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NONPARAMETRIC ESTIMATION OF DYNAMICS OF MONOTONE
TRAJECTORIES

BY DEBASHIS PAUL1, JIE PENG2 AND PRABIR BURMAN3

University of California, Davis

We study a class of nonlinear nonparametric inverse problems. Specifi-
cally, we propose a nonparametric estimator of the dynamics of a monoton-
ically increasing trajectory defined on a finite time interval. Under suitable
regularity conditions, we show that in terms of L2-loss, the optimal rate of
convergence for the proposed estimator is the same as that for the estimation
of the derivative of a function. We conduct simulation studies to examine the
finite sample behavior of the proposed estimator and apply it to the Berkeley
growth data.

1. Introduction. Monotone trajectories representing the evolution of states
over time appear widely in scientific studies, particularly, in the study of growth
of organisms such as humans or plants [11, 23, 32]. There are many parametric
models for modeling the growth trajectories or modeling their rate of change, that
is, the derivative of the trajectories [16, 23]. Other examples of monotone trajec-
tories appear in population dynamics under negligible resource constraints [35],
in dose-response analysis in pharmacokinetics [19], in auction price dynamics in
e-Commerce [17, 20, 38], and in analysis of trajectories of aircrafts after take-
off [26].

Our goal in this paper is to estimate the functional relationship between the rate
of change and the state, that is, the dynamics of the trajectory, through a nonpara-
metric model. Many systems such as growth of organisms or economic activity of
a country/region are intrinsically dynamic in nature. A dynamics model provides
a mechanistic description of the system rather than a purely phenomenological
one. Due to insufficient scientific knowledge, quite often there is a need for non-
parametric modeling of the dynamical system, which can also be used to develop
measures of goodness-of-fit for hypothesized parametric models.

A key observation is that for any smooth monotone trajectory x(·), its dynamics
can be described by a first-order autonomous differential equation:

x ′(t) = (
x′ox−1)(

x(t)
) = g

(
x(t)

)
, t ∈ [0,1],(1)
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where g = x′ox−1 is the gradient function. In this paper, we propose to estimate
the unknown gradient function g nonparametrically by representing it in a B-spline
basis where the number of basis functions grows with the sample size. We adopt
a nonlinear least squares approach for model fitting. We then carry out a detailed
theoretical analysis and derive the rate of convergence of the proposed estimator.

We now highlight the major theoretical developments of this work. Here, we are
dealing with a nonlinear nonparametric inverse problem. Although there is a large
literature on linear nonparametric inverse problems [4, 5, 10, 18], especially on
the nonparametric estimation of the derivative of a curve [12, 14, 25], there is very
little theoretical development on nonlinear nonparametric inverse problems. Thus,
our work makes an important contribution to this area. Specifically, we first quan-
tify the degree of ill-posedness of the estimation of the gradient function g as the
number of basis functions grows to infinity. We then use this result to show that if
g is p times differentiable then the L2-risk of the proposed estimator has the same
optimal rate of convergence, namely, O(n−2p/(2p+3)), as that of the estimation of
the derivative of a trajectory, assuming that the latter is p + 1 times differentiable.
We also show that this optimal rate is indeed the minimax rate for the estimation
of g under L2 loss if the class of estimators is restricted to be uniformly Lipschitz.

There is an extensive literature on nonparametric estimation of monotone func-
tions including [1, 22, 29, 30, 39]. However, most of these works are not concerned
with the estimation of the gradient function of the trajectory, except for [30], which
modeled the trajectory in terms of a second-order differential equation, and ob-
tained an estimate of the gradient as a byproduct.

Although there are many works for fitting parametric differential equations [2,
3, 6, 7, 13, 31, 40, 41, 43], relatively few works exist for nonparametric ODE mod-
eling. Among the latter, [44] dealt with estimating a parametric ODE with smooth
time-varying parameters. Wu et al. [42] proposed a sparse additive model for de-
scribing the dynamics of a multivariate state vector and developed a combination
of two-stage smoothing and sparse penalization for fitting the model. Their model
can be seen as a multidimensional generalization of the autonomous ODE model
studied here. For the theory in their paper, it is assumed that whenever the gradient
function g is p times differentiable, the state x is at least 3p + 1 times differen-
tiable. However, the representation g = x ′ox−1 [see (1)] implies that g is p times
differentiable if and only if x is p + 1 times differentiable. Therefore, the assump-
tions made in [42] are not satisfied if p is the maximal order of smoothness of g,
and hence the rate of convergence derived there is suboptimal.

A possible alternative route for a nonparametric estimation of g is through the
two-stage procedure where the trajectories and their derivatives are first estimated
nonparametrically, and then the ODE is fitted by regressing the fitted derivatives to
the fitted trajectories [6, 7, 36]. Cao and Zhao [3] gave a comprehensive theoretical
analysis of such an approach, and [15] proposed a computationally tractable one-
step estimation procedure that mitigates some statistical inefficiencies of two-stage



DYNAMICS OF MONOTONE TRAJECTORIES 2403

estimators. In spite of their simplicity, two-stage estimators are often unsatisfac-
tory partly due to the difficulty of resolving the bias-variance trade-off in a data-
dependent way. In all the numerical studies carried out in this paper, the proposed
estimator performs better than the two-stage estimator.

The rest of the paper is organized as follows. In Section 2, we briefly describe
the model and the estimation procedure. We present the main theoretical results
in Section 3 and outline the proof in Section 4. We present a simulation study in
Section 5 and an application to the Berkeley growth data in Section 6. We discuss
some related issues in Section 7. Some proof details are provided in the Appendix.
Additional derivations and more detailed summaries of simulation results are pro-
vided in a supplementary material (SM) [28].

2. Model. The class of models studied in this paper is of the form

x′
g(t) = g

(
xg(t)

)
, xg(0) = x0, t ∈ [0,1],(2)

where g is an unknown smooth function which is assumed to be positive on the
range of {xg(t) : t ∈ [0,1]}. Therefore, the sample trajectory xg(t) is a strictly
increasing function of time t . The observations are

Yj = xg(tj ) + εj , j = 1, . . . , n,(3)

where 0 ≤ t1, . . . , tn ≤ 1 are observation times. The noise terms εj ’s are assumed
to be independent with mean 0 and variance σ 2

ε > 0.
Our goal is to estimate the gradient function g based on the observed data Yj s.

We propose to approximate g through a basis representation:

g(y) ≈ gβ(y) :=
M∑

k=1

βkφk,M(y),(4)

where {φk,M(·)}Mk=1 is the rescaled B-spline basis, that is, a B-spline basis with
equally spaced knots on an interval such that the functions are rescaled to have
L2-norm equal to 1. Henceforth, we use φk to denote φk,M .

Since g is assumed to be either strictly positive or strictly negative through-
out its domain, an alternative approach is to represent logg in a smooth basis. It
can be shown that the corresponding estimate has the same rate of convergence.
A brief sketch of the implementation of this approach is given in Section S6 of the
SM [28].

We now describe the proposed estimator. For the time being, assume that we
observe the two endpoints x0 = xg(0) and x1 = xg(1) noiselessly and so the com-
bined support of {φ1, . . . , φM} is the interval [x0, x1]. Given any β := (β1, . . . , βM)

so that gβ is positive on the support of {φk(·)}Mk=1, we can solve the initial value
problem:

x′(t) = gβ

(
x(t)

)
, t ∈ [0,1], x(0) = x0(5)
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to obtain the corresponding trajectory x(t) ≡ x(t;β). From now onward, we use
x(·;β) to denote the solution of (5). Define the L2 loss function:

L(β) :=
n∑

j=1

(
Yj − x(tj ;β)

)2
.(6)

Then the proposed nonlinear least squares estimator of g is defined as

ĝ(y) := g
β̂
(y) =

M∑
k=1

β̂kφk,M(y) where β̂ := arg min
β∈RM

L(β).(7)

Minimization of L(β) is a nonlinear least squares problem. We use
a Levenberg–Marquardt iterative updating scheme, which is known to be very
stable for solving nonlinear regression problems (cf. [27]). This method requires
evaluating the trajectory x(t;β) and its derivative with respect to β: Given the cur-
rent estimate of β , we solve the corresponding differential equations numerically
by the fourth-order Runge–Kutta method. Details of the model fitting procedure
are given in Appendix A.4.

In the following, we briefly discuss some key steps of the estimation procedure
and the basic steps toward establishing the consistency and rates of convergence
of the proposed estimator. Formal derivations and expositions are presented in the
subsequent sections.

2.1. Asymptotic results. We establish consistency and derive rates of conver-
gence in terms of L2-loss of the estimator of g (Theorem 3.1). Specifically, we
show that, for sufficiently smooth g and an appropriate range of values of M , there
exists a local optimum of the objective function, which is also a global optimum
in a neighborhood of the g∗, the point closest to g in L2-norm within the model
space. Moreover, this local optimum converges to the true g at a rate the same as
the optimal rate of convergence of the estimation of the derivative function x′(·).
The key steps and techniques are:

(i) using a linear approximation of the trajectory in terms of the parameter
β near the optimal point β∗ within the model space, accomplished by using the
perturbation theory of differential equations;

(ii) quantifying the degree of ill-conditioning of the Hessian matrix of the loss
function with respect to β as a function of M . This is achieved by using a novel
technique involving a version of Halperin–Pitt inequalities [24];

(iii) using the result in (ii) to get a local quadratic approximation of ĝ (equiva-
lently β̂) in a neighborhood of the optimal point g∗ (β∗), which encompasses the
bias and variance terms.



DYNAMICS OF MONOTONE TRAJECTORIES 2405

2.2. Initial estimator of g. Since we are dealing with a nonconvex optimiza-
tion problem, it is important to specify a reasonable initial estimate for g (equiva-
lently, β). We consider a two-stage estimator, where, in the first stage we estimate
x(t) and its derivative x′(t) using local polynomial smoothing and in the second
stage we regress x̂′(t) on the basis (φk(x̂(t)))M̃k=1. We use M̃ here to distinguish it
from the M used in the proposed nonlinear least squares estimator. The procedure
is described in detail in Section 3.5, where we also show that with a proper choice
M̃ , the two-stage estimator is close enough to the optimal approximation g∗ = gβ∗
such that the proposed estimator, with this initial estimate, achieves the optimal
rate.

2.3. Boundary issue. There is a fundamental limitation in estimation of g on
the boundary, even when the value of xg at the boundaries, that is, x0 = x(0), x1 =
x(1), are known exactly. Note the solution xg(t) of (5) can be expressed as xg(t) =
x0 + ∫ t

0 g(xg(s)) ds. Thus, if t is close to zero, xg(t) and xĝ(t), where ĝ is an
estimate of g based on the observed data, can be very close even when g and ĝ are
quite different. A similar phenomenon takes place when t is close to 1. Therefore,
there is an intrinsic limitation (for any estimation procedure) in the accuracy that
can be achieved in estimating g(y) when y is in a neighborhood of x0 and x1.

For carrying out the theoretical analysis, we thus modify the loss function Lδ(β)

(6) to include only those time points tj that are within the interval [δ,1 − δ] for
some small positive number δ. In practice, we may choose δ to be the time point
such that about 5% of the data fall in the intervals [0, δ] and [1 − δ,1]. Throughout
the paper, δ is treated as a fixed quantity.

Let x̂0,δ and x̂1,δ denote the estimates of x0,δ := x(δ), and x1,δ := x(1 − δ),
respectively. We then define

x0,M = x̂0,δ − ηM, x1,M = x̂1,δ + ηM,(8)

where ηM is a small positive number satisfying ηM = o(M−1). The estimation of
x0,δ, x1,δ and the choice of ηM are discussed in detail in Section 3.6.

We set the combined support of the basis functions {φk,M}Mk=1 as the interval
[x0,M, x1,M ], and use the following modified loss function to derive an estimator
for g:

L̃δ(β) =
n∑

j=1

(
Yj − x(tj ;β, x̂0,δ)

)21[δ,1−δ](tj ),(9)

where x(t;β, a) denotes the integral curve of the ODE:

x′(t) = gβ

(
x(t)

)
, t ∈ [δ,1 − δ], x(δ) = a.(10)

The estimated ĝ is through minimizing the above loss function with respect to β

[i.e., equation (7) with L replaced by L̃δ].
An alternative specification of the support of gβ is to treat the end points of the

support as additional parameters in the loss function L(β) defined in (6). Then β̂
is obtained by minimizing L(β) with respect to β as well as the end points.
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2.4. Model selection. As in all nonparametric estimation problems, model se-
lection, here the choice of the number of basis functions M , is an important issue.
We propose to use the Mallow’s Cp criterion for selecting M :

Cp :=
∑n

j=1(Yj − x(tj ; β̂M))2

σ̂ 2
ε

− (n − 2M),

where β̂M is the estimator under M basis functions and σ̂ 2
ε is an unbiased estimator

of the noise variance σ 2
ε . Utilizing the smoothness of the trajectories, we propose

to use: σ̂ 2
ε = 1

2(n−1)

∑n
j=2(Yj − Yj−1)

2.

3. Consistency. In this section, we discuss the consistency and rates of con-
vergence of the estimator ĝ defined by the loss function (9). The asymptotic frame-
work is that the number of basis functions M goes to infinity together with the
number of measurements n. The consistency of the estimator ĝ over [x0,δ, x1,δ] is
formulated in terms of the convergence of the L2-loss:∫ x1,δ

x0,δ

∣∣ĝ(u) − g(u)
∣∣2 du −→ 0 in probability as n → ∞.

In Theorem 3.1, we derive an upper bound on the rate of convergence of the L2-
loss as n,M → ∞ that depends upon the degree of smoothness of g. Specifically,
the optimal rate is OP (n−2p/(2p+3)) for p > 3 when g is p times continuously
differentiable. Here, and henceforth, we use the phrase “p-times continuously dif-
ferentiable”, or the notation f (·) ∈ Cp , to mean that p is the degree of smoothness
of the function f , that is, 
p�th derivative f (
p�) of f exists and is bounded on
the domain of f and |f (
p�)(y) − f (
p�)(z)| ≤ K|y − z|p−
p� for all y, z in the
domain of f , for some positive constant K . Here, for any p ∈ R, 
p� denotes the
largest integer less than or equal to p.

3.1. Assumptions. The following assumptions are being made.

A1. g ∈ Cp(D), and g > 0 on D for some p ≥ 2, where D is an open interval
containing [x0, x1].

A2. The collection of basis functions �M := {φ1,M, . . . , φM,M} satisfies:
(i) φk,M ’s have unit L2 norm;

(ii) the combined support of �M is D0 ≡ D0,M := [x0,M, x1,M ] and for ev-
ery k, the length of the support of φk,M is O(M−1);

(iii) φk,M ∈ C2(D0) for all k;
(iv) supu∈D0

∑M
k=1 |φ(j)

k,M(u)|2 = O(M1+2j ), for j = 0,1,2;
(v) the Gram matrix G�M

:= ((
∫ x1,M
x0,M

φk,M(u)φl,M(u)du))Mk,l=1 is such that
there exist constants 0 < c ≤ c < ∞, not depending on M such that
c ≤ λmin(G�M

) ≤ λmax(G�M
) ≤ c for all M ;
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(vi) for every M , there is a β∗ ∈ R
M (referred to as the optimal point) such

that supt∈[δ,1−δ] |xg(t) − x(t;β∗)| = O(M−(p+1)) and

supu∈[x0,δ,x1,δ] |g(j)(u) − g
(j)

β∗ (u)| = O(M−p+j ) for j = 0,1,2, where

gβ = ∑M
k=1 βkφk,M and x(t;β) ≡ x(t;β, x0,δ) with x(t;β, a) being the

solution of (10).
A3. The observation times {tj }nj=1 are realizations of {Tj }nj=1, where Tj ’s are i.i.d.

from a continuous distribution FT supported on [0,1] with a density fT sat-
isfying c′ ≤ fT ≤ c′ for some 0 < c′ ≤ c′ < ∞.

A4. The noise εj ’s are i.i.d. sub-Gaussian random variables with mean 0 and vari-
ance σ 2

ε > 0.

In A4, we follow the definition of sub-Gaussianity as given in [37]. A brief sum-
mary of properties of such random variables is given in Section S4 of the SM [28].

A1 ensures sufficient smoothness of the solution paths of the differential equa-
tion (2): By A1, xg(·) has smoothness index p + 1. A2(i) to A2(vi) are satisfied
by a normalized B-spline basis of order ≥ max{3,p} with equally spaced knots
on the interval [x0,M, x1,M ] where the basis functions are rescaled to have unit L2

norm. To show that such a basis satisfiesA2(vi) is nontrivial and this is done in Ap-
pendix A.2. This result, which relies on the approximation property of splines [8,
21] is key to quantifying the estimation bias when using a spline basis. As shown
in Section 3.6, A2(ii) ensures that the combined support of the basis functions
covers the range of the data used in estimating g. A2(vi) ensures that a solution
x(t;β) of (10) on t ∈ [δ,1 − δ] exists for all β sufficiently close to the optimal
point β∗. This allows us to apply the perturbation theory of differential equations
to bound the fluctuations of the sample paths when we perturb the parameter β .
A3 allows us to work with the random variables T̃j defined as Tj conditional on
Tj ∈ [δ,1 − δ] with the conditional density f̃T (t) = fT (t)/(FT (1 − δ) − FT (δ)).
The properties of fT ensure that f̃T satisfies the same properties on [δ,1 − δ] with
possibly modified values of the constants c1 and c2. It should be noted that the key
derivations leading to the consistency of ĝ are conditional on T and therefore A3
is only for mathematical convenience. The main asymptotic result (Theorem 3.1)
holds if instead of being randomly distributed, the time points form a fixed reg-
ular grid, say, with equal spacing. A4 is a fairly standard assumption that allows
calculation of the metric entropy used in proving Theorem 4.1, which shows the
existence of an estimator ĝ with a near-optimal convergence rate.

3.2. Rate of convergence. The estimation of g(·) is a nonlinear inverse prob-
lem since x′(·) is not directly observable. In addition, this is also an ill-posed esti-
mation problem.

Let xβ(·;β) be the partial derivative of x(·;β) with respect to β , where
x(·;β) ≡ x(·;β, x0,δ) is the solution of (10) with x(0) = x0,δ . Let β∗ ∈ R

M be
the optimal point as in A2. Define

G∗ := E
(
xβ(

T̃1;β∗)(
xβ(

T̃1;β∗))T )
,(11)
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where the expectation is with respect to the distribution of T̃1. Clearly, G∗ is a pos-
itive semi-definite matrix. The degree of ill-posedness of the estimation problem
is determined by the size of the operator norm of the matrix G−1∗ as a function
of M . The following proposition gives a precise quantification of the degree of ill-
posedness. The situation here is in contrast with standard nonparametric function
estimation problems where the corresponding matrix is well conditioned.

PROPOSITION 3.1. Suppose that assumptions A1–A3 hold with p ≥ 2. As-
sume further that (a) maxj=0,1 |xj,M − xj,δ| = o(M−1) (a.s.) and (b) min{x1,M −
x1,δ, x0,δ − x0,M}  M−3/2. Then∥∥G−1∗

∥∥ = O
(
M2)

a.s.(12)

Under the condition of Theorem 3.1, (a) and (b) of Proposition 3.1 hold if the
estimators x̂j of xj,δ as in Lemma 3.1 and ηM as in Section 3.6 are used in the
definition of xj,M (8) (j = 1,2). See Section 3.6 for details.

We now state the main result on the consistency and rate of convergence of the
estimator ĝ.

THEOREM 3.1. Suppose that the observed data {(tj , Yj ) : j = 1, . . . , n} fol-
low the model described by equations (2) and (3) and that A1–A4 are sat-
isfied with p > 3. Further, suppose that M satisfies c′(n/σ 2

ε )1/(2p+3) ≤ M ≤
c′′(n/σ 2

ε logn)1/7 for some c′, c′′ > 0. Then as n → ∞, with probability tending
to one, there exists a local minimum β̂ of the objective function L̃δ(β) [defined
by (9)], which is also a global minimum within radius cM−2 (for some c > 0) of
β∗ [defined in A2(vi)] such that, with ĝ := g

β̂
, we have∫ x1,δ

x0,δ

(
ĝ(u) − g(u)

)2
du

(13)

= OP

(
σ 2

ε M3

n

)
+ OP

(
M−2p) + OP

(
M2(

σ 2
ε /n

)2(p+1)/(2p+3))
,

with the optimal rate given by OP ((σ 2
ε /n)2p/(2p+3)), which is obtained when M =

c(n/σ 2
ε )1/(2p+3) for some c > 0.

REMARK 3.1. Assuming σε to be a constant, the optimal rate of convergence
of ĝ is the same as the optimal rate in terms of the L2-loss for estimating x′(t)
based on the data {Yj : j = 1, . . . , n} given by (2) when x ∈ Cp+1([0,1]). The fact
that an estimator of g can attain this rate can be anticipated from the representation
of g as g = x′

gox−1
g . It should be noted that when 2 ≤ p ≤ 3, we can establish that

the rate of convergence of ĝ is of the order OP ((σ 2
ε /n)2p/(2p+3) logn) (see Theo-

rem 4.1). However, in this case, the presence of the factor logn is conjectured to
be suboptimal. A formal argument, given in Section 3.3, shows that, at least if the
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class of estimators is restricted to be uniformly Lipschitz, the rate of convergence
ĝ is the optimal rate when p > 3 and B-splines of sufficiently high order are used
to model g.

REMARK 3.2. We give a brief explanation of the difference in the upper
bounds of rates for p ∈ [2,3] and p > 3. After proving the existence of a local min-
imizer ĝ ≡ g

β̂
in Theorem 4.1, we obtain a refinement in its rate of convergence

through a Taylor series expansion of the gradient of the loss function L̃δ(β) (details
are given in Section S2 of SM [28]). This expansion gives rise to a second-order
representation of β̂ . However, only when p > 3, we are able to control higher order
terms in this expansion, so that their contributions to the L2 loss for ĝ are domi-
nated by the first-order bias and variance terms. On the other hand, for p ∈ [2,3],
we do not have such a representation and instead, we are only able to provide the
rate of convergence given in Theorem 4.1.

The main steps of the proof of Theorem 3.1 are given in Section 4, with further
details provided in the supplementary material [28].

3.3. Lower bound on convergence rate. In this subsection, we show that if the
estimators of the gradient function g are restricted to a class of uniformly Lipschitz
function (which includes the proposed estimator), then the minimax rate for esti-
mation of g is of the order n−2p/(2p+3), and thus the proposed estimator is optimal
within this class of estimators. Accordingly, we first specify the function class for
g as

G = {
g : D →R+ : c0 ≤ g ≤ c1;

∣∣g′∣∣ ≤ c2;g ∈ Cp(D)
}
,(14)

where 0 < c0 < c1 < ∞ and 0 < c2 < ∞ are constants. Define the class of uni-
formly Lipschitz functions

L = {
h : D →R : ∣∣h(y) − h(z)

∣∣ ≤ c4|y − z| for all y, z ∈ D
}
,

where c4 ∈ (0,∞) depends on (at least as large as) c2 in (14). If g ∈ G, then we
have xg ∈ Cp+1([0,1]) and x ′

g ∈ Cp([0,1]). In addition, we assume the obser-
vation model (3) with the noise εi ’s are i.i.d. sub-Gaussian with mean zero and
variance σ 2

ε .
Let δ be as in Section 2. By the condition c0 ≤ g ≤ c1, for 0 < c0 < c1, we

know that there exist c0(δ) < c1(δ) such that c0(δ) ≤ xg(t) ≤ c1(δ) for all t ∈
[δ,1 − δ], for all g ∈ G. Note that, we can take c0(δ) = xg(0). Define, ‖f ‖2,δ =
(
∫ 1−δ
δ (f (t))2 dt)1/2. Then there are constants c2(δ), c3(δ) > 0 such that for any

given estimator ĝ ∈ L of g,

c2(δ)‖ĝoxg − goxg‖2
2,δ ≤

∫ xg(1−δ)

xg(δ)

∣∣ĝ(u) − g(u)
∣∣2 du

(15)
≤ c3(δ)‖ĝoxg − goxg‖2

2,δ.



2410 D. PAUL, J. PENG AND P. BURMAN

Recall that goxg = x′
g .

On the other hand, since xg(·) ∈ Cp+1([0,1]), there exists (cf. [33]) an estimator
x̂op(·) with the property that, given ε > 0, there exists a constant K1(ε) > 0 such
that

sup
g∈G

P
(‖x̂op − xg‖2

2,δ > K1(ε)n
−2(p+1)/(2p+3)) < ε(16)

for all n ≥ N1(ε).
We define the estimator x̃′ := ĝox̂op for x′

g . Then, by the triangle inequality,

‖ĝoxg − goxg‖2,δ = ∥∥ĝoxg − x′
g

∥∥
2,δ

≥ ∥∥x̃′ − x′
g

∥∥
2,δ − ‖ĝox̂op − ĝoxg‖2,δ(17)

≥ ∥∥x̃′ − x′
g

∥∥
2,δ − c4‖x̂op − xg‖2,δ,

where, in the last step we have used the fact that ĝ ∈ L.
Since x′

g ∈ Cp([0,1]), the minimax rate of estimation of x ′
g in terms of the

L2 loss ‖ · ‖2
2,δ is of the order n−2p/(2p+3). This can be derived directly for g

restricted to G by only slightly modifying the arguments in [33]. Combining this
fact with (15), (16) and (17), we obtain that there exists K2 > 0, such that

lim inf
n→∞ inf

ĝ∈L
sup
g∈G

P

(∫ xg(1−δ)

xg(δ)

∣∣ĝ(u) − g(u)
∣∣2 du > K2n

−2p/(2p+3)

)
> 0.

In other words, as long as ĝ is uniformly Lipschitz, the rate n−2p/(2p+3) is a lower
bound on the rate for estimating g in terms of the L2-loss. We note that, the re-
quirement ĝ ∈ L can be relaxed by requiring that this holds with probability ap-
proaching one as n → ∞. The latter is satisfied by the estimator we proposed.
Thus, combining with Theorem 3.1, we deduce that the optimal rate of estimation
of g is n−2p/(2p+3) for p > 3.

3.4. Asymptotic variance of ĝ. Using a consistent root β̂ and the equation
∇L(β)|

β=β̂
= 0, we can derive an approximate expression for the asymptotic vari-

ance of ĝ(·). Specifically, by the asymptotic representation of β̂ − β∗ appeared in
the proof of Theorem 3.1 (see Section S2 of SM [28]), ignoring higher order terms
and the contribution of the model bias, and finally evaluating the expressions at β̂
instead of β∗ (which is unknown), we have with M basis functions

Var(β̂M) ≈ D(β̂M) := σ̂ 2
ε,M

[
n∑

j=1

(
∂x(tj ; β̂M)

∂β

)(
∂x(tj ; β̂M)

∂β

)T
]−1

.(18)

Here, the estimated noise variance σ̂ 2
ε,M can be computed as the mean squared

error (n − M)−1 ∑n
j=1(Yj − x(tj ; β̂M))2. Expression (18) allows us to obtain an
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approximate asymptotic variance for ĝM(y) by V (y) := φ(y)T D(β̂M)φ(y), for
any given y, where φ(y) = (φ1,M(y), . . . , φM,M(y))T , y ∈ R. Note that the for-
mula appearing in equation (18) is the standard sampling variance estimator for
Gauss–Newton optimization of a nonlinear least squares method.

3.5. Initial estimator of g. In Theorem 3.1, we prove the rate of convergence
for a local minimizer, which is a global minimizer within a radius of O(M−2) of
the optimal point β∗ for a suitable range of values of M . Therefore, we need an
initial estimate which resides within this domain. In the following, we describe one
way of obtaining such an initial estimate, through a two-stage approach, which is
similar in spirit to the approaches by [6, 7].

We first estimate x(t) and x′(t) by local polynomial smoothing [12] and denote
these estimates by x̂(t) and x̂′(t), respectively. One may also use spline-based or
other nonparametric approaches. Then we fit the regression model

x̂′(Tj ) = φ
(
x̂(Tj )

)T
β + ej , j = 1, . . . , n(19)

by ordinary least squares, where φ = (φ1,M̃
, . . . , φ

M̃,M̃
). We refer to the resulting

estimator β̃ as the two-stage estimator of β:

β̃ =
[

n∑
j=1

φ
(
x̂(Tj )

)
φ

(
x̂(Tj )

)T 1[δ,1−δ](Tj )

]−1

(20)

×
(

n∑
j=1

x̂′(Tj )φ
(
x̂(Tj )

)
1[δ,1−δ](Tj )

)
.

Since x(·) ∈ Cp+1 and x′(·) ∈ Cp (by A1), and {εj } is sub-Gaussian, with the
optimal choice of bandwidths, we have

n−1
n∑

j=1

(
x̂(Tj ) − xg(Tj )

)21[δ,1−δ](Tj ) = OP

((
σ 2

ε /n
)2(p+1)/(2p+3))

,(21)

n−1
n∑

j=1

(
x̂′(Tj ) − x′

g(Tj )
)21[δ,1−δ](Tj ) = OP

((
σ 2

ε /n
)2p/(2p+3))

.(22)

We state the following result about the rate of convergence of the two-stage esti-
mator. The proof is given in Section S3 of the SM [28].

PROPOSITION 3.2. Suppose that p ≥ 2 and A1–A4 hold and that the two-
stage estimator of g is given by g̃ := gβ̃ where β̃ is defined in (20). Then, supposing

that 1 ≤ M̃ � n(p+1)/(2(2p+3)), we have∫ x1,δ

x0,δ

∣∣g̃(u) − g(u)
∣∣2 du = OP

(
α̃2

n

)
,(23)
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where

α̃n = max
{(

σ 2
ε /n

)p/(2p+3)
, M̃−p}

.(24)

When σε � 1, the optimal α̃n is of the order n−p/(2p+3), obtained by setting
M̃ � M̃∗ = n1/(2p+3). For all p ≥ 2 this rate matches the lower bound on rate
of convergence for estimating g reported in Section 3.3. This also shows that the
rate of convergence of g̃ is faster than O(M̃−2) if M̃ � np/(2(2p+3)) if p > 2. So,
for this range of M̃ , which includes M̃∗, with a high probability, the two-stage
estimator is within a ball of radius O(M̃−2) around β∗, over which ĝ is a global
optimizer of (9).

3.6. Estimation of xg at δ and 1 − δ. We estimate x0,δ := xg(δ) and x1,δ :=
xg(1−δ) by local polynomial smoothing and denote the estimators as x̂0,δ and x̂1,δ ,
respectively. Recall that [equation (8)], x0,M = x̂0,δ − ηM and x1,M = x̂1,δ + ηM ,
where ηM is a small positive number satisfying ηM = o(M−1) which implies that
x0 < x0,M < x1,M < x1 as n goes to infinity. At the same time, ηM should be large
enough so that maxj=0,1 |x̂j,δ − xj,δ| = oP (ηM) which ensures that x0,M < x0,δ <

x1,δ < x1,M and maxj=0,1 |xj,δ − xj,M | = OP (ηM) = oP (M−1) as n goes to in-
finity. For some technical considerations, to be utilized later, we also want ηM 
M−3/2. In practice, we may select ηM to be min{M−3/2 logn, sM/ logn} where
sM is the length of the smallest support among the basis functions {φ1, . . . , φM}.
In addition, we also assume that x̂j,δ , j = 0,1 are estimated from a sample inde-
pendent from that used in estimating β . This can be easily achieved in practice by
sub-sampling of the measurements. This assumption enables us to prove the con-
sistency result (Theorem 3.1) conditionally on x̂j,δ , j = 0,1 and treating them as
nonrandom sequences converging to xj,δ , j = 0,1.

We have the following result with regard to the estimation of x0,δ and x1,δ by
local polynomial smoothing (see, e.g., [12]). Define

ξn := n−(p+1)/(2p+3)
√

logn.(25)

LEMMA 3.1. Suppose that A1, A3 and A4 hold. Consider using a kernel of
sufficient degree of smoothness to obtain estimates x̂j,δ for xj,δ , j = 1,2, through
local polynomial smoothing method with bandwidth of order n−1/(2p+3). Define
dn := maxj=0,1 |x̂j,δ − xj,δ|. Then dn = OP (n−(p+1)/(2p+3)) and given ζ > 0,
there exists C(ζ ) > 0 such that dn ≤ C(ζ )ξn with probability at least 1 − n−ζ ,
where ξn is as in (25).

If M is as in Theorem 3.1, then since M−3/2 � ηM � M−1, it can be checked
that ξn = o(ηM) as n → ∞. This ensures that D0 = [x0,M, x1,M ] is within the
interval [x0, x1] a.s. for large enough n, and hence the properties of the function
g hold on D0. In addition, D0 contains the interval [x0,δ, x1,δ]. Therefore, A2(ii)
ensures that the combined support of the basis functions covers the range of the
data used in estimating g.



DYNAMICS OF MONOTONE TRAJECTORIES 2413

4. Proofs. In this section, we outline the main steps of the proofs. Some tech-
nical details are deferred to the Appendix.

4.1. Proof of Proposition 3.1. For convenience of notation, we use x∗(t) to
denote the sample path x(t;β∗) and x(t) to mean x(t;β) Similarly, xβ�(t) is
used to denote xβ�(t;β). Using the representation of xβ(·;β) through (55) in Ap-
pendix A.1,

xβ�(t) = gβ

(
x(t)

) ∫ x(t)

x0

φ�(x)

(gβ(x))2 dx, � = 1, . . . ,M,

in order to prove Proposition 3.1, it suffices to find a lower bound on

min‖b‖=1

∫ 1−δ

δ

[∫ t

δ
gb

(
x∗(s)

)
/gβ∗

(
x∗(s)

)
ds

]2

f̃T (t) dt,

where gb(u) = bT φ(u) with φ = (φ1, . . . , φM)T . By A3, without loss of general-
ity, we can take the density f̃T (·) to be uniform on [δ,1 − δ].

We make use of the following result known as Halperin–Pitt inequality [24].

LEMMA 4.1. If f is locally absolutely continuous and f ′′ is in L2([0,A]),
then for any ε > 0 the following inequality holds with K(ε) = 1/ε + 12/A2:∫ A

0

(
f ′(t)

)2
dt ≤ K(ε)

∫ A

0
f 2(t) dt + ε

∫ A

0

(
f ′′(t)

)2
dt.(26)

Now defining

R(t) :=
∫ t

δ

gb(x∗(s))
gβ∗(x∗(s))

ds,

we have

R′(t) := dR(t)

dt
= gb(x∗(t))

gβ∗(x∗(t))
,

R′′(t) := d2R(t)

dt2 =
[

g′
b(x∗(t))

gβ∗(x∗(t))
− gb(x∗(t))g′

β∗(x∗(t))
g2

β∗(x∗(t))

]
x′∗(t)

=
[

g′
b(x∗(t))

gβ∗(x∗(t))
− gb(x∗(t))g′

β∗(x∗(t))
g2

β∗(x∗(t))

]
gβ∗

(
x∗(t)

)
.

By A2(vi), we have supt∈[δ,1−δ] |xg(t) − x∗(t)| = O(M−(p+1)), and hence

x∗(1 − δ) ≤ x1,δ + ∣∣x∗(1 − δ) − x1,δ

∣∣ < x1,M, x∗(δ)
(27)

≥ x0,δ − ∣∣x∗(δ) − x0,δ

∣∣ > x0,M.



2414 D. PAUL, J. PENG AND P. BURMAN

Hence, using the fact that φ�(u)’s are O(M1/2) and φ′
�(u)’s are O(M3/2), and

these functions are supported on intervals of length O(M−1), we deduce that
∫ 1−δ

δ

(
R′′(t)

)2
dt = O

(
M2)

.(28)

An application of Lemma 4.1 with f (t) = R(t − δ) and A = 1 − 2δ yields
∫ 1−δ

δ

(
R′(t)

)2
dt

(29)

≤ (
1/ε + 12/(1 − 2δ)2) ∫ 1−δ

δ

(
R(t)

)2
dt + ε

∫ 1−δ

δ

(
R′′(t)

)2
dt.

Take ε = k0M
−2 for some k0 > 0, then by (28),
∫ 1−δ

δ

(
R(t)

)2
dt ≥ k1M

−2
∫ 1−δ

δ

(
R′(t)

)2
dt − k2M

−2,

for constants k1, k2 > 0 dependent on k0. Next, we write

∫ 1−δ

δ

(
R′(t)

)2
dt =

∫ x∗(1−δ)

x∗(δ)

g2
b(v)

g3
β∗(v)

dv =
∫ x∗(1−δ)

x∗(δ)
g2

b(v)h(v) dv,(30)

where h(v) = g−3
β∗ (v) which is bounded below by a positive constant on the inter-

val [x∗(δ), x∗(1 − δ)].
Observe that by (27), the combined support of {φk,M}Mk=1, viz., [x0,M, x1,M ],

contains (for sufficiently large M) the interval [x∗(δ), x∗(1 − δ)]. Also, |x1,M −
x∗(1 − δ)| ≤ |x1,M − x1,δ| + |x1,δ − x∗(1 − δ)| = o(M−1) and |x0,M − x∗(δ)| ≤
|x0,M − x0,δ| + |x0,δ − x∗(δ)| = o(M−1). These two facts and A2(v) imply that

∫ x∗(1−δ)

x∗(δ)
g2

b(v)h(v) dv

≥
(

inf
v∈[x∗(δ),x∗(1−δ)]h(v)

)
bT

[∫ x1,M

x0,M

φ(v)
(
φ(v)

)T
dv − o(1)

]
b

≥ k3,

for some constant k3 > 0, for sufficiently large M . Thus, by appropriate choice
of ε, we have

∫ 1−δ
δ (R(t))2 dt ≥ k4M

−2 for some constant k4 > 0, which
yields (12).

4.2. Proof of Theorem 3.1. The main step toward the proof of Theorem 3.1 is
the following slightly weaker version which is valid for wider range of the smooth
index p.
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THEOREM 4.1. Suppose that the observed data {Yj : j = 1, . . . , n} follow the
model described by equations (2) and (3) and that assumptions A1–A4 are satis-
fied with p ≥ 2. Suppose further that the sequence M is such that

c′
1

(
n

σ 2
ε logn

)1/(2p+3)

≤ M ≤ c′′
1

(
n

σ 2
ε logn

)1/7

(31)

for some c′
1, c

′′
1 > 0, M−3/2 � ηM � M−1, and ξn be as defined in Lemma 3.1.

Let ᾱn := c′
2M

−2 for some c′
2 > 0 (sufficiently small) and

αn := C0M max
{
σε

√
M logn

n
,M−(p+1), ξn

}
,(32)

for some C0 > 0. Then as n → ∞, with probability tending to one, there exists a
local minimum β̂ of the objective function L̃δ(β) [defined through (9)], which is
also a global minimum within radius ᾱn of β∗ [note that, αn ≤ ᾱn by (31)] such
that, with ĝ := g

β̂
, ∫ x1,δ

x0,δ

∣∣ĝ(u) − g(u)
∣∣2 du = O

(
α2

n

)
.(33)

REMARK 4.1. Assuming σε to be a constant, if M is chosen to be of the
order n1/(2p+3) if p > 2 [and (n/ logn)1/7 for p = 2], then α2

n in (33) simplifies
to n−2p/(2p+3) logn (correspondingly, bounded by the same for p = 2), which is
within a factor of logn of the optimal rate in terms of the L2-loss for estimating
x′(t) based on the data {Yj : j = 1, . . . , n} given by (2) when x ∈ Cp+1([0,1]). For
p > 3, we have the improved rate of convergence of ĝ, that is, without the logn

factor, as stated in Theorem 3.1.

The main idea behind the proof of Theorem 4.1 is to obtain a lower bound
on n−1(Lδ(β) − Lδ(β

∗)) which is proportional to ‖β − β∗‖2 when β lies in an
annular region around β∗. The outer radius of the annular region depends on the
degree of ill-conditioning of the problem, as quantified by Proposition 3.1, and
the smoothness of the function g and the approximating bases, as indicated in
condition A2. This lower bound then naturally leads to the conclusion about the
existence and rate of convergence of a local minimizer ĝ.

Define

�n

(
β,β∗) = 1

n

n∑
j=1

(
x(Tj ;β) − x

(
Tj ;β∗))21[δ,1−δ](Tj ),(34)

AM(αn, ᾱn) = {β ∈ R
M : αn ≤ ‖β − β∗‖ ≤ ᾱn}, and

D∗
n = 1

n

n∑
j=1

(
xg(Tj ) − x

(
Tj ;β∗))21[δ,1−δ](Tj ).
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Suppose that β ∈ AM(αn, ᾱn). Henceforth, we use x(t;β) to denote x(t;β;x0,δ)

and xg(t) to denote xg(t;x0,δ). Then

1

n
Lδ(β) − 1

n
Lδ

(
β∗)

= 1

n

n∑
j=1

(
Yj − x(Tj ;β)

)21[δ,1−δ](Tj )

− 1

n

n∑
j=1

(
Yj − x

(
Tj ;β∗))21[δ,1−δ](Tj )

(35)

= 1

n

n∑
j=1

(
x(Tj ;β) − x

(
Tj ;β∗))21[δ,1−δ](Tj )

− 2

n

n∑
j=1

εj

(
x(Tj ;β) − x

(
Tj ;β∗))

1[δ,1−δ](Tj )

− 2

n

n∑
j=1

(
xg(Tj ) − x

(
Tj ;β∗))(

x(Tj ;β) − x
(
Tj ;β∗))

1[δ,1−δ](Tj ),

where U1n(β,β∗) and U2n(β,β∗), are the second and third summations in the
above expression, respectively. Next, we write

1

n
L̃δ(β) − 1

n
Lδ(β)

= 1

n

n∑
j=1

[(
Yj − x(Tj ;β, x̂0,δ)

)2

− (
Yj − x(Tj ;β)

)2]
1[δ,1−δ](Tj )

= 1

n

n∑
j=1

(
x(Tj ;β; x̂0,δ) − x(Tj ;β)

)21[δ,1−δ](Tj )(36)

− 2

n

n∑
j=1

εj

(
x(Tj ;β; x̂0,δ) − x(Tj ;β)

)
1[δ,1−δ](Tj )

− 2

n

n∑
j=1

(
x(Tj ;β; x̂0,δ) − x(Tj ;β)

)(
xg(Tj ) − x(Tj ;β)

)

× 1[δ,1−δ](Tj ),

where V1n(β), V2n(β), V3n(β) are the three summations in the last expression.
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From (35) and (36), we deduce that

1

n
L̃δ(β) − 1

n
L̃δ

(
β∗)

= 1

n

(
Lδ(β) − Lδ

(
β∗)) + 1

n

(
L̃δ(β) − Lδ(β)

) − 1

n

(
L̃δ

(
β∗) − Lδ

(
β∗))

(37)
= �n

(
β,β∗) − U1n

(
β,β∗) − U2n

(
β,β∗) + (

V1n(β) − V1n

(
β∗))

− (
V2n(β) − V2n

(
β∗)) + U3n

(
β,β∗) − U4n

(
β,β∗)

,

where

U3n

(
β,β∗)
= 2

n

n∑
j=1

(
xg(Tj ) − x

(
Tj ;β∗))(

x(Tj ;β; x̂0,δ) − x(Tj ;β)
)
1[δ,1−δ](Tj )

− 2

n

n∑
j=1

(
xg(Tj ) − x

(
Tj ;β∗))(

x
(
Tj ;β∗; x̂0,δ

) − x
(
Tj ;β∗))

1[δ,1−δ](Tj ),

U4n

(
β,β∗)
= 2

n

n∑
j=1

(
x(Tj ;β) − x

(
Tj ;β∗))(

x(Tj ;β; x̂0,δ) − x(Tj ;β)
)
1[δ,1−δ](Tj ).

Using the fact that xa(t;β, a0) := (∂/∂a)x(t;β, a)|a=a0 satisfies

xa(t;β, a0) = gβ(x(t;β, a0))

gβ(a0)
, t ∈ [δ,1 − δ],

provided gβ(y) > 0 for y ∈ [a0, x(1 − δ;β, a0)], we have, for all β ∈ AM(αn, ᾱn),

sup
a0∈[x0,δ−ξn,x0,δ+ξn]

sup
t∈[δ,1−δ]

∣∣x(t;β, a0) − x(t;β, x0,δ)
∣∣ ≤ C1ξn(38)

for some C1 > 0. Here, we have used the fact that for t ∈ [δ,1 − δ], and a0 ∈
[x0,δ − ξn, x0,δ + ξn],

x(t;β, a0) = G̃−1
β

(
t − δ + Gβ(a0)

)
where G̃β(y) :=

∫ y

x0,M

du

gβ(u)
,(39)

and that

sup
β∈A(αn,ᾱn)

sup
y∈[x0,M,x1,M ]

∣∣gβ(y) − gβ∗(y)
∣∣ = O

(
ᾱnM

1/2) = O
(
M−3/2)

,

so that, by using (61), and the fact that M−3/2 � ηM � M−1,[
x0,δ − ξn, sup

β∈A(αn,ᾱn)

sup
a0∈[x0,δ−ξn,x0,δ+ξn]

x(1 − δ;β, a0)
]
⊂ [x0,M, x1,M ]
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for large enough M and n.
We now bound individual terms in the expansion (37). First, we have the fol-

lowing lower bound on �n(β,β∗), the proof of which is given in Appendix A.3.

LEMMA 4.2. Let �n(β,β∗) be as defined in (34). Then given η > 0, there
exist constants d1(η) > 0 and d2, d3, d4 > 0 independent of η such that

�n

(
β,β∗)

(40)

≥ d1(η)
1

M2

∥∥β − β∗∥∥2 − d2
∥∥β − β∗∥∥4

M2(
1 + d3ᾱ

2
nM

2 + d4M
−2)

uniformly in β ∈ AM(αn, ᾱn) with probability at least 1 − n−η.

Since ᾱnM = c′
2M

−1 = o(1), and the constant c′
2 can be chosen to be small

enough so that we can conclude from (40) that given η > 0, there exists d5(η) > 0
such that

P

(
�n

(
β,β∗) ≥ d5(η)

M2

∥∥β − β∗∥∥2 for all β ∈ AM(αn, ᾱn)

)
≥ 1 − n−η.(41)

Next, by the Cauchy–Schwarz inequality, we have∣∣U2n

(
β,β∗)∣∣ ≤ 2

√
D∗

n

√
�n

(
β,β∗)

.(42)

Next, by (38), we have

max
{
V1n

(
β∗)

, sup
β∈A(αn,ᾱn)

V1n(β)
}

≤ C2
1ξ2

n ,(43)

and hence

sup
β∈A(αn,ᾱn)

∣∣U3n

(
β,β∗)∣∣ ≤ 4C1ξn

√
D∗

n(44)

and ∣∣U4n

(
β,β∗)∣∣ ≤ 2C1ξn

√
�n

(
β,β∗)

.(45)

Next, defining

Z(β) =
∑n

j=1 εj (x(Tj ;β) − x(Tj ;β∗))1[δ,1−δ](Tj )

σε

√∑n
j=1(x(Tj ;β) − x(Tj ;β∗))21[δ,1−δ](Tj )

,

and setting Z(β) being zero if the denominator is zero, we have

∣∣U1n(β)
∣∣ ≤ 2σε√

n

√
�n

(
β,β∗)∣∣Z(β)

∣∣.(46)

Let BM(�;αn, ᾱn) be a �-net for AM(αn, ᾱn). Then |BM(�;αn, ᾱn)| ≤
3(ᾱn/�)M . Then, by using Lemma S.3 in the SM [28], and (41), we conclude
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that given η > 0, there exist constants c1(η) > 0,C′(η) > 0, and a set A1η with
P(T ∈ A1η) ≥ 1 − n−η, such that for all T ∈ A1η,

P

(
max

β∈BM(δ;αn,ᾱn)

∣∣Z(β)
∣∣ > c1(η)

√
M log(ᾱn/δ)

∣∣T)
≤ C′(η)

(
�

ᾱn

)ηM

for some constant C′ > 0. Thus, taking δ to be sufficiently small, say, δ = n−c for
c large enough, and using the smoothness of the process Z(β) as a function of β ,
we can show that given any η > 0, there exists c2(η) > 0, such that for all T ∈ A1η,

P

(
sup

β∈AM(αn,ᾱn)

∣∣Z(β)
∣∣ ≤ c2(η)

√
M logn

∣∣T)
> 1 − n−η.(47)

Very similarly, defining

Z̃(β) =
∑n

j=1 εj (x(Tj ;β; x̂0,δ) − x(Tj ;β))1[δ,1−δ](Tj )

σε

√∑n
j=1(x(Tj ;β; x̂0,δ) − x(Tj ;β))21[δ,1−δ](Tj )

,

expressing V2n(β) = 2σεn
−1/2√V1n(β)Z̃(β) and using (43), we have, for any

given η > 0, there exists c3(η) > 0 and a set A2η with P(T ∈ A2η) ≥ 1 − n−η,
such that for all T ∈ A2η,

P

(
sup

β∈AM(αn,ᾱn)∪{β∗}
∣∣V2n(β)

∣∣ ≤ c3(η)σεξn

√
M logn

n

∣∣∣T)
> 1 − n−η.(48)

Finally, by A2(vi) we have the bound

D∗
n ≤ sup

t∈[δ,1−δ]
∣∣xg(t) − x

(
t;β∗)∣∣2 ≤ C2M

−2(p+1)(49)

for some C2 > 0.
Combining (42)–(49), we claim that, given η > 0, there exist constants C3(η) >

0, C4(η) > 0, and constants Cl > 0, l = 5, . . . ,8, not depending on η, such that
uniformly on AM(αn, ᾱn)

1

n
L̃δ(β) − 1

n
L̃δ

(
β∗)

≥ �n

(
β,β∗) −

√
�n

(
β,β∗)(

C3(η)

√
M logn

n
+ C5M

−(p+1) + C6ξn

)
(50)

− ξn

(
C4(η)

√
M logn

n
+ C7M

−(p+1) + C8ξn

)

with probability at least 1 − O(n−η).
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From (50) and (41), and a careful choice of the constant C0 in the definition
(32) of αn, and with M as in (31), we conclude that for any η > 0, there exists
C9(η) > 0 such that, uniformly in β ∈ AM(αn, ᾱn),

1

n
L̃δ(β) − 1

n
L̃δ

(
β∗) ≥ C9(η)

1

M2

∥∥β − β∗∥∥2(51)

with probability at least 1 − O(n−η). From this, we can conclude that with proba-
bility at least 1 − O(n−η) there exists a local minimum β̂ of L̃δ(β), which is also
a global minimum within radius ᾱn of β∗ and which satisfies ‖β̂ − β∗‖ = O(αn)

with probability tending to 1.

5. Simulation study. In this section, we conduct simulation studies to exam-
ine the finite sample performance of the proposed nonlinear least squares (NLS)
estimator, as well as to compare it with the two-stage estimator described in Sec-
tion 3.5.

In the simulation, the true gradient function g is represented by 4 cubic B-
spline functions with knots at 0.35,0.60,0.85,1.10 (without the boundary cor-
rected splines) with respective coefficients 0.1,1.2,1.6,0.4 (shown by the blue
curve in Figure 1). We set the initial value x(0) = x0 = 0.25 in equation (2)
to generate the true trajectory x(·). We consider two sampling density, namely,
dense sampling where the number of measurements n is randomly sampled from
{60, . . . ,100}, and moderately dense sampling where n is randomly chosen from
{20, . . . ,60}. Then n observation times {t1, . . . , tn} are uniformly sampled from
[0,1]. Finally, the Yj ’s are generated according to equation (3) with added noise
εi ∼ Normal(0, σ 2

ε ). We consider three noise levels, namely, σε = 0.01 (low noise
level), σε = 0.025 (medium noise level), and σε = 0.05 (high noise level). We sim-
ulate 500 independent data sets under each of the six combinations of sampling

FIG. 1. Simulation for dense sampling and σε = 0.025: Pointwise median (red curve) and point-
wise 90% percentile bands (broken black curves) of the estimated gradient functions overlayed on
the true gradient function (blue curve). Left panel: proposed NLS estimator; Right panel: two-stage
estimator.
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FIG. 2. Simulation for dense sampling and σε = 0.025: True trajectory (black solid curve), NLS
fitted trajectory (red broken curve), two-stage fitted trajectory (blue dashed curve) and sample ob-
servations (black circles) for one replicate.

density and noise level. We focus on the results for n ∼ {60, . . . ,100} (dense sam-
pling) and σε = 0.025 (medium noise level) in the main text. More detailed results
can be found in the SM [28]. The observed data from one replicate with σε = 0.025
together with the true and estimated trajectories are shown in Figure 2.

We fit the proposed NLS estimator ĝ(·) with M cubic B-spline basis functions
with equally spaced knots on [0.1,1.1]. We consider M = 3,4,5 and choose M by
Mallow’s Cp as described in Section 2.4. Under dense sampling, when σε = 0.025,
out of the 500 replicates, 222 times the model with M = 3 is chosen, 220 times
the model with M = 4 (the true model) is chosen and 58 times the model with
M = 5 is chosen. The corresponding numbers for σε = 0.01 are 30 (for M = 3),
443 (for M = 4) and 27 (for M = 5); and when σε = 0.05: 339 (for M = 3),
102 (for M = 4) and 59 (for M = 5). Cp has a tendency to select simpler models
when noise level is high due to bias-variance trade-off. However, as can be seen by
Figure S.5, the estimated gradient functions are reasonably unbiased even under
the high noise setting (σε = 0.05).

We also consider the two-stage estimator, where in the first stage, the sample
trajectory x(·) and its derivative x′(·) are estimated by applying local linear and
local quadratic smoothing with Gaussian kernel, respectively, to the observed data
{(tj , Yj )}nj=1. The bandwidths are chosen by cross-validation. In the second stage,
the true model is used to estimate g through a least-squares regression of x̂′(·)
versus x̂(·).

Figure 1 shows the true gradient function g along with the pointwise median
and 90% percentile bands of the estimated gradient functions (computed based on
the 500 replicates under dense sampling and σε = 0.025) for the proposed NLS es-
timator and the two-stage estimator, respectively. It is noticeable that the pointwise
median of ĝ is closer to the true g for the NLS estimator than the two-stage estima-
tor, which indicates a lesser degree of bias for the NLS estimator. Moreover, NLS
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estimator shows less variability near the left end of the domain where observations
are scarce. These are also reflected in the median relative integrated squared errors
(M-RISE) where the proposed NLS estimator has M-RISE = 5.756% and the two-

stage estimator has M-RISE = 7.416%. Here, RISE is calculated as
∫
(ĝ−g)2∫

g2 . These

phenomena persist across all simulation settings we considered (see Section S5 of
the SM [28]). Indeed, under the high noise setting (σε = 0.05), the improvement
of the NLS estimator over the two-stage estimator is even more: There is a 35%
improvement in terms of M-RISE (10.75% of NLS vs. 16.48% of two-stage). We
also conduct a simulation to mimic the Berkeley growth data (see Section 6). The
proposed estimator works very well under that setting and the results are reported
in the SM [28].

6. Application: Berkeley growth data. We apply the proposed methodology
to the Berkeley growth data [34]. Although in the literature, there are many studies
of growth curves [16, 23], most of them try to model either the growth trajectories
[i.e., x(·)] or the rate of growth [i.e., x ′(·)]. On the contrary, our goal is to estimate
the gradient function, that is, the functional relationship between x′(·) and x(·)
which provides insights of the growth dynamics, such as at which range of height
the growth rate tends to be the highest.

Specifically, we fit the proposed model to each of the 54 female subjects in this
data set. For each girl, her heights were measured at 31 time points from 1 year
old to 18 years old. We use M B-spline basis functions with equally spaced knots.
We consider M = 4,5,6,7. By Mallow’s Cp criterion, in 24 out of 54 subjects,
the model with M = 6 is chosen, and for the rest 30 subjects, the model with
M = 7 is chosen. Figure 3 shows the fitted gradient functions for these 54 subjects.
From this figure, we can see that, most girls experienced two growth spurts, one

FIG. 3. Berkeley Growth Data: fitted gradient functions for 54 female subjects.
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at the birth (when their heights are shortest) and another when they were around
either 130 cm tall or 150 cm tall. Moreover, Figure S.1 in the SM [28] shows
the fitted gradient functions with the two-standard-error bands [by equation (18)]
for 25 girls. Figure S.2 shows the observed (red dots) and fitted (black curve)
growth trajectories for these 25 girls. It can be seen that, the fitted trajectories fit
the observed data very well.

7. Discussion. In this paper, we propose a nonparametric estimator for the
gradient function of a first order autonomous differential equation when the tra-
jectory is strictly monotone. We fit the model through a nonlinear least squares
approach. We consider the case when the measurements are on a discrete set of
time points with sub-Gaussian observational noise. We show that, if the gradient
function g is p(> 3) times differentiable, then the optimal rate of the proposed
estimator ĝ is O(n−2p/(2p+3)), which is the same as the optimal rate for the es-
timation of the derivative of a trajectory, assuming that the latter is p + 1 times
differentiable. Indeed, as discussed in Section 3.3, if the estimators of the gradient
function g are restricted to a class of uniformly Lipschitz function (which includes
the proposed estimator), then the minimax rate for estimation of g is of the or-
der n−2p/(2p+3), and thus the proposed estimator is optimal within this class of
estimators. We conjecture that the Lipschitz requirement on the estimators of g

is not necessary and the minimax rate for estimation of g is indeed of the order
n−2p/(2p+3). In addition, we carry out simulation studies to show that the pro-
posed nonlinear least squares estimator of the gradient function performs well and
is superior than a two-stage estimator.

In this paper, we consider an L2 loss function. If the response is categorial or
has specific characteristics, such as being counts or binary, then it may be more
appropriate to model the underlying continuous process through a generalized lin-
ear model framework. Whether we can extend the theoretical results under such
a framework may depend on the specific features of the error distribution and the
link function. This is a topic of future research.

APPENDIX

In this section, we provide technical details for the proofs of the main results.
Specifically, in Appendix A.1, we present results on perturbation analysis of dif-
ferential equations that are central to controlling the bias in the estimates. In Ap-
pendix A.2, we verify that condition (vi) of A2 is satisfied by a B-spline basis
of sufficiently high order. In Appendix A.3, we prove Lemma 4.2. Details of the
estimation procedure are provided in Appendix A.4. Further technical details are
given in the supplementary material [28].

A.1. Properties of sample trajectories and their derivatives. Throughout
this subsection, with slight abuse of notation, we use x(·) to mean x(·;β), unless
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stated otherwise. Since x(·) satisfies the ODE

x(t) = x0 +
∫ t

0

M∑
k=1

βkφk

(
x(s)

)
ds, t ∈ [0,1],(51)

differentiating with respect to β we obtain the linear differential equations

d

dt
xβ�(t) = xβ�(t)

M∑
k=1

βkφ
′
k

(
x(t)

) + φ�

(
x(t)

)
, xβ�(0) = 0,(52)

for � = 1, . . . ,M , where xβ�(t) := ∂x(t)
∂β�

. The Hessian of x(·) with respect to β is

given by the matrix (xβ�,β�′ )M�,�′=1, where xβ�,β�′ (t) := ∂2

∂β�∂β�′
x(t), which satisfies

the system of ODEs, for �, �′ = 1, . . . ,M :

d

dt
xβ�,β�′ (t)

=
[
xβ�,β�′ (t)

M∑
k=1

βkφ
′
k

(
x(t)

) + xβ�(t)φ′
�′

(
x(t)

)
(53)

+ xβ�′ (t)φ′
�

(
x(t)

) + xβ�(t)xβ�′ (t)
M∑

k=1

βkφ
′′
k

(
x(t)

)]
,

xβ�,β�′ (0) = 0.

With a := x(δ) and xa(t) denoting ∂
∂a

x(t), we also have

d

dt
xa(t) = g′

β

(
x(t)

)
xa(t), xa(δ) = 1.(54)

Note that (52), (53) and (54) are linear differential equations. If the function
gβ := ∑M

k=1 βkφk is positive on the domain then the gradients of the trajectories
can be solved explicitly as follows:

xβ�(t) = gβ

(
x(t)

) ∫ x(t)

x0

φ�(u)

(gβ(u))2 du,(55)

xβ�,β�′ (t) = gβ

(
x(t)

) ∫ t

0

1

gβ(x(s))
xβ�(s)xβ�′ (s)g′′

β

(
x(s)

)
ds

(56)

+ gβ

(
x(t)

) ∫ t

0

1

gβ(x(s))

[
xβ�(s)φ′

�′
(
x(s)

) + φ′
�

(
x(s)

)
xβ�′ (s)

]
ds

and

xa(t) = gβ(x(t))

gβ(a)
, t ∈ [δ,1 − δ].(57)

The following result on the perturbation of the solution path due to a perturba-
tion in the gradient function is derived from [9].
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PROPOSITION A.1. Consider the initial value problem:

r ′ = f (t, r), r(t0) = r0,(58)

where r ∈ R
d . On the augmented phase space �, say, let the mappings f and δf

be continuous and continuously differentiable with respect to the state variable.
Assume that for (t0, r0) ∈ �, the initial value problem (58), and the perturbed
problem

r ′ = f (t, r) + δf (t, r), r(t0) = r0,

have the solutions r and r = r + δr , respectively. If f is such that ‖fr(t, ·)‖∞ ≤
χ(t) for a function χ(·) bounded on [t0, t1], and ‖δf (t, ·)‖∞ ≤ τ(t) for some non-
negative function τ(·) on [t0, t1], then

∥∥δr(t)∥∥ ≤
∫ t

t0

exp
(∫ t

s
χ(u) du

)
τ(s) ds for all t ∈ [t0, t1].

We use the above result to compute bounds for the trajectories and their deriva-
tives corresponding to the different values of the parameter β in a neighbor-
hood of the point β∗. In order to keep the exposition simple, we assume that
gβ(x) = gβ(x1,M) for x > x1,M and gβ(x) = gβ(x0,M) for x < x0,M with a dif-
ferentiability requirement at the points x0,M and x1,M .

We first deduce that the range of the trajectories x(t;β, x0,δ) is contained in the
set D0 = [x0,M, x1,M ], for all t ∈ [δ,1 − δ] and for all β ∈ B(αn) := {β : ‖β −
β∗‖ ≤ αn}. Let γn = max{supy∈D |gβ∗(y) − g(y)|, supy∈D0

|gβ∗(y) − gβ(y)|}.
Then γn = O(M−p) + O(αnM

1/2). Also, let ξn = maxj=0,1 |x̂j,δ − xj,δ|. As in
the proof of Proposition 3.1, we can easily show that [x0,δ, x1,δ] ⊂ [x0,M, x1,M ]
for sufficiently large M almost surely. On the other hand, by using the perturba-
tion bound given by Proposition A.1 progressively over small subintervals of the
interval [δ,1 − δ], it can be shown that

sup
β∈B(αn)

sup
t∈[δ,1−δ]

∣∣x(t;β, x0,δ) − xg(t;x0,δ)
∣∣ ≤ C1γn + C2ξn,

for appropriate C1,C2 > 0 depending on g and g′ but not on αn. Now, using
Lemma 3.1, the condition on αn as given in Theorem 4.1, and the definitions of
x̂j,δ , xj,δ and xj,M , for j = 0,1, we conclude that for large enough M , the range of
x(t;β, x0,δ) is contained in D0 for all t ∈ [δ,1− δ] and for all β ∈ B(αn). The sce-
nario is depicted in Figure 4, where the dashed curves indicate the envelop of the
trajectories x(t;β, x0,δ), while the solid curve indicates the trajectory xg(t;x0,δ).

Next, we provide bounds for trajectories and their derivatives. In the following,
‖ · ‖∞ is used to denote the sup-norm over D0 = [x0,M, x1,M ]. First, by A2 we
have the following:∥∥g(j)

β − g
(j)

β∗
∥∥∞ = O

(∥∥β − β∗∥∥Mj+1/2)
, j = 0,1,2,(59)
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FIG. 4. Schematic diagram of the trajectory xg(t;x0,δ) (solid curve) and the envelop of trajectories
x(t;β, x0,δ) (boundaries indicated by dashed curves).

where g(j) and g
(j)

β∗ denote the j th derivative of g and gβ∗ , respectively. Next,
again from A2, for M large enough, solutions {x(t;β) : t ∈ [δ,1 − δ]} exist for
all β such that ‖β − β∗‖ ≤ αn. This also implies that the solutions xβ�(·;β) and
xβ�,β�′ (·;β) exist on [δ,1− δ] for all β such that ‖β −β∗‖ ≤ αn, since they follow
linear differential equations where the coefficient functions depend on X(t;β).
Moreover, by Gronwall’s lemma [9], (59) and the fact that ‖g(j)

β∗ ‖∞ = O(1) for
j = 0,1,2 (again by A2).

Hence, if ‖β − β∗‖M3/2 = o(1), then using Proposition A.1, the fact that
‖g(j)

β∗ ‖∞ = O(1) for j = 0,1,2, and the expressions for the ODEs for the partial
derivatives, we obtain ∥∥x(·;β∗) − xg(·)

∥∥∞ = O
(
M−p)

.(60)

Note that we improve this bound in Appendix A.2 to O(M−(p+1)) by a more re-
fined calculation. Similar derivations as in (60) can be used to prove the following
whenever ‖β − β∗‖M3/2 = o(1):∥∥x(·;β) − x

(·;β∗)∥∥∞ = O
(∥∥β − β∗∥∥);(61)

max
1≤�≤M

∥∥xβ�(·;β)
∥∥∞ = O

(
M−1/2);(62)

max
1≤�≤M

∥∥xβ�(·;β) − xβ�
(·;β∗)∥∥∞ = O

(
M1/2∥∥β − β∗∥∥);(63)

max
1≤�,�′≤M

∥∥xβ�,β�′ (·;β∗)∥∥∞ = O(1);(64)

max
1≤�,�′≤M

∥∥xβ�,β�′ (·;β) − xβ�,β�′ (·;β∗)∥∥∞ = O
(
M

∥∥β − β∗∥∥ + M−1)
.(65)
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The M−1 term in the bound in (65) can be dropped if the basis functions {φk,M}
are in C3.

To illustrate the key arguments, we prove (61), (62) and (63). First, from (59)
and Proposition A.1, we have ‖x(·;β) − x(·;β∗)‖∞ = O(M1/2‖β − β∗‖). Using
this and (59) in (55), recalling that gβ∗ is bounded away from zero and is bounded

above on the domain, and the fact that ‖φ(j)
� ‖∞ = O(M1/2 + j), for j = 0,1,2,

and is supported on an interval of length O(M−1), we obtain (62). Now, with an
application of the mean value theorem to the difference x(t;β) − x(t;β∗), we
obtain (61).

Next, from (55), |xβ�(t;β) − xβ�(t;β∗)| can be bounded by

∣∣gβ

(
x(t;β)

) − gβ∗
(
x(t;β)

)∣∣∣∣∣∣
∫ x(t;β)

x0

φ�(u)

(gβ(u))2 du

∣∣∣∣
+ ∣∣gβ∗

(
x(t;β)

)∣∣ ∫ x(t;β)

x0

∣∣∣∣ φ�(u)

(gβ(u))2 − φ�(u)

(gβ∗(u))2

∣∣∣∣du

(66)

+ ∣∣gβ∗
(
x(t;β)

)∣∣∣∣∣∣
∫ x(t;β∗)

x(t;β)

φ�(u)

(gβ∗(u))2 du

∣∣∣∣
+ ∣∣gβ∗

(
x(t;β)

) − gβ∗
(
x
(
t;β∗))∣∣∣∣∣∣

∫ x(t;β∗)

x0

φ�(u)

(gβ∗(u))2 du

∣∣∣∣.
Now, it is easily seen using (59), (61) and the properties of φ� and φ′

�, that among
the four terms in (66), the first two terms are O(‖β − β∗‖), the third term is
O(M1/2‖β − β∗‖), and the last term is O(M−1/2‖β − β∗‖), thus yielding (63).
Proof of (64) and (65) follows a similar pattern involving the representation (56).

A.2. Verification of A2(vi) for B-spline basis. In this subsection, we verify
that the condition A2(vi) is satisfied if {φk,M}Mk=1 is a normalized B-spline basis
with equally spaced knots on [x0,M, x1,M ] and of order d ≥ max{3,p}. In par-
ticular, we show that the rate of approximation of xg(t) by x(t;β∗) with a care-
fully chosen β = β∗ satisfies the requirement that supt∈[δ,1−δ] |xg(t)− x(t;β∗)| =
O(M−(p+1)) and the conditions supy∈[x0,M ,x1,M ] |g(j)(y) − g

(j)

β∗ (y)| = O(M−p+j )

for j = 0,1,2. The result is proved through the following lemmas proved in the
supplementary material [28].

LEMMA A.1. Suppose that {φk,M}Mk=1 has combined support [x0,δ, x1,δ] =
[x(δ), x(1 − δ)] and satisfies (ii)–(v) of A2 and β∗ furthermore has the property
that

sup
y∈[x0,δ,x1,δ]

∣∣∣∣
∫ y

x0,δ

g(u) − gβ∗(u)

g(u)
du

∣∣∣∣ = aM(67)
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such that c0M
−(p+1) ≤ aM � M−p−ε , uniformly in M , for some ε ∈ (0,1] and

some c0 > 0. Then, if x(δ;β∗) = x(δ), there exists C > 0 such that

sup
t∈[δ,1−δ]

∣∣xg(t) − x
(
t;β∗)∣∣ ≤ CaM.(68)

LEMMA A.2. Suppose that A1 holds with p ≥ 2. Let {φk,M}Mk=1 denote the
normalized B-spline basis of order ≥ max{3,p} with equally spaced knots on the
interval [x0,M, x1,M ]. Then there exists a β∗ ∈ R

M such that gβ∗ = ∑M
k=1 β∗

k φk,M

satisfies

sup
y∈[x0,δ,x1,δ]

∣∣∣∣
∫ y

x0,δ

g(u) − gβ∗(u)

g(u)
du

∣∣∣∣ = O
(
M−(p+1)).(69)

A.3. Proof of Lemma 4.2. By a Taylor expansion, we have for j = 1, . . . , n,

x(Tj ;β) − x
(
Tj ;β∗) = xβ(

Tj ;β∗)T (
β − β∗)

+ (
xβ(

Tj ; β̃(Tj )
) − xβ(

Tj ;β∗))T (
β − β∗)

,

where ‖β̃(Tj ) − β∗‖ ≤ ‖β − β∗‖ for all j . From this, it follows that, for all β ∈
AM(αn, ᾱn),

�n

(
β,β∗)
≥ 3

4

(
β − β∗)T [

1

n

n∑
j=1

xβ(
Tj ;β∗)

xβ(
Tj ;β∗)T 1[δ,1−δ](Tj )

](
β − β∗)

(70)

− 3
∥∥β − β∗∥∥2 1

n

n∑
j=1

∥∥xβ(
Tj ; β̃(Tj )

) − xβ(
Tj ;β∗)∥∥21[δ,1−δ](Tj ),

where we have used |2ab| ≤ a2/4 + 4b2. Using Proposition 3.1 and Lemma A.3
(stated below), given η > 0, there exists C10(η) > 0 such that

(
β − β∗)T [

1

n

n∑
j=1

xβ(
Tj ;β∗)

xβ(
Tj ;β∗)T 1[δ,1−δ](Tj )

](
β − β∗)

≥ C10(η)
1

M2

∥∥β − β∗∥∥2

for all β ∈AM(αn, ᾱn), with probability at least 1−n−η. Now, another application
of the mean value theorem yields that for Tj ∈ [δ,1 − δ],∥∥xβ(

Tj ; β̃(Tj )
) − xβ(

Tj ;β∗)∥∥2

≤ ∥∥β̃(Tj ) − β∗∥∥2∥∥xββT (
Tj ;β∗)∥∥2

F

+ ∥∥β̃(Tj ) − β∗∥∥2 ∑
1≤k,k′≤M

∣∣Xβk,βk′ (Tj ; β̄k
(Tj )

) − Xβk,βk′ (Tj ;β∗)∣∣2,
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where ‖ · ‖F denotes the Frobenius norm, and ‖β̄k
(Tj ) − β∗‖ ≤ ‖β̃(Tj ) − β∗‖ for

all 1 ≤ k ≤ M and 1 ≤ j ≤ n. Now, using (64) and (65), and combining the last
three displays, we get (40).

LEMMA A.3. Suppose that A1–A4 hold. Let

Ḡ∗n := 1

FT (1 − δ) − FT (δ)

1

n

n∑
j=1

xβ(
Tj ;β∗)(

xβ(
Tj ;β∗))T 1[δ,1−δ](Tj ).

Then, given η > 0, there exists constants c′
1(η), c′

2(η) > 0 such that, with probabil-
ity 1 − n−η, uniformly in γ ∈ S

M−1,

γ T Ḡ∗nγ ≥ γ T G∗γ − c′
1(η)

√
γ T G∗γ

√
M logn

n
≥ c′

2(η)M−2.(71)

Proof of Lemma A.3. Let vj = xβ(Tj ;β∗). Define D(γ ) = γ T (Ḡ∗n − G∗)γ .
Notice that

1

(FT (1 − δ) − FT (δ))
ET

[
vj vT

j 1[δ,1−δ](Tj )
] = E

T̃

[
vj vT

j

] = G∗,

where the first expectation is with respect to the distribution of T1 and the second
with respect to that of T̃1. Hence, we can write D(γ ) = n−1 ∑n

j=1 uj (γ ) where

uj (γ ) = γ T

(
vj vT

j

1[δ,1−δ](Tj )

FT (1 − δ) − FT (δ)
−E

T̃

[
vj vT

j

])
γ .

Note that, the random variables uj (γ ) have zero conditional mean, are uniformly
bounded, and are independent. Moreover, the functions uj (γ ) are differentiable
functions of γ . Then, since by (62), uj (γ )’s are uniformly bounded by some
K1 > 0,

Var

(
n∑

j=1

uj (γ )

)
=

n∑
j=1

E
[(

uj (γ )
)2] ≤ K1

n∑
j=1

E
∣∣uj (γ )

∣∣ ≤ 2K1nγ T G∗γ .

Thus, by Bernstein’s inequality, for every v > 0 and γ ∈ S
M−1,

P

(∣∣∣∣∣
n∑

j=1

uj (γ )

∣∣∣∣∣ > v

)
≤ 2 exp

(
− v2/2

2K1nγ T G∗γ + K1v/3

)
.

On the other hand, by (12), γ T G∗γ ≥ cM−2 for some c > 0. By this, and the

condition that M3 = o(n/ logn), it is easy to see that
√

γ T G∗γ  √
M logn/n.

Thus, using an entropy argument as in the proof of (47), we conclude that given
η > 0 there exists c′

1(η) > 0 such that

P

(
sup

γ∈SM−1

|n−1 ∑n
j=1 uj (γ )|√

γ T G∗γ
≤ c′

1(η)

√
M logn

n

)
> 1 − n−η.(72)
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Recalling the definition of D(γ ), and again using the fact that γ T G∗γ ≥ cM−2

and M3 = o(n/ logn), (71) follows from (72).

A.4. Estimation procedure. The Levenberg–Marquardt procedure proceeds
by first specifying an initial estimate of β , say β0 (e.g., the two-stage estimator),
and then successively solving the linearized regression problem (at step k):

min
β

n∑
j=1

(
Yj − x

(
tj ;β(k−1)) − (

xβ(
tj ,β

(k−1)))T (
β − β(k−1)))2

χj ,

where we use χj to denote 1[δ,1−δ](tj ), and xβ means partial derivative of
x(·;β) with respect to β . This yields the solution β(k) = β(k−1) + A−1

k−1bk−1,
where Ak−1 = ∑n

j=1 xβ(tj ,β
(k−1))(xβ(tj ,β

(k−1)))T χj and bk−1 = ∑n
j=1(Yj −

x(tj ;β(k−1)))xβ(tj ,β
(k−1))χj . Iterations are continued until convergence of β(k).

Note that, at each step, x(t;β) and xβ(t;β) are obtained by numerically solv-
ing the differential equations (51) and (52) using the fourth-order Runge–Kutta
method.
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SUPPLEMENTARY MATERIAL

Supplementary material for “Nonparametric estimation of dynamics of
monotone trajectories” (DOI: 10.1214/15-AOS1409SUPP; .pdf). This document
contains some proof details and additional simulation results and data analysis.
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