populations, such
that the population exhibits a similar distribution of values in S and T , and the
population risk as a function of θ is close to the empirical risk.

The theorem may also be viewed as an oracle inequality, in that for any fixed
S and T , minimizing θ �→ RA(S,T , θ) is approximately equivalent to minimiz-
ing θ �→ Rω(σS, τT , θ), as if the model ω were known. This implies that the best
parametric approximation to ω can be learned out of all possible choices for σS

and τT . However, it is not known whether the mappings S �→ σS and T �→ τT are
approximately onto.

The convergence of �S to �σS
is established in Euclidean norm. This implies

pointwise convergence at every continuity point of �σS
, thus implying weak con-

vergence and also convergence in Wasserstein distance.
The proof of Theorem 2 is contained in the supplemental material. It is similar

to that of Theorem 1, but requires substantially more notation due to the additional
parameters.

5. Proof of Theorem 1. We present a sketch of the proof for Theorem 1,
which defines the most important quantities. We then present helper lemmas and
give the proof of the theorem.

5.1. Proof sketch. Let W ∈ [0,1]m×n denote the expectation of A, conditioned
on the latent variables x1, . . . , xm and y1, . . . , yn:

Wij = ω(xi, yj ), i ∈ [m], j ∈ [m],
and let �W(S,T ) denote the conditional expectation of �A(S,T ):

[
�W(S,T )

]
st = 1

nm

m∑
i=1

n∑
j=1

Wij 1{Si = s, Tj = t}.

Given co-cluster labels S ∈ [K]m and T ∈ [K]n, let 1S=s ∈ {0,1}m and 1T =t ∈
{0,1}n denote the indicator variables

1S=s(i) =
{

1, if Si = s,

0, otherwise,
and 1T =t (j ) =

{
1, if Tj = t,

0, otherwise.
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Let gT =t ∈ [0,1]m denote the vector n−1W1T =t , or

gT =t (i) = 1

n

n∑
j=1

Wij 1{Tj = t}.

It can be seen that the entries of �W(S,T ) can be written as

[
�W(S,T )

]
st = 1

m
〈1S=s, gT =t 〉,(7)

where 〈·, ·〉 denotes inner product. Similarly, the entries of �ω(S, τ ) can be written
as

[
�ω(S, τ )

]
st = 1

m
〈1S= s, gτ=t 〉,(8)

where gτ=t ∈ [0,1]m is the vector

gτ=t (i) =
∫
Y

ω(xi, y)1
{
τ(y) = t

}
dy, i ∈ [m].

The proof of Theorem 1 will require three main steps:

S1: In Lemma 1, a concentration inequality will be used to show that �A(S,T ) ≈
�W(S,T ) uniformly over all possible values of (S, T ).

S2: For each T ∈ [K]n, we will show there exists τ : Y �→ [K] such that gT =t ≈
gτ=t for t ∈ [K]. By (7) and (8), this will imply that �W(S,T ) ≈ �ω(S, τ )

uniformly for all S ∈ [K]m. The mapping τ will also satisfy πT ≈ πτ as well,
so that T and τ have similar class frequencies.

S3: Analogous to S2, we will show that for each S ∈ [K]m, there exists σ :
X �→ [K] such that �ω(S, τ ) ≈ �ω(σS, τ ) uniformly over τ , and also that
πS ≈ πσS

.

Steps S1 and S2 correspond to (1) in Theorem 1, while step S3 corresponds to (2).
Let GT and Gτ denote the stacked vectors in R

mK+K given by

GT =
(

gT =1√
m

, . . . ,
gT =K√

m
,πT

)
and Gτ =

(
gτ=1√

m
, . . . ,

gτ=K√
m

,πτ

)
,

and let Gn and G denote the set of all possible values for GT and Gτ :

Gn = {
GT : T ∈ [K]n} and G = {

Gτ : τ ∈ Y �→ [K]}.
Step S2 is established by showing that the sets Gn and G converge in Hausdorff dis-
tance. This will require the following facts. The Hausdorff distance (in Euclidean
norm) between two sets B1 and B2 is defined as

dHaus(B1,B2) = max
{

sup
B1∈B1

inf
B2∈B2

‖B1 − B2‖, sup
B2∈B2

inf
B1∈B1

‖B1 − B2‖
}
.
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Given a Hilbert space H and a set B ⊂ H, let B : H �→ R denote the support
function of B, defined as

B(H) = sup
B∈B

〈H,B〉.

It is known that the convex hull conv(B) equals the intersection of its supporting
hyperplanes:

conv(B) = {
H ′ ∈ H : 〈H ′,H

〉≤ B(H) for all H ∈H
}
,

and that the Hausdorff distance between conv(B1) and conv(B2) is given by
Schneider [(2013), Theorem 1.8.11], Aliprantis and Border [(2006), Corol-
lary 7.59]:

(9) dHaus
(
conv(B1), conv(B2)

) = sup
H :‖H‖=1

∣∣B1(H) − B2(H)
∣∣.

To establish S2, Lemma 2 will show that

sup
H :‖H‖=1

∣∣Gn(H) − G(H)
∣∣ = OP

(
K(logn)n−1/2),(10)

and Lemma 3 will show that

(11) dHaus
(
conv(G),G

)= 0.

By (9) and (10), conv(Gn) and conv(G) converge in Hausdorff distance, which by
(11) implies that conv(Gn) and G converge in Hausdorff distance. This implies that
for each GT ∈ Gn, there exists Gτ ∈ G such that maxT ‖GT − Gτ‖ → 0. This will
establish S2, since GT ≈ Gτ implies by (7) and (8) that �W(S,T ) ≈ �ω(S, τ )

uniformly over S ∈ [K]m, and it also implies that πT ≈ πτ as well.
The proof of S3 will be similar to S2. It can be seen that �ω(S, τ ) and �ω(σ, τ )

can be written as

(12)
[
�ω(S, τ )

]
st = 〈fS=s,1τ=t 〉 and

[
�ω(σ, τ )

]
st = 〈fσ= s,1τ=t 〉,

where the functions fS=s , 1τ=t , and fσ=s are given by

1τ=t (y) =
{

1, if τ(y) = t,

0, otherwise,

fS=s(y) = 1

m

m∑
i=1

ω(xi, y)1{Si = s},

fσ=s(y) =
∫
X

ω(x, y)1
{
σ(x) = s

}
dx.

Analogous to S2, we will define sets FS and Fσ given by

FS = (fS=1, . . . , fS=K,πS) and Fσ = (fσ=1, . . . , fσ=K,πσ ),
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whose possible values are given by

Fn = {
FS : S ∈ [K]m}

and

F = {
Fσ : σ ∈ X �→ [K]}.

Lemma 2 will show that the support functions Fn and F converge, and Lemma 3
will show that dHaus(conv(F),F) = 0. Using (12), this will establish S3 by argu-
ments that are analogous to those used to prove S2.

5.2. Intermediate results for proof of Theorem 1. Lemmas 1–3 will be used to
prove Theorem 1, and are proven in Section 5.4.

Lemma 1 states that �A ≈ �W for all (S, T ).

LEMMA 1. Under the conditions of Theorem 1,

(13) max
S,T

∥∥�A(S,T ) − �W(S,T )
∥∥2 = OP

(
(logK)n−1).

Lemma 2 states that the support functions of G and Gn and of F and Fn con-
verge.

LEMMA 2. Under the conditions of Theorem 1,

sup
‖H‖=1

∣∣Gn(H) − G(H)
∣∣ ≤ OP

(
K(logn)n−1/2),(14)

sup
‖H‖=1

∣∣Fm(H) − F (H)
∣∣ ≤ OP

(
K(logm)m−1/2),(15)

which implies

dHaus
(
conv(Gn), conv(G)

) ≤ OP

(
K(logn)n−1/2),

dHaus
(
conv(Fm), conv(F)

) ≤ OP

(
K(logm)m−1/2).

Lemma 3 states that the sets F and G are essentially convex.

LEMMA 3. It holds that

dHaus
(
conv(G),G

) = 0,(16)

dHaus
(
conv(F),F

) = 0.(17)
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5.3. Proof of Theorem 1. We bound ‖�W(S,T ) − �ω(S, τ )‖2 uniformly
over S, as follows:

∥∥�W(S,T ) − �ω(S, τ )
∥∥2 =

K∑
s=1

K∑
t=1

([
�W(S,T )

]
st − [

�ω(S, τ )
]
st

)2

=
K∑

s=1

K∑
t=1

1

m2 〈1S=s, gT =t − gτ=t 〉2

≤
K∑

s=1

K∑
t=1

1

m2 ‖1S=s‖2‖gT =t − gτ=t‖2(18)

=
(

K∑
s=1

1

m
‖1S=s‖2

)(
K∑

t=1

1

m
‖gT =t − gτ=t‖2

)

≤
(

K∑
t=1

1

m
‖gT =t − gτ=t‖2

)
,

where (18) holds because m−1 ∑K
s=1 ‖1S=s‖2 = 1.

By Lemma 2 and Lemma 3, it holds that

dHaus
(
conv(Gn),G

)= OP

(
K(logn)n−1/2).

Given T , let τ ≡ τT denote the minimizer of ‖GT −Gτ‖ = 〈GT −Gτ ,GT −Gτ 〉.
It follows that

max
T

‖GT − Gτ‖2 = max
T

K∑
t=1

1

m
‖gT =t − gτ=t‖2 + ‖πT − πτ‖2

(19)

= OP

(
K2 logn

n

)
.

Combining (13), (19) and (18) yields

max
S,T

∥∥�A(S,T ) − �ω(S, τT )
∥∥2 + ‖πT − πτT

‖2 = OP

(
K2 logn

n

)
,

establishing (1).
The proof of (2) proceeds in similar fashion. The quantity ‖�ω(S, τ ) −

�ω(σ, τ )‖2 may be bounded uniformly over τ :

∥∥�ω(S, τ ) − �ω(σ, τ )
∥∥2 =

K∑
s=1

K∑
t=1

([
�ω(S, τ )

]
st − [

�ω(σ, τ )
]
st

)2

=
K∑

s=1

K∑
t=1

〈fS=s − fσ=s,1τ=t 〉2(20)
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≤
(

K∑
s=1

‖fS=s − fσ=s‖2

)
,

where all steps parallel the derivation of (18). It follows from Lemma 2 and 3
that dHaus(conv(Fm),F) = OP (K(logm)m−1/2). Given S, let σ ≡ σS denote the
minimizer of ‖FS − Fσ‖, so that

(21) max
S

K∑
t=1

‖fS=s − fσ=s‖2 + ‖πS − πσ‖2 = OP

(
K2 logm

m

)
.

Combining (21) and (20) yields

max
S,τ

∥∥�ω(S, τ ) − �ω(σS, τ )
∥∥2 + ‖πS − πσS

‖2 = OP

(
K2 logm

m

)
,

establishing (2) and completing the proof.

5.4. Proof of Lemmas 1–3. The proof of Lemma 2 will rely on Lemma 4,
which is a very slight modification of Lemma 4.3 in Biau, Devroye and Lugosi
(2008). Lemma 4 is proven in Appendix B.

LEMMA 4. Let H denote a Hilbert space, with inner product 〈·, ·〉 and induced
norm ‖ · ‖. Let g : Y �→ H, and let y1, . . . , yn ∈ Y be i.i.d. Let Ln : HK �→ R be
defined as

(22) Ln(H) = 1

n

n∑
j=1

max
k∈[K]

〈
hk, g(yj )

〉
, H = (h1, . . . , hK) ∈ H

K.

Let H = {H ∈ H
K : ‖hk‖ ≤ 1, t ∈ [K]}. It holds that

E sup
H∈H

∣∣Ln(H) −ELn(H)
∣∣ ≤ 2K

(
E‖g(y)‖2

n

)1/2
.

To prove Lemma 3, we will require a theorem (by Carathéodory) for finite di-
mensional convex hulls.

THEOREM 3 (Schneider (2013), Theorem 1.1.4). If B ⊂ R
d and x ∈ conv(B),

there exists B1, . . . ,Bd+1 ∈ B such that x ∈ conv{B1, . . . ,Bd+1}.
PROOF OF LEMMA 1. Given (S, T ), let � ∈ [−1,1]K×K denote the quantity

�st = 1

mn

m∑
i=1

n∑
j=1

(Aij − Wij )1(Si = s, Tj = t).

It holds that E[�|W ] = 0, and by Hoeffding’s inequality,

P
(|�st | ≥ ε|W ) ≤ 2e−2nmε2

, s, t ∈ [K].
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Conditioned on W , each entry of � is independent of the others. Given δ ∈
[−1,1]K×K , it follows that

P(� = δ|W) =
K∏

s=1

K∏
t=1

P(�st = δst |W) ≤ 2 exp

(
−2nm

K∑
s=1

K∑
t=1

δ2
st

)
.

Let B denote the set

B =
{
δ ∈ [−1,1]K×K :∑

s,t

δ2
st ≥ ε, δ ∈ supp(�)

}
.

The cardinality of B is smaller than the support of �, which is less than (nm)K
2

when conditioned on W . It follows by a union bound over B that

P(� ∈ B|W) ≤ 2|B|e−2nmε

≤ 2(nm)K
2
e−2nmε.

It can be seen that ‖�A(S,T ) − �W(S,T )‖2 = ∑
s,t �

2
st , implying that � ∈ B is

equivalent to the event that ‖�A(S,T )−�W(S,T )‖2 ≥ ε. A union bound over all
S, T implies that

P

(
max
S,T

∥∥�A(S,T ) − �W(S,T )
∥∥2 ≥ ε

)
≤ 2Kn+m(nm)K

2
e−2nmε.

Letting ε = C(1 + n/m)(logK)n−1 for some C proves the lemma. �

PROOF OF LEMMA 2. Let gy ∈ [0,1]m denote the column of W induced by
y ∈ Y , and let fx ∈ [0,1]Y denote the row of ω corresponding to x ∈ X :

gy(i) = ω(xi, y), i ∈ [m] and fx(y) = ω(x, y), y ∈ Y.

Algebraic manipulation shows that gT =t , gτ=t , fS=s , and fσ=s can be written as

gT =t = 1

n

n∑
j=1

gyj
1(Tj = t), gτ=t =

∫
Y

gy1
(
τ(y) = t

)
dy,

fS=s = 1

m

m∑
i=1

fxi
1(Si = s), fσ=s =

∫
X

fx1
(
σ(x) = s

)
dx.

Given H = (h1, . . . , hK,πH ), it follows that the inner products 〈H,GT 〉, 〈H,Gτ 〉,
〈H,FS〉, and 〈H,Fσ 〉 equal

〈H,GT 〉 = 1

n

n∑
j=1

[〈
hTj

,
gyj√

m

〉
+ πH(Tj )

]
,

〈H,Gτ 〉 =
∫
Y

〈
hτ(y),

gy√
m

〉
+ πH

(
τ(y)

)
dy,
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〈H,FS〉 = 1

m

m∑
i=1

[〈hSi
, fxi

〉 + πH(Si)
]
,

〈H,Fσ 〉 =
∫
X

〈hσ(x), fx〉 + πH

(
σ(x)

)
dx,

and hence that the support functions equal

Gn(H) = 1

n

n∑
j=1

max
k∈[K]

〈
hk,

gyj√
m

〉
+ πH (k),(23)

G(H) =
∫
Y

max
k∈[K]

〈
hk,

gy√
m

〉
+ πH (k) dy,(24)

Fm(H) = 1

m

m∑
i=1

max
k∈[K]〈hk, fxi

〉 + πH (k),

F (H) =
∫
X

max
k∈[K]〈hk, fx〉 + πH (k) dx,(25)

which implies that EGn(H) = G(H) and EFm(H) = F (H).
To show (14), we observe that Gn can be rewritten as

Gn(H) = 1

n

n∑
j=1

max
k∈[K]

〈[
hk

πH (k)

]
,

[
m−1/2gyj

1

]〉
,

which matches (22) so that Lemma 4 can be applied. Applying Lemma 4 results in

(26) E sup
‖H‖=1

∣∣Gn(H) − G(H)
∣∣ ≤ 4K√

n
,

where we have used {H : ‖H‖ = 1} ⊂H and
∥∥[m−1/2gyj1

]∥∥2 ≤ 2.
Let Z(y1, . . . , yn) = sup‖H‖=1 |Gn(H) − G(H)|. For � ∈ [n], changing y� to

y′
� changes Z by at most 4/n. Applying McDiarmid’s inequality yields

P
(|Z −EZ| ≥ ε

) ≤ 2e−2ε2n/8.

Letting ε = n−1/2 logn implies that Z −EZ = OP (n−1/2 logn), which combined
with (26) implies (14).

To show (15), we observe that

Fm(H) = 1

m

m∑
i=1

max
k∈[K]

〈[
hk

πH (k)

]
,

[
fxi

1

]〉
,

so that Lemma 4 and McDiarmid’s inequality can be used analogously to the proof
of (14). �
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We divide the proof of Lemma 3 into two sub-lemmas, one showing (16) and
the other showing (17). This is because the proof of (17) will require additional
work, due to the fact that the elements of F are infinite dimensional. We prove
Lemma 5 here, and defer proof of Lemma 6 to Appendix A.

LEMMA 5. For each G∗ ∈ conv(G), there exists G1,G2, . . . ∈ G such that
lim�→∞ ‖G∗ − G�‖ = 0.

LEMMA 6. For each F ∗ ∈ conv(F), there exists F1,F2, . . . ∈ F such that
lim�→∞ ‖F ∗ − F�‖ = 0.

PROOF OF LEMMA 5. Recall the definition of gy ∈ [0,1]m as defined in the
proof of Lemma 4:

gy(i) = ω(xi, y), i ∈ [m],
and that gτ=t can be written as

gτ=t =
∫
Y

gy1
{
τ(y) = t

}
dy.

We note the following properties of {gy : y ∈ Y}:
P1: Each G∗ ∈ conv(G) is a finite convex combination of elements in G. This

holds by Theorem 3, since G is a subset of [0,1]mK+K , a finite dimensional
space.

P2: For all ε, there exists a finite set B that is an ε-cover of {gy : y ∈ Y} in Eu-
clidean norm. This holds because {gy : y ∈ Y} is a subset of the unit cube
[0,1]m.

By P1, each G∗ ∈ conv(G) can be written as a finite convex combination of
elements in G, so that for some integer N > 0 there exists Gτ1, . . . ,GτN

∈ G such
that

G∗ =
N∑

i=1

ηiGτi
,

where η is in the N -dimensional unit simplex. It follows that for some μ : Y �→
[0,1]K satisfying

∑
k μk(y) = 1 for all y, G∗ ≡ (g∗

1 , . . . , g∗
K,π∗

G) satisfies

g∗
k =

∫
Y

gyμk(y) dy and π∗
G(k) =

∫
Y

μk(y) dy, k ∈ [K].
We now construct τ : X �→ [K] inducing Gτ ∈ G which approximates G∗ ∈
conv(G). By P2, let B denote an ε-cover of {gy : y ∈ Y}, and enumerate its el-
ements as b1, . . . , b|B|. For each y ∈ Y , let � : Y �→ [|B|] assign y to its clos-
est member in B, so that ‖gy − b�(y)‖ ≤ ε. For i = 1, . . . , |B|, let Yi denote the
set {y : �(y) = i}. Arbitrarily divide each region Yi into K disjoint subregions
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Yi1, . . . ,YiK such that
⋃

k Yik = Yi , where the measure of each subregion is given
by

(27)
∫
Yik

1dy =
∫
Yi

μk(y) dy, k ∈ [K].
Let τ : Y �→ [K] assign each region Yik to k, so that

τ(y) = k for all y ∈ Yik, i = 1, . . . , |B|.
By (27), it holds that πτ = π∗

G, and also that

gτ=k − g∗
k =

∫
Y

gy

[
1
{
τ(y) = k

}− μk(y)
]
dy

=
∫
Y
[b�(y) + gy − b�(y)][1{τ(y) = k

}− μk(y)
]
dy

=
|B|∑
i=1

bi

[∫
Yik

1dy −
∫
Yi

μk(y) dy

]
︸ ︷︷ ︸

=0 by (27)

+
∫
Y

(
gy − b�(y)

)[
1
{
τ(y) = k

}− μk(y)
]
dy

= 0 +
∫
Y
(gy − b�(y))

[
1
{
τ(y) = k

}− μk(y)
]
dy,

which implies that∥∥gτ=k − g∗
k

∥∥ ≤
∥∥∥∥
∫
Y
(gy − b�(y))1

{
τ(y) = k

}
dy

∥∥∥∥+
∥∥∥∥
∫
Y
(gy − b�(y))μk(y) dy

∥∥∥∥
≤ 2

∫
Y

‖gy − b�(y)‖dy

≤ 2ε.

It follows that ‖Gτ −G∗‖2 = ∑K
k=1 m−1‖gτ=k −g∗

k‖2 +‖πτ −π∗
G‖2 ≤ 4Kε2m−1,

and hence that limε→0 ‖Gτ − G∗‖ = 0, proving the lemma. �

PROOF OF LEMMA 3. Lemma 3 follows immediately from Lemmas 5 and 6,
which establish (16) and (17), respectively. �

6. Simulations. Simulations were run for a parameterized class of generative
graphons {ωβ : β ≥ 1}, in which ωβ : [0,1]2 �→ [0,1] is defined as

ωβ(x, y) = fβ(x)fβ(y) + 1/2,

fβ(x) = Z−1
β

(
xβ

xβ + (1 − x)β
− 1

2

)
, 0 ≤ x ≤ 1,(28)

Zβ = 4
∫ 1/2

0

∣∣∣∣ xβ

xβ + (1 − x)β
− 1

2

∣∣∣∣dx.
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FIG. 1. Simulated averages (and 2 standard errors) for sup |Gn
− G |, equaling the Hausdorff

distance between the convex hulls of Gn and G. The simulations used ωβ given by (28), with
m = n ∈ [30,500], β ∈ {1,2,6,10}, K = 2 and 600 simulations per data point. A dotted reference
line equaling 0.04n−1/2 is shown, suggesting that the rate in n predicted by Lemma 2 may be correct
up to logarithmic factors.

The function fβ(x) is a sigmoid that is proportional to x − 1/2 for β = 1, and
to 1{x > 1/2} − 1/2 when β → ∞. This means that the graphon ωβ approaches
a two-class blockmodel as β → ∞. The constant Zβ enforces that the quanti-

ties
∫ a+1/2
a

∫ b+1/2
b ωβ(x, y) dx dy for a, b ∈ {0,1/2} are all constant over β . These

quantities correspond to the within- and between-class densities when β = ∞.
We will use simulation to verify Lemma 2, by investigating the behav-

ior of conv(G) and conv(Gn). For ωβ given by (28) and K = 2, the sets
G and Gn lie in parallel 2-dimensional affine subspaces of R

mK+K , so that
dHaus(conv(G), conv(Gn)) can be efficiently computed by numerical evaluation of
Gn and G as given by (23). Figure 1 shows simulation results for this quantity.
We see that the observed rate seems to follow O(n−1/2), for all values of β that
were simulated. Up to logarithmic factors, this matches the dependence on n that
was predicted by Lemma 2.

Since Gn and G lie in parallel 2-dimensional affine subspaces, they can be vi-
sualized in R

2, up to an “out of the page” translation between the sets. Figure 2
shows simulated instances of conv(Gn) and conv(G) for various choices of β and
n. We observed that the extremal points of the convex hulls corresponded to map-
pings T ∈ [K]n or τ : Y �→ [K] which had a common form, assigning y ∈ [0, c]
to cluster 1 and y ∈ (c,1] to cluster 2 (or vice versa) for some c ∈ [0,1]. For
large β where ωβ approached a blockmodel, the extremal points (except for two
points corresponding to c = 0 and c = 1) concentrated around the assignment
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FIG. 2. 2-D projection of simulated instances of conv(Gn) (in blue, with extremal points marked)
and conv(G) (in red). The projection was lossless up to an “out of the page” offset of distance d⊥
between the sets. Points GT ∗ and Gτ∗ were induced by assignment of y ∈ [0,1/2] to class 1 and
y ∈ (1/2,1] to class 2. Square markers correspond to assignment of all y ∈ [0,1] to a single cluster.
Each plot was drawn by evaluating the support functions Gn

and G at 1720 uniformly spaced
directions in a 2-dimensional plane.

c = 1/2. We speculate that this may have implications for approximation of ωβ

by co-blockmodels when fitting by methods that converge to a local optima.

7. Future work. In this work, we have considered approximating a nons-
mooth bipartite graphon by a blockmodel. Various possibilities for future work
include the following.

Sparse graphs. Theorems 1 and 2 remain true if ω ≡ ωn is allowed to de-
pend on n; however, the results are vacuous if the density of ωn goes to zero as n

increases. As an alternative to Theorem 1 for such settings, one might study con-
vergence of ρ−1

n ‖�A(S,T )−�ω(σS, σT )‖, where ρn denotes the expected density∫
ωn(x, y) dx dy. We conjecture that when ρn 	 logn, the approach of this paper

can be adapted to show convergence under weaker restrictions (and perhaps slower
rates) than those made in previous works such as Klopp, Tsybakov and Verzelen
(2015), where supx,y ωn(x, y) = O(ρn) was required.

Construction of σS and τT . Theorem 1 states that for any S ∈ [K]m and
T ∈ [K]n, there exists σS : X �→ [K] and τT : Y �→ [K] such that �A(S,T ) ≈



CO-CLUSTERING OF NONSMOOTH GRAPHONS 1509

�ω(σ, τ ). In the proof, τT is chosen to minimize ‖GT − Gτ‖ over all Gτ ∈ G,
and σS is chosen to minimize ‖FS − Fσ‖ over all Fσ ∈ F . The proof is noncon-
structive, as it does not explain how to actually compute σS and τT . Theorem 2 is
similarly nonconstructive as well.

We propose a construction method for a limited case. Given a low rank ω that is
approximated by a blockmodel with small K , it may be possible to efficiently find
σS and τT that achieves Theorem 1 without resorting to heuristics. In this setting,
we can construct conv(G) by numerically evaluating the support function G ,

(29) G(H) =
∫
Y

max
k

〈
hk,

gy√
m

〉
+ πH (k) dy,

in enough directions H to sufficiently cover the low-dimensional space span-
ning G. Examples of conv(G) = G computed this way can be seen in Figure 2.

For each supporting hyperplane found in this manner, an extremal point of G
and its underlying assignment τ is automatically computed as the “arg max” of
(29). By a standard convex optimization formulation, the point GτT

∈ conv(G)

that minimizes ‖GT − GτT
‖ can be computed as a convex combination of the

extremal points, and the assignment τT can then be constructed by switching (for
increasingly fine discretizations of Y) between the extremal assignments according
to their mixture weights. The assignment σS can be found analogously.

APPENDIX A: PROOF OF LEMMA 6

To prove Lemma 6, we require some results on Hilbert–Schmidt integral oper-
ators. A kernel function ω :X ×Y �→R is Hilbert–Schmidt if it satisfies∫

X×Y

∣∣ω(x, y)
∣∣2 dx dy < ∞.

It can be seen that ω defined by Definition 1 is Hilbert–Schmidt. Let � denote the
integral operator induced by ω, given by

(�f )(x) =
∫
Y

ω(x, y)f (y) dy.

It is known that a Hilbert–Schmidt operator � is a limit (in operator norm) of a
sequence of finite rank operators, so that its kernel ω has singular value decompo-
sition given by

ω(x, y) =
∞∑

q=1

λquq(x)vq(y),

where {uq}∞q=1 and {vq}∞q=1 are sets of orthonormal functions mapping X �→ R

and Y �→ R, and λ1, λ2, . . . are scalars decreasing in magnitude and satisfying∑∞
q=1 λ2

q < ∞.
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PROOF OF LEMMA 6. Recall the definition of fx : Y �→ [0,1] as defined in
the proof of Lemma 4:

fx(y) = ω(x, y),

and that fσ=s can be written as

fσ=s =
∫
X

fx1
{
σ(x) = s

}
dx.

Because {fx : x ∈ X } is not finite dimensional, the arguments of Lemma 5 do not
directly apply. To circumvent this, we will approximate the space F by a finite
dimensional F̂ , such that the convex hulls conv(F) and conv(F̂) converge.

For Q = 1,2, . . . , let ωQ be the best rank-Q approximation to ω,

ωQ(x, y) =
Q∑

q=1

λquq(x)vq(y).

Given D > 0, let ûq denote a truncation of uq , defined as

ûD
q (x) =

⎧⎪⎪⎨
⎪⎪⎩

D, if uq(x) ≥ D,

uq(x), if −D ≤ uq(x) ≤ D,

−D, if uq(x) ≤ −D,

and let ω̂ : X ×Y �→R be defined as

ω̂(x, y) =
Q∑

q=1

λqûq(x)vq(y).

Let f̂x : Y �→R and f̂σ=s be defined as

f̂x(y) = ω̂(x, y) and f̂σ=s =
∫
X

f̂x1
{
σ(x) = s

}
dx.

Let F̂σ and F̂ be defined as

F̂σ = (f̂σ=1, . . . , f̂σ=K,πσ ) and F̂ = {
F̂σ : σ ∈ [K]X }.

We bound the difference ‖f̂x − fx‖2:

‖f̂x − fx‖2 =
Q∑

q=1

λ2
q

(
ûq(x) − uq(x)

)2 +
∞∑

q=Q+1

λ2
quq(x)2,

where we used the fact fx = ∑∞
q=1 λquq(x)vq , and that the functions {vq} are

orthonormal. It follows that∫
X

‖f̂x − fx‖2 dx =
Q∑

q=1

λ2
q

∫
X

(
ûq(x) − uq(x)

)2
dx +

∞∑
q=Q+1

λ2
q

∫
X

uq(x)2 dx
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=
Q∑

q=1

λ2
q

∫
X

(
ûq(x) − uq(x)

)2
dx +

∞∑
q=Q+1

λ2
q

≤
Q∑

q=1

λ2
q

∫
x:|uq(x)|≥D

uq(x)2 dx +
∞∑

q=Q+1

λ2
q,

whence it can be seen that

lim
min(Q,D)→∞

∫
X

‖f̂x − fx‖2 dx = 0.

We use this result to bound ‖f̂σ=s − fσ=s‖:

max
s,σ

‖f̂σ=s − fσ=s‖2 = max
s,σ

∥∥∥∥
∫
X

(f̂x − fx)1σ=s(x) dx

∥∥∥∥2

≤
∫
X

‖f̂x − fx‖2 dx

→ 0 as min(Q,D) → ∞.

Since ‖F̂σ − Fσ‖2 = ∑K
k=1 ‖f̂σ=k − fσ=k‖2 + ‖πσ − πσ‖2, it follows that for any

ε > 0, there exists (Q,D) inducing F̂ = {F̂σ : σ ∈ [K]X } such that

(30) sup
σ

‖F̂σ − Fσ‖ ≤ ε,

so that the support functions of F and F̂ can be bounded by

sup
H :‖H‖=1

∣∣F (H) − F̂ (H)
∣∣ ≤ max‖H‖=1,σ

∣∣〈H,Fσ − F̂σ 〉∣∣
≤ max

σ
‖Fσ − F̂σ‖

≤ ε,

implying that

(31) dHaus
(
conv(F), conv(F̂)

)≤ ε,

which in turn implies that for any F ∗ ∈ conv(F), there exists F̂ ∗ ∈ conv(F̂) such
that ‖F ∗ − F̂ ∗‖ ≤ ε.

For any choice of (Q,D), we observe that properties P1 and P2 as described in
Lemma 5 for G also hold for F̂ :

P1: Each F̂ ∈ conv(F̂) is a finite convex combination of elements in F̂ . This holds
because each f̂x can be written as

f̂x =
Q∑

q=1

λqμ̂q(x)vq,
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showing that {f̂x : x ∈ X } is a finite dimensional subspace of Y �→ R, and
hence F̂ is as well, allowing Theorem 3 to be applied.

P2: For all ε, there exists a finite ε-cover of {f̂x : x ∈ X } in Euclidean norm. This
holds because the set {û(x) : x ∈X } is a subset of the hypercube [−D,D]Q.

As a result, the same arguments used to prove Lemma 5 also apply to F̂ , implying
that for each F̂ ∈ conv(F̂), there exists for any ε > 0 a mapping σ :X �→ [K] such
that

(32) ‖F̂σ − F̂‖2 ≤ 4Kε2.

It thus follows that for any ε > 0 and F ∗ ∈ conv(F), there exists F̂ ∗ ∈ conv(F̂)

and σ : X �→ [K] such that∥∥F ∗ − Fσ

∥∥ ≤ ∥∥F ∗ − F̂ ∗∥∥︸ ︷︷ ︸
≤ε by (31)

+ ∥∥F̂ ∗ − F̂σ

∥∥︸ ︷︷ ︸
≤4Kε2 by (32)

+‖F̂σ − Fσ‖︸ ︷︷ ︸
≤ε by (30)

≤ 2ε + 4ε2K.

As a result, it follows that there exists F1,F2, . . . ∈ F such that limi→∞ ‖F ∗ −
Fi‖ = 0. �

APPENDIX B: PROOF OF LEMMA 4

To prove Lemma 4, we will use a result from Biau, Devroye and Lugosi (2008).
A proof is given in the supplemental material for self-completeness.

LEMMA 7 (Biau, Devroye and Lugosi (2008), Lemma 4.3). Let H denote a
Hilbert space, and let g : Y �→ H. Let y1, . . . , yn ∈ Y be i.i.d., and let Ln : HK �→
R be defined as follows:

Ln(H) = 1

n

n∑
j=1

max
t∈[K]

〈
ht , g(yj )

〉
, H = (h1, . . . , hK) ∈H

K.

Let B = {H ∈ H
K : ‖hk‖ ≤ 1, k ∈ [K]}. Then the following three statements hold:

(33) E sup
H∈B

Ln(H) −ELn(H) ≤ 2E sup
H∈B

1

n

n∑
j=1

εj max
t∈[K]

〈
ht , g(yj )

〉
,

where ε1, . . . , εj
i.i.d.∼ ±1 w.p. 1/2,

(34) E sup
H∈B

1

n

n∑
j=1

εj max
t∈[K]

〈
ht , g(yj )

〉≤ 2KE sup
‖h‖=1

1

n

n∑
j=1

εj

〈
h,g(yj )

〉
,
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and

(35) E sup
‖h‖=1

1

n

n∑
j=1

εi

〈
h,g(yj )

〉 ≤ (
E‖g(y)‖2

n

)1/2
.

PROOF OF LEMMA 4. Equation (33)–(35) imply that

(36) E sup
H∈B

Ln(H) −ELn(H) ≤ K

(
E‖g(y)‖2

n

)1/2
.

It also holds that

E inf
H∈BLn(H) −ELn(H) ≥ 2E inf

H∈B
1

n

n∑
j=1

εj max
t∈[K]

〈
ht , g(yj )

〉

= −2E sup
H∈B

1

n

n∑
j=1

(−εj ) max
t∈[K]

〈
ht , g(yj )

〉
(37)

= −2E sup
H∈B

1

n

n∑
j=1

εj max
t∈[K]

〈
ht , g(yj )

〉

≥ −2K

(
E‖g(y)‖2

n

)1/2
,

where the first inequality holds by a symmetrization analogous to (33); the second
by algebraic manipulation; the third because ε1, . . . , εn are ±1 with probability
1/2; the fourth by (34) and (35).

Combining (36) and (37) proves the lemma. �

SUPPLEMENTARY MATERIAL

Supplement to “Co-clustering of nonsmooth graphons” (DOI: 10.1214/16-
AOS1497SUPP; .pdf). The supplementary material contains a proof of Lemma 7
and Theorem 2.
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