
The Annals of Statistics
2016, Vol. 44, No. 5, 2089–2097
DOI: 10.1214/15-AOS1407
© Institute of Mathematical Statistics, 2016

AN UNEXPECTED ENCOUNTER WITH CAUCHY AND LÉVY

BY NATESH S. PILLAI AND XIAO-LI MENG

Harvard University

The Cauchy distribution is usually presented as a mathematical curiosity,
an exception to the Law of Large Numbers, or even as an “Evil” distribution
in some introductory courses. It therefore surprised us when Drton and Xiao
[Bernoulli 22 (2016) 38–59] proved the following result for m = 2 and con-
jectured it for m ≥ 3. Let X = (X1, . . . ,Xm) and Y = (Y1, . . . , Ym) be i.i.d.
N(0,�), where � = {σij } ≥ 0 is an m × m and arbitrary covariance matrix
with σjj > 0 for all 1 ≤ j ≤ m. Then

Z =
m∑

j=1

wj

Xj

Yj
∼ Cauchy(0,1),

as long as �w = (w1, . . . ,wm) is independent of (X,Y ), wj ≥ 0, j = 1, . . . ,m,
and

∑m
j=1 wj = 1. In this note, we present an elementary proof of this

conjecture for any m ≥ 2 by linking Z to a geometric characterization of
Cauchy(0,1) given in Willams [Ann. Math. Stat. 40 (1969) 1083–1085]. This
general result is essential to the large sample behavior of Wald tests in many
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applications such as factor models and contingency tables. It also leads to
other unexpected results such as

m∑
i=1

m∑
j=1

wiwjσij

XiXj
∼ Lévy(0,1).

This generalizes the “super Cauchy phenomenon” that the average of m i.i.d.
standard Lévy variables (i.e., inverse chi-squared variables with one degree of
freedom) has the same distribution as that of a single standard Lévy variable
multiplied by m (which is obtained by taking wj = 1/m and � to be the
identity matrix).

1. Cauchy distribution: Evil or angel? Many of us may recall the surprise
or even a mild shock we experienced the first time we encountered the Cauchy
distribution. What does it mean that it does not have a mean? Surely one can
always take a sample average, and surely it should converge to something by the
Law of Large Numbers (LLN). But then we learned that the LLN does not apply
to the Cauchy distribution. Obviously, there cannot be an upper bound on how
things may vary in general, and hence it is not difficult to imagine a distribution
with infinite variance. But the nonexistence of the mean, which is not the same as
the mean is infinite, is harder to envision intuitively. Therefore, some introductory
courses (e.g., at our institution) have given the Cauchy distribution the nickname
“Evil,” because it has created a few excruciating moments (no pun intended), even
for some of our best young minds when they tried hard to understand the meaning
of not having a mean.

Of course, gain often comes with pain, because soon we would learn some-
thing deeper. The nonexistence of the mean for Cauchy is a reflection of the fact
that the sample average of an i.i.d. Cauchy sample actually does converge, ex-
cept it does not converge to a conventional mean, that is, a deterministic number.
Rather, it converges trivially to a Cauchy random variable, and more surprisingly,
the limiting distribution is the same as that for each term in the entire sequence, as
indexed by the sample size. In this sense, the Cauchy distribution is as nice as an
angel, because probabilistically its sample average sequence never deviates from
its starting point, a dream case for anyone who studies probabilistic behavior of a
random sequence.

Through settling a conjecture set forth in [4], we prove in this article that
this nice property can hold even when the i.i.d. assumption is violated (and the
terms are not trivially identical). Specifically, let � = {σij } ≥ 0 and σjj > 0 for
all j = 1, . . . ,m, and let X,Y be independent variables distributed as N(0,�).
We denote the row vectors as X = (X1, . . . ,Xm) and Y = (Y1, . . . , Ym). Let
�w = (w1, . . . ,wm) be a random vector such that

�w ⊥{X,Y },
m∑

j=1

wj = 1 and wj ≥ 0, j = 1, . . . ,m.(1.1)
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Define the random variable

Z =
m∑

j=1

wj

Xj

Yj

.(1.2)

In [4], the wj ’s were assumed to be fixed constants, but by a conditioning argu-
ment, it is trivial to generalize from deterministic �w to a random �w as long as it is
independent of (X,Y ). Therefore, throughout this article we will present the more
general random (but independent) �w version of the results presented in [4] and in
the literature with fixed �w, whenever appropriate.

When � = σ 2Im×m, it is well known that Z has the standard Cauchy distribu-
tion on R with p.d.f. π−1(1 + z2)−1, denoted by Cauchy(0,1); Cauchy(μ,σ ) then
denotes the distribution of μ+σZ. The fascination with this result is evident from
the number of different approaches proposed in the literature to prove it, such as by
characteristic functions, convolutions, multivariate change of variables, and most
recently by a trigonometric approach [2].

Nevertheless, for arbitrary � (so that the terms Xj/Yj , j = 1, . . . ,m are no
longer independent in general), few would expect that Z might remain to be
Cauchy(0,1). However, through simulations Drton and Xiao [4] suspected that
this was indeed the case, and via a rather complex and indirect argument involving
the Residue theorem, they were able to prove it when m = 2 and some cases of
perfect correlation when m > 2. They conjectured that the result should hold for
m > 2 for an arbitrary �, but their argument does not seem to be easily general-
izable to the m > 2 case, nor was it feasible to invoke induction because of the
dependence induced by �.

Seriously intrigued by the findings and the conjecture in [4], we worked for
a while trying to extend their complex analytic approach. By using copulas of
Cauchy distributions and also the Residue theorem, we ultimately succeeded in
finding a proof for all m ≥ 2. However, we were not satisfied by our lengthy proof
because it did not provide any geometric interpretation or statistical insight. We
therefore continued to search for a simpler and more inspiring approach. Thanks to
an elegant but less well-known geometric characterization of Cauchy(0,1) given
in [15] and in [2, 16], we are able to provide an elementary and geometrically
appealing proof of the following result, conjectured by Drton and Xiao in [4].

THEOREM 1.1. For any � = {σij } ≥ 0 such that σjj > 0 for all j = 1, . . . ,m

and �w satisfying (1.1), the random variable Z defined in (1.2) is distributed as
Cauchy(0, 1).

A theoretical speculation from this unexpected result is that for a set of ran-
dom variables {ξ1, . . . , ξm}, the dependence among them can be overwhelmed by
the heaviness of their marginal tails (e.g., take ξj = Xj/Yj ) in determining the
stochastic behavior of their linear combinations. We invite the reader to ponder
with us whether this is a pathological phenomenon or something profound.
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2. Applications and prior work. As discussed in [4], the Z in (1.2) naturally
appears in many important applications. Following [4], let q ∈ R[x1, . . . , xm] be a
homogeneous m variate polynomial with gradient ∇q . Then by the δ-method, the
variance of q(X) ≡ q(X1, . . . ,Xm) can be approximated by ∇q(X)�∇
q(X),
resulting in the Wald statistics

Wq,�(X) = q2(X)

∇q(X)�∇
q(X)
≡ {∇[

logq(X)
]
�∇
[

logq(X)
]}−1

.(2.1)

That is, quoting [4], “the random variable Wq,� appears in the large sample behav-
ior of Wald tests with � as the asymptotic covariance matrix of an estimator and
the polynomial q appearing in a Taylor approximation to the function that defines
the constraint to be tested.” Thus, there are many applications in which a distribu-
tion theory for Wq,� is needed. These include contingency tables [6–8], graphical
models [3, Chapter 4], and the testing of so-called “tetrad constraints” in factor
analysis [4, 9]. See [4] for more applications and an extensive list of references.

When X ∼ N(0,�), by the arguments presented in Section 6 of [4], Theo-
rem 1.1 implies the following result, also conjectured in [4], on the quadratic forms
for Gaussian random variables.

THEOREM 2.1. Let � = {σij } ≥ 0 and σ 2
jj > 0 for all j = 1, . . . ,m, and

X = (X1, . . . ,Xm) ∼ N(0,�). If q(x1, . . . , xm) = x
a1
1 · · ·xam

m with nonnegative
real exponents a1, . . . , ak such that

∑
j aj > 0, then

Wq,�(X) ∼ 1

(
∑m

j=1 aj )2 χ2
1 ,

where χ2
1 denotes a standard chi-squared variable with 1 degree of freedom.

An obvious surprising aspect of Theorem 2.1 is that the exact distribution of
Wq,� is free of �. A consequential but somewhat hidden surprise is revealed by
expressing Theorem 2.1 in the following equivalent form.

THEOREM 2.2. Let � be the same as in Theorem 2.1. For any (w1, . . . ,wm)

satisfying (1.1), and X ∼ N(0,�), we have(
w1

X1
, . . . ,

wm

Xm

)
�

(
w1

X1
, . . . ,

wm

Xm

)

∼ χ−2

1 ,(2.2)

where χ−2
1 denotes an inverse chi-squared variable with 1 degree of freedom.

These two results are equivalent when we observe that for q(x1, . . . , xm) =
x

a1
1 · · ·xam

m , ∇ logq = (a1
x1

, . . . , am

xm
). Theorem 2.2 therefore is merely a re-

expression of Theorem 2.1 using the rightmost expression of (2.1), and by letting
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wj = aj/
∑

k ak, j = 1, . . . ,m. (The generalization to random but independent
wj ’s follows the conditioning argument discussed previously.)

When � = Im×m, Theorem 2.2 recovers the not so well-known “super Cauchy
phenomenon,” that is, the average of m i.i.d. χ−2

1 is distributed exactly as m times
a single χ−2

1 , by taking wj = m−1 for all j ’s in Theorem 2.2. The χ−2
1 distribution

is also known as the standard Lévy distribution (with location parameter equal to 0
and scale parameter 1; see [1], page 33). This result can easily be verified via the
characteristic function of the χ−2

1 distribution,

φ(t) = e−√−2it ,

because φm(t/m) = φ(mt). We call this “super Cauchy phenomenon” because
it says that for an i.i.d. Lévy sample of size m, their average is m times more
variable than any one of them, exceeding the case of Cauchy where the average
has the same variability as a single variable. That is, if we denote the α-percentile
of the average of m i.i.d. samples by p

(m)
α , then for the Cauchy sample we have

p
(m)
α = p

(1)
α , but for the Lévy sample, we have p

(m)
α = mp

(1)
α .

Clearly, the characteristic function approach does not apply when � is not di-
agonal, but nevertheless Theorem 2.2 says that the above distributional result gen-
eralizes when � goes beyond the diagonal case. At the first glance, result (2.2)
might seem to be a wishful thinking by a novice to probability or algebra, who
(mistakenly) treats X−1�X−
, where X−1 ≡ {X−1

1 , . . . ,X−1
m }, as (X�−1X
)−1,

which would then permit him to use the usual standardization trick by letting
Z = X�−1/2 ∼ N(0, I ). However, this would have led him to guess that the left-
hand side of (2.2), when wj = m−1, j = 1, . . . ,m, distributes as m−2(

∑
j Z2

j )
−1,

which would then be m−2χ−2
m , not χ−2

1 .
It is instructive to express the left-hand side of (2.2) as the average of m2 terms

when we take wj = m−1:

1

m2

m∑
i=1

m∑
j=1

σij

XiXj

∼ χ−2
1 .(2.3)

This is a rather remarkable result because the left-hand side can only be made
invariant (algebraically) to the variances σjj by expressing Xj = √

σjjX
′
j with

variance of X′
j equal to 1, but not to the correlations ρij = σij /

√
σiiσjj . Yet, (2.2)

says that it is actually a pivotal quantity for {ρij }.
There are also some works on multivariate Cauchy densities that are relevant

to our problem. For instance, in [13] and [10], the authors studied the distribu-
tion theory for the ratio of two Gaussian random variables. Ferguson [5] derived
a general result for the characteristic function of a multivariate Cauchy distribu-
tion. In [11], the authors studied a generalization of the bivariate Cauchy distribu-
tion. McCullagh [14] showed that it is natural to parametrize the family of Cauchy
(μ,σ ) distributions in the complex plane, as this location-scale family is closed
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under Möbius transformations. Finally, we remark that Drton and Xiao [4] did not
prove the m = 2 case of Theorem 1.1 directly; instead, they first proved of a spe-
cial case of Theorem 2.1 [with q(x1, x2) = x

a1
1 x

a2
2 ], generalizing a similar result

of Glonek [8]. Drton and Xiao then obtained the conclusion of Theorem 1.1 for
m = 2 as a corollary using change of variables.

3. Proof. The key idea of our proof relies on the following result from [15],
as reformulated in [16]. The proof of this lemma as given in [15] is short, and
it also relies on the Residue theorem for contour integration. Very recently, the
author of [2] gave a geometric proof for the case of m = 2. See [12] for further
generalizations of this lemma.

LEMMA 3.1. Let �1 ∼ Unif(−π,π ], and {w1, . . . ,wm} be independent of
�1, where wj ≥ 0 and

∑
j wj = 1. Then for any {u1, . . . , um}, where uj ∈ R,

m∑
j=1

wj tan(�1 + uj ) ∼ Cauchy(0,1).

Intuitively speaking, if �1 ∼ Unif(−π,π ], then for any constant uj ,
(�1 + uj ) mod (2π) ∼ Unif(−π,π ], and hence tan(�1 + uj ) ∼ Cauchy(0,1).
The significance of this lemma is that any convex combination of these dependent
Cauchy(0,1) variables is still distributed as Cauchy(0,1). As we shall see below,
Theorem 1.1 is a direct consequence of this remarkable result. We first prove The-
orem 1.1 when � is strictly positive definite, that is, � > 0, and then invoke a
limiting argument to cover the cases with � ≥ 0.

PROOF OF THEOREM 1.1. When � > 0, we write �−1 = {bij }. The joint
density of (X,Y ) then can be written as

fX,Y (x, y) = K exp

{
−1

2

(
m∑

j=1

bjj

(
x2
j + y2

j

) + 2
∑
j =k

bjk(xjxk + yjyk)

)}
,

where x, y ∈ R
m and K is a constant that depends only on m and �. Let us make

the transformation (Xj ,Yj ) = (Rj sin(�j ),Rj cos(�j )), where 0 ≤ Rj < ∞ and
�j ∈ (−π,π ]. Then the joint density of R = {R1, . . . ,Rm} and � = {�1, . . . ,�m}
is

fR,�(r, θ)
(3.1)

∝ exp

{
−1

2

(
m∑

j=1

bjj r
2
j + 2

∑
j =k

bjkrj rk cos(θj − θk)

)}
m∏

j=1

rj ,

for r ∈ [0,∞)m and θ ∈ (−π,π ]m. The term
∏m

j=1 rj in equation (3.1) is the Ja-
cobian of the (X,Y ) → (R,�) transformation.
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FIG. 1. For every value of �1 = 0, the map �j �→ Uj (j ≥ 2) is a disjoint union of two lines, and
is one-to-one. The figure shows the graph of (�j ,Uj ) when �1 = π

2 (plotted as two solid lines).
When �1 = 0, Uj = �j (plotted in dashed line).

We then make a further transformation, F : (−π,π ]m �→ (−π,π ]m, with
F(�1, . . . ,�m) = (�1,U2, . . . ,Um), where

Uj = (�j − �1) + 2π [1{�j−�1≤−π} − 1{�j−�1>π}], 2 ≤ j ≤ m.(3.2)

This is a form of Uj = (�j − �1) mod (2π), but with the assurance that the
support of Uj is (−π,π ] regardless of the value of �1, and that Uj −Uk = (�j −
�k) mod (2π), and �j = (�1 + Uj) mod (2π). The map F is one-to-one as
shown in Figure 1. Furthermore, the points where the map F is not differentiable
is contained in the set{

� ∈ (−π,π ]m : �j − �1 ∈ {−π,π} for some j ≥ 2
}
,

as can be seen from Figure 1. Clearly, this set has Lebesgue measure zero. Out-
side this set, we have ∂Uj

∂�j
= 1. Thus, the Jacobian of the map F is 1 for all

� ∈ (−π,π ]m except for the above measure zero set.
Set U1 ≡ 0 and denote U = (U1,U2, . . . ,Um). Since cos(W1) = cos(W2) for

any W1 = W2 mod (2π), we can write the joint density in the new coordinates as

fR,�1,U (r, θ1, u) ∝ exp

{
−1

2

(
m∑

j=1

bjj r
2
j + 2

∑
j =k

bjkrj rk cos(uk − uj )

)}
m∏

j=1

rj

with r ∈ [0,∞)m, θ1 ∈ (−π,π ], u1 = 0 and u2, . . . , um ∈ (−π,π ]. The only ob-
servations we need from the above line are: (i) �1 is independent of U and (ii)
�1 ∼ Unif(−π,π ]. But Z in (1.2) can be written as

Z =
m∑

j=1

wj

Xj

Yj

=
m∑

j=1

wj tan(�j ) =
m∑

j=1

wj tan(�1 + Uj),
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because tan(W1) = tan(W2) for any W1 = W2 mod (2π). Since U is independent
of �1, conditional on U , Lemma 3.1 yields that Z ∼ Cauchy(0,1). It follows
immediately that Z is also marginally distributed as Cauchy(0,1), completing the
proof when � > 0.

When we relax the assumption � > 0 to � ≥ 0, �−1 may not exist. However,
for any n ∈ N, �(n) = � + n−1Im×m > 0. Let X(n) = (X

(n)
1 , . . . ,X

(n)
m ) and Y (n) =

(Y
(n)
1 , . . . , Y

(n)
m ) be i.i.d. from N(0,�(n)). As n → ∞, we have (X(n), Y (n)) �

(X,Y ), where “�” indicates convergence in distribution. Next, the mapping ζ :
R

2m �→R defined by

ζ(x, y) =
m∑

j=1

wj

xj

yj

is continuous, except when y ∈ B with

B =
{
(y1, . . . , ym) ∈ R

m : min
1≤j≤m

|yj | = 0
}
.

Now the result follows from the continuous mapping theorem. Indeed, since
(X(n), Y (n))� (X,Y ), the continuous mapping theorem yields that

Z(n) = ζ
(
X(n), Y (n)) � ζ(X,Y ) = Z(3.3)

as n → ∞, provided the points of discontinuity of ζ belong to a zero-measure set.
However, since Yj ∼ N(0, σjj ) where σjj > 0 by our assumption, we have

P(Y ∈ B) = P

(
min

1≤j≤m
|Yj | = 0

)
≤

m∑
j=1

P
(|Yj | = 0

) = 0,

verifying (3.3). By our previous argument, we know that Z(n) ∼ Cauchy(0,1) for
all n ∈ N, and hence (3.3) implies that Z ∼ Cauchy(0,1). �
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