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A BERNSTEIN-TYPE INEQUALITY FOR SOME MIXING
PROCESSES AND DYNAMICAL SYSTEMS WITH AN

APPLICATION TO LEARNING

BY HANYUAN HANG AND INGO STEINWART

University of Stuttgart

We establish a Bernstein-type inequality for a class of stochastic pro-
cesses that includes the classical geometrically φ-mixing processes, Rio’s
generalization of these processes and many time-discrete dynamical systems.
Modulo a logarithmic factor and some constants, our Bernstein-type inequal-
ity coincides with the classical Bernstein inequality for i.i.d. data. We fur-
ther use this new Bernstein-type inequality to derive an oracle inequality for
generic regularized empirical risk minimization algorithms and data gener-
ated by such processes. Applying this oracle inequality to support vector ma-
chines using the Gaussian kernels for binary classification, we obtain essen-
tially the same rate as for i.i.d. processes, and for least squares and quantile
regression; it turns out that the resulting learning rates match, up to some arbi-
trarily small extra term in the exponent, the optimal rates for i.i.d. processes.

1. Introduction. Concentration inequalities such as Hoeffding’s inequality,
Bernstein’s inequality, McDiarmid’s inequality, and Talagrand’s inequality play an
important role in many areas of probability and statistics. For example, [37] used
these inequalities to develop a nonasymptotic theory for model selection with ap-
plications to variable selection, change points detection and statistical learning.
Similarly, the analysis of various methods from nonparametric statistics and ma-
chine learning crucially depends on these inequalities; see, for example, [23, 24,
26, 53]. Here, stronger results can typically be achieved by Bernstein’s inequality
and/or Talagrand’s inequality, since these inequalities allow for localization due to
their specific dependence on the variance. In particular, most derivations of mini-
max optimal learning rates are based on one of these inequalities.

The concentration inequalities mentioned above all assume the data to be gener-
ated by an i.i.d. process. Unfortunately, however, this assumption is often violated
in several important areas of applications including financial prediction, signal pro-
cessing, system observation and diagnosis, text and speech recognition and time
series forecasting. For this and other reasons, there has been some effort to estab-
lish concentration inequalities for non-i.i.d. processes, also. For example, general-
izations of Bernstein’s inequality to α-mixing and φ-mixing processes have been
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found in [12, 41, 42] and [48], respectively. Among many other applications, the
Bernstein-type inequality established in [12] was used in [63] to obtain conver-
gence rates for sieve estimates from α-mixing strictly stationary processes in the
special case of neural networks. Furthermore, [27] applied the Bernstein-type in-
equality in [42] to derive an oracle inequality for generic regularized empirical risk
minimization algorithms learning from stationary α-mixing processes. Moreover,
by employing the Bernstein-type inequality in [9, 41] derived almost sure uni-
form rates of convergence for the estimated Lévy density both in mixed-frequency
and low-frequency setups and proved that these rates are optimal in the minimax
sense. Finally, in the particular case of the least square loss, [3] obtained the opti-
mal learning rate for φ-mixing processes by applying the Bernstein-type inequality
established in [48].

Unfortunately, dynamical systems are, in general, not α-mixing, and hence the
above-mentioned mixing concepts and Bernstein-type inequalities become invalid.
To deal with such nonmixing processes, Rio [43] introduced so-called φ̃-mixing
coefficients, which extend the classical φ-mixing coefficients. For dynamical sys-
tems with exponentially decreasing, modified φ̃-coefficients, [61] established a
Bernstein-type inequality, which turns out to be the same as the one for i.i.d. pro-
cesses modulo some logarithmic factor. However, this modification seems to be
significantly stronger than Rio’s original φ̃-mixing, so it remains unclear when the
Bernstein-type inequality in [61] is applicable. In addition, the φ̃-mixing concept is
still not large enough to cover many commonly considered dynamical systems. To
include such dynamical systems, [38] proposed the C-mixing coefficients, which
further generalize φ̃-mixing coefficients.

In this work, we establish a Bernstein-type inequality for geometrically C-
mixing processes, which, modulo a logarithmic factor and some constants, co-
incides with the classical one for i.i.d. processes. Using the techniques developed
in [27], we then derive an oracle inequality for generic regularized empirical risk
minimization and C-mixing processes. We further apply this oracle inequality to
a state-of-the-art learning method, namely support vector machines (SVMs) with
Gaussian kernels. Here, it turns out that for binary classification, least squares and
quantile regression, we can recover the (essentially) optimal rates recently found
for the i.i.d. case (see [25]) when the data is generated by certain geometrically
C-mixing processes. Finally, we derive learning rates for binary classification on
dynamical systems and establish an oracle inequality for the problem of forecast-
ing an unknown dynamical system. This oracle will make it possible to extend
the purely asymptotic analysis in [52] to learning rates. In this regard, recall that
for stochastic dynamical systems, statistical inference for parameter estimation has
been widely investigated in a variety of articles; see [40] and the reference therein.
For example, for dynamical systems such as shifts of finite type with Gibbs mea-
sures and Axiom A attractors with SRB measures, [39] established the consistency
of maximum likelihood estimation.
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The rest of this work is organized as follows: In Section 2, we recall the notion
of (time-reversed) C-mixing processes. We further illustrate this class of processes
by some examples and discuss the relation between C-mixing and other notions of
mixing. As the main result of this work, a Bernstein-type inequality for geometri-
cally (time-reversed) C-mixing processes will be formulated in Section 3. There,
we also compare our new inequality to previously established Bernstein-type in-
equalities. As an application of our Bernstein-type inequality, we will derive the
oracle inequality for regularized risk minimization schemes in Section 4. We ad-
ditionally derive an oracle inequality for ERM, learning rates for SVMs for bi-
nary classification, least squares regression and quantile regression and an oracle
inequality for forecasting certain dynamical systems. Numerical experiments are
implemented in Section 5. The last section contains the proof of the main result
and the remaining proofs for Sections 2 and 4 can be found in the Supplementary
Material [28].

2. C-mixing processes. In this section, we recall two classes of stationary
stochastic processes called (time-reversed) C-mixing processes that have a certain
decay of correlations for suitable pairs of functions. We also present some exam-
ples of such processes including certain dynamical systems.

Let us begin by introducing some notation. In the following, (�,A,μ) always
denotes a probability space. As usual, we write Lp(μ) for the space of (equiva-
lence classes of) measurable functions f : � →R with finite Lp-norm ‖f ‖p . It is
well known that Lp(μ) together with ‖f ‖p forms a Banach space. Furthermore, if
A′ ⊂ A is a sub-σ -algebra, then L1(A′,μ) denotes the space of all A′-measurable
functions f ∈ L1(μ). Moreover, for a Banach space E, we write BE for its closed
unit ball.

Given a semi-norm ‖ · ‖ on a vector space E of bounded measurable functions
f : Z →R, we define the C-Norm by

‖f ‖C := ‖f ‖∞ + ‖f ‖(2.1)

and denote the space of all bounded C-functions by

C(Z) := {
f : Z →R|‖f ‖C < ∞}

.(2.2)

To prove our Bernstein inequality, we further need to make the following technical
assumption on the semi-norm:∥∥ef

∥∥ ≤ ∥∥ef
∥∥∞‖f ‖, f ∈ C(Z).(2.3)

This assumption will be used once in our proof; see (6.14). Moreover, a closer
inspection shows that modulo a change in constants our proof still works if we
replace the right-hand side of (2.3) by c · ‖ef ‖∞‖f ‖, where c is a constant inde-
pendent of f . Since the examples we are interested in do not need this additional
freedom, we decided to omit the details.
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If one views the semi-norm as a norm describing aspects of the smoothness of
f , then (2.3) can be viewed as an abstract “chain rule”. The Examples 2.2–2.4
below illustrate this interpretation.

EXAMPLE 2.1. Let Z be an arbitrary set and ‖f ‖ = 0 for all f : Z → R.
Then, it is easy to see that ‖ef ‖ = ‖f ‖ = 0. Hence, (2.3) is satisfied.

EXAMPLE 2.2. Let Z ⊂ R
d be an open subset. For a continuously differen-

tiable function f : Z →R, we write

‖f ‖ :=
d∑

i=1

∥∥∥∥ ∂f

∂zi

∥∥∥∥∞
.

It is well known that C1(Z) := {f : Z → R|f continuously differentiable and
‖f ‖∞ + ‖f ‖ < ∞} is a Banach space with respect to the norm ‖ · ‖∞ + ‖ · ‖.
Moreover, inequality (2.3) holds for all f ∈ C1(Z).

EXAMPLE 2.3. Let Z be a subset of R
d and Cb(Z) be the set of bounded

continuous functions on Z. For f ∈ Cb(Z) and 0 < α ≤ 1, let

‖f ‖ := |f |α := sup
z 	=z′

|f (z) − f (z′)|
|z − z′|α .

Clearly, f is α-Hölder continuous if and only if |f |α < ∞. The collection of
bounded, α-Hölder continuous functions on Z will be denoted by

Cb,α(Z) := {
f ∈ Cb(Z) : |f |α < ∞}

.

Note that, if Z is compact, then Cb,α(Z) together with the norm ‖f ‖Cb,α
:=

‖f ‖∞ + |f |α forms a Banach space. Moreover, inequality (2.3) is also valid for
f ∈ Cb,α(Z). As usual, we speak of Lipschitz continuous functions if α = 1 and
write Lip(Z) := Cb,1(Z).

Before presenting the next example, we mention that throughout this paper the
underlying set Z of the bounded variation ‖ · ‖BV(Z) is always assumed to be
bounded if not mentioned otherwise.

EXAMPLE 2.4. Let Z ⊂ R be an interval. A function f : Z → R is said to
have bounded variation on Z if its total variation ‖f ‖BV(Z) is bounded. Denote by
BV(Z) the set of all functions of bounded variation. It is well known that BV(Z)

together with ‖f ‖∞ + ‖f ‖BV(Z) forms a Banach space. Moreover, we have (2.3),
that is, we have for all f ∈ C(Z):∥∥ef

∥∥
BV(Z) ≤ ∥∥ef

∥∥∞‖f ‖BV(Z).

For high-dimensional cases, the chain rule for functions of bounded variation holds
as well; see, for example, the first line of the proof of Theorem 3.96 in [4].
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Let us now assume that we also have a measurable space (Z,B) and a measur-
able map χ : � → Z. Then σ(χ) denotes the smallest σ -algebra on � for which
χ is measurable. Moreover, μχ denotes the χ -image measure of μ on Z, which is
defined by μχ(B) := μ(χ−1(B)), B ∈ B.

Let Z := (Zn)n≥0 be an Z-valued stochastic process on (�,A,μ), and for 0 ≤
i ≤ j ≤ ∞, denote by Aj

i the σ -algebra generated by (Zi, . . . ,Zj ). The process Z
is called stationary if μ(Zi1+i ,...,Zin+i ) = μ(Zi1 ,...,Zin ) for all n, i, i1, . . . , in ≥ 1. In
this case, we always write P := μZ0 . Moreover, to define certain dependency coef-
ficients for Z , we denote, for ψ,ϕ ∈ L1(μ) satisfying ψϕ ∈ L1(μ) the correlation
of ψ and ϕ by

cor(ψ,ϕ) :=
∫
�

ψ · ϕ dμ −
∫
�

ψ dμ ·
∫
�

ϕ dμ.

Several dependency coefficients for Z can be expressed in terms of the set of
such correlations for restricted sets of functions ψ and ϕ. The following defini-
tion, which is taken from [38], introduces the restrictions on ψ and ϕ we consider
throughout this work.

DEFINITION 2.5. Let (�,A,μ) be a probability space, (Z,B) be a measur-
able space, Z := (Zi)i≥0 be a Z-valued, stationary process on �, and ‖ · ‖C be
defined by (2.1) for some semi-norm ‖ · ‖. Then, for n ≥ 0, we define the C-mixing
coefficients by

φC(Z, n) := sup
{
cor

(
ψ,h(Zk+n)

) : k ≥ 0,ψ ∈ BL1(Ak
0,μ), h ∈ BC(Z)

}
(2.4)

and the time-reversed C-mixing coefficients by

(2.5) φC,rev(Z, n) := sup
{
cor

(
h(Zk), ϕ

) : k ≥ 0, h ∈ BC(Z), ϕ ∈ BL1(A∞
k+n,μ)

}
.

Let (dn)n≥0 be a strictly positive sequence converging to 0. We say that Z is
(time-reversed) C-mixing with rate (dn)n≥0, if we have φC,(rev)(Z, n) ≤ dn for all
n ≥ 0. Moreover, if (dn)n≥0 is of the form

dn := c exp
(−bnγ )

, n ≥ 1,(2.6)

for some constants c > 0, b > 0, and γ > 0, then Z is called geometrically (time-
reversed) C-mixing.

Obviously, Z is C-mixing with rate (dn)n≥0 if and only if for all k,n ≥ 0, all
ψ ∈ L1(Ak

0,μ), and all h ∈ C(Z), we have

cor
(
ψ,h(Zk+n)

) ≤ ‖ψ‖L1(μ)‖h‖Cdn,(2.7)

or similarly, time-reversed C-mixing with rate (dn)n≥0 if and only if for all k,n ≥
0, all h ∈ C(Z), and all ϕ ∈ L1(A∞

k+n,μ), we have

cor
(
h(Zk), ϕ

) ≤ ‖h‖C‖ϕ‖L1(μ)dn.(2.8)
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REMARK 2.6. If ‖ · ‖ ≡ 0, we obtain the classical φ-mixing coefficients; see
Example 2.7. In the new case ‖ · ‖ 	≡ 0, the resulting C-norm satisfies ‖f ‖C ≥
‖f ‖∞ and, therefore, the mixing coefficients admit fewer functions. Inequality
(2.3), which in some sense can be viewed as a generalized chain rule (see Examples
2.2–2.4) suggests that the considered functions are “smoother” than the ones in
the φ-mixing case and, therefore statistical changes of small spatial nature in x do
not have such a large impact on h(x), if h is smooth. In other words, even if the
trajectory x1, . . . , xn stays in a certain region for a while, this does not impact the
empirical average 1

n

∑n
i=1 h(xi) as much as it would for nonsmooth h.

In the rest of this section we consider examples of (time-reversed) C-mixing
processes.

EXAMPLE 2.7. Assume that Z is a stationary φ-mixing process [30] with rate
(dn)n≥0. By [20], inequality (1.1), we then have

cor(ψ,ϕ) ≤ ‖ψ‖L1(μ)‖ϕ‖L∞(μ)dn, n ≥ 1,(2.9)

for all Ak
0-measurable ψ ∈ L1(μ) and all A∞

k+n-measurable ϕ ∈ L∞(μ). By taking
‖ · ‖C := ‖ · ‖∞ and ϕ := h(Zk+n), we then see that (2.7) is satisfied, that is, Z is
C-mixing with rate (dn)n≥0. Finally, by similar arguments we can deduce that time-
reversed φ-mixing processes ([14], Section 3.13) are also time-reversed C-mixing
with the same rate. In other words, we have found

φL∞(μ)(Z, n) = φ(Z, n) and φL∞(μ),rev(Z, n) = φrev(Z, n).

EXAMPLE 2.8. Let Z ⊂ R be an interval. To deal with processes that are not
α-mixing [44], Rio [43] introduced the following relaxation of φ-mixing coeffi-
cients:

φ̃(Z, n) := sup
k≥0,f ∈BBV(Z)

∥∥E(
f (Zk+n)|Ak

0
) −Ef (Zk+n)

∥∥∞
(2.10)

= sup
{
cor

(
ψ,h(Zk+n)

) : k ≥ 0,ψ ∈ BL1(Ak
0,μ), h ∈ BBV(Z)

}
and an analogous time-reversed coefficient

φ̃rev(Z, n) := sup
k≥0,f ∈BBV(Z)

∥∥E(
f (Zk)|A∞

k+n

) −Ef (Zk)
∥∥∞

= sup
{
cor

(
h(Zk), ϕ

) : k ≥ 0, ϕ ∈ BL1(A∞
k+n,μ), h ∈ BBV(Z)

}
,

where the two identities follow from [22], Lemma 4. In other words, we have

φBV(Z)(Z, n) = φ̃(Z, n) and φBV(Z),rev(Z, n) = φ̃rev(Z, n).

Moreover, recall that some uniformly expanding maps are φ̃-mixing but not α-
mixing; see, for example, [21], page 41. The first picture of Figure 1 summarizes
the relations between φ, φ̃, and φC .
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FIG. 1. Relationship between various mixing processes. Note that φ̃-mixing equals C-mixing with
C = BV; see Example 2.8.

Our next goal is to relate C-mixing to some well-known results on the decay
of correlations for dynamical systems. To this end, recall that (�,A,μ,T ) is a
dynamical system if T : � → � is a measurable map satisfying μ(T −1(A)) =
μ(A) for all A ∈ A. Let us consider the stationary stochastic process Z := (Zn)n≥0

defined by Zn := T n for n ≥ 0. Since An+1
n+1 ⊂ An

n for all n ≥ 0, we conclude that

A∞
k+n = Ak+n

k+n. Consequently, ϕ is A∞
k+n-measurable if and only if it is Ak+n

k+n-

measurable. Moreover Ak+n
k+n is the σ -algebra generated by T k+n, and hence ϕ is

Ak+n
k+n-measurable if and only if it is of the form ϕ = g(T k+n) for some suitable,

measurable g : � → R. Let us now suppose that ‖ · ‖C(�) is defined by (2.1) for
some semi-norm ‖ · ‖. For h ∈ C(�), we then find

cor
(
h(Zk), ϕ

) = cor
(
h(Zk), g(Zk+n)

) = cor
(
h,g(Zn)

)
=

∫
�

h · (
g
(
T n))

dμ −
∫
�

hdμ ·
∫
�

g dμ =: corT ,n(h, g).

The next result shows that T := (T n)n≥0 is time-reversed C-mixing even if we
only have generic constants C(h,g) in (2.8).

THEOREM 2.9. Let (�,A,μ,T ) be a dynamical system, ‖ · ‖C be defined
by (2.1) for some semi-norm ‖ · ‖, and (dn)n≥0 be a strictly positive sequence
converging to 0. Then the stochastic process T := (T n)n≥0 is time-reversed C-
mixing with rate (cdn)n≥0 for some constant c > 0, if and only if for all h ∈ C(�)

and all g ∈ L1(μ) there exists a constant C(h,g) > 0 such that

corT ,n(h, g) ≤ C(h,g)dn, n ≥ 0.

It follows from Theorem 2.9 that T is time-reversed C-mixing if corT ,n(h, g)

converges to zero for all h ∈ C(�) and g ∈ L1(μ) with a rate that is independent
of h and g.

For concrete examples, let us first mention that smooth expanding maps on man-
ifolds, piecewise expanding maps, uniformly hyperbolic attractors and nonuni-
formly hyperbolic uni-modal maps are time-reversed geometrically C-mixing with
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related spaces BV(Z) or Cb,α(Z); see [60], Propositions 2.7, 3.8, Corollary 4.11
and Theorem 5.15, respectively. Moreover, [38] presents some discrete dynami-
cal systems that are time-reversed geometrically C-mixing such as Lasota–Yorke
maps, uni-modal maps, piecewise expanding maps in higher dimension. Here, the
involved spaces are either BV(Z) or Lip(Z). Recently, [31] proved that under cer-
tain regularity and expansion assumptions on the transformation T (see [31], Con-
ditions (H1)–(H5)), a real valued dynamical system embedded in R

2 turns out to
be time-reversed geometrically C-mixing with C specified as in [31].

It is well known that, if the functions h and g are sufficiently smooth, there exist
dynamical systems where chaos is strong enough such that the correlations decay
exponentially fast, that is,∣∣corT ,n(h, g)

∣∣ ≤ C(h,g) · exp
(−bnγ )

, n ≥ 0,(2.11)

for some constants b > 0, γ > 0, and C(h,g) ≥ 0 depending on h and g. For
example, for continuously differentiable h and g, [45, 50] proved (2.11) for two
closely related classes of systems, more precisely, Axiom A diffeomorphisms with
Gibbs invariant measures and topological Markov chains, which are also known
as subshifts of finite type; see also [13]. These results were then extended by [29,
47] to expanding interval maps with smooth invariant measures for functions h

and g of bounded variation. In the 1990s, similar results for Hölder continuous h

and g were proved for systems with somewhat weaker chaotic behaviour which
is characterized by nonuniform hyperbolicity, such as quadratic interval maps (see
[32, 62] and the Hénon map [10]), and then extended to chaotic systems with sin-
gularities by [34] and specifically to Sinai billiards in a torus by [18, 62]. For some
of these extensions, such as smooth expanding dynamics, smooth nonuniformly
hyperbolic systems and hyperbolic systems with singularities, we refer to [6] as
well. Recently, for h of bounded variation and bounded g, [35] obtained (2.11) for
a class of piecewise smooth one-dimensional maps with critical points and singu-
larities. Moreover, [5] has deduced (2.11) for h,g ∈ Lip(Z) and a suitable iterate
of Poincaré’s first return map T of a large class of singular hyperbolic flows.

3. A Bernstein inequality. This section presents our main result, a Bernstein
inequality for geometrically (time-reversed) C-mixing process.

THEOREM 3.1. Let Z := (Zn)n≥0 be a Z-valued stationary geometrically
(time-reversed) C-mixing process on (�,A,μ) with ‖ · ‖C be defined by (2.1) for
some semi-norm ‖ · ‖ satisfying (2.3), and P := μZ0 . Moreover, let h : Z →R be a
function such that h ∈ C(Z) with EP h = 0 and assume that there exist some A > 0,
B > 0, and σ ≥ 0 such that ‖h‖ ≤ A, ‖h‖∞ ≤ B , and EP h2 ≤ σ 2. Then, for all
ε > 0 and all

n ≥ n0 := max
{

min
{
m ≥ 3 : m2 ≥ 808c(3A + B)

B
and

(3.1)
m

(logm)
2
γ

≥ 4
}
, e

3
b

}
,
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we have

μ

(
1

n

n∑
i=1

h(Zi) ≥ ε

)
≤ 2 exp

(
− nε2

8(logn)
2
γ (σ 2 + εB/3)

)
,(3.2)

or alternatively, for all n ≥ n0 and τ > 0, we have

μ

(
1

n

n∑
i=1

h(Zi) ≥
√√√√8(logn)

2
γ σ 2τ

n
+ 8(logn)

2
γ Bτ

3n

)
≤ 2e−τ .(3.3)

Note that besides the additional logarithmic factor 4(logn)
2
γ and the constant 2

in front of the exponential, (3.2) coincides with Bernstein’s classical inequality for
i.i.d. processes.

In the remainder of this section, we compare Theorem 3.1 with some other
Bernstein-type inequalities for non-i.i.d. processes Z . Here, Z is real-valued and
h is the identity map if not specified otherwise.

EXAMPLE 3.2. Consider an expanding map T of the interval [0,1] such that
T satisfies Conditions 1–3 in [22], Section 4, and the ergodic measure μ satisfies
[22], (4.8). Then [22], Theorem 2, shows that for all separately Lipschitz continu-
ous f : Zn →R, and all ε ≥ 0, n ≥ 1, we have

μ
(
f (Z0, . . . ,Zn−1) −Ef (Z0, . . . ,Zn−1) ≥ ε

) ≤ exp
(
−ε2n

C

)
,(3.4)

where C is some constant only depending on the Lipschitz constants of f . The
same result has also been proved by [19], Theorem III.1, for piecewise regu-
lar expanding maps. Furthermore, [22], Theorem 2, established (3.4) for causal
functions of stationary sequences, iterated random functions, and Markov ker-
nels. Moreover, [15] obtained (3.4) by proving a Devroye inequality in [16] for
a large class of nonuniformly hyperbolic dynamical systems including families of
piecewise hyperbolic maps, scattering billiards, unimodal and Hénon-like maps.
More recently, [17] established (3.4) for Axiom A attractors, Hénon attractors for
Benedicks–Carleson parameters, piecewise hyperbolic maps like the Lozi attrac-
tor, some billiards with convex scatterers. Notice that, compared to our inequality,
almost all the above exponential inequalities hold for more general statistics of the
form f (Z0, . . . ,Zn−1). This great flexibility, however, is paid by a weaker bound
as soon as the variance σ 2 becomes sufficiently small. For the analysis of many
learning algorithms, this difference matters since by localization the concentra-
tion inequality is applied in situations in which σ 2 depends on n and σ 2

n → 0 as
n → ∞.
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EXAMPLE 3.3. For dynamical systems with exponentially decreasing, modi-
fied φ̃-coefficients (see [61], Condition (3.1)), [61], Theorem 3.1, provides a Bern-
stein inequality for 1-Lipschitz functions h : Z → [−1/2,1/2] w.r.t. some metric
d on Z, in which the left-hand side of (3.2) is bounded by

exp
(
− Cε2n

σ 2 + ε logf (n)

)
(3.5)

for some constant C independent of n and f (n) being some function monoton-
ically increasing in n. Modulo the factor logf (n) and the constant C the bound
(3.5) is the same as the one for i.i.d. processes. Moreover, if f (n) grows polyno-
mially, cf. [61], Section 3.3, then (3.5) has the same asymptotic behaviour as our
bound. However, the required exponential form of Condition (3.1) in [61], that is,

sup
k≥0

φ̃
(
Ak

0,Zk+2n−1
k+n

) := sup
k≥0

sup
f ∈Fn

∥∥E(
f

(
Zk+2n−1

k+n

)|Ak
0
) −Ef

(
Zk+2n−1

k+n

)∥∥∞

≤ c · e−bn

for some c, b > 0 and all n ≥ 1, where Zk+2n−1
k+n := (Zk+n, . . . ,Zk+2n−1) and Fn

is the set of 1-Lipschitz functions f : Zn → [−1
2 , 1

2 ] w.r.t. the metric dn(x, y) :=
1
n

∑n
i=1 d(xi, yi), implies

sup
k≥0

sup
f ∈F

∥∥E(
f (Zk+n)|Ak

0
) −Ef (Zk+n)

∥∥∞ ≤ c · ne−bn ≤ c · e−b̃n

for some c, b̃ > 0 and all n ≥ 1, where F is the set of 1-Lipschitz functions f :
Z → [−1

2 , 1
2 ] w.r.t. the metric d . Therefore, geometrically C-mixing is weaker than

Condition (3.1) in [61], or more precisely, processes satisfying Condition (3.1) in
[61] are φ̃-mixing [see (2.10)], which is stronger than geometrically C-mixing; see
Figure 1. Moreover, our result holds for all γ > 0, while [61] only considers the
case γ = 1.

EXAMPLE 3.4. For an α-mixing sequence of centered and bounded random
variables satisfying α(n) ≤ c exp(−bnγ ) for some constants b > 0, c ≥ 0, and
γ > 0, [42], Theorem 4.3, bounds the left-hand side of (3.2) by

(
1 + 4e−2c

)
exp

(
− 3ε2n(γ )

6σ 2 + 2εB

)
with n(γ ) � n

γ
γ+1(3.6)

for all n ≥ 1 and all ε > 0. In general, this bound and our result are not comparable,
since not every α-mixing process satisfies (2.7) (see, e.g., [14], Example 7.11), and
conversely, not every process satisfying (2.7) is necessarily α-mixing; see Figure 1
and the discussion in Section 2. Nevertheless, for φ-mixing processes, it is easily
seen that this bound is always worse than ours for a fixed γ > 0, if n is large
enough.
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EXAMPLE 3.5. For an α-mixing stationary sequence of centered and bounded
random variables satisfying α(n) ≤ exp(−2cn) for some c > 0, [41], Theorem 2,
bounds the left-hand side of (3.2) by

exp
(
− Cε2n

v2 + εB(logn)2 + n−1B2

)
,(3.7)

where C > 0 is some constant and

v2 := σ 2 + 2
∑

2≤i≤n

∣∣cov(X1,Xi)
∣∣.(3.8)

By a covariance inequality for α-mixing processes (see [20], the corollary to
Lemma 2.1), we obtain v2 ≤ Cδ‖X1‖2

2+δ for an arbitrary δ > 0 and a constant
Cδ only depending on δ. If the additional δ > 0 is ignored, (3.7) has therefore
the same asymptotic behaviour as our bound. In general, however, the additional
δ does influence the asymptotic behaviour. For example, the oracle inequality we
obtain in the next section would be slower by a factor of nξ , where ξ > 0 is arbi-
trary, if we used (3.7) instead. Finally, note that in general the bound (3.7) and ours
are not comparable; see again Figure 1.

In particular, inequality (3.7) can be applied to geometrically φ-mixing pro-
cesses with γ = 1. By using the covariance inequality (1.1) for φ-mixing processes
in [20], we can bound v2 defined as in (3.8) by Cσ 2 with some constant C inde-
pendent of n. Modulo the term n−1B in the denominator, the bound (3.7) thus
coincides with ours for geometrically φ-mixing processes with γ = 1. However,
our bound also holds for such processes with γ ∈ (0,1).

EXAMPLE 3.6. For stationary, geometrically α-mixing Markov chains with
centered and bounded random variables, [1] bounds (3.2) by

exp
(
− nε2

σ̃ 2 + εB logn

)
,(3.9)

where σ̃ 2 = limn→∞ 1
n

Var
∑n

i=1 Xi . By a similar argument as in Example 3.5 we
obtain

Var
n∑

i=1

Xi = nσ 2 + 2
∑

1≤i<j≤n

∣∣cov(Xi,Xj )
∣∣ ≤ nσ 2 + C̃δn‖X1‖2

2+δ

for an arbitrary δ > 0 and a constant C̃δ depending only on δ. Consequently, we
conclude that modulo some arbitrary small number δ > 0 and the logarithmic fac-
tor logn instead of (logn)2, the bound (3.9) coincides with ours. Again, this bound
and our result are not comparable; see Figure 1.
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4. Applications to statistical learning. In this section, we apply the Bern-
stein inequality from the last section to deduce oracle inequalities for some widely
used learning methods and observations generated by geometrically C-mixing pro-
cesses. More precisely, in Section 4.1, we recall some basic concepts of statistical
learning and formulate an oracle inequality for learning methods that are based on
(regularized) empirical risk minimization. Then, in Section 4.2, we illustrate this
oracle inequality by deriving learning rates for SVMs. Finally, in Section 4.3, we
derive learning rates for binary classification on dynamical systems and present an
oracle inequality for forecasting of dynamical systems.

4.1. Oracle inequality for CR-ERMs. In the following, X always denotes a
measurable space if not mentioned otherwise and Y ⊂ R always is a closed subset.
Recall that in (supervised) statistical learning, our aim is to find a function f : X →
R such that for (x, y) ∈ X × Y the value f (x) is a good prediction of y at x. To
evaluate the quality of such functions f , we need a loss function L : X ×Y ×R →
[0,∞) that is measurable. Following [53], Definition 2.22, we say that a loss L

can be clipped at M > 0, if, for all (x, y, t) ∈ X × Y ×R, we have

L(x, y,Ût) ≤ L(x, y, t),(4.1)

where Ût denotes the clipped value of t at ±M , that is Ût := t if t ∈ [−M,M], Ût :=
−M if t < −M , Ût := M if t > M . Various often used loss functions can be clipped.
For example, if Y := {−1,1} and L is a convex, margin-based loss represented
by ϕ : R → [0,∞), that is L(y, t) = ϕ(yt) for all y ∈ Y and t ∈ R, then L can
be clipped, if and only if ϕ has a global minimum; see [53], Lemma 2.23. In
particular, the hinge loss, the least squares loss for classification, and the squared
hinge loss can be clipped, but the logistic loss for classification cannot be clipped.
Moreover, if Y := [−M,M] and L is a convex, distance-based loss represented by
some ψ : R → [0,∞), that is, L(y, t) = ψ(y − t) for all y ∈ Y and t ∈ R, then L

can be clipped whenever ψ(0) = 0; see again [53], Lemma 2.23. In particular, the
classical least squares loss as well as the pinball losses used for quantile regression
can be clipped, if the space of labels Y is bounded.

Now we summarize assumptions on the loss function L that will be used
throughout this work and that are satisfied by most examples mentioned above.

ASSUMPTION 4.1. The loss function L : X×Y ×R → [0,∞) can be clipped
at some M > 0. Moreover, it is both bounded in the sense of L(x, y, t) ≤ 1 and
locally Lipschitz continuous, that is,∣∣L(x, y, t) − L

(
x, y, t ′

)∣∣ ≤ ∣∣t − t ′
∣∣,(4.2)

where both inequalities are supposed to hold for all (x, y) ∈ X × Y and t, t ′ ∈
[−M,M].
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Given a loss L and an f : X → R, we often use the notation L ◦ f for the
function (x, y) �→ L(x, y, f (x)). Our major goal is to make the L-risk

RL,P (f ) :=
∫
X×Y

L
(
x, y, f (x)

)
dP (x, y)

as small as possible. The minimal L-risk

R∗
L,P := inf

{
RL,P (f )|f : X →R measurable

}
is called the Bayes risk with respect to P and L. In addition, a measurable function
f ∗

L,P : X →R satisfying RL,P (f ∗
L,P ) = R∗

L,P is called a Bayes decision function.
Let us now describe the learning algorithms we are interested in. To this end,

assume that we have a hypothesis set F consisting of bounded measurable func-
tions f : X →R, which is pre-compact with respect to the supremum norm ‖ · ‖∞.
Hence, for all ε > 0, the covering number N (F,‖ · ‖∞, ε), (see, e.g., [53], Defini-
tion 6.19) is always finite. Moreover, we write

D := (
(X1, Y1), . . . , (Xn,Yn)

) := (Z1, . . . ,Zn) ∈ (X × Y)n

for a training set of length n that is distributed according to the first n compo-
nents of the X × Y -valued process Z = (Zi)i≥1. Let Dn be the empirical measure
associated to D. The risk of an f : X →R with respect to this measure, that is,

RL,Dn(f ) = 1

n

n∑
i=1

L
(
Xi,Yi, f (Xi)

)

is called the empirical L-risk.
With these preparations, we can now introduce the class of learning meth-

ods [53], Definition 6.1, we are interested in; see also [53], Definition 7.18.

DEFINITION 4.2. Let L : X × Y ×R → [0,∞) be a loss that can be clipped
at some M > 0, F be a hypothesis set, that is, a set of measurable functions
f : X → R, with 0 ∈ F , and ϒ be a regularizer on F , that is, a function
ϒ : F → [0,∞) with ϒ(0) = 0. Then, for δ ≥ 0, a learning method whose de-
cision functions fDn,ϒ ∈ F satisfy

ϒ(fDn,ϒ) +RL,Dn(
ÛfDn,ϒ) ≤ inf

f ∈F
(
ϒ(f ) +RL,Dn(f )

) + δ(4.3)

for all n ≥ 1 and Dn ∈ (X × Y)n is called δ-approximate clipped regularized em-
pirical risk minimization (δ-CR-ERM) with respect to L, F and ϒ .

Moreover, in the case δ = 0, we simply speak of clipped regularized empirical
risk minimization (CR-ERM).

Note that on the right-hand side of (4.3) the unclipped loss is considered, and
hence CR-ERMs do not necessarily minimize the regularized clipped empirical
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risk ϒ(·) + RL,Dn(Û·). Moreover, in general CR-ERMs do not minimize the reg-
ularized risk ϒ(·) + RL,Dn(·) either, because on the left-hand side of (4.3) the
clipped function is considered. However, if we have a minimizer of the unclipped
regularized risk, then it automatically satisfies (4.3). In particular, ERM decision
functions satisfy (4.3) for the regularizer ϒ := 0 and δ := 0, and SVM decision
functions satisfy (4.3) for the regularizer ϒ := λ‖ · ‖2

H and δ := 0. In other words,
ERM and SVMs are CR-ERMs.

Before we present the oracle inequality for δ-CR-ERMs, we need to introduce
a few more notation. Let F be a hypothesis set in the sense of Definition 4.2. For

r∗ := inf
f ∈F ϒ(f ) +RL,P ( Ûf ) −R∗

L,P(4.4)

and r > r∗, we write

Fr := {
f ∈F : ϒ(f ) +RL,P ( Ûf ) −R∗

L,P ≤ r
}
.(4.5)

Then we have r∗ ≤ 1, since L(x, y,0) ≤ 1, 0 ∈ F , and ϒ(0) = 0. Furthermore,
assume that L ◦ Ûf ∈ C for the considered C and that there exists a monotonic
increasing sequence (Ar)r∈(0,1] in r such that

‖L ◦ Ûf ‖ ≤ Ar for all f ∈ Fr and r ∈ (0,1],(4.6)

where ‖ · ‖ is a semi-norm satisfying (2.3). Because of the Definition (4.5), it is
easily to conclude that ‖L ◦ Ûf ‖ ≤ A1 for all f ∈ Fr and r ∈ (0,1]. Finally, we
assume that there exists a function ϕ : (0,∞) → (0,∞) and a p ∈ (0,1] such that,
for all r > 0 and ε > 0, we have

lnN
(
Fr ,‖ · ‖∞, ε

) ≤ ϕ(ε)rp.(4.7)

Note that there are actually many hypothesis sets satisfying Assumption (4.7),
see [27], Section 4, for some examples.

Now the oracle inequality for δ-CR-ERMs reads as follows.

THEOREM 4.3. Let Z := (Zn)n≥0 be a Z-valued stationary geometrically
(time-reversed) C-mixing process on (�,A,μ) with rate (dn)n≥0 as in (2.6), ‖ · ‖C
be defined by (2.1) for some semi-norm ‖ · ‖ satisfying (2.3), and P := μZ0 . More-
over, let L be a loss satisfying Assumption 4.1. In addition, assume that there exist
a Bayes decision function f ∗

L,P satisfying L ◦ f ∗
L,P ∈ C and constants ϑ ∈ [0,1]

and V ≥ 1 such that

(4.8) EP

(
L ◦ Ûf − L ◦ f ∗

L,P

)2 ≤ V · (
EP

(
L ◦ Ûf − L ◦ f ∗

L,P

))ϑ
, f ∈F,

where F is a hypothesis set with 0 ∈ F . We define r∗, Fr , and Ar by (4.4), (4.5),
and (4.6), respectively and assume that (4.7) is satisfied. Finally, let ϒ : F →
[0,∞) be a regularizer with ϒ(0) = 0, f0 ∈ F be a fixed function with L ◦ f0 ∈ C
and L ◦ Ûf0 ∈ C, and A0,A

∗ ≥ 0, B0 ≥ 1 be constants such that ‖L ◦ f0‖ ≤ A0,
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‖L ◦ Ûf0‖ ≤ A0, ‖L ◦ f ∗
L,P ‖ ≤ A∗ and ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed ε > 0,

δ ≥ 0, τ ≥ 1, and

n ≥ n∗
0 := max

{
min

{
m ≥ 3 : m2 ≥ K and

m

(logm)
2
γ

≥ 4
}
, e

3
b

}
(4.9)

with K = 1212c(4A0 + A∗ + A1 + 1), and r ∈ (0,1] satisfying

(4.10) r ≥ max
{(

cV (logn)
2
γ (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑ

,
20(logn)

2
γ B0τ

n
, r∗

}

with cV := 512(12V + 1)/3, every learning method defined by (4.3) satisfies with
probability μ not less than 1 − 16e−τ :

ϒ(fDn,ϒ) +RL,P ( ÛfDn,ϒ) −R∗
L,P

(4.11)
< 2ϒ(f0) + 4RL,P (f0) − 4R∗

L,P + 4r + 5ε + 2δ.

Let us first discuss the existence of a Bayes decision function f ∗
L,P . For exam-

ple, if a distance-based loss L is convex and of lower growth p ∈ (1,∞) [53],
Definition 2.35, then there always exists a Bayes decision function f ∗

L,P if As-
sumption 4.1 holds. Indeed, under Assumption 4.1 the set M := {f ∈ Lp(PX) :
RL,P (f ) ≤ 1} is nonempty. Moreover, [53], Lemma 2.38, shows that there exists
a constant cL,p > 0 independent of P such that, for all measurable f ∈ M, we
have

‖f ‖p
Lp(PX) ≤ cL,p

(
RL,P (f ) +

∫
X

∫
R

|y|p dP (x, y) + 1
)

≤ cL,p

(
Mp + 2

)
,

since the distribution P is defined on X × [−M,M]. By [53], Theorem A.6.9,
we then conclude that there exists a Bayes decision function f ∗

L,P . Moreover, for
the least squares loss, the asymmetric least squares loss and many of the distance-
based losses including pinball loss and Huber’s loss, there exists a Bayes decision
function f ∗

L,P . Finally, for margin-based losses, which are used for binary clas-
sification and probability estimation, the specific form of the Bayes function is
known in several cases; see, for example, [53], Figure 3.1, and the corresponding
calculations in [53], Examples 3.6–3.8.

Let us now briefly discuss the variance bound (4.8). For example, if Y =
[−M,M] and L is the least squares loss, then it is well known that (4.8) is sat-
isfied for V := 16M2 and ϑ = 1; see, for example, [53], Example 7.3. Moreover,
under some assumptions on the distribution P , [54] established a variance bound
of the form (4.8) for the pinball loss used for quantile regression. In addition, for
the hinge loss, (4.8) is satisfied for ϑ := q/(q +1), if Tsybakov’s noise assumption
[59] holds for q; see [53], Theorem 8.24. Finally, based on [11, 51] established a
variance bound with ϑ = 1 for the earlier mentioned clippable modifications of
strictly convex, twice continuously differentiable margin-based loss functions.
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One might also wonder, why the constants A0 and B0 are necessary in Theo-
rem 4.3, since it appears to add further complexity. However, a closer look reveals
that the constants A1 and B are the bounds for functions of the form L ◦ Ûf , while
A0 and B0 are valid for the function L ◦ f0 for an unclipped f0 ∈ F . Since we do
not assume that all f ∈ F satisfy Ûf = f , we conclude that in general A0 and B0
are necessary.

The following lemma provides bounds on ‖L ◦ f ‖ for specific loss functions.
These bounds will be used in the subsequent sections to apply Theorem 4.3.

LEMMA 4.4. Let X ⊂ R
d and f : X →R be bounded:

(i) Let Y = (−1 − ε,1 + ε) with ε > 0, Z := X × Y , and f ∈ BV(X).
Then, for the hinge loss L, we have ‖L ◦ f ‖BV(Z) ≤ (1 + ε)2‖f ‖BV(X) + 2(1 +
ε)‖f ‖∞vol(X).

(ii) Let Y ⊂ [−M,M] with M > 0 and f ∈ Lip(X). Then, for the least squares
loss L, we have |L ◦ f |1 ≤ 2

√
2(M + ‖f ‖∞)(1 + |f |1).

(iii) Let Y ⊂ [−M,M] with M > 0 and f ∈ Lip(X). Then, for the τ -pinball
loss L, we have |L ◦ f |1 ≤ √

2(1 + |f |1).

To illustrate the oracle inequality of Theorem 4.3, we will now use it to de-
rive learning rates [53], Lemma 6.5, for some algorithms with observations com-
ing from (time-reversed) C-mixing processes. Our first example, which will later
be important for hyper-parameter selection, considers empirical risk minimization
over a finite set. Further examples are presented in the following subsections.

EXAMPLE 4.5 (ERM). Let the assumptions on F , L, P and C in Theorem 4.3
hold. Moreover, assume that F is finite and ‖f ‖∞ ≤ M and ‖L ◦ f ‖ ≤ A for all
f ∈ F . Then, for accuracy δ := 0, the learning method described by (4.3) is ERM,
and Theorem 4.3 shows by some simple estimates that for n ≥ n0 as in (4.9) with
K = 1212c(5A + A∗ + 1), the inequality

RL,P (fDn,ϒ) −R∗
L,P ≤ 8 inf

f ∈F
(
RL,P (f ) −R∗

L,P

)

+ 4
(

cV (logn)
2
γ (τ + ln |F |)
3n

)1/(2−ϑ)

+ 80(logn)
2
γ τ

n

holds with probability μ not less than 1 − 16e−τ .
Note that in the i.i.d. case we have γ = ∞. Therefore, besides some constants

and the restrictions on n, the oracle inequality (4.11) is an exact analogue to stan-
dard oracle inequality for ERM learning from i.i.d. processes; see, for example,
[53], Theorem 7.2.



724 H. HANG AND I. STEINWART

4.2. Learning rates for SVMs. In this section, we apply the developed theory
to support vector machines (SVMs) using the hinge loss, the least squares loss,
and the pinball loss for learning with observations from (time-reversed) C-mixing
processes.

Let us begin by briefly recalling SVMs,; see [53] for details. To this end, let X

be a measurable space, Y := [−1,1] and k be a measurable (reproducing) kernel
on X with reproducing kernel Hilbert space (RKHS) H . Given a regularization
parameter λ > 0 and a convex loss L, SVMs find the unique solution

fDn,λ = arg min
f ∈H

(
λ‖f ‖2

H +RL,Dn(f )
)
.(4.12)

In particular, SVMs using the hinge losses are called hinge SVMs, SVMs using
the least-squares loss are called least-squares SVMs (LS-SVMs), and SVMs using
the τ -pinball loss are called SVMs for quantile regression.

In the following, we are mainly interested in the commonly used Gaussian RBF
kernels kσ : X × X →R defined by

kσ

(
x, x′) := exp

(
−‖x − x′‖2

2

σ 2

)
, x, x′ ∈ X,

where X ⊂ R
d is a nonempty subset and σ > 0 is a free parameter called the width.

We write Hσ for the corresponding RKHSs, which are described in some detail in
[55]. The entropy numbers for Gaussian kernels (see, e.g., [53], Theorem 6.27),
and the equivalence of covering and entropy numbers (see, e.g., [53], Lemma 6.21)
yield that

lnN
(
BHσ ,‖ · ‖∞, ε

) ≤ aσ−dε−2p, ε > 0,(4.13)

for all p ∈ (0,1), where a is a constant only depending on P .
Recall that for SVMs we always have fDn,λ ∈ λ−1/2BH (see [53], (5.4)) where

BH denotes the closed unit ball of the RKHS H . Consequently, we can choose
the hypothesis set as F = λ−1/2BHσ . Then (4.5) implies Fr ⊂ r1/2λ−1/2BHσ , and
hence we have

lnN
(
Fr ,‖ · ‖∞, ε

) ≤ aσ−dλ−pε−2prp.

For the function ϕ in Theorem 4.3, we can thus choose

ϕ(ε) := aσ−dλ−pε−2p.(4.14)

Now we can apply the oracle inequality in Theorem 4.3 to derive the learning
rates for the SVMs using Gaussian kernels. In the following examples, B�d

2
denotes

the closed unit ball of d-dimensional Euclidean space �d
2 .

EXAMPLE 4.6 (Binary classification with Gaussian kernels). Let X ⊂ B�d
2
,

Y := {−1,1}, Z := X ×Y , and Z be a geometrically (time-reversed) C(Z)-mixing
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process with C(Z) being L∞(Z) or BV(Z). Moreover, let L be the hinge loss,
P be a distribution on R

d × Y that has margin-noise exponent β ∈ (0,∞) and
noise exponent q ∈ [0,∞] and its marginal distribution on R

d is concentrated on
X. Assume that the Bayes decision function f ∗

L,P given by f ∗
L,P (x) = sign(P (y =

1|x) − 0.5) satisfies f ∗
L,P ∈ C(X). Then for all ξ > 0, the Hinge loss SVM using

Gaussian RKHS Hσ learns with rate

n
− β(q+1)

β(q+2)+d(q+1)
+ξ

,(4.15)

which equals the best known rate for i.i.d. processes; see, for example, [53], The-
orem 8.26.

Roughly speaking, the margin-noise exponent measures the amount of noise
in the labeling and the concentration of the marginal distribution in the vicinity
of the decision boundary, while the noise exponent, introduced by Mammen and
Tsybakov (see [36, 59]) measures the total amount of noise. We refer to [53],
Chapter 8, for precise definitions and illustrative examples. In the one-dimensional
case, the assumption f ∗

L,P ∈ BV(X) is satisfied, if f ∗
L,P has only finitely many

points of discontinuity. For high-dimensional cases, we refer to [4], Chapter 3.
Finally, note that considering smoother classes C such as C1(Z) or Lip(Z) does
not make sense for pure binary classification, since the Bayes function f ∗

L,P is a
step function and, therefore, usually not contained in such smooth C.

In the next example, Bt
2s,∞ denotes the usual Besov space with the smoothness

parameter t ; for more details, we refer to [2, 58].

EXAMPLE 4.7 (Least Square Regression with Gaussian kernels). Let Y :=
[−M,M] for some M > 0, Z := R

d ×Y , and Z be a geometrically (time-reversed)
C(Z)-mixing process with C(Z) being L∞(Z), BV(Z), or Cb,α(Z). Moreover, let
P be a distribution on Z whose marginal distribution on R

d is concentrated on
X ⊂ B�d

2
and absolutely continuous w.r.t. the Lebesgue measure μ on R

d . We

denote the corresponding density g : Rd → [0,∞) and assume μ(∂X) = 0 and
g ∈ Lq(μ) for some q ≥ 1. Moreover, assume that the Bayes decision function
f ∗

L,P = EP (Y |x) satisfies f ∗
L,P ∈ L2(μ) ∩ Lip(Rd) as well as f ∗

L,P ∈ Bt
2s,∞ for

some t ≥ 1 and s ≥ 1 with 1
q

+ 1
s

= 1. Then, for all ξ > 0, the LS-SVM using
Gaussian RKHS Hσ and

λn = (logn)
2
γ

n
and σn =

(
(logn)

2
γ

n

) 1
2t+d

(4.16)

learns with rate

n− 2t
2t+d

+ξ .(4.17)



726 H. HANG AND I. STEINWART

REMARK 4.8. Note that if s = ∞ and t > 1, then we have Bt
2s,∞ ⊂ Lip(Rd);

see, for example, [46], Section 2.1.2. In this case, the assumptions on the Bayes
decision function f ∗

L,P made in Examples 4.7 and 4.9 are identical to that for
the i.i.d. case; see [25], Sections 3 and 4. Moreover, as larger values of t lead to
smoother functions contained in Bt

2s,∞, it is not surprising that the rates become
better, the larger t gets.

It turns out that modulo the arbitrarily small ξ > 0, the learning rates (4.17)
equal the optimal rates for i.i.d. processes; see, for example, [56], Theorem 9, or
[26], Theorem 3.2.

To achieve these rates, however, we need to set λn and σn as in (4.16), which in
turn requires us to know γ and t . In practice, we usually do not know these values
nor their existence. To obtain the above rates without knowledge about γ and t , we
can use the training/validation approach TV-SVM; see, for example, [53], Chap-
ters 6.5, 7.4, 8.2. To this end, let � := (�n) and � := (�n) be sequences of finite
subsets �n,�n ⊂ (0,1] such that �n is an εn-net of (0,1] and �n is an δn-net of

(0,1] with εn ≤ n−1 and δn ≤ n− 1
2+d . Furthermore, assume that the cardinalities

|�n| and |�n| grow polynomially in n. For a data set D := ((x1, y1), . . . , (xn, yn)),
we define D1 := ((x1, y1), . . . , (xm, ym)) and D2 := ((xm+1, ym+1), . . . , (xn, yn)),
where m := �n

2� + 1 and n ≥ 4. We will use D1 as a training set by computing the
SVM decision functions

fD1,λ,σ := arg min
f ∈Hσ

λ‖f ‖2
Hσ

+RL,D1(f ), (λ, σ ) ∈ �n × �n

and use D2 to determine (λ, σ ) by choosing a (λD2, σD2) ∈ �n × �n such that

RL,D2(
ÛfD1,λD2 ,σD2

) = min
(λ,σ )∈�n×�n

RL,D2(
ÛfD1,λ,σ ).

Then, analogous to the proof of Theorem 3.3 in [25], by using Theorem 4.3 and
Example 4.5, one can show that for all ξ > 0, the TV-SVM producing the decision
functions fD1,λD2 ,σD2

learns with the above learning rates (4.17).
The next example discusses learning rates for SVMs for quantile regression. For

more information on such SVMs, we refer to [25, 57].

EXAMPLE 4.9 (Quantile regression with Gaussian kernels). Let Y := [−1,1],
Z := R

d × Y , and Z be geometrically (time-reversed) C(Z)-mixing processes
with C(Z) being L∞(Z), BV(Z), or Cb,α(Z). Moreover, let P be a distribu-
tion on Z and Q be the marginal distribution of P on R

d . Assume that X :=
suppQ ⊂ B�d

2
and that for Q-almost all x ∈ X, the conditional probability P(·|x)

is absolutely continuous w.r.t. the Lebesgue measure on Y and the conditional
densities h(·, x) of P(·|x) are uniformly bounded away from 0 and ∞; see
also [25], Example 4.5. Moreover, assume that Q is absolutely continuous w.r.t.
the Lebesgue measure on X with associated density g ∈ Lu(X) for some u ≥ 1.
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For τ ∈ (0,1), let f ∗
τ,P : Rd → R be a conditional τ -quantile function that satis-

fies f ∗
τ,P ∈ L2(R

d) ∩ Lip(Rd). In addition, we assume that f ∗
τ,P ∈ Bt

2s,∞ for some

t ≥ 1 and s ≥ 1 such that 1
s

+ 1
u

= 1. Then [54], Theorem 2.8, yields a variance
bound of the form

EP

(
Lτ ◦ Ûf − Lτ ◦ f ∗

τ,P

)2 ≤ V ·EP

(
Lτ ◦ Ûf − Lτ ◦ f ∗

τ,P

)
,

for all f : X → R, where V is a suitable constant and Lτ is the τ -pinball loss;
see [53], Example 2.43. Arguments similar to the proof of Example 4.7 shows that
the essentially optimal learning rate (4.17) can be achieved as well.

Note that the rate (4.17) is for the excess Lτ -risk, but since [54], Theorem 2.7,
shows ∥∥ Ûf − f ∗

τ,P

∥∥2
L2(PX) ≤ c

(
RLτ ,P( Ûf ) −R∗

Lτ ,P
)

for some constant c > 0 and all f : X → R, we actually obtain the same rates for
‖ Ûf − f ∗

τ,P ‖2
L2(PX). Last but not least, optimality and adaptivity can be discussed

along the lines of LS-SVMs.

4.3. Learning from dynamical systems. In this section, we consider two learn-
ing scenarios in which the observations are generated by some dynamical systems
plus some (possible) noise. In the following, � denotes a compact subset of Rd ,
(�,A,μ,T ) is a dynamical system, and X0 is an �-valued random variable de-
scribing the true but unknown state at time 0.

4.3.1. Binary classification on dynamical systems. Let us assume that our co-
variates X := (Xi)i≥0 are generated by a dynamical system (�,A,μ,T ), that is
Xi := T i , i ≥ 0, and that the binary labels Yi are randomly drawn depending on
the location Xi . To model this, let N := (εi)i≥0 be i.i.d. random variables that are
uniformly distributed on [0,1] and independent of X0. Then we model the label
generation by setting Yi := sign(η(Xi)− εi), i ≥ 0, where η : X → [0,1] is a fixed
function. In this case, we have

P(Yi = 1|Xi = xi) = Pε

(
η(xi) − εi > 0

) = Pε

(
εi < η(xi)

) = η(xi),

and thus also P(Yi = −1|Xi = xi) = 1 − η(xi). In other words, we can model
arbitrary label distributions by choosing a suitable η.

Now let ν be the uniform distribution on [0,1] and define the process Z =
(Zi)i≥0 on Z := � × [−1,1] by Zi := (Xi, Yi), i ≥ 0, and write P := (μ ⊗ ν)Z0 .
Recall that the Bayes function of the hinge loss for classification is f ∗

L,P (x) =
sign(η(x)−0.5) and since this is a step function, the best we can hope for is f ∗

L,P ∈
BV(�). Therefore, applying Theorem 4.3 only makes sense if Z is time-reversed
CZ -mixing with BV(Z) ⊂ CZ . Obviously, for the time-reversed φ-mixing case, the
process Z is also time-reversed φ-mixing, that is, time-reversed CZ -mixing with
BV(Z) ⊂ CZ = L∞(Z). Therefore, we obtain the same rate as (4.15). However,
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for time-reversed BV(Z)-mixing dynamical systems we unfortunately only know
that the process Z is time-reversed CZ -mixing with CZ = Lip(Z) ⊂ BV(Z) as the
next theorem shows.

THEOREM 4.10. Let � ⊂ R
d be compact and X as above be time-reversed

BV(�)-mixing with rate (dn). If maxε∈[0,1] ‖ sign(η(·) − ε)‖BV(�) < ∞, then Z is
time-reversed Lip(Z)-mixing with rate (cdn) for some constant c.

Therefore, if X is only time-reversed BV(�)-mixing, we cannot combine The-
orem 4.10 with the oracle inequality in Theorem 4.3 to obtain learning rates for the
hinge SVM. One way to resolve this issue is to use the least squares SVM instead,
as the following example shows.

EXAMPLE 4.11 (Least squares binary classification on dynamical systems us-
ing Gaussian kernels). Assume that the process Z defined above is geometri-
cally time-reversed C-mixing dynamical system with C = BV(�) an L be the least
square loss. Moreover, assume that η and P satisfy the assumptions on f ∗

L,P and
the distribution P in Example 4.7, respectively. Then, for all ξ > 0, the LS-SVM
using Gaussian RKHS Hσ and λn, σn as in (4.16) learns with rate

n− 2t
2t+d

+ξ .

If the distribution P has some noise exponent q ∈ [0,∞], then [8] implies that the
classification excess risk of the same SVM converges to zero with rate

n
− 2t (q+1)

(2t+d)(q+2)
+ξ

,

see also [53], Theorem 8.29.

4.3.2. Forecasting of dynamical systems. Our second scenario is the forecast-
ing problem of dynamical systems considered in [52]. To this end, let E > 0
and assume that all observations from the dynamical system T := (T n)n≥0 are
additively corrupted by some i.i.d., [−E,E]d -valued noise process E = (εn)n≥0
defined on the probability space (�,B, ν) which is (stochastically) independent
of T . Therefore, the process of all possible observations (Xn)n≥0 has the form
Xn = T n(X0) + εn. Given an observation of this process at some arbitrary time,
our goal is to forecast the next observable state. To do so, we will use the training
set D = ((X0,X1), . . . , (Xn−1,Xn)) to build a forecaster f D : Rd → R

d of the
form f D := (fD(1) , . . . , fD(d)) by training separately d different decision func-
tions fD(j) on the training sets

D(j) := ((
X0, πj (X1)

)
, . . . ,

(
Xn−1, πj (Xn)

))
,

which is obtained by projecting the output variable of D onto its j th-coordinate
via the coordinate projection πj : Rd →R.
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TABLE 1
C-mixing properties of the observed process (4.18) subject to properties of the underlying

dynamical system

Class of CT Smoothness of T Class of CZ

L∞ L∞ L∞
BV BV Lip
Cb,α Cb,α Lip
C1 C1 C1

For a fixed j ∈ {1, . . . , d}, we write X := � + [−E,E]d , Y := πj (X) and
Z := X × Y . Moreover, we define the X × Y -valued process Z = (Zn)n≥0 =
(Xn,Yn)n≥0 on (� × �,A⊗B,μ ⊗ ν) by

Xn := T n + εn and Yn := πj

(
T n+1 + εn+1

)
.(4.18)

In addition, we write P := (μ ⊗ ν)(X0,Y0).
The next result shows that for some specific time-reversed C-mixing dynamical

systems T , by imposing some restrictions on E , the process Z is time-reversed
CZ -mixing for some suitable CZ .

THEOREM 4.12. Let � ⊂ R
d be compact, T be time-reversed CT -mixing with

rate (dn), and Z be defined by (4.18). Moreover, assume that the [−E,E]2d -valued
process N = (Ni)i≥0 on (�,B, ν) defined by Ni(ϑ) = (εi(ϑ), εi+1(ϑ)), i ≥ 0, is
time-reversed CN -mixing with rate (dn). Then we have:

(i) If T ∈ BV(�), CT = BV(�), and CN = BV([−E,E]2d), then Z is time-
reversed Lip(Z)-mixing with rate (cdn) for some constant c.

(ii) If T ∈ Cb,α(�), CT = Cb,α(�), and CN = Cb,α([−E,E]2d), then Z is
time-reversed Lip(Z)-mixing with rate (cdn) for some constant c.

Analogously, other cases of T and CT from the literature can be proved. For
sake of clarity, we list them in the Table 1.

To formulate the oracle inequality for the forecasting problem, we need to intro-
duce the following concepts. First, for a decision function f : Rd → R

d , it is nec-
essary to introduce a loss function L : Rd → [0,∞) such that L(Xi − f (Xi−1))

gives a value for the discrepancy between the forecast f (Xi−1) and the observa-
tion of the next state Xi . Then the average forecasting performance is given by

RL,P (f ) :=
∫∫

L
(
T (x) + ε1 − f (x + ε0)

)
ν(dε)μ(dx),(4.19)

where ε = (εi)i≥0 and P := ν ⊗ μ. Naturally, we would like to have a Bayes
forecaster f ∗

L,P that attains the minimal L-risk

R∗
L,P := inf

{
RL,P (f )|f :Rd →R

d measurable
}
.
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We say that L can be clipped at M > 0, if, for all t = (t1, . . . , td) ∈ R
d , we

have L(Ût) ≤ L(t), where Ût = (Ût1, . . . ,Ûtd) denotes the clipped value of t at {±M}d .
Moreover, the loss function L is called separable, if there exists a distance-based
loss L : X × Y ×R → [0,∞) such that its representing function ψ : R → [0,∞)

has a unique global minimum at 0 and satisfies

L(r) = ψ(r1) + · · · + ψ(rd), r = (r1, . . . , rd) ∈R
d .(4.20)

For separable loss L, we have RL,P (f ) = ∑d
j=1 RL,P (fD(j) ) and RL,Dn(f D) =∑d

j=1 RL,D
(j)
n

(fD(j) ), where Dn, D(j)
n are the empirical measures associated to D,

D(j), respectively.
Finally, let L : Rd → [0,∞) be a clippable loss and F be a hypothesis set,

that is, a set of measurable functions f : X → R, with 0 ∈ F . A regularizer ϒ

on Fd , that is, a function ϒ : Fd → [0,∞), is also said to be separable, if there
exists a regularizer ϒ on F with ϒ(0) = 0 such that ϒ(f ) = ∑d

j=1 ϒ(fj ) for
f = (f1, . . . , fd). Then, for δ ≥ 0, a learning method whose decision functions
f Dn,ϒ ∈Fd satisfy

ϒ(f Dn,ϒ) +RL,Dn(
Ùf Dn,ϒ) ≤ inf

f ∈Fd

(
ϒ(f ) +RL,Dn(f )

) + δ(4.21)

for all n ≥ 1 and D ∈ (X × Y)dn is called δ-approximate clipped regularized em-
pirical risk minimization (δ-CR-ERM) with respect to L, Fd , and ϒ .

With all these preparations above, the oracle inequality for geometrically time-
reversed C-mixing dynamical systems with i.i.d. noises, can be stated as follow-
ing.

THEOREM 4.13. Let � ⊂ R
d be compact and the stationary stochastic pro-

cess Z := (Zn)n≥0 defined by (4.18) be geometrically time-reversed C-mixing.
Furthermore, let L :Rd → [0,∞) be a clippable and separable loss function with
the corresponding loss function L : X × Y ×R → [0,∞) satisfying the properties
described in this subsection and in Theorem 4.3. Finally, let ϒ : Fd → [0,∞) be
a separable regularizer and f 0 = (f 0

1 , . . . , f 0
d ) be a vector of functions with f 0

j

satisfying the assumptions on f0 in Theorem 4.3. Then, for all fixed f 0, ε > 0,
δ ≥ 0, τ ≥ 1, n ≥ n0 as in (4.9), and r ∈ (0,1] satisfying (4.10), every learning
method defined by (4.21) satisfies with probability μ⊗ν not less than 1−16de−τ :

ϒ(f Dn,ϒ) +RL,P (Ùf Dn,ϒ) −R∗
L,P

(4.22)
≤ 2ϒ(f 0) + 4RL,P (f 0) − 4R∗

L,P + 4dr + 5dε + 2δ.

Again, this general oracle inequality can be applied to SVMs. Here, we only
mention the following example.
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EXAMPLE 4.14 (Forecasting with LS-SVMs using Gaussian kernels). Let the
assumptions of Theorem 4.13 hold with CZ being L∞(Z), BV(Z), or Cb,α(Z).
Moreover, assume that the assumptions on the distribution P := (μ ⊗ ν)(X0,Y0)

and the components f ∗
j of the Bayes Forecaster f ∗

L,P = (f ∗
1 , . . . , f ∗

d ) are satisfied
as in Example 4.7. Then, for all ξ > 0, the LS-SVMs using Gaussian RKHS Hσ

and λn, σn as in (4.16) learns with rate n− 2t
2t+d

+ξ .

5. Experiments. Until now, our investigation has mainly been theoretical.
Unfortunately all our results contain some constants that may or may not influence
our bounds for moderately sized data sets. It is therefore reasonable to complement
our investigation by some empirical simulations.

EXAMPLE 5.1 (Empirical deviation from the mean for the logistic map). It is
well known that the logistic map T (x) = 4 · x · (1 − x), x ∈ (0,1), is geometrically
C-mixing with C = Lip(0,1); see, for example, [38], Theorem 4.7. Moreover, it
has the unique invariant Lebesgue density f (x) = (π

√
x(1 − x))−1, x ∈ (0,1);

see, for example, [33], Example 4.1.2. With start values from the corresponding
distribution, we generate n samples x1, . . . , xn from the logistic map. For a com-
parison, we further generate data x1, . . . , xn from the i.i.d. process that belongs to
the density f . Then we investigate the deviation

εn :=
∣∣∣∣∣1

n

n∑
i=1

h(xi) −Eh(xi)

∣∣∣∣∣(5.1)

for three different functions h, namely h1 = id(0,1),

h2 = (e − 1) · 1(0,1/3) + (
e3x − 1

) · 1[1/3,2/3) + (
e2 − 1

) · 1[2/3,1),

h3 = 3

2
· 1(0,1/4) + 9

4
· 1[1/4,1/2) + 15

4
· 1(1/2,3/4) + 9

2
· 1[3/4,1).

Notice that we have h1 ∈ C1(0,1), h2 ∈ Lip(0,1), while h3 ∈ BV(0,1). We repeat
the experiments 100 times for each n. In Figure 2, we see that in all these cases,
for large samples, the mean error (5.1) of the dynamical system and the i.i.d. pro-
cess have similar behaviour, but the deviations converge slightly faster in the i.i.d.
case.

5.1. Binary classification for the Gauss map on (0,1). The Gauss map
T (x) = (1/x)mod 1, x ∈ (0,1), is known to be geometrically C-mixing with
C = BV; see, for example, [38] or [6], Chapter 3, Theorem 4.4. Moreover, it
has the unique invariant Lebesgue density f (x) = 1/(log 2 · (1 + x)), x ∈ (0,1);
see again [38]. With start values from the distribution with density f , we gener-
ate n = 30,000 samples (x̃i) from the Gauss map and add i.i.d. Gaussian noises



732 H. HANG AND I. STEINWART

FIG. 2. The deviation εn in (5.1) for the functions h1 (left), h2 (middle) and h3 (right) and different
sample sizes n = 1000, 2500, 5000, 10,000.

εi ∼ N(0,0.032) to them. These noisy samples xi = x̃i + εi are then labeled as in
Section 4.3.1 using the function

η(x) := (
sin(6πx) + 1

)
/2.

Now our goals are to (a) classify the data sets with SVMs using the hinge loss and
(b) estimate the function 2η − 1 using the least square loss. We repeat the experi-
ments 10 times. Every time, the last ntest = 20,000 data points are used for testing
and the first ntrain data points are used for training including hyper-parameter se-
lection, where the candidate values for λ and σ are taken from a geometrically
spaced 10 by 10 grid using 5-fold cross validation. The resulting test errors are
box-plotted for both SVMs in Figure 3. In the pictures, we can see that the test er-

FIG. 3. Gauss map: Box-plots of test errors for an SVM with the hinge loss (left) and the least
squares loss (right). For the hinge loss SVM, the test error is calculated with the help of the clas-
sification loss, since for classification, one is actually interested in misclassification rate, which is
measured by the classification loss. The dotted lines indicate the Bayes error.
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rors are close to the Bayes errors. Moreover, as the training sample size increases,
the test errors indicate a decreasing trend.

5.2. Binary classification on Shub’s Solenoid. Here, we consider a solid torus
T

2 in R
3 whose points are represented by means of coordinates (θ, r, s), where

the angle θ ∈ [−π,π ], r and s are real numbers between −1 and 1 such that
r2 + s2 ≤ 1. For ε1 and ε2 satisfying 0 < ε2 < ε1 < 1/2, Shub’s Solenoid [49],
Example 4.9, is defined as the mapping T : T2 → T

2 with

T (θ, r, s) = (
(2θ)mod (2π), ε1 cos θ + ε2r, ε1 sin θ + ε2s

)
.

As an archetype for Axiom A diffeomorphisms or, uniformly hyperbolic systems,
Shub’s Solenoid is known to be geometrically time-reversed C-mixing with C =
Cb,α ; see [6], Chapter 4, and [7].

In our simulation, we select ε1 = 0.25 and ε2 = 0.125. With start values from
the uniform distribution on T

2, we generate n = 30,000 samples by iteration, add
i.i.d. Gaussian noise N(0,0.12) to them, and transform the data points from the
polar coordinates into Euclidean coordinates. Then we do two classification prob-
lems with the same set-up as in the previous example using

η1(x, y, z) := −x3

81
− y

6
− 2z2

27
+ 1,

η2(x, y, z) := exp
(
−x

6
− y2

9
− z2

36

)
− 1

2
.

The results are reported in Figure 4.

6. Proof of the key result. The following lemma, which may be of indepen-
dent interest, supplies the key to the proof of Theorem 3.1.

LEMMA 6.1. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed)
C-mixing process on the probability space (�,A,μ) with rate (dn)n≥0, and
P := μZ0 . Moreover, for f : Z → [0,∞), suppose that f ∈ C(Z) and write
fn := f (Zn). Finally, assume that we have natural numbers k and l satisfying

2l · ‖f ‖C · dk ≤ ‖f ‖L1(P ).(6.1)

Then we have

Eμ

l∏
j=0

fjk ≤ 2‖f ‖l+1
L1(P ).(6.2)

PROOF. The proof will be provided for two cases: C-mixing and time-reversed
C-mixing, separately.
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FIG. 4. Shub’s Solenoid: Box-plots of test errors for an SVM with the hinge loss (left) and least
squares loss (right). For the hinge loss SVM, the test error is again calculated with the help of the
classification loss. The upper two plots report the errors for η1 and the lower two plots report the
errors for η2. The dotted lines indicate the Bayes error.

(i) Suppose that the correlation inequality (2.7) holds. Obviously, the case f = 0
P -a.s. is trivial. For f 	= 0, we define

Dl :=
∣∣∣∣∣Eμ

l∏
j=0

fjk −
l∏

j=0

Eμfjk

∣∣∣∣∣.(6.3)

Then we have

Dl ≤
∣∣∣∣∣Eμ

((
l−1∏
j=0

fjk

)
flk

)
−

(
Eμ

l−1∏
j=0

fjk

)
Eμflk

∣∣∣∣∣
+

∣∣∣∣∣
(
Eμ

l−1∏
j=0

fjk

)
Eμflk −

l∏
j=0

Eμfjk

∣∣∣∣∣ =: D(1)
l + D

(2)
l .
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Since the stochastic process Z is stationary, the decay of correlations (2.7) together
with ψ := ∏l−1

j=0 fjk , h := f , and the assumption f ≥ 0 yields

D
(1)
l ≤

∥∥∥∥∥
l−1∏
j=0

fjk

∥∥∥∥∥
L1(μ)

‖f ‖Cdk =
∣∣∣∣∣Eμ

l−1∏
j=0

fjk

∣∣∣∣∣‖f ‖Cdk

≤
(∣∣∣∣∣Eμ

l−1∏
j=0

fjk −
l−1∏
j=0

Eμfjk

∣∣∣∣∣ +
l−1∏
j=0

Eμfjk

)
‖f ‖Cdk

= (
Dl−1 + ‖f ‖l

L1(P )

)‖f ‖Cdk.

Moreover, for the second term, we find

D
(2)
l =

∣∣∣∣∣
(
Eμ

l−1∏
j=0

fjk

)
Eμflk −

(
l−1∏
j=0

Eμfjk

)
Eμflk

∣∣∣∣∣
= ‖f ‖L1(P )Dl−1.

These estimates together imply that

Dl = D
(1)
l + D

(2)
l ≤ (

Dl−1 + ‖f ‖l
L1(P )

)‖f ‖Cdk + ‖f ‖L1(P )Dl−1
(6.4)

= (‖f ‖L1(P ) + ‖f ‖Cdk

)
Dl−1 + ‖f ‖C‖f ‖l

L1(P )dk.

In the following, we will show by induction that the latter estimate implies

Dl ≤ ‖f ‖L1(P )

((‖f ‖L1(P ) + ‖f ‖Cdk

)l − ‖f ‖l
L1(P )

)
.(6.5)

When l = 1, (6.5) is true because of (2.7). Now let l ≥ 1 be given and suppose
(6.5) is true for l. Then (6.4) and (6.5) imply

Dl+1 ≤ (‖f ‖L1(P ) + ‖f ‖Cdk

)
Dl + ‖f ‖C‖f ‖l+1

L1(P )dk

≤ (‖f ‖L1(P ) + ‖f ‖Cdk

)(‖f ‖L1(P )

((‖f ‖L1(P ) + ‖f ‖Cdk

)l − ‖f ‖l
L1(P )

))
+ ‖f ‖C‖f ‖l+1

L1(P )dk

= ‖f ‖L1(P )

((‖f ‖L1(P ) + ‖f ‖Cdk

)l+1 − ‖f ‖l+1
L1(P )

)
.

Thus, (6.5) holds for l + 1, and the proof of the induction step is complete. By the
principle of induction, (6.5) is thus true for all l ≥ 1.

Using the binomial formula, we obtain

Dl ≤ ‖f ‖L1(P )

(
l∑

i=0

(
l

i

)
‖f ‖l−i

L1(P )

(‖f ‖Cdk

)i − ‖f ‖l
L1(P )

)
.
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For i = 0, . . . , l we now set ai := (l
i

)‖f ‖l−i
L1(P )(‖f ‖Cdk)

i . Then the assumption
(6.1) implies for i = 0, . . . , l − 1

ai+1

ai

=
( l
i+1

)‖f ‖l−i−1
L1(P ) (‖f ‖Cdk)

i+1(l
i

)‖f ‖l−i
L1(P )(‖f ‖Cdk)i

=
l!

(i+1)!(l−i−1)!
l!

i!(l−i)!

‖f ‖Cdk

‖f ‖L1(P )

= l − i

i + 1

‖f ‖Cdk

‖f ‖L1(P )

≤ l · ‖f ‖C
‖f ‖L1(P )

· dk ≤ 1

2
.

This gives ai ≤ 2−ia0 for all i = 0, . . . , l, and consequently we have

l∑
i=0

ai = a0 +
l∑

i=1

ai ≤ a0 +
l∑

i=1

2−ia0 = a0 ·
(

l∑
i=1

2−i

)
≤ 2a0.

This implies

Dl ≤ ‖f ‖L1(P )

(
l∑

i=0

ai − ‖f ‖l
L1(P )

)
≤ ‖f ‖L1(P )

(
2a0 − ‖f ‖l

L1(P )

)

= ‖f ‖L1(P )

(
2‖f ‖l

L1(P ) − ‖f ‖l
L1(P )

) = ‖f ‖l+1
L1(P ).

Using the definition of Dl , we thus obtain the assertion (6.2).
(ii) Suppose that the correlation inequality (2.8) holds. Again, the case f = 0

P -a.s. is trivial. For f 	= 0, we estimate Dl defined as in (6.3) in a slightly different
way from above:

Dl ≤
∣∣∣∣∣Eμ

(
f0

(
l∏

j=1

fjk

))
−Eμf0

(
Eμ

l∏
j=1

fjk

)∣∣∣∣∣
+

∣∣∣∣∣Eμf0

(
Eμ

l∏
j=1

fjk

)
−

l∏
j=0

Eμfjk

∣∣∣∣∣.
The rest of the argument is quite similar to that of (i), and the assertion is proved.

�

To prove Theorem 3.1, we need to introduce some notation. In the following,
for t ∈ R, �t� is the largest integer n satisfying n ≤ t , and similarly, �t� is the
smallest integer n satisfying n ≥ t . We now introduce a “lattice method”. To this
end, we partition the set {1,2, . . . , n} into k sublattices. Each sublattice will contain
approximatively l := �n/k� terms. Let r := n−k · l < k denote the remainder when
we divide n by k. Define Ii , the indexes of terms in the ith sublattice, as

Ii =
{{i, i + k, . . . , i + lk}, if 1 ≤ i ≤ r,{

i, i + k, . . . , i + (l − 1)k
}
, if r + 1 ≤ i ≤ k.
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Note that the number of the terms |Ii | equals l + 1 for 1 ≤ i ≤ r , and equals l

for r + 1 ≤ i ≤ k. Furthermore, for j = 1, . . . , n, we write hj := h(Zj ), and for
i = 1,2, . . . , k, we define the ith sublattice sum as

gi := ∑
j∈Ii

hj = ∑
j∈Ii

h(Zj )(6.6)

such that

Sn =
n∑

j=1

hj =
k∑

i=1

gi.(6.7)

Finally, for i = 1,2, . . . , k, define

pi := |Ii |
n

.(6.8)

The following three lemmas will derive the upper bounds for the expected value
of the exponentials of Sn.

LEMMA 6.2. Let Z := (Zn)n≥0 be a Z-valued stationary stochastic process
on the probability space (�,A,μ) and P := μZ0 . Moreover, let k and l be defined
as above, and for a bounded h : Z → R we define gi and Sn by (6.6) and (6.7),
respectively. Then, for all t > 0, we have

Eμ exp
(
t
Sn

n

)
≤

k∑
i=1

piEμ exp
(
t

gi

|Ii |
)
.

PROOF. The convexity of the exponential function together with
∑k

i=1 pi = 1,
(6.7), and (6.8) yields

Eμ exp
(
t
Sn

n

)
= Eμ exp

(
k∑

i=1

tpi

gi

|Ii |
)

≤
k∑

i=1

piEμ exp
(
t

gi

|Ii |
)
.

�

LEMMA 6.3. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-
mixing process on the probability space (�,A,μ) with rate (dn)n≥0, and P :=
μZ0 . Moreover, for h : Z → [0,∞), we write hn := h(Zn). Finally, let k and l be
defined as above. Then, for all t > 0 satisfying

e
t

|Ii |h ∈ C(Z) and 2l · ∥∥e t
|Ii |h

∥∥
C · dk ≤ ∥∥e t

|Ii |h
∥∥
L1(P ),(6.9)

we have

Eμ exp
(
t

gi

|Ii |
)

≤ 2
(
EP exp

(
t

h

|Ii |
))|Ii |

.
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PROOF. The ith sublattice sum gi in (6.6) depends only on hi+jk with j rang-
ing from 0 through |Ii |−1. Since Z is stationary, Lemma 6.1 with f := exp( t

|Ii |h)

then yields

Eμ exp
(
t

gi

|Ii |
)

= Eμ exp

(
t

|Ii |
|Ii |−1∑
j=0

hi+jk

)
= Eμ exp

(
t

|Ii |
|Ii |−1∑
j=0

hjk

)

= Eμ

|Ii |−1∏
j=0

exp
(

t

|Ii |hjk

)
≤ 2

(
EP exp

(
t

h

|Ii |
))|Ii |

.
�

LEMMA 6.4. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-
mixing process on the probability space (�,A,μ) with rate (dn)n≥0, and P :=
μZ0 . Moreover, for h : Z → [0,∞), we write hn := h(Zn) and suppose that EP h =
0, ‖h‖ ≤ A, ‖h‖∞ ≤ B , and EP h2 ≤ σ 2 for some A > 0, B > 0 and σ ≥ 0. Finally,
let k and l be defined as above. Then, for all i = 1, . . . , k, and all t > 0 satisfying
0 < t < 3l/B and (6.9), we have

Eμ exp
(
t

gi

|Ii |
)

≤ 2 exp
(

t2σ 2

2(l − tB/3)

)
.(6.10)

PROOF. Because of ‖h‖∞ ≤ B and 2 · 3j−2 ≤ j !, we obtain

exp
(

t

|Ii |h
)

= 1 + t

|Ii |h +
∞∑

j=2

(
t

|Ii |
)j hj

j !

≤ 1 + t

|Ii |h +
∞∑

j=2

(
t

|Ii |
)j h2Bj−2

2 · 3j−2

= 1 + t

|Ii |h + 1

2

(
t

|Ii |
)2

h2
∞∑

j=2

(
tB

3|Ii |
)j−2

= 1 + t

|Ii |h + 1

2

(
t

|Ii |
)2

h2 1

1 − tB/(3|Ii |)
if tB/(3|Ii |) < 1. This, together with EP h = 0, 1 + x ≤ ex , and l ≤ |Ii | ≤ l + 1,
implies(

EP exp
(
t

h

|Ii |
))|Ii | ≤

(
1 + 1

2

(
t

|Ii |
)2

σ 2 1

1 − tB/(3|Ii |)
)|Ii |

≤
(

exp
(

1

2

(
t

|Ii |
)2

σ 2 1

1 − tB/(3|Ii |)
))|Ii |

= exp
(

t2σ 2

2(|Ii | − tB/3)

)
≤ exp

(
t2σ 2

2(l − tB/3)

)
,
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since the assumed tB/(3l) < 1 implies tB/(3|Ii |) < 1. Lemma 6.3 then yields the
assertion (6.10). �

PROOF OF THEOREM 3.1. For k and l as above, we define

t := lε

σ 2 + εB/3
.(6.11)

Then we have

t

|Ii | ≤ t

l
= ε

σ 2 + εB/3
≤ ε

εB/3
= 3

B
.(6.12)

In particular, this t satisfies 0 < t < 3l/B . Moreover, we find∥∥∥∥exp
(

t

|Ii |h
)∥∥∥∥∞

≤ exp
(

3

B
· B

)
= e3.(6.13)

Then the assumption (2.3) together with the bounds (6.13) and (6.12) implies∥∥∥∥exp
(

t

|Ii |h
)∥∥∥∥ ≤

∥∥∥∥exp
(

t

|Ii |h
)∥∥∥∥∞

∥∥∥∥ t

|Ii |h
∥∥∥∥ ≤ e3 · t

|Ii |‖h‖ ≤ 3e3A

B
.(6.14)

Since −B ≤ h ≤ B , we further find∥∥∥∥exp
(

t

|Ii |h
)∥∥∥∥

L1(P )

= EP exp
(

t

|Ii |h
)

≥ exp
(

3

B
· (−B)

)
= e−3.(6.15)

Now we choose k := �(logn)
2
γ � + 1, which implies k ≥ (logn)

2
γ . On the other

hand, since (logn)
2
γ ≥ 1 for n ≥ n0 ≥ 3, we have k ≤ 2(logn)

2
γ . This implies

l = n − r

k
≥ n

k
− 1 ≥ 1

2

n

(logn)
2
γ

− 1 ≥ 1

4

n

(logn)
2
γ

,(6.16)

since we have n ≥ 4(logn)
2
γ for n ≥ n0. Now, by (6.13), (6.14), (6.15), (2.6) and

(3.1) we obtain

l · ‖e t
|Ii |h‖C

‖e t
|Ii |h‖L1(P )

· dk ≤ l · ‖e t
|Ii |h‖∞ + ‖e t

|Ii |h‖
‖e t

|Ii |h‖L1(P )

· c · exp
(−bkγ )

≤ n · e3 + 3e3A
B

e−3 · c · exp
(−b(logn)2)

(6.17)

≤ n · 404c(3A + B)

B
· exp

(
−b logn · 3

b

)

≤ n · n2

2
· n−3 = 1

2
,
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that is, the assumption (6.9) is valid.
Summarizing, the value of t defined as in (6.11) satisfies 0 < t < 3l/B and

the assumption (6.9). In other words, all the requirements on t in Lemma 6.4 are
satisfied. Now, for this t , by using Markov’s inequality, Lemmas 6.2 and 6.4, we
obtain for any ε > 0,

P

(
Sn

n
> ε

)
≤ exp(−tε)Eμ exp

(
t
Sn

n

)

≤ exp(−tε)

k∑
i=1

piEμ exp
(
t

gi

|Ii |
)

(6.18)

≤ exp(−tε) · 2 exp
(

t2σ 2

2(l − tB/3)

) k∑
i=1

pi

= 2 exp
(
−tε + t2σ 2

2(l − tB/3)

)
.

Substituting the definition of t into the exponent of inequality (6.18) and then using
the estimate (6.16), we get

−tε + t2σ 2

2(l − tB/3)
= − lε2

σ 2 + εB/3
+ l2ε2

(σ 2 + εB/3)2 · σ 2

2(l − lεB/3
σ 2+εB/3

)

= −lε2

2(σ 2 + εB/3)
≤ − nε2

8(logn)
2
γ (σ 2 + εB/3)

.

Thus, inequality (3.2) is proved. Setting τ := nε2

8(logn)2/γ (σ 2+εB/3)
in (3.2), simple

transformations and estimations then yield inequality (3.3). �

SUPPLEMENTARY MATERIAL

Supplement to “A Bernstein-type inequality for some mixing processes
and dynamical systems with an application to learning” (DOI: 10.1214/16-
AOS1465SUPP; .pdf). The supplement [28] contains an Appendix, in which we
provide the proofs for Sections 2 and 4.
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