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MULTIPLE TESTING OF LOCAL MAXIMA FOR DETECTION
OF PEAKS IN RANDOM FIELDS1

BY DAN CHENG AND ARMIN SCHWARTZMAN

University of California, San Diego

A topological multiple testing scheme is presented for detecting peaks in
images under stationary ergodic Gaussian noise, where tests are performed
at local maxima of the smoothed observed signals. The procedure general-
izes the one-dimensional scheme of Schwartzman, Gavrilov and Adler [Ann.
Statist. 39 (2011) 3290–3319] to Euclidean domains of arbitrary dimension.
Two methods are developed according to two different ways of computing
p-values: (i) using the exact distribution of the height of local maxima, avail-
able explicitly when the noise field is isotropic [Extremes 18 (2015) 213–
240; Expected number and height distribution of critical points of smooth
isotropic Gaussian random fields (2015) Preprint]; (ii) using an approxima-
tion to the overshoot distribution of local maxima above a pre-threshold, ap-
plicable when the exact distribution is unknown, such as when the stationary
noise field is nonisotropic [Extremes 18 (2015) 213–240]. The algorithms,
combined with the Benjamini–Hochberg procedure for thresholding p-values,
provide asymptotic strong control of the False Discovery Rate (FDR) and
power consistency, with specific rates, as the search space and signal strength
get large. The optimal smoothing bandwidth and optimal pre-threshold are
obtained to achieve maximum power. Simulations show that FDR levels are
maintained in nonasymptotic conditions. The methods are illustrated in the
analysis of functional magnetic resonance images of the brain.

1. Introduction. Detection of sparse localized signals embedded in smooth
noise is a fundamental problem in image analysis, with applications in many sci-
entific areas such as neuroimaging [20, 37, 39], microscopy [16, 19] and astron-
omy [7]. The key issue is to find a threshold to determine significant regions. This
paper treats the thresholding problem as a multiple testing problem where tests
are performed at local maxima of the observed image, allowing error rates and
detection power to be topologically and geometrically defined in terms of detected
spatial peaks, rather than pixels or voxels.

In neuroimaging, Keith Worsley pioneered the use of random field theory, es-
pecially the Euler characteristic heuristic, to approximate the null distribution of
the global maximum of the observed image to control the family-wise error rate

Received May 2014; revised February 2016.
1Supported in part by NIH Grant R01-CA157528.
MSC2010 subject classifications. Primary 62H35; secondary 62H15.
Key words and phrases. False discovery rate, Gaussian random field, kernel smoothing, image

analysis, overshoot distribution, selective inference, topological inference.

529

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/16-AOS1458
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


530 D. CHENG AND A. SCHWARTZMAN

(FWER) of detected voxels [37, 39, 40]. On the other hand, initial attempts to con-
trol the false discovery rate (FDR), desirable for being less conservative, ignored
the spatial structure in the data [20, 24]. Recognizing the need to make inferences
about connected regions rather than voxels in imaging applications, multiple test-
ing methods have since been developed for pre-defined regions [5, 21, 35] and for
the harder problem of detecting unknown clusters [25, 26, 42]. It has been argued,
however, that localized signal regions often present themselves as peaks in the im-
age intensity profile, inviting a more powerful analysis based on local maxima of
the observed data as the features of interest [13, 14, 28].

Schwartzman, Gavrilov and Adler [30] formalized peak detection by introduc-
ing a multiple testing paradigm where local maxima of the smoothed data are
tested for significance. That work, was limited to one-dimensional spatial and
temporal domains because the distribution of the height of local maxima, a key
ingredient for calculation of p-values, has historically been known in closed-form
only for one-dimensional stationary Gaussian processes [15]. Recently, however,
Cheng and Schwartzman [10, 11] have obtained exact expressions for the height
distribution of local maxima of isotropic Gaussian fields and an approximation to
the overshoot distribution of local maxima of constant-variance Gaussian fields
by applying techniques from random matrices theory [18]. These crucial develop-
ments allow us in the current paper to extend the multiple testing method of [30]
to Euclidean domains of higher dimension.

Our “smoothing and testing of maxima” (STEM) algorithm consists of the fol-
lowing steps:

1. Kernel smoothing: to increase the signal-to-noise ratio (SNR) [33, 38].
2. Candidate peaks: find local maxima of the smoothed field above a pre-

threshold.
3. P-values: computed at each local maximum under the null hypothesis of no

signal in a local neighborhood.
4. Multiple testing: apply a multiple testing procedure and declare as detected

peaks those local maxima whose p-values are significant.

The main conceptual difference with the algorithm of Schwartzman, Gavrilov
and Adler [30], in addition to being multidimensional, is the introduction of a
height pre-threshold in step 2. Pre-thresholding is often used in neuroimaging to
reduce the number of candidate peaks or regions [42]. Considered formally here,
it leads to two ways of applying the above algorithm. If the exact distribution of
the height of local maxima for computing p-values in step 3 is known, such as for
isotropic fields [10, 11], it is shown here that it is best not to apply pre-thresholding
at all. However, if the height distribution is unknown, as is the case to date for
nonisotropic fields, then pre-thresholding is still valuable in that it enables the use
of an approximation of the overshoot distribution of local maxima instead [10]. In
step 4, for concreteness, we focus on the Benjamini–Hochberg (BH) procedure [6]
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FIG. 1. Raw signal μ(t) with six true peaks of different shapes and simulated Gaussian noise z(t)

produce the observed field y(t) and smoothed field yγ (t). Out of 77 local maxima of yγ (t) (candidate
peaks), the BH detection threshold at FDR level 0.2 selects six (significant peaks), one of which is a
false positive. In this case, five out of six true peaks are detected.

for controlling FDR, although other procedures and error criteria could be used.
The algorithm is illustrated by a toy example in Figure 1.

Following the reasoning of Schwartzman, Gavrilov and Adler [30], it is shown
here that if the noise field is stationary and ergodic, then the proposed algorithm
with the BH procedure provides asymptotic control of FDR and power consis-
tency as both the search domain and the signal strength get large, the latter need-
ing to grow only faster than the square root of the log of the former. The large
domain assumption helps resolve an interesting aspect of inference for local max-
ima, namely the fact that the number of tests, equal to the number of observed
local maxima, is random. The multiple testing literature usually assumes that the
number of tests is fixed (an exception in a similar random processes setting is
Siegmund, Zhang and Yakir [31]). The large domain assumption implies that, by
ergodicity, the number of tests behaves asymptotically as its expectation. On the
other hand, the strong signal assumption asymptotically eliminates the false posi-
tives caused by the smoothed signal spreading into the null regions, causing each
signal peak region to be represented by only one observed local maximum within
the true domain with probability tending to one. Simulations show that FDR levels
are maintained and high power is achieved at finite search domains and moderate
signal strength. We also find that the optimal smoothing kernel is approximately
that which is closest in shape and bandwidth to the signal peaks to be detected,
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akin to the matched filter theorem in signal processing [29, 32]. This bandwidth is
much larger than the usual optimal bandwidth in nonparametric regression.

The results in this paper supercede those of Schwartzman, Gavrilov and Adler
[30] in the sense that the latter can be seen as special cases when the domain is
of one dimension and no pre-thresholding is applied. This paper provides specific
rates for the asymptotic results, not available in [30], as well as a more rigorous
discussion of the optimal smoothing bandwidth. In addition, a multiscale proce-
dure is proposed that allows searching over a finite set of bandwidths, eliminating
the need to select a single optimal bandwidth. On the contrary, the procedure is
adaptive to peaks of different spatial extents so that power is increased without
compromising error control.

A similar idea on multiple testing of local maxima was also proposed by Chum-
bley et al. [14], which we shall refer to as CWFF following the authors’ names.
The statistical inference there, however, is unclear, as there is no formal definition
of false positives (the signal is assumed to be nonzero over the entire domain) and
no argument for error control. Moreover, p-values for local maxima are computed
using an approximate formula for the overshoot distribution based on the expected
Euler characteristic, requiring both a pre-threshold and a pre-selected domain (see
equations (1) and (2) in [14]). Our work is more rigorous not only in terms of error
control, but also in using the exact height distribution of local maxima for comput-
ing p-values in isotropic Gaussian fields and a more accurate approximation of the
overshoot distribution. Our overshoot distribution does not require a pre-selected
domain because it only depends on local properties of the field [10]. Furthermore,
the pre-threshold is optimized to maximize power.

In a broader statistical context, the STEM algorithm falls in the general cate-
gory of selective inference, where inference is performed after selection [17, 22].
Similar to other high dimensional data problems, here too the number of tests is
reduced by selecting particular features observed in the data, namely the observed
local maxima. To be valid, the inference must take into account the selection pro-
cess. This is done here by using the proper height distribution of local maxima [10,
11] mentioned above. A related p-value computation for the global maximum, also
using the Kac–Rice formula, is given in [36].

Following the neuroimaging motivation, we show in this paper how inference
for local maxima via the STEM algorithm can be used to find areas of brain activity
in functional magnetic resonance imaging (fMRI). Specifically, we use a public
fMRI data set from an experiment whose goal is to find brain regions that relate
to inference of other people’s mental states, in particular false beliefs about reality
[23]. Following the usual fMRI analysis protocol, a linear regression is fitted at
each voxel and then the STEM algorithm is used to make inferences about the
contrast of interest as a random field.

The proofs for all the lemmas and theorems in this paper can be found in the
online supplementary material [9]. The data analysis and all simulations were im-
plemented in Matlab.
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2. The multiple testing scheme.

2.1. The model. Consider the signal-plus-noise model

(1) y(t) = μ(t) + z(t), t ∈ R
N,

where the signal μ(t) is composed of unimodal positive peaks of the form

μ(t) =
∞∑

j=−∞
ajhj (t), aj > 0,

and the peak shape hj (t) ≥ 0 has compact connected support Sj = {t : hj (t) > 0}
and unit action

∫
Sj

hj (t) dt = 1 for each j . Let w(t) ≥ 0 be a unimodal kernel with
compact connected support, mode at the origin and unit action, and let wγ (t) =
w(t/γ )/γ N with bandwidth parameter γ > 0. Convolving the process (1) with the
kernel wγ (t) results in the smoothed random field

(2) yγ (t) = wγ (t) ∗ y(t) =
∫
RN

wγ (t − s)y(s) ds = μγ (t) + zγ (t),

where the smoothed signal and smoothed noise are defined as

(3) μγ (t) = wγ (t) ∗ μ(t) =
∞∑

j=−∞
ajhj,γ (t), zγ (t) = wγ (t) ∗ z(t).

The smoothed noise zγ (t) defined by (2) and (3) is assumed to be a zero-mean
thrice differentiable stationary Gaussian field such that for any nonnegative inte-
gers k1, . . . , kN with

∑N
i=1 ki = k ∈ {0,1,2,3,4},

(4)
∫
R

N+

∣∣∣∣ ∂krγ (t)

∂t
k1
1 · · · ∂t

kN

N

∣∣∣∣dt < ∞,

where R
N+ = [0,∞)N and rγ (t) = E[zγ (t)zγ (0)]. The technical condition (4) is

needed for obtaining the rates of FDR control and power consistency below, and by
taking k = 0, it implies the ergodicity of zγ (t) [15]. It requires that the derivatives
of the covariance function of the smoothed field zγ (t) should not decay too slowly.
This can be easily obtained by using a Gaussian kernel wγ (t) in (2), regardless of
the smoothness of the original noise.

For each j , the smoothed peak shape hj,γ (t) = wγ (t) ∗ hj (t) ≥ 0 is unimodal
and has compact connected support Sj,γ and unit action. For each j , we require
that hj,γ (t) is twice differentiable in the interior of Sj,γ and has no other critical
points within its support. For simplicity, the theory requires that the supports Sj,γ

do not overlap although this is not crucial in practice.
Let τj,γ ∈ Sj be the unique point where the peak shape hj,γ (t) attains its maxi-

mum. We impose the following uniformity assumptions on the signal:

(1) supj |Sj,γ | < ∞ and infj Mj,γ > 0, where Mj,γ = hj,γ (τj,γ ).
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FIG. 2. An artificial example of unimodal functions hj (t) (left) and hj,γ (t) (right) allowed by our

signal model. Here, hj,γ (t) is concave within Imode
j,γ (interior of the black circle) and has no critical

points outside Imode
j,γ , yet its level curves are not all convex.

(2) There exists a universal δ > 0 such that Imode
j,γ := {t ∈ R

N : ‖t − τj,γ ‖ ≤ δ} ⊂
Sj for all j , Cγ = infj Cj,γ > 0 and Dγ = infj Dj,γ > 0, where

Cj,γ = inf
t∈I side

j,γ

∥∥∇hj,γ (t)
∥∥, I side

j,γ = Sj,γ \ Imode
j,γ ,

Dj,γ = − sup
t∈Imode

j,γ

sup
‖x‖=1

xT ∇2hj,γ (t)x.

Here, ∇f and ∇2f denote respectively the gradient and Hessian of a function f .
Assumption (1) indicates that the sizes of the supports Sj,γ are bounded and

that the heights of the peaks of hj,γ are uniformly positive. In assumption (2),
the condition on Cj,γ indicates that, uniformly for all j , hj,γ (t) has no criti-
cal points outside a ball Imode

j,γ centered at its mode. The condition on Dj,γ in-

dicates that, uniformly for all j , hj,γ (t) is strictly concave within Imode
j,γ ; the

quantity sup‖x‖=1 xT ∇2hj,γ (t)x is the largest (negative) eigenvalue of the ma-
trix ∇2hj,γ (t). These conditions allow for a large variety of unimodal functions
which need not be concave within their support and whose level curves need not
be convex. Figure 2 shows an example.

2.2. The STEM algorithm. Suppose we observe y(t) defined by (1) in the cube
of length L centered at the origin, denoted by U(L) = (−L/2,L/2)N , and sup-
pose it contains J peaks. We call the following procedure STEM (Smoothing and
TEsting of Maxima).

ALGORITHM 1 (STEM algorithm).

1. Kernel smoothing: Construct the field (2), ignoring the effects on the boundary
of U(L).

2. Candidate peaks: For a fixed pre-threshold v ∈ [−∞,∞), find the set of local
maxima exceeding level v for yγ (t) in U(L)

(5) T̃γ (v) = {
t ∈ U(L) : yγ (t) > v,∇yγ (t) = 0,∇2yγ (t) ≺ 0

}
,
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where ∇2yγ (t) ≺ 0 means that the Hessian matrix is negative definite.
3. P-values: For each local maximum t ∈ T̃γ (v) with observed height yγ (t), com-

pute the p-value pγ (t, v) for testing

(6)
H0(t) : {∃δ0 > 0 such that μ(s) = 0 for all s ∈ B(t, δ0)

}
vs.

HA(t) : {∀δ0 > 0, μ(s) > 0 for some s ∈ B(t, δ0)
}
,

where B(t, δ0) is a ball of radius δ0 centered at t .
4. Multiple testing: Let m̃γ (v) = #{t ∈ T̃γ (v)} be the number of tested hypotheses.

Apply a multiple testing procedure on the set of m̃γ (v) p-values {pγ (t, v), t ∈
T̃γ (v)}, and declare significant all local maxima whose p-values are smaller
than the significance threshold.

Steps 1 and 2 above are well defined under the model assumptions. In the con-
text of selective inference, Step 2 is the selection step, such that only the random
locations in (5) observed to attain local maxima are selected for testing. The com-
putation of valid p-values in Step 3 accounts for this selection by using the proper
conditional distribution, as detailed in Sections 3 and 4 below. For Step 4, we use
the BH procedure to control FDR (Section 3.2). Notice that, in contrast to the usual
BH procedure, the number of tests m̃γ (v) is random.

When v = −∞, we regard T̃γ = T̃γ (−∞) as the set of local maxima of yγ (t)

in U(L). In such case, Algorithm 1 becomes an N -dimensional version of the
STEM algorithm proposed in [30] for one-dimensional domains. When v > −∞,
an option not available in [30], Algorithm 1 provides a different way of selecting
candidate peaks and computing p-values by choosing a pre-threshold v. In partic-
ular, this provides an efficient way to approximate the p-values for stationary and
nonisotropic Gaussian noise (Section 4).

2.3. Error definitions. As in [30], because the location of truly detected peaks
may shift as a result of noise, a significant local maximum is called a true positive
if it falls anywhere inside the support of a true peak; otherwise, it is called a false
positive. This definition is consistent with (6).

Define the signal region S1 = ⋃J
j=1 Sj and null region S0 = U(L) \ S1. For a

significance threshold u above the pre-threshold v, the total number of detected
peaks and the number of falsely detected peaks are

(7) Rγ (u) = #
{
t ∈ T̃γ (u)

}
and Vγ (u) = #

{
t ∈ T̃γ (u) ∩ S0

}
,

respectively. Both are defined as zero if T̃γ (u) is empty. The FDR is defined as the
expected proportion of falsely detected peaks

(8) FDRγ (u) = E
{

Vγ (u)

Rγ (u) ∨ 1

}
.
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Kernel smoothing enlarges the signal support and increases the probability
of obtaining false positives in the null regions neighboring the signal [26]. De-
fine the smoothed signal region S1,γ = ⋃J

j=1 Sj,γ ⊃ S1 and smoothed null region
S0,γ = U(L) \S1,γ ⊂ S0. We call the difference between the expanded signal sup-
port and the true signal support the transition region Tγ = S1,γ \ S1 = S0 \ S0,γ =⋃J

j=1 Tj,γ , where Tj,γ = Sj,γ \ Sj is the transition region corresponding to each
peak j . While the transition region does not appear explicitly in the theorems be-
low, it does play a crucial role in their proofs (online supplementary material).

In general, more than one significant local maximum may be obtained within
the domain of a true peak, affecting the interpretation of definition (8). However,
this has no effect asymptotically because, as shown in the proof of Theorem 3 be-
low, each true peak is represented by exactly one local maximum of the smoothed
observed field with probability tending to 1.

2.4. Power. We define the power of Algorithm 1 as the expected fraction of
true discovered peaks

(9) Powerγ (u) = E

(
1

J

J∑
j=1

1{T̃γ (u)∩Sj �=∅}

)
= 1

J

J∑
j=1

Powerj,γ (u),

where Powerj,γ (u) is the probability of detecting peak j

(10) Powerj,γ (u) = P
(
T̃γ (u) ∩ Sj �= ∅

)
.

The indicator function in (9) ensures that only one significant local maximum is
counted within the same peak support, so power is not inflated. Again, this has no
effect asymptotically because each true peak is represented by exactly one local
maximum of the smoothed observed process with probability tending to 1.

3. Detection of peaks by the height distribution of local maxima.

3.1. P-values. For any local maximum t ∈ T̃γ (v) with observed height yγ (t),
its p-value in step 3 of Algorithm 1 is the probability, under the null hypothesis (6),
that such a height is observed given that t has been selected as an observed local
maximum. As recognized in selective inference [17, 22, 36], the p-value must be
computed as a conditional probability given the selection event. Specifically, the
p-value is pγ (t, v) = Fγ (yγ (t), v), t ∈ T̃γ (v), where

(11) Fγ (u, v) = P
(
zγ (t) > u|t ∈ T̃γ (v)

)
denotes the right tail probability of the smoothed noise field zγ (t) at the local
maximum t ∈ T̃γ (v). By convention, when v = −∞, denote

(12) Fγ (u) = Fγ (u,−∞).
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As shown in [10], the distribution (11) depends only on the local properties of the
field zγ at t . Therefore, the probability (11) is the same as that under the complete
null model μ(s) = 0 for all s ∈ U(L), simplifying the calculations.

The conditional distribution (11) is a Palm distribution [3], Chapter 6, and re-
quires careful evaluation because the conditioning event has probability zero. Un-
like the marginal distribution of zγ (t), it is not Gaussian but stochastically greater.
Generally, for a constant-variance Gaussian field, there is an implicit formula for
Fγ (·, v) [10]. Theorem 2 below ([10], [3]) provides an implicit formula for Fγ (·, v)

for stationary Gaussian fields.

THEOREM 2. Suppose the assumptions of Section 2.1 hold and that μ(t) = 0,
∀t . Let m̃0,γ (U(1), u) denote the number of local maxima of zγ (t) exceeding level
u in the unit cube U(1) = (−1/2,1/2)N , and let m̃0,γ (U(1)) = m̃0,γ (U(1),−∞)

be the number of local maxima of zγ (t) in U(1). Then the distributions (11) and
(12) can be expressed as

(13) Fγ (u, v) = E[m̃0,γ (U(1), u)]
E[m̃0,γ (U(1), v)] and Fγ (u) = E[m̃0,γ (U(1), u)]

E[m̃0,γ (U(1))] .

Let σ 2
γ = Var(zγ (t)) and �γ = Cov(∇zγ (t)), both independent of t due to the

stationarity of zγ (t). By the Kac–Rice formula [2], the expectations in (13) can be
computed as

E
[
m̃0,γ

(
U(1), u

)]
= E

[∣∣det∇2zγ (t)
∣∣1{zγ (t)>u}1{∇2zγ (t)≺0}|∇zγ (t) = 0

]
p∇zγ (t)(0),

(14)

where p∇zγ (t)(0) = (2π)−N/2(det(�γ ))−1/2 is the density function of ∇zγ (t)

evaluated at 0.
The expectations above involving the indicator function 1{∇2zγ (t)≺0} are ex-

tremely hard to compute and thus the explicit formula for Fγ is usually unknown.
The only exception, as far as we know, is the case when the field zγ is isotropic.
This is because, in such case, one may apply the Gaussian Orthogonal Ensem-
ble (GOE) technique from random matrices theory to compute these expectations
[18]. The corresponding computable formula for Fγ for isotropic Gaussian fields
was recently obtained in [10], Theorem 2.8, and [11]. In particular, when the di-
mension of the parameter space N is low, say N ≤ 3, an explicit formula for Fγ

is also available in [12]. This will be used to compute the p-values exactly; see
Proposition 6 below. We emphasize, however, that the generic form of the distri-
butions (13) is sufficient in order to show error control and power consistency of
the STEM algorithm, as described next.



538 D. CHENG AND A. SCHWARTZMAN

3.2. Error control. For a fixed height threshold u, step 4 of Algorithm 1
amounts to selecting those local maxima with height greater than u. To control
FDR at a fixed level α, the BH procedure is applied in step 4 of Algorithm 1, as
follows. For a fixed α ∈ (0,1), let k be the largest index for which the ith small-
est p-value is less than iα/m̃γ (v). Then the null hypothesis H0(t) at t ∈ T̃γ (v) is
rejected if

(15) pγ (t, v) <
kα

m̃γ (v)
⇐⇒ yγ (t) > ũBH,γ (v) = Fγ (·, v)−1

(
kα

m̃γ (v)

)
,

where kα/m̃γ (v) is defined as 1 if m̃γ (v) = 0. Since ũBH,γ (v) is random, defini-
tion (8) is hereby modified to

(16) FDRBH,γ (v) = E
{

Vγ (ũBH,γ (v))

Rγ (ũBH,γ (v)) ∨ 1

}
,

where Rγ (·) and Vγ (·) are defined in (7) and the expectation is taken over all
possible realizations of the random threshold ũBH,γ (v).

Define the conditions:

(C1) The assumptions of Section 2.1 hold.
(C2) LN → ∞ and a = infj aj → ∞, such that (logLN)/a2 → 0, J/LN = A1 +

O(a−2 + L−N/2) and |S1,γ |/LN = A2,γ + O(a−2 + L−N/2) with A1 > 0
and A2,γ ∈ [0,1).

The conditions on A1 and A2,γ in (C2) above ensure that, as the search volume
LN grows, the signal does not asymptotically vanish nor it covers the entire search
space.

THEOREM 3. Let conditions (C1) and (C2) hold.

(i) Suppose that Algorithm 1 is applied with a fixed threshold u > v, then

(17) FDRγ (u) ≤ E[m̃0,γ (U(1), u)](1 − A2,γ )

E[m̃0,γ (U(1), u)](1 − A2,γ ) + A1
+ O

(
a−2 + L−N/2)

.

(ii) Suppose that Algorithm 1 is applied with the random threshold ũBH,γ (v)

(15), then

(18) FDRBH,γ (v) ≤ α
E[m̃0,γ (U(1), v)](1 − A2,γ )

E[m̃0,γ (U(1), v)](1 − A2,γ ) + A1
+ O

(
a−1 + L−N/4)

.

The proof of Theorem 3 is based on the fact that, as LN → ∞, the weak law of
large numbers for ergodic fields guarantees that the number of observed local max-
ima above v is asymptotically proportional to the expectation E[m̃0,γ (U(1), v)] in
(17) and (18) (as shown in the Supplementary Material, proving this with the right
rates requires estimating the order of the variance of the number of local maxima of
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a stationary random field, a result previously known only for N = 1 [27]). Mean-
while, as a → ∞, the number of local maxima within each true peak converges
to 1 in probability, yielding the term A1 in the denominators.

The proof of Theorem 3 is also based on the fact that, when the BH algorithm
is used, the threshold (15) can be viewed as the smallest solution of the equation
αG̃(u, v) ≥ Fγ (u, v), where G̃(u, v) is the empirical right cumulative distribution
function of yγ (t), t ∈ T̃γ (v) [20]. Thus, as L → ∞, the random threshold ũBH,γ (v)

converges asymptotically to the deterministic threshold

(19) u∗
BH,γ (v) = F−1

γ

(
αA1E[m̃0,γ (U(1), v)]/E[m̃0,γ (U(1))]

A1 + E[m̃0,γ (U(1), v)](1 − A2,γ )(1 − α)

)
.

Note that this is a strictly increasing function in v.
It can be seen from the proof of Theorem 3 that the inequalities in (17) and (18)

become equalities asymptotically (without specific rates), so the bounds given in
(17) and (18) are tight and can be regarded respectively as the asymptotic estima-
tors of FDRγ (u) and FDRBH,γ (v).

3.3. Power consistency. Similar to the definition of FDRBH,γ (16), since
ũBH,γ (v) is random, define

(20) PowerBH,γ (v) = E

(
1

J

J∑
j=1

1{T̃γ (ũBH,γ (v))∩Sj �=∅}

)
.

Since ũBH,γ (v) converges to the deterministic threshold u∗
BH,γ (v), which attains

the minimum at v = −∞, we see that the power is asymptotically maximized at
v = −∞ when γ is fixed. Intuitively, this occurs because pre-thresholding ex-
cludes certain true peaks below the threshold which can no longer be detected,
yielding less power. This phenomenon will be reflected in the simulation studies
below (Figure 4) and it implies that, if the exact height distribution of local max-
ima Fγ (·, v) or Fγ (·) is known, for example, the smoothed noise zγ is an isotropic
Gaussian field, then we will choose to apply the original STEM algorithm without
pre-thresholding (i.e., v = −∞) to perform the test.

The following lemma provides an asymptotic approximation to the power at a
fixed threshold.

LEMMA 4. Let conditions (C1) and (C2) hold. As aj → ∞, the power for
peak j (10) can be approximated by

(21) Powerj,γ (u) = 


(
ajhj,γ (τj,γ ) − u

σγ

)(
1 + O

(
a−2
j

))
.

The next result indicates that the BH procedure is asymptotically consistent.

THEOREM 5. Let conditions (C1) and (C2) hold.
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(i) Suppose that Algorithm 1 is applied with a fixed threshold u > v, then

Powerγ (u) = 1 − O
(
a−2)

.

(ii) Suppose that Algorithm 1 is applied with the random threshold ũBH,γ (v)

(15), then

PowerBH,γ (v) = 1 − O
(
a−2 + L−N/2)

.

The proofs of Lemma 4 and Theorem 5 above are a consequence of the fact
mentioned before that, as a → ∞, the number of local maxima within each true
peak converges to 1 in probability. Power consistency can be sustained if LN → ∞
as long as (logLN)/a2 → 0 [condition (C2)]. However, if LN → ∞ faster, then it
can be seen from the proofs that the power may be bounded above by a constant
strictly less than one.

3.4. Optimal smoothing kernel. The best smoothing kernel wγ (t) is that
which maximizes the detection power under the true model. By Lemma 4, the
power (21) is approximately maximized by maximizing the signal-to-noise ratio
(SNR)

(22) SNRj,γ = ajhj,γ (τj,γ )

σγ

= aj

∫
RN wγ (s)hj (s) ds

σ
√∫

RN w2
γ (s) ds

,

where σ is the standard deviation of the observed process y(t). The smoothing
kernel wγ (t) that maximizes (22) is called a matched filter in signal processing [29,
32]. It is known in signal processing that if the peak locations are known, then the
matched filter maximizes the detection power exactly. As shown in the simulations,
the result only holds approximately in our case because the peak locations are
unknown.

3.5. Isotropic Gaussian fields. Explicit expressions for the distribution (11)
are known in the special cases when N ≤ 3 and zγ (t) is isotropic. They are ob-
tained from [12] by standardizing the field in (11) as Fγ (u, v) = P(zγ (t)/σγ >

u/σγ |t ∈ T̃γ (v)) and are given by the following proposition.

PROPOSITION 6. Let the assumptions in Theorem 2 hold and let zγ (t) be an
isotropic Gaussian field over RN with correlation function

ργ

(‖t − s‖2) = E
[
zγ (t)zγ (s)

]
/σ 2

γ .

Let κγ = −ρ′
γ /

√
ρ′′

γ , where ρ′
γ = ρ′

γ (0) and ρ′′
γ = ρ′′

γ (0). Then the distributions

(12) and (11) are given respectively by

Fγ (u) =
∫ ∞
u/σγ

gγ (x;κγ ) dx and Fγ (u, v) = Fγ (u)/Fγ (v),



DETECTION OF PEAKS IN RANDOM FIELDS 541

where gγ (x;κγ ) is the density of the height distribution of local maxima for the
standardized field zγ (t)/σγ , explicitly formulated in [12] for N ≤ 3.

Also, explicit formulae for E[m̃0,γ (U(1), u)] and E[m̃0,γ (U(1))] (14), which
will be used in our simulations below for evaluating (19), the theoretical FDR and
the theoretical power, can be found in [12] for N ≤ 3.

From a practical standpoint, if zγ is isotropic, then as shown in [10],

(23) ρ ′
γ = − 1

2σ 2
γ

Var
(

∂zγ (t)

∂ti

)
, ρ′′

γ = 1

12σ 2
γ

Var
(

∂2zγ (t)

∂t2
i

)
for any i = 1, . . . ,N . Therefore, in order to estimate κγ = −ρ′

γ /
√

ρ′′
γ , we only

need to estimate the variances of derivatives of zγ (or equivalently yγ ).

EXAMPLE 7 (Gaussian autocorrelation model). Let the noise z(t) in (1) be
constructed as

z(t) = σ

∫
RN

1

νN
φN

(
t − s

ν

)
dB(s), σ, ν > 0,

where φN(x) = (2π)−N/2e−‖x‖2/2 for all x ∈ R
N is the N -dimensional standard

Gaussian density, dB(s) is Gaussian white noise and ν > 0 [z(t) is regarded by
convention as Gaussian white noise when ν = 0]. Convolving with a Gaussian ker-
nel wγ (t) = (1/γ N)φN(t/γ ) with γ > 0 as in (3) produces a zero-mean infinitely
differentiable stationary ergodic Gaussian field

zγ (t) = wγ (t) ∗ z(t) = σ

∫
RN

1

ξN
φN

(
t − s

ξ

)
dB(s), ξ =

√
γ 2 + ν2,

with σ 2
γ = σ 2/(2NπN/2ξN), ρ′

γ = −(2ξ)−2, ρ′′
γ = (2ξ)−4 and κγ = 1. The above

expressions may be used as approximations if the kernel, required to have finite
support, is truncated at [−γ d, γ d]N for moderately large d , say d = 3.

Suppose the signal peak j is a truncated Gaussian density

hj (t) = (
1/bN

j

)
φN

[
(t − τj )/bj

]
1{(t−τj )/bj∈[−cj ,cj ]N }, bj , cj > 0.

Ignoring the truncation, hj,γ (t) = wγ (t) ∗ hj (t) in (22) is the convolution of two
Gaussian densities with variances γ 2 and b2

j , which is another Gaussian density

with variance γ 2 + b2
j . We have that

SNRj,γ = ajhj,γ (τj )

σγ

= aj

σπN/4

[
γ 2 + ν2

(γ 2 + b2
j )

2

]N/4
.

As a function of γ , the SNR is maximized at

(24) argmax
γ

SNRj,γ =
⎧⎨⎩

√
b2
j − 2ν2, ν < bj/

√
2,

0, ν > bj/
√

2.
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In particular, when ν = 0, we have that the optimal bandwidth for peak j is γ =
bj , the same as the signal bandwidth. We show in the simulations below that the
optimal γ is indeed close to (24). It can be seen from (24) that as ν gets larger,
which means that y(t) gets smoother, the optimal γ becomes smaller. If ν is large
enough, there is no need to smooth at all.

3.6. Multiscale testing procedure. The optimal bandwidth γ may be hard to
specify in practice. A data-driven procedure for selecting the optimal bandwidth
was suggested in [30]. However, because it depends on the shape and extent of
the signal peak hj , optimal detection of different signal peaks within the same
image may require different values of γ . To avoid the problem of exact bandwidth
selection and handle peaks of different widths, we consider a multiscale testing
procedure as follows.

Let � = {γi}1≤i≤|�| be a set of bandwidths, where |�| denotes the length of �.
Apply Algorithm 1 for each γi ∈ � separately, and define the combined criteria

FDR�(u) = E
{ ∑|�|

i=1 Vγi
(u)

(
∑|�|

i=1 Rγi
(u)) ∨ 1

}
,

FDRBH,�(v) = E
{ ∑|�|

i=1 Vγi
(ũBH,γ (v))

(
∑|�|

i=1 Rγi
(ũBH,γ (v))) ∨ 1

}
,

Power�(u) = E

(
1

J

J∑
j=1

1{⋃|�|
i=1 T̃γi

(u)∩Sj �=∅}

)
,

PowerBH,�(v) = E

(
1

J

J∑
j=1

1{⋃|�|
i=1 T̃γi

(ũBH,γ (v))∩Sj �=∅}

)
,

where v is the pre-threshold in Algorithm 1 and u > v is some fixed number.
The combined FDR criterion above is the expected proportion of false discov-

eries across all bandwidths in � simultaneously. This definition accounts for mul-
tiplicity of false positives over bandwidths and can be asymptotically controlled,
as shown below. It has the correct interpretation of the FDR denominator as the to-
tal number of observed significant local maxima because the analyst cannot know
in a given analysis which peaks correspond to the same true peaks and which do
not, even if the same true peak is detected with several bandwidths. The combined
power above, on the other hand, counts each truly detected peak once regardless
of the bandwidths used to detect it.

The above definitions are similar to those in [26] in the sense that we too con-
sider the union of detections over scales. However, because significant local max-
ima are points rather than regions, we cannot take advantage of the union of over-
lapping regions to account for repeats, but must be more specific about how each
significant local maximum is counted, as discussed above.
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THEOREM 8. Let conditions (C1) and (C2) hold.

(i) Suppose that Algorithm 1 is applied for each γi ∈ � with a fixed threshold
u > v, then

FDR�(u) ≤
∑|�|

i=1 E[m̃0,γi
(U(1), u)](1 − A2,γi

)∑|�|
i=1(E[m̃0,γi

(U(1), u)](1 − A2,γi
) + A1)

+ O
(
a−2 + L−N/2)

.

(ii) Suppose that Algorithm 1 is applied for each γi ∈ � with the random thresh-
old ũBH,γi

(v) (15), then

FDRBH,�(v) ≤ α

∑|�|
i=1 E[m̃0,γi

(U(1), v)](1 − A2,γi
)∑|�|

i=1(E[m̃0,γi
(U(1), v)](1 − A2,γi

) + A1)
(25)

+ O
(
a−1 + L−N/4)

.

The following result follows directly from Theorem 5 and the facts

Power�(u) ≥ max
1≤i≤|�| Powerγi

(u),

PowerBH,�(v) ≥ max
1≤i≤|�| PowerBH,γi

(v).

THEOREM 9. Let conditions (C1) and (C2) hold.

(i) Suppose that Algorithm 1 is applied for each γi ∈ � with a fixed threshold
u > v, then

Power�(u) ≥ 1 − O
(
a−2)

.

(ii) Suppose that Algorithm 1 is applied for each γi ∈ � with the random thresh-
old ũBH,γi

(v) (15), then

PowerBH,�(v) ≥ 1 − O
(
a−2 + L−N/2)

.

Because testing over a range of bandwidths exacerbates the multiple testing
problem by increasing the number of tests and increasing the transition region, in
practice the set � should not be too large and should reflect the range of signal
peaks present in the data.

4. Detection of peaks by approximate overshoot distribution.

4.1. Approximating the overshoot distribution. In the neuroimaging literature,
it is common to pre-threshold the test statistic field and then perform inference
on the supra-threshold statistics [42]. The rationale is that significance thresholds
tend to be high, and so weak signals of no biological interest are not expected to
survive a moderate pre-threshold. Moreover, it may seem that using a pre-threshold
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would increase power by reducing the multiplicity of the tests being performed.
We showed theoretically in Section 3.3 and will confirm by simulations that, in
the best case scenario where the exact distribution of the height of local maxima is
known, pre-thresholding (v = −∞) does not increase detection power. However,
pre-thresholding is still very valuable if the exact distribution is unknown but an
approximation is known. In that case, the question of which pre-threshold to use
remains relevant.

As mentioned, if the Gaussian field is only stationary but not isotropic, then the
explicit formula for Fγ (u, v) (11) is unknown so far. However, by [10], Corol-
lary 2.5, there exists ε0 > 0 such that as v → ∞ and u > v,

Fγ (u, v) = Kγ (u, v)
(
1 + o

(
e−ε0v

2))
,

where

Kγ (u, v) = HN−1(u/σγ )e−u2/(2σ 2
γ )

HN−1(v/σγ )e−v2/(2σ 2
γ )

and HN−1(x) is the Hermite polynomial of degree N − 1. A similar argument to
the proof of [10], Corollary 2.5, yields that for a fixed v, as u → ∞,

(26) Fγ (u, v) = βγ (v)Kγ (u, v)
(
1 + o

(
e−ε0u

2))
,

where

(27) βγ (v) = (2π)−(N+1)/2σ−N
γ (det(�γ ))1/2HN−1(v/σγ )e−v2/(2σ 2

γ )

E[m̃0,γ (U(1), v)]
and �γ = Cov(∇zγ (t)). Note that βγ (v) is similar to the ratio of the expected
Euler characteristic [2], Lemma 11.7.1, and the expected number of local maxima
of zγ (t) over the unit cube U(1). It is conjectured that βγ (v) < 1 for all v > 0 (this
is true for N = 1 and N = 2 [10]).

For a fixed threshold u, the control of FDRγ (u) and the consistency of power
Powerγ (u) in Theorem 10 are the same as those given in part (i) of Theorem 3 and
part (i) in Theorem 5, respectively. When the BH algorithm is used, we have the
following result.

THEOREM 10. Let conditions (C1) and (C2) hold. Suppose Algorithm 1
is applied with the random threshold ũBH,γ (v) by using Kγ (u, v) instead of
Fγ (u, v) to compute p-values. Then as v → ∞ such that v2/ log(LN) → 0 and
v2/ log(a) → 0,

(28) FDRBH,γ (v) ≤ α
E[m̃0,γ (U(1), v)](1 − A2,γ )βγ (v)

E[m̃0,γ (U(1), v)](1 − A2,γ ) + A1

(
1 + o

(
e−ε0v

2))
,

where ε0 > 0 is some constant and βγ (v) is defined in (27), and moreover,

(29) PowerBH,γ (v) = 1 − O
(
a−2 + L−N/2)

.
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The proof of Theorem 10 requires careful attention to rates because both sides
of (28) go to zero as v increases. Yet, (28) gives the right approximation to the
FDR for finite v. The additional asymptotic conditions v2/ log(LN) → 0 and
v2/ log(a) → 0 in fact indicate that v should increase more slowly than log(LN)

and even more slowly than log(a), so in practice it need not be very large. In the
simulations we will see that an appropriate value for v is about 2σγ .

4.2. Optimal pre-threshold. A question that arises when using the overshoot
distribution is how to select the pre-threshold. From the proof of Theorem 10 in
the supplementary material, we see that the random threshold ũBH,γ (v) converges
asymptotically to the deterministic threshold

u∗∗
BH,γ (v)

(30)

= F−1
γ

(
αA1βγ (v)E[m̃0,γ (U(1), v)]/E[m̃0,γ (U(1))]

A1 + E[m̃0,γ (U(1), v)](1 − A2,γ )(1 − αβγ (v))

)(
1 + o(1)

)
.

For fixed γ , the power (21) is maximized at the optimal pre-threshold minimizing
u∗∗

BH,γ (v), which is

(31) vopt,γ = argmax
v

HN−1(v/σγ )e−v2/(2σ 2
γ )

A1 + E[m̃0,γ (U(1), v)](1 − A2,γ )(1 − αβγ (v))
.

When γ and α are fixed, we see that vopt,γ depends only on the covariance struc-
ture of zγ (t). A practical approximation to the optimal pre-threshold is found in
the simulations section below.

4.3. Multiscale testing procedure. The results about the multiscale procedure
in Section 3.6 can be extended to the case where the overshoot distribution is used.
Let � = {γi}1≤i≤|�| be as defined in Section 3.6. Applying the overshoot distribu-
tion, we have the following result.

THEOREM 11. Let conditions (C1) and (C2) hold. Suppose that Algorithm 1
is applied for each γi ∈ �, with the random threshold ũBH,γi

(v) by using
Kγi

(u, v) instead of Fγi
(u, v) to compute p-values. Then, as v → ∞ such that

v2/ log(LN) → 0 and v2/ log(a) → 0,

FDRBH,�(v) ≤ α

∑|�|
i=1 E[m̃0,γi

(U(1), v)](1 − A2,γi
)βγi

(v)∑|�|
i=1(E[m̃0,γi

(U(1), v)](1 − A2,γi
) + A1)

(
1 + o

(
e−ε0v

2))
,

where ε0 > 0 is some constant and βγi
(v) is defined in (27), and moreover,

PowerBH,�(v) ≥ 1 − O
(
a−2 + L−N/2)

.

5. Simulation studies.

5.1. Simulation setting. Simulations were used to evaluate the performance
and limitations of the STEM algorithm for finite range L = 300, finite number of
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peaks J = 9 and moderate signal strength a over R2 (i.e., N = 2). Adopting the
notation in Example 7, the truncated Gaussian peaks ajhj (t) are constructed with
aj = a, bj = 3 and cj = 3 for all j = 1, . . . , J and varying a, and {τj }1≤j≤J =
{(75i1,75i2)}i1,i2=1,2,3; the noise z(t) is constructed with σ = 1 and varying ν ∈
{0,1,2}; the smoothing kernel wγ (t) is constructed with c = 3 and varying γ . The
noise parameters σγ , ρ′

γ and ρ′′
γ (note that κγ = 1) were estimated using the same

smoothing kernel. The BH procedures were applied at level α = 0.05 and over
10,000 replications.

5.2. Detection of peaks by the height distribution of local maxima. Figure 3
shows the realized FDR and power of the STEM algorithm with the BH proce-
dure, evaluated according to (16) and (20) with v = −∞. The range of values of
the signal strength a was chosen between 35 and 55 to show interesting interme-
diate values of FDR and power, but notice that the signal is overall quite weak;
the peaks in Figure 1 all have values of a of 75 and above, and all are virtually
invisible in the presence of noise [y(t) in Figure 1]. As predicted by the theory, for
every fixed bandwidth γ , the FDR is controlled below α = 0.05 for strong enough
signal a, and the power increases to 1. The theoretical FDR curve (blue) is evalu-
ated according to the upper bound in (18), while the theoretical power curve (blue)
is derived by plugging the asymptotic threshold u∗

BH,γ (−∞) (19) into the approx-
imated power (21). The discrepancy between the realized FDR and the theoretical
FDR is caused by the boundary effects of kernel smoothing and the finite size of
the search domain. For small ν and small γ , say ν = 0 and γ = 1, the discrep-
ancy is larger because the representation of the smoothed field zγ on the simulated

FIG. 3. Realized (black) and “theoretical” (blue) FDR, Realized (black) and “theoretical” (blue)
power of the BH procedure by the exact height distribution Fγ (i.e., v = −∞) for a = 55 (solid),
a = 45 (dashed) and a = 35 (dotted). The maxima of the curves (solid circles) approach the optimal
bandwidth (vertical dashed).
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TABLE 1
Simulated FDR by multiscale procedure (left) and simulated maximal FDR by STEM algorithm in

Figure 3 (right); the numbers in parentheses are theoretical FDR’s by multiscale procedure

ν = 0 ν = 1 ν = 2

a = 35 0.0739; 0.0409 (0.0495) 0.0634; 0.0437 (0.0492) 0.0484; 0.0443 (0.0486)
a = 45 0.0498; 0.0434 (0.0495) 0.0495; 0.0423 (0.0492) 0.0454; 0.0435 (0.0486)
a = 55 0.0440; 0.0425 (0.0495) 0.0433; 0.0422 (0.0492) 0.0427; 0.0416 (0.0486)

discrete grid is not smooth enough. Note that the realized power curve follows
the same patterns as the theoretical power curve. As the signal gets stronger, the
bandwidth maximizing the realized power gets closer to its optimal value.

5.3. Multiscale testing procedure. Tables 1 and 2 show the realized FDR and
power for the multiscale procedure of Section 3.6. The theoretical FDR values in
Table 1 were evaluated according to the upper bound in (25). Again, the FDR is
controlled below α = 0.05 and that the power tends to 1 as the signal strength a

increases. To compare with the usual STEM algorithm with optimal γ , Table 2
reports a maximal power over scales is akin to the multiscale power definition of
[26]. The multiscale procedure has more power, but yields a slightly slower rate of
FDR control, especially when the signal strength is very weak (a = 35).

5.4. Detection of peaks by the overshoot distribution. Figure 4 shows the real-
ized FDR and power of the STEM algorithm with the BH procedure, using the ex-
act overshoot distribution Fγ (·, v) to compute p-values instead of the exact height
distribution. Here, the bandwidth was fixed to the optimal value. The theoretical
FDR curve was evaluated according to the upper bound in (18), while the theo-
retical power curve was derived by plugging the asymptotic threshold u∗

BH,γ (v)

(19) into the approximate power (21). As shown in Figure 4, as the pre-threshold
v gets larger, the FDR becomes smaller and so does the power. This confirms the
observation made after (20) that the case of ν = −∞ gives the best performance if
the exact height distribution Fγ is known. However, when the signal is relatively
strong, pre-thresholding does not weaken the power too much.

TABLE 2
Simulated power by multiscale procedure (left) and the maximal simulated power by STEM

algorithm in Figure 3 (right)

ν = 0 ν = 1 ν = 2

a = 35 0.3106; 0.2449 0.3823; 0.3118 0.7068; 0.6631
a = 45 0.7167; 0.6590 0.7950; 0.7444 0.9674; 0.9587
a = 55 0.9414; 0.9204 0.9670; 0.9541 0.9989; 0.9984
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FIG. 4. Realized (black) and “theoretical” (blue) FDR, Realized (black) and “theoretical” (blue)
power of the BH procedure by the exact overshoot distribution Fγ (·, v) for a = 55 (solid), a = 45
(dashed) and a = 35 (dotted).

In Figure 5, the approximate overshoot distribution Kγ (·, v) is used to compute
p-values instead of the exact overshoot distribution. Here again, the bandwidth was
fixed to the optimal value. The theoretical FDR curve was evaluated according to
the upper bound in (28), while the theoretical power curve was derived by plugging
the asymptotic threshold u∗∗

BH,γ (v) (30) into the approximate power (21). The sim-

FIG. 5. Realized (black) and “theoretical” (blue) FDR, Realized (black) and “theoretical” (blue)
power of the BH procedure by the approximated overshoot distribution Kγ (·, v) for a = 55 (solid),
a = 45 (dashed) and a = 35 (dotted). The maxima of the curves (solid circles) approach the optimal
pre-threshold vopt,γ (vertical dashed).
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ulation shows that the pre-threshold maximizing the realized power is close to the
optimal pre-threshold vopt,γ (31), which in this example is about 2σγ . Moreover,
the realized curves still fit the theoretical curves well for small v. This is because
the limit in Theorem 10 is in fact taken when the BH threshold is large.

5.5. Comparison with other methods. We compare the STEM Algorithm 1 to
two other methods. First, because the signal strength a → ∞ in condition (C2),
one may think this makes the model relatively simple asymptotically (in fact not,
because the null domain is also getting large), and wonder if some simple tests can
also detect peaks with error control and power consistency. To check this, we try a
simple quantile test as follows. Under (C2), the ratio of the number of true peaks
and the number of all peaks of the field tends to

r1,γ = A1

E[m̃0,γ (U(1))](1 − A2,γ ) + A1
.

Thus, choosing the 100(1− r1,γ )% quantile of the heights of all candidate peaks as
threshold guarantees that all true peaks will be detected asymptotically. Since r1,γ

is unknown, we call this an “oracle quantile test”. Alternatively, if r1,γ is replaced
by an arbitrary fixed fraction independent of γ , say 0.05, we call it “95% quantile
test”. Figure 6 (left) shows the comparison between the STEM algorithm by height
distribution and these two quantile tests; even if they are asymptotically consistent,
the quantile tests cannot control the error.

Second, Figure 6 (right) compares the STEM algorithm by approximate over-
shoot distribution to the method in [14] (CWFF) using equations (1) and (2) therein

FIG. 6. Left panel: FDR and power comparison among the STEM algorithm by height distribution
(black), the “oracle quantile test” (red) and the “95% quantile test” (green). Right panel: FDR
and power comparison between the STEM algorithm by approximate overshoot distribution (black)
and CWFF (red), the method in [14]. In both panels, ν = 1 (moderate autocorrelation) and a = 45
(moderate signal strength).
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for computing p-values. These two similar methods give almost the same results,
especially when the pre-threshold is not small. However, CWFF requires esti-
mation of additional parameters that the approximate overshoot method does not
need.

6. Data example.

6.1. Data description. The fMRI data was obtained from the public repository
OpenfMRI (openfmri.org). It involves an experiment whose goal is to find brain
regions that are active when processing other people’s false beliefs about reality, in
comparison with similar purely physical false realities. Details about the psycho-
logical motivation and experimental design of this so-called “false belief task” can
be found in [23]. In brief, subjects read short stories corresponding to either a per-
son’s false belief about reality or false realities with no people involved. The effect
sought after in the analysis is the contrast between the neural activity in those two
states.

For simplicity, we focus here on data from a single subject (#49). The data
consist of a sequence of n = 179 brain fMRI images of size 71 × 72 × 36 voxels
(one row was removed from the original size of 72×72×36 due to absence of data
there). As standard pre-processing, algorithms were applied for motion correction
over the recording period.

6.2. Regression analysis. To analyze the data, we followed the usual general
linear model (GLM) approach [38], where, after spatial registration of the n images
to a common template, the n image intensities at each voxel were modeled as a
linear function of the stimuli. Letting Y(t) denote the n × 1 vector of observed
intensities at spatial location (voxel) t , the model is Y(t) = Xβ(t) + ε(t), where
X is an n × 3 matrix whose columns contain the duration of the two types of
stories as 0–1 step functions of time, in addition to a column for the intercept
term. The vector β(t) contains the regression coefficients, while ε(t) is a n × 1
random vector whose entries are assumed to be i.i.d. with zero mean and variance
σ 2(t). The least-squares estimate of the coefficient vector β(t) at each location t is
β̂(t) = (X′X)−1X′Y(t). The contrast of interest η(t) = c′β(t), c = (0,1,−1)′, is
the difference between the regression coefficients corresponding to the two stimuli.
Its estimate is η̂(t) = c′β̂(t) with variance Var(η̂(t)) = σ 2(t)c′(X′X)−1c.

To test the null hypothesis H0 : η(t) = 0 at each location t , we used a Wald
statistic, defined as the estimate η̂(t) divided by its estimated standard error:

(32) η̃(t) = η̂(t)

ŝe(η̂(t))
= c′(X′X)−1X′Ŷ (t)√

σ̂ 2(t)c′(X′X)−1c
.

The noise variance estimate σ̂ 2(t) above was obtained as σ̂ 2(t) = ‖e(t)‖2/(n −
3), where e(t) = y(t) − Xβ̂(t) is the vector of regression residuals. Because the

http://openfmri.org
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number of degrees of freedom n − 3 = 176 is large, we may consider η̃(t) to be
an approximately Gaussian 3D random field with constant variance 1, playing the
role of y(t) in model (1).

6.3. Inference via the STEM algorithm. For the kernel smoothing step, we
used a 3D isotropic Gaussian kernel as in Example 7 with bandwidth γ = 1.6
voxels. Given the voxel size of 3 mm, this corresponds to a bandwidth of 4.8 mm
and a full width half maximum of 11.3 mm, optimizing the analysis for signal
regions of about that size. To perform the convolution, the kernel was truncated
at 2.5 standard deviations from the mode, yielding a kernel support of 8 × 8 × 8
voxels. After convolution, only the “valid” portion of the image was retained, that
is, those voxels whose values were computed from neighborhood voxels strictly
contained in the original image, yielding a valid image of size 64 × 65 × 29 =
120,640.

We first assumed the noise field to be isotropic and applied the STEM algo-
rithm using the exact height distribution of local maxima to compute p-values, as
in Section 3.5. To estimate the required parameters σ 2

γ and κγ of the height distri-
bution, we used a volume of 27×72×36 = 69,984 voxels consisting of the top 14
and bottom 13 rows of the data outside the skull, containing only noise. The sam-
ple variance within this region and across time yielded the estimate σ̂ 2

γ = 0.0058.
Similarly, under the isotropy assumption, the sample variance of the first and sec-
ond numerical derivatives yielded estimates of ρ ′

γ and ρ ′′
γ by (23), leading to the

estimate κ̂γ = −ρ̂′
γ /

√
ρ̂′′

γ = 1.1463.
The analysis results using the BH algorithm at FDR level 0.05 are shown in

Figure 7. The 55 significant local maxima can be interpreted as representing sig-
nificant brain regions. Most of these are located in the anterior and posterior ventral
parts of the cortex, as well as the dorsal parts of the pre-frontal cortex, consistent
with the results reported in [23]. For comparison, we also performed the analysis
with κγ = 1, as in Example 7, avoiding estimation of this parameter. The results
obtained were very similar.

To evaluate the effect of the distribution used to compute p-values, Table 3 com-
pares the results using the exact height distribution or the approximate overshoot
distribution. As seen in the table, computing p-values using the approximate over-
shoot distribution with pre-threshold v = 2σγ (close to optimal according to Fig-
ure 5) yields less candidate peaks but about the same number of significant ones.
This confirms the simulation results that using the approximate overshoot distribu-
tion yields similar power, while not requiring the isotropy assumption.

As an additional comparison, we performed the analysis using the CWFF
method where the expected Euler characteristic parameters were estimated from
the residuals outside the brain. As expected from the simulation results, the sig-
nificance threshold and number of significant peaks were the same as with the
approximate overshoot distribution, except that the latter did not need estimation
of those extra parameters.
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FIG. 7. fMRI data analysis results using the exact height distribution of local maxima for isotropic
noise and FDR level 0.05. Montage shows the brain volume as transverse slices from the bottom of
the brain (top left panel) to the top of the brain (bottom right panel). The 55 significant local maxima
are marked by white triangles. Colored regions indicate the smoothed Wald statistic field above the
height of the smallest significant local maximum. Results are superimposed on an anatomical brain
image (gray) for reference.

7. Discussion.

7.1. Asymptotic considerations. Regarding condition (C2), it is not surpris-
ing that if the volume of the search space LN increases, then the signal strength
a should also increase in order for the detection procedure to have good power
while the error is controlled. We do not find this assumption restrictive because
the search space may grow exponentially faster. Our simulations have shown that
the theoretical results provide good approximations in nonasymptotic conditions
when the search space LN and the signal strength a are large, the former much
larger than the latter.

These conditions are realistic in applications. In data with n repeated observa-
tions, the signal strength a is proportional to

√
n. Setting p = LN as the dimen-

sionality of the problem, the condition (logLN)/a2 → 0 becomes (logp)/n → 0,

TABLE 3
Comparison of different methods for computing p-values

BH height threshold # tests # significant tests

Height distribution 3.9156σγ 334 peaks 55 peaks
Overshoot distribution 3.8337σγ 159 peaks 56 peaks
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which is similar to the condition required for consistent model selection in high
dimensional regression [8, 41]. In our fMRI data example, the search volume cor-
responding to L3 was 64×65×29 = 120,640 voxels and the sample size was 179,
giving a ratio (logLN)/a2 of about log(120,640)/179 = 0.0284, which is close to
zero.

The assumption (logLN)/a2 → 0 is in fact stronger than needed. From the
proof of Theorem 5, it can be seen that if the signal strength grows sufficiently fast
so that (logLN)/a2 is bounded asymptotically by some positive constant, then the
power will be asymptotically bounded from above by some constant less than 1.
A future analysis of contiguous alternative hypotheses may help clarify this.

Efforts were made in this paper to include convergence rates in the results,
which were not available in [30]. Doing so required calculating the order of the
variance of the number of local maxima of a stationary random field in N dimen-
sions. Computing the moments of the number of local maxima of a random field
is known to be an important and nontrivial problem in probability theory [4, 34].

7.2. Signal model considerations. The signal modeling assumptions of uni-
modality and compact support enabled defining true and false detections. It should
be noted, however, that the formal hypothesis test performed at each local maxi-
mum is not about the signal peak but about its support. In this sense, the problem
may be called “detection of signal support”. The justification for the name “peak
detection” is that, by the signal unimodality, the detected local maxima asymp-
totically coincide with the local maxima of the signal, thus detecting the peaks in
addition to their support.

In future work, the assumptions of unimodality and compact support could be
relaxed. As suggested by simulations in [30], we believe that the STEM algorithm
can detect multimodal peaks because local maxima of the observed field in the
troughs between the true modes are unlikely to occur. However, a more careful
definition of power would be required. Siding with [14], it may be possible to
assume that the signal is nonzero everywhere by defining true detections to occur
within a given distance of a true mode, rather than outside the domain.

Except for the unimodality and compact support assumptions, the signal model
was kept general in nonparametric form. Using a single smoothing bandwidth in
the analysis presumes that the signal peaks have similar shapes and supports. To
handle peaks of different spatial extents, a multiscale procedure was proposed that
enables peaks to be optimally detected by different bandwidths. A more principled
approach may consider performing the inference on the continuous scale-rotation
space produced by varying the smoothing bandwidth and spatial orientation of the
smoothing kernel [1]. However, this approach remains challenging because, even
under the complete null hypothesis, the scale-rotation field is not stationary. We
leave this possibility for future work.
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SUPPLEMENTARY MATERIAL

Online Supplement to “Multiple testing of local maxima for detection
of peaks in random fields” (DOI: 10.1214/16-AOS1458SUPP; .pdf). In this sup-
plement, we provide proofs for Lemma 4 and Theorems 3, 5, 8, 10 and 11.
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