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DISCRIMINATING QUANTUM STATES:
THE MULTIPLE CHERNOFF DISTANCE1

BY KE LI

IBM T.J. Watson Research Center and Massachusetts Institute of Technology

We consider the problem of testing multiple quantum hypotheses
{ρ⊗n

1 , . . . , ρ⊗n
r }, where an arbitrary prior distribution is given and each

of the r hypotheses is n copies of a quantum state. It is known that the
minimal average error probability Pe decays exponentially to zero, that is,
Pe = exp{−ξn+o(n)}. However, this error exponent ξ is generally unknown,
except for the case that r = 2.

In this paper, we solve the long-standing open problem of identifying the
above error exponent, by proving Nussbaum and Szkoła’s conjecture that ξ =
mini �=j C(ρi, ρj ). The right-hand side of this equality is called the multiple

quantum Chernoff distance, and C(ρi, ρj ) := max0≤s≤1{− log Trρs
i ρ1−s

j }
has been previously identified as the optimal error exponent for testing two
hypotheses, ρ⊗n

i versus ρ⊗n
j .

The main ingredient of our proof is a new upper bound for the average
error probability, for testing an ensemble of finite-dimensional, but otherwise
general, quantum states. This upper bound, up to a states-dependent factor,
matches the multiple-state generalization of Nussbaum and Szkoła’s lower
bound. Specialized to the case r = 2, we give an alternative proof to the
achievability of the binary-hypothesis Chernoff distance, which was origi-
nally proved by Audenaert et al.

1. Introduction. A basic problem in information theory and statistics, is to
test a system that may be prepared in one of r random states. Treated in the frame-
work of quantum mechanics, the testing is performed via quantum measurement,
and the physical states are described by density matrices ω1,ω2, . . . ,ωr , namely,
positive semidefinite Hermitian matrices of trace 1. It is a notable fact that, when
ωi’s commute, the problem reduces to classical statistical testing, among r proba-
bility distributions that are given by the arrays of eigenvalues of each of the density
matrices. However, the generally noncommutative feature makes quantum statis-
tics much richer than its classical counterpart.

Our main focus in the current paper will be on the asymptotic setting. Let
the tensor product state ρ⊗n denotes n independent copies of ρ, in analogy to
the probability distribution of i.i.d. random variables. We are interested in the
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asymptotic behavior of the average error Pe, in discriminating a set of quan-
tum states {ρ⊗n

1 , . . . , ρ⊗n
r }, when an arbitrary prior that is independent of n is

given. Parthasarathy showed that Pe decays exponentially, that is, Pe = exp{−ξn+
o(n)} [34]. However, to date the optimal error exponent ξ , as a functional of the
states ρ1, . . . , ρr , is generally unknown.

Significant achievements have been made for the case of testing two quantum
hypotheses (r = 2). In two breakthrough papers, [1] and [29], it has been estab-
lished that the optimal error exponent in discriminating ρ⊗n

1 and ρ⊗n
2 , equals the

quantum Chernoff distance

C(ρ1, ρ2) := max
0≤s≤1

{− log Trρs
1ρ

1−s
2

}
.

Audenaert et al. in [1] solved the achievability part, in the meantime Nussbaum and
Szkoła in [29] proved the optimality part. This provides the quantum generalization
of the Chernoff information as the optimal error exponent in classical hypotheses
testing [9]; see also [10].

The solution for the general cases r > 2 is still lacking and it does not follow
from the binary case directly. The optimal tests, as analogs of the classical max-
imum likelihood decision rule, have been formulated in the 1970s. For discrim-
inating two states, it has an explicit expression known as the Holevo–Helstrom
test [16, 21], and indeed, the proof in [1] relies on a nontrivial application of this
Holevo–Helstrom test. In contrast, for discriminating multiple quantum states the
corresponding optimal measurement can only be formulated in a very complicated,
implicit way [20, 41]. Such a situation illustrates the difficulty in dealing with the
asymptotic error exponent, for the multiple case r > 2. Intuitively, competitions
among pairs make the problem complicated.

Nussbaum and Szkoła introduced the multiple quantum Chernoff distance

C(ρ1, . . . , ρr) := min
(i,j):i �=j

C(ρi, ρj ),

and conjectured that it is the optimal asymptotic error exponent, in discriminating
quantum states ρ⊗n

1 , . . . , ρ⊗n
r [30–32]. This is in full analogy to the existing results

in classical statistical hypothesis testing [23, 36, 37, 39]. Significant progress has
been made towards proving this conjecture. Besides the case of commuting states
which reduces to the classical situation, it has been proven to be true in several
interesting special cases. These include when the supporting spaces of the states
ρ1, . . . , ρr are disjoint [32], and when one pair of the states is substantially closer
than the other pairs, in Chernoff distance [2, 28]. In general, Nussbaum and Szkoła
showed that the optimal error exponent ξ in testing multiple quantum hypotheses,
satisfies C/3 ≤ ξ ≤ C [32], and Audenaert and Mosonyi recently strengthened this
bound, showing that C/2 ≤ ξ ≤ C [2].

In this paper, we shall prove the aforementioned conjecture, that is, we show
that the long-sought error exponent in asymptotic quantum (multiple) state dis-
crimination, is given by the (multiple) quantum Chernoff distance. Besides, as a
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main ingredient of the proof we derive a new upper bound for the optimal aver-
age error probability, for discriminating a set of finite-dimensional, but otherwise
general, quantum states. This one-shot upper bound has the advantage that, up to a
states-dependent factor, it coincides with a multiple-state generalization of Nuss-
baum and Szkoła’s lower bound [29].

Before concluding this section, we review the relevant literature. Asymptotics
of statistical hypothesis testing is an important topic in statistics and information
theory, and is especially useful in identifying basic information quantities. We refer
the interested readers for a partial list of classical results to [6, 9, 10, 13, 14,
19, 23], and quantum results to [1, 3, 5, 8, 18, 24, 27, 29, 33, 38]. The optimal
or approximately optimal average error in quantum state discrimination, and the
corresponding tests to achieve it, is a basic problem in quantum information theory
and has attracted extensive study; see, for example, [2, 4, 15, 16, 20–22, 35, 40,
41].

The remainder of this paper is organized as follows. After introducing some
basic notations, concepts and the relevant aspects of the quantum formalism in
Section 2, we present the main results in Section 3. Section 4 is dedicated to the
proofs. At last, in Section 5, we conclude the paper with some discussion and open
questions.

2. Notation and preliminaries. Let B(H) denote the set of linear operators
on a complex, finite-dimensional Hilbert space H. Let P(H) ⊂ B(H) be the set
of positive semidefinite matrices, and D(H) := {ω : ω ∈ P(H), and Trω = 1} is
the set of density matrices. We say a matrix A ≥ 0 if A ∈ P(H), and A ≥ B if
A − B ≥ 0. The dimension of the Hilbert space H is denoted as |H|. 1 denotes
the identity matrix. We use the Dirac notation |v〉 ∈ H to denote a unit vector, 〈v|
its conjugate transpose, and 〈v|w〉 the inner product. A Hermitian matrix X can
be written in the spectral decomposition form: X = ∑

i λiQi , where λi’s satisfy-
ing λi �= λj for i �= j are the eigenvalues, and Qi’s satisfying QiQj = δijQi and∑

i Qi = 1 are the orthogonal projectors onto the eigenspaces. supp(X) is the sup-
porting space of X and is spanned by all the eigenvectors with nonzero eigenval-
ues, {X > 0} := ∑

i:λi>0 Qi represents the projector onto the positive supporting
space of X, and �(X) := |{λi}i | denotes the number of eigenspaces, or distinct
eigenvalues. For a subspace S ⊂ H, proj(S) is the projector onto S. The sum of
two subspaces S1, S2 ⊂ H, is defined as S1 + S2 := {u + v|u ∈ S1, v ∈ S2}. When
we say the overlap between two subspaces S1 and S2, we mean the maximal over-
lap between two unit vectors from each of them: max{|〈v|w〉| : |v〉 ∈ S1, |w〉 ∈ S2}.

We briefly review some aspects of the quantum formalism, relevant in this paper.
Every physical system is associated with a complex Hilbert space, which is called
the state space. The states of a system are described by density matrices. Pure states
are of particular interest, and are represented by rank-one projectors, or simply the
corresponding unit vectors. Throughout this paper, we are concerned with quan-
tum states of a finite system, associated with a finite-dimensional Hilbert space.
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A density matrix ω can be decomposed as the sum of an ensemble of pure states,
that is, ω = ∑

i pi |ψi〉〈ψi |, with {pi} a probability distribution. An intuitive under-
standing is that pure states represent “deterministic events,” and a density matrix
is the quantum analogue of a probability distribution over these events. However,
note that this decomposition is not unique, and nonorthogonal pure states are not
perfectly distinguishable.

The procedure of detecting the state of a quantum system is called quantum
measurement, which, in the most general form, is formulated as positive operator-
valued measure (POVM), that is, M = {Mi}i , with the POVM elements satisfying
0 ≤ Mi ≤ 1 and

∑
i Mi = 1. When performing the measurement on a system in

the state ω, we get outcome i with probability Tr(ωMi). Projective measurements,
or von Neumann measurements, are special situations of POVMs, where all the
POVM elements are orthogonal projectors: MiMj = δijMi , with δij the Kronecker
delta function.

Suppose a physical system, also called an information source, is in one of a
finite set of hypothesized states {ω1, . . . ,ωr}, with a given prior {p1, . . . , pr}. For
convenience, we denote them as a normalized ensemble {A1 := p1ω1, . . . ,Ar :=
prωr}. To determine the true state, we make a POVM measurement {M1, . . . ,Mr},
and infer that it is in the state ωi if we get outcome i. The average (Bayesian) error
probability is

Pe

({A1, . . . ,Ar}; {M1, . . . ,Mr}) :=
r∑

i=1

TrAi(1 − Mi).(1)

Minimized over all possible measurements, this gives the optimal error probability

P ∗
e

({A1, . . . ,Ar}) := min

{
r∑

i=1

TrAi(1 − Mi) : POVM{M1, . . . ,Mr}
}
.(2)

We note here that the definitions (1) and (2) apply, as well, to a nonnormalized
ensemble of quantum states {A1, . . . ,Ar} which only satisfies the constraint (∀i)

Ai ≥ 0. In this case, Pe and P ∗
e may not have a clear meaning but sometimes can

be useful.
In the asymptotic setting where ωi is replaced by the tensor product state ρ⊗n

i ,
we are interested in the behavior of the optimal error P ∗

e , as n → ∞. An important
quantity characterizing this asymptotic behavior is the rate of exponential decay,
or simply error exponent

lim inf
n→∞

−1

n
logP ∗

e

({
p1ρ

⊗n
1 , . . . , prρ

⊗n
r

})
.

3. Results. Our main result is the following Theorem 1. Recall that, for the
case r = 2 of testing two hypotheses, it has been proven nearly a decade ago in
2006; see [1] and [29].
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THEOREM 1. Let {ρ1, . . . , ρr} be a finite set of quantum states on a finite-
dimensional Hilbert space H. Then the asymptotic error exponent for testing
{ρ⊗n

1 , . . . , ρ⊗n
r }, for an arbitrary prior {p1, . . . , pr}, is given by the multiple quan-

tum Chernoff distance:

lim
n→∞

−1

n
logP ∗

e

({
p1ρ

⊗n
1 , . . . , prρ

⊗n
r

}) = min
(i,j):i �=j

max
0≤s≤1

{− log Trρs
i ρ

1−s
j

}
.(3)

The optimality part, that is, the left-hand side of equation (3) being upper
bounded by the right-hand side, follows easily from the optimality of the binary
case r = 2 [29]; see the argument in [31]. Roughly speaking, this is because, dis-
criminating an arbitrary pair within a set of quantum states is easier than discrimi-
nating all of them. On the other hand, the achievability part is the main difficulty in
proving Theorem 1. In [1], Audenaert et al. employed the Holevo–Helstrom tests
({ρ⊗n

1 − ρ⊗n
2 > 0},1 − {ρ⊗n

1 − ρ⊗n
2 > 0}) to achieve the binary Chernoff distance

in testing ρ⊗n
1 versus ρ⊗n

2 . However, to date we do not have a way to generalize the
method of Audenaert et al. to deal with the r > 2 cases, even though there is the
multiple generalization of the Holevo–Helstrom tests [20, 41]; see discussions in
[32] and [2] on this issue. Here, using a conceptually different method, we derive
a new upper bound for the optimal error probability of equation (2). This one-shot
error bound, as stated in Theorem 2, works for testing any finite number of finite-
dimensional quantum states, and when applied in the asymptotics for i.i.d. states,
accomplishes the achievability part of Theorem 1.

Our method is inspired by the previous work of Nussbaum and Szkoła [32]. It
is shown in [32] that if the supporting spaces of the hypothetic states ρ1, . . . , ρr

are pairwise disjoint (this means that the supporting spaces of ρ⊗n
1 , . . . , ρ⊗n

r are
asymptotically highly orthogonal), then the Gram–Schmidt orthonormalization
can be employed to construct a good measurement, which achieves the error ex-
ponent of Theorem 1. Here to prove Theorem 1 for general hypothetic states, we
find a way to remove a subspace from each eigenspace of the states ρ⊗n

1 , . . . , ρ⊗n
r .

Then we show that, on the one hand this removal will cause an error that matches
the right-hand side of equation (3) in the exponent, and on the other hand the
pairwise overlaps between the supporting spaces of ρ⊗n

1 , . . . , ρ⊗n
r are made suf-

ficiently small, such that the Gram–Schmidt orthonormalization method is appli-
cable. For the sake of generality, we will actually realize these ideas for general
nonnegative matrices A1, . . . ,Ar , yielding the following Theorem 2.

THEOREM 2. Let A1, . . . ,Ar ∈ P(H) be nonnegative matrices on a finite-
dimensional Hilbert space H. For all 1 ≤ i ≤ r , let Ai = ∑Ti

k=1 λikQik be the spec-
tral decomposition of Ai , and write T := max{T1, . . . , Tr}. There exists a function
f (r, T ) such that

P ∗
e

({A1, . . . ,Ar}) ≤ f (r, T )
∑

(i,j):i<j

∑
k,	

min{λik, λj	}TrQikQj	(4)

and we have f (r, T ) < 10(r − 1)2T 2.



1666 K. LI

Our upper bound of equation (4), up to an r- and T -dependent factor, coin-
cides with the multiple-state generalization of the lower bound of Nussbaum and
Szkoła [29]. To see this, using the result in [35], we easily generalize the bound
obtained in [29] and get

P ∗
e

({A1, . . . ,Ar}) ≥ 1

2(r − 1)

∑
(i,j):i<j

∑
k,	

min{λik, λj	}TrQikQj	.(5)

In the case that r = 2, it is interesting to compare equation (4) with the upper
bound of Audenaert et al [1]:

P ∗
e

({A1,A2}) ≤ min
0≤s≤1

TrAs
1A

1−s
2 .(6)

While we see that our bound is stronger, in the sense that∑
k,	

min{λ1k, λ2	}TrQ1kQ2	 ≤ min
0≤s≤1

TrAs
1A

1−s
2(7)

is always true, we also notice that it is weaker because it has an additional multi-
plier depending on the number of eigenspaces of the two states.

4. Proofs. This section is dedicated to the proofs of Theorems 1 and 2. At
first, we present a definition and some necessary lemmas in Section 4.1. Then
we construct the measurement for discriminating multiple quantum states in Sec-
tion 4.2. Using this measurement, we prove Theorem 2 in Section 4.3. At last, built
on Theorem 2, Theorem 1 will be proven in Section 4.4.

4.1. Technical preliminaries. We begin with the definition of the operation
“ε-subtraction” between two projectors or two subspaces. This operation, say, for
two subspaces S1 and S2, reduces the overlap between them by removing a sub-
space from S1, actually, in the most efficient way. It will constitute a key step in
the construction of measurement.

DEFINITION 3 (ε-subtraction). Let S1, S2 be two subspaces of a Hilbert
space H. Let P1,P2 ∈ P(H) be the projectors onto S1 and S2, respectively. Write
P1P2P1 in the spectral decomposition, P1P2P1 = ∑

x λxQx , with Qx being or-
thogonal projectors and

∑
x Qx = 1H. For 0 ≤ ε ≤ 1, the ε-subtraction of P2 from

P1 is defined as

P1 �ε P2 := P1 − ∑
x:λx≥ε2,λx �=0

Qx.(8)

Accordingly, the ε-subtraction between subspaces is defined as

S1 �ε S2 := supp(P1 �ε P2).(9)

Note that in equation (8) the constraint λx �= 0 makes sense only when ε = 0.
The following lemma states some basic properties of the ε-subtraction.
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LEMMA 4. Let S1, S2 be two subspaces of a Hilbert space H. Let P1,P2 ∈
P(H) be the projectors onto S1 and S2, respectively. Write S′

1 = S1 �ε S2, and
P ′

1 = P1 �ε P2. Then:

1. S′
1 is a subspace of S1; P ′

1 is a projector, and 0 ≤ P ′
1 ≤ P1.

2. S′
1 has bounded overlap with S2:

max
|v1〉∈S′

1,|v2〉∈S2

∣∣〈v1|v2〉
∣∣ ≤ ε,

where the maximization is over unit vectors 〈v1|v1〉 = 〈v2|v2〉 = 1.
3. For 0 < ε ≤ 1, we have

Tr
(
P1 − P ′

1
) ≤ 1

ε2 TrP1P2.

PROOF. Let P1P2P1 = ∑
x λxQx be the spectral decomposition of P1P2P1,

with 0 ≤ λx ≤ 1.

1. Obviously, supp(P1P2P1) ⊆ S1. Thus, the following three projectors satisfy∑
x:λx≥ε2,λx �=0

Qx ≤ ∑
x:λx �=0

Qx ≤ P1.(10)

This, together with Definition 3, implies that P ′
1 is a projector and satisfies 0 ≤

P ′
1 ≤ P1. The fact that S′

1 is a subspace of S1, follows directly.
2. It follows from equation (10) and Definition 3 that we can write S′

1 as

S′
1 =

( ⊕
x:0<λx<ε2

supp(Qx)

)
⊕ (

supp(Qx)|λx=0 ∩ S1
)
.

That is to say, S′
1 is the direct sum of the eigenspaces of P1P2P1 with correspond-

ing eigenvalues in the interval (0, ε2), together with a subspace of the kernel of
P1P2P1. So, for any unit vectors |v1〉 ∈ S′

1, |v2〉 ∈ S2,∣∣〈v1|v2〉
∣∣ = √〈v1|v2〉〈v2|v1〉 ≤ √〈v1|P2|v1〉 = √〈v1|P1P2P1|v1〉 ≤ ε.

3. This inequality can be verified as follows:

Tr
(
P1 − P ′

1
) = Tr

∑
x:λx≥ε2

Qx

≤ Tr
∑

x:λx≥ε2

λx

ε2 Qx ≤ Tr
∑
x

λx

ε2 Qx

= 1

ε2 TrP1P2P1 = 1

ε2 TrP1P2. �

Lemma 5 and Lemma 6 below are basic results for subspaces of an inner product
space.
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LEMMA 5. Let V,W be subspaces of a Hilbert space H, and have direct-sum
decompositions V = ⊕T1

i=1 Vi and W = ⊕T2
j=1 Wj . Suppose we have

max|v〉∈Vi,|w〉∈Wj

∣∣〈v|w〉∣∣ ≤ δ, for all 1 ≤ i ≤ T1,1 ≤ j ≤ T2.

Then the overlap between V and W is bounded as

max|v〉∈V,|w〉∈W

∣∣〈v|w〉∣∣ ≤ √
T1T2δ.

PROOF. Let |v〉 ∈ V and |w〉 ∈ W be any two unit vectors. Write |v〉 =∑
i αi |vi〉 and |w〉 = ∑

j βj |wj 〉, with |vi〉 ∈ Vi, |wj 〉 ∈ Wj and
∑

i |αi |2 =∑
j |βj |2 = 1. Making use of the Cauchy–Schwarz inequality, we have

∣∣〈v|w〉∣∣ =
∣∣∣∣∑
i,j

αiβj 〈vi |wj 〉
∣∣∣∣

≤ ∑
i,j

|αi | · |βj |δ

=
(∑

i=1

|αi |
)(∑

j=1

|βj |
)
δ ≤ √

T1T2δ,

and this completes the proof. �

LEMMA 6. Let S1, S2, . . . , Sr be subspaces of a Hilbert space, such that the
overlaps between them are bounded as

max|vi〉∈Si,|vj 〉∈Sj

∣∣〈vi |vj 〉
∣∣ ≤ δ, 1 ≤ i �= j ≤ r.

For all 1 ≤ i ≤ r , denote the projector onto Si as Pi , and denote the projector onto
S = S1 + S2 + · · · + Sr as P . Suppose δ < 1

2(r−1)
. Then

P ≤ 1 − (r − 1)δ

1 − 2(r − 1)δ

r∑
i=1

Pi.(11)

PROOF. For an arbitrary unit vector |v〉 ∈ S, write |v〉 = ∑r
i=1 αi |vi〉, with

|vi〉 ∈ Si . Then

〈v|
r∑

k=1

Pk|v〉 = ∑
(i,k):i=k

∑
j

αiαj 〈vi |Pk|vj 〉 + ∑
i

∑
(j,k):j=k

αiαj 〈vi |Pk|vj 〉

− ∑
(i,j,k):
i=j=k

αiαj 〈vi |Pk|vj 〉 + ∑
k

∑
i:i �=k

∑
j :j �=k

αiαj 〈vi |Pk|vj 〉

= 2〈v|v〉 −
r∑

i=1

|αi |2 +
r∑

k=1

(〈v| − αk〈vk|)Pk

(|v〉 − αk|vk〉).
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The last term is nonnegative. Besides, we have

1 = 〈v|v〉 =
r∑

i=1

|αi |2 + ∑
(i,j):i �=j

αiαj 〈vi |vj 〉

≥
r∑

i=1

|αi |2 − ∑
(i,j):i �=j

|αi | · |αj | ·
∣∣〈vi |vj 〉

∣∣

≥
r∑

i=1

|αi |2 − ∑
(i,j):i �=j

(|αi |2 + |αj |2)δ
2

= (
1 − (r − 1)δ

) r∑
i=1

|αi |2.

Combining the above arguments, we get

〈v|
r∑

k=1

Pk|v〉 ≥ 2 − 1

1 − (r − 1)δ
= 1 − 2(r − 1)δ

1 − (r − 1)δ
,

which implies equation (11). �

4.2. Construction of the measurements. In the following, we will describe
the procedure of constructing a family of projective measurements {
1(ε), . . . ,


r−1(ε),
r(ε) + 
r+1(ε)}, which will be used to show that the right-hand side
of equation (4) is an achievable error probability.

Our construction is similar to the ones explored in [31, 32] and earlier in [21],
especially, in applying the Gram–Schmidt orthonormalization to states that are
ordered according to the corresponding eigenvalues, for formulating the projec-
tive measurements. However, our method is also significantly different from those
of [21, 31, 32]. At first, instead of dealing with every eigenvector of the hypothetic
states individually, we treat each of the eigenspaces as a whole. This, for i.i.d.
states of the form ω⊗n, is reminiscent of the method of types [11, 12], from which
we indeed benefit. Second, we carefully remove from each of these eigenspaces
a subspace, in a way such that the perturbation to the hypothetic states is limited
but the overlaps between the supporting spaces of them become sufficiently small.
As a result, we can effectively employ the Gram–Schmidt process to formulate an
approximately optimal measurement.

Recall that for 1 ≤ i ≤ r , Ai = ∑Ti

k=1 λikQik is the spectral decomposition. Let
Sik := supp(Qik) be the eigenspaces of Ai . From now on, we always identify the
subscript “ik” with “(i, k).” So λik , Qik and Sik are also denoted as λ(i,k), Q(i,k)

and S(i,k), respectively. Define the index set O := ⋃r
i=1{(i, k) : k ∈ N,1 ≤ k ≤ Ti}.

Now we arrange all the eigenvalues {λik}(i,k)∈O in a decreasing order, and let g :
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{0,1,2, . . . , |O|} �→ {(0,0)} ∪ O be the bijection indicating the position of each
λik in such an ordering:

λg(1) ≥ λg(2) ≥ · · · ≥ λg(|O|),(12)

and g(0) = (0,0) is introduced for later convenience. Our construction consists of
the following three steps.

Step 1: reducing the overlaps between the eigenspaces. For this purpose, we
employ the operation ε-subtraction to remove a subspace from each of these
eigenspaces. Let �ε be endowed with a left associativity, that is, A �ε B �ε C :=
(A �ε B) �ε C. Set Qg(0) = 0 and Sg(0) = {0}. We define

Q̃g(m) :=
⎧⎨
⎩

Qg(0), if m = 0,

Qg(m) �ε Qg(0) �ε Qg(1) �ε · · · �ε Qg(m−1),

if 1 ≤ m ≤ |O|
(13)

and

S̃g(m) :=
⎧⎨
⎩

Sg(0), if m = 0,

Sg(m) �ε Sg(0) �ε Sg(1) �ε · · · �ε Sg(m−1),

if 1 ≤ m ≤ |O|.
(14)

Note that, according to Definition 3, S̃g(m) = supp(Q̃g(m)). Now we denote

Ãi :=
Ti∑

k=1

λikQ̃ik, 1 ≤ i ≤ r.(15)

We will show later that, for the purpose of the current paper, Ãi is a good approx-
imation of Ai .

Step 2: orthogonalizing the eigenspaces. To formulate the projective measure-
ment, we need to assign each of the states {Ai}i an orthogonal subspace, for the
projectors to be supported on. To do so, we treat Ãi’s as representatives of Ai’s,
and orthogonalize the subspaces {S̃g(m)}m, using a Gram–Schmidt process. Define
Ŝg(0) := {0}, and for all 1 ≤ m ≤ |O|,

Ŝg(m) := (S̃g(0) + · · · + S̃g(m)) �1 (S̃g(0) + · · · + S̃g(m−1)),(16)

where �1 is the operation “ε-subtraction” with ε = 1. Recalling Definition 3, we
easily see that the right-hand side of equation (16) is just the orthogonal com-
plement of S̃g(0) + · · · + S̃g(m−1), in the space S̃g(0) + · · · + S̃g(m), noticing that
obviously the former is a subspace of the latter. So the subspaces Ŝg(1), . . . , Ŝg(m)

are mutually orthogonal. Thus, the definition in equation (16) is equivalent to

S̃g(1) + · · · + S̃g(m) =
m⊕

t=1

Ŝg(t), for all 1 ≤ m ≤ |O|.(17)

Note that it is possible that Ŝg(m) = {0} for certain values of m, and in these cases
we have proj(Ŝg(m)) = 0.
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Step 3: defining the family of projective measurements. We set


i(ε) :=
Ti∑

k=1

proj(Ŝik), 1 ≤ i ≤ r,(18)

and let


r+1(ε) := 1 −
r∑

i=1


i(ε).(19)

Here, the parameter ε is introduced in step 1. By definition, 
1(ε), . . . ,
r+1(ε)

are orthogonal projectors and
∑r+1

i=1 
i(ε) = 1. So, they form a projective mea-
surement. Our strategy for testing A1, . . . ,Ar is that, if we get the measurement
outcome associated with 
i(ε), we conclude that the state is Ai . For the outcome
associated with the extra projector 
r+1(ε), we can make any decision, or just
report an error; here we simply assign it to Ar . Thus, the family of measurements
that we construct for use is


 = {

1(ε), . . . ,
r−1(ε),
r(ε) + 
r+1(ε)

}
.(20)

4.3. Proof of the one-shot achievability bound: Theorem 2. We show that,
for properly chosen ε ∈ [0,1], the measurement constructed in Section 4.2 will
achieve an error probability that equals the right-hand side of equation (4).

PROOF OF THEOREM 2. For the ensemble of nonnegative matrices A =
{A1, . . . ,Ar}, and the measurement 
 specified in equation (20), we have

Pe(A;
) =
r−1∑
i=1

TrAi

(
1 − 
i(ε)

) + TrAr

(
1 − 
r(ε) − 
r+1(ε)

)

≤
r∑

i=1

TrAi

(
1 − 
i(ε)

)
.

We now make use of the matrices {Ãi}, which are defined in step 1 of the measure-
ment construction in Section 4.2; cf. equation (15). Substituting (Ai − Ãi) + Ãi

for Ai , and noticing that it is an obvious result of equations (13) and (15) that
Ai − Ãi ≥ 0, we further bound the error probability as

Pe(A;
) ≤
r∑

i=1

Tr(Ai − Ãi) +
r∑

i=1

Tr Ãi

(
1 − 
i(ε)

)
.(21)

In the following, we will evaluate the two terms of the right-hand side of equa-
tion (21), separately.
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Invoking the spectral decomposition of Ai , and using equation (15), we can
write

r∑
i=1

Tr(Ai − Ãi) =
r∑

i=1

Ti∑
k=1

λik Tr(Qik − Q̃ik)

(22)

=
|O|∑
m=1

λg(m) Tr(Qg(m) − Q̃g(m)),

where we have used the map g, introduced in the previous section, to indicate the
subscripts. For each integer 2 ≤ m ≤ |O|, applying the third result of Lemma 4 to
the ε-subtraction formulas

(Qg(m) �ε Qg(0) �ε Qg(1) �ε · · · �ε Qg(t−1)) �ε Qg(t), 1 ≤ t ≤ m − 1,

we obtain

Tr(Qg(m) �ε Qg(0) �ε · · · �ε Qg(t−1)) − Tr(Qg(m) �ε Qg(0) �ε · · · �ε Qg(t))

≤ 1

ε2 Tr(Qg(m) �ε Qg(0) �ε · · · �ε Qg(t−1))Qg(t)(23)

≤ 1

ε2 TrQg(m)Qg(t),

where for the last inequality we have used repeatedly the first result of Lemma 4.
Summing over t ∈ {1,2, . . . ,m − 1} at both the first and the last line of equa-
tion (23), yields

TrQg(m) − Tr(Qg(m) �ε Qg(0) �ε Qg(1) �ε · · · �ε Qg(m−1))
(24)

≤ 1

ε2

m−1∑
t=1

TrQg(m)Qg(t),

for all 2 ≤ m ≤ |O|. Combining equations (13) and (24), and directly verifying the
case m = 1, we get

Tr(Qg(m) − Q̃g(m)) ≤ 1

ε2

m−1∑
t=0

TrQg(m)Qg(t), 1 ≤ m ≤ |O|.(25)

Eventually, inserting equation (25) into equation (22), and changing the subscripts,
we arrive at

r∑
i=1

Tr(Ai − Ãi) ≤ 1

ε2

|O|∑
m=1

m−1∑
t=0

λg(m) TrQg(m)Qg(t)

(26)

= 1

ε2

∑
(i,j):i<j

∑
k,	

min{λik, λj	}TrQikQj	.
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Now we evaluate the second term of the right-hand side of equation (21). Using
equations (15) and (18), and employing the map g to indicate the subscripts, we
can write

r∑
i=1

Tr Ãi

(
1 − 
i(ε)

) =
r∑

i=1

Ti∑
k=1

λik Tr Q̃ik

(
1 −

Ti∑
	=1

proj(Ŝi	)

)

≤
r∑

i=1

Ti∑
k=1

λik Tr Q̃ik

(
1 − proj(Ŝik)

)
(27)

=
|O|∑
m=1

λg(m) Tr Q̃g(m)

(
1 − proj(Ŝg(m))

)
.

Equation (17) implies that

supp(Q̃g(m)) = S̃g(m) ⊆
m⊕

t=1

Ŝg(t).

As a result, the identity matrix in the third line of equation (27) can be replaced by∑m
t=1 proj(Ŝg(t)). This gives

r∑
i=1

Tr Ãi

(
1 − 
i(ε)

) ≤
|O|∑
m=1

λg(m) Tr Q̃g(m)

m−1∑
t=0

proj(Ŝg(t))

(28)

=
|O|∑
m=1

λg(m) Tr Q̃g(m)proj

(
m−1∑
t=0

S̃g(t)

)
,

where we have Ŝg(0) = S̃g(0) = {0}, and for the equality we used equation (17).
The next step is to upper bound proj(

∑m−1
t=0 S̃g(t)), with a quantity in terms of∑m−1

t=0 Q̃g(t). This can be done by directly applying Lemma 6. However, we notice
that, for each 1 ≤ i ≤ r the subspaces in the set {S̃ik}k are orthogonal and we can
make use of this fact to derive a tighter bound. For a pair of numbers (x, y), let
[(x, y)]1 denote the first component: [(x, y)]1 = x. We write

m−1∑
t=0

S̃g(t) =
r∑

i=1

S̃m
i , with S̃m

i := ⊕
t :0≤t≤m−1,

[g(t)]1=i

S̃g(t).(29)

We will use Lemma 5 to bound the overlaps between each pair of the subspaces
{S̃m

i }ri=1, and then we apply Lemma 6. Although we will only get a slightly better
bound, compared to applying Lemma 6 directly, it is possible to make this im-
provement bigger by strengthening the result of Lemma 6. Now, due to Lemma 4
and the definition of S̃g(t) [cf. equation (14)], we can bound

max
|v〉∈S̃g(t),|v′〉∈Sg(t ′)

∣∣〈v|v′〉∣∣ ≤ ε, 0 ≤ t ′ < t ≤ |O|.
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Since S̃g(t ′) is a subspace of Sg(t ′), it follows that

max
|v〉∈S̃g(t),|v′〉∈S̃g(t ′)

∣∣〈v|v′〉∣∣ ≤ ε, 0 ≤ t �= t ′ ≤ |O|.

Recalling the spectral decomposition of each Ai , we notice that the direct sum in
equation (29) has at most Ti terms. So, an application of Lemma 5 gives us that,
for every 1 ≤ m ≤ |O|,

max
|v〉∈S̃m

i ,|w〉∈S̃m
j

∣∣〈v|w〉∣∣ ≤ T ε, 1 ≤ i �= j ≤ r,(30)

where T = max{T1, . . . , Tr}. Equation (30) allows us to apply Lemma 6 and obtain

proj

(
m−1∑
t=0

S̃g(t)

)
≤ 1 − (r − 1)T ε

1 − 2(r − 1)T ε

m−1∑
t=0

Q̃g(t), 1 ≤ m ≤ |O|,(31)

for which we have also used equation (29) and the fact that proj(S̃g(t)) = Q̃g(t).
Note that here the condition on δ in Lemma 6 is satisfied for our later choice of ε.
Now, inserting equation (31) into equation (28), and making use of the relation
Q̃g(m) ≤ Qg(m) for all 0 ≤ m ≤ |O|, we arrive at

r∑
i=1

Tr Ãi

(
1 − 
i(ε)

) ≤ 1 − (r − 1)T ε

1 − 2(r − 1)T ε

|O|∑
m=1

λg(m)

m−1∑
t=0

TrQg(m)Qg(t),(32)

which translates to
r∑

i=1

Tr Ãi

(
1 − 
i(ε)

)
(33)

≤ 1 − (r − 1)T ε

1 − 2(r − 1)T ε

∑
(i,j):i<j

∑
k,	

min{λik, λj	}TrQikQj	.

Eventually, inserting equations (26) and (33) into equation (21) and setting ε =
2

5(r−1)T
lets us obtain equation (4), with

f (r, T ) = 25(r − 1)2T 2

4
+ 3 < 10(r − 1)2T 2,

and we are done. �

4.4. Proof of the error exponent. We are now ready for the proof of Theo-
rem 1.

PROOF OF THEOREM 1. For the achievability part, we use Theorem 2. Let
d = |H| be the dimension of the associated Hilbert space of the states ρ1, . . . , ρr .
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The type counting lemma (see, e.g., [10], Theorem 12.1.1) provides that the num-
ber of eigenspaces of the states ρ⊗n

1 , . . . , ρ⊗n
r satisfies

�
(
ρ⊗n

i

) ≤ (n + 1)d ∀1 ≤ i ≤ r.

For all 1 ≤ i ≤ r , let ρ⊗n
i = ∑

k λ
(n)
ik Q

(n)
ik be written in the spectral decomposition.

Theorem 2 gives

P ∗
e

({
p1ρ

⊗n
1 , . . . , prρ

⊗n
r

})
(34)

≤ 10(r − 1)2(n + 1)2d
∑

(i,j):i<j

∑
k,	

min
{
piλ

(n)
ik ,pjλ

(n)
j	

}
TrQ(n)

ik Q
(n)
j	 .

Furthermore, for any 1 ≤ i < j ≤ r , we have∑
k,	

min
{
piλ

(n)
ik ,pjλ

(n)
j	

}
TrQ(n)

ik Q
(n)
j	

≤ max{pi,pj } min
0≤s≤1

∑
k,	

(
λ

(n)
ik

)s(
λ

(n)
j	

)1−s TrQ(n)
ik Q

(n)
j	(35)

= max{pi,pj } min
0≤s≤1

(
Trρs

i ρ
1−s
j

)n
.

Inserting equation (35) into equation (34), together with some basic calculus, re-
sults in

P ∗
e

({
p1ρ

⊗n
1 , . . . , prρ

⊗n
r

})
(36)

≤ 10(r − 1)2C2
r (n + 1)2d max{p1, . . . , pr} max

(i,j):i �=j
min

0≤s≤1

(
Trρs

i ρ
1−s
j

)n
,

where C2
r = r(r−1)

2 is a binomial coefficient. From equation (36), we easily derive

lim inf
n→∞

−1

n
logP ∗

e

({
p1ρ

⊗n
1 , . . . , prρ

⊗n
r

})
(37)

≥ min
(i,j):i �=j

max
0≤s≤1

{− log Trρs
i ρ

1−s
j

}
.

On the other hand, the optimality part, that

lim sup
n→∞

−1

n
logP ∗

e

({
p1ρ

⊗n
1 , . . . , prρ

⊗n
r

})
(38)

≤ min
(i,j):i �=j

max
0≤s≤1

{− log Trρs
i ρ

1−s
j

}
,

is a straightforward generalization of the r = 2 situation [29]; see [31] for the
proof. Alternatively, one can start with the one-shot bound of equation (5). Then
we use the fact that equation (7), when applied to the i.i.d. states and acted by
“−1

n
log” at both sides, becomes asymptotically an equality. Note that this is still

based on the results of Nussbaum and Szkoła in [29].
At last, equation (37) and equation (38) together are obviously equivalent to

equation (3) and we conclude the proof of Theorem 1. �
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5. Discussion. By explicitly constructing a family of asymptotically optimal
measurements for testing quantum hypotheses {ρ⊗n

1 , . . . , ρ⊗n
r }, we have proven

the achievability of the multiple quantum Chernoff distance, and eventually estab-
lished that this is the optimal rate exponent at which the error decays.

In the nonasymptotic setting, we have obtained a new upper bound for the
optimal average error probability in discriminating a set of density matrices
{A1, . . . ,Ar}, which satisfy Ai ≥ 0 and are not necessarily normalized. Yuen,
Kennedy and Lax [41] derived a formula for the optimal average error:

P ∗
e (A1, . . . ,Ar) = Tr

∑
i

Ai − min{TrX : X ≥ Ai, i = 1, . . . , r};(39)

see also [22] and [2] for alternative formulations. However, the fact that equa-
tion (39) involves an optimization problem itself, makes it difficult to apply this
formula directly. Our upper bound stated in Theorem 2, though looser compared
to equation (39), has an explicit form and there is a dual lower bound as shown in
equation (5). We thus hope that it will find more applications.

We wonder whether the states-dependent factor f (r, T ) can be replaced by a
constant, or at least can be improved such that it only depends on r (see also a
similar conjecture made in [2]). While it is possible that we can improve Lemma 6
to give a better bound on f (r, T ), we do not think that this can remove the depen-
dence on T and r . In this direction, the pretty good measurement [4, 15] and its
variant [40], both of which achieve an error probability lying between P ∗

e and 2P ∗
e ,

may be useful tools to try. In fact, in Theorem 2 the dependence of our bound on T

is not necessary: using the argument in [38], we can convert it into a dependence
on the relation between the maximal and the minimal eigenvalues of the hypothetic
states; see Proposition 7 below and the proof in the Appendix. This conversion is
useful when the spectrum of each Ai is sufficiently flat, no matter how big the
number of their eigenspaces is.

PROPOSITION 7. For all i = 1, . . . , r , let λmax(Ai) be the maximal eigen-
value, and λmin(Ai) be the minimal nonzero eigenvalue of Ai . Denote

L := max
{⌊

log2
2λmax(A1)

λmin(A1)

⌋
, . . . ,

⌊
log2

2λmax(Ar)

λmin(Ar)

⌋}
.

Then, in Theorem 2 the states-dependent factor f (r, T ) can be replaced by
h(r,L) := 40(r − 1)2L2.

Another interesting question is how our method can be extended to deal with
the problem of discriminating correlated states, where each of the hypothetic states
ρ

(n)
1 , . . . , ρ

(n)
r can be correlated among the n subsystems. The upper bound stated

in Theorem 2 (also in Proposition 7 for an alternative states-dependent factor), to-
gether with the dual lower bound of equation (5), can be used to analyse the asymp-
totic behavior of the error. This method may identify the optimal error exponent



MULTIPLE QUANTUM CHERNOFF DISTANCE 1677

which can be quite different from reasonable generalizations of the Chernoff dis-
tance, in contrast to previous works which under certain conditions yield the mean
quantum Chernoff distance; see, for example, [17, 25, 26, 30]. However, the main
difficulty we will confront in this method is to characterize the spectral decompo-
sition of the correlated states when n goes to infinity. At last, a particularly inter-
esting problem in this setting, proposed by Audenaert and Mosonyi [2], is testing
composite hypotheses, say, ρ⊗n versus

∑
i qiσ

⊗n
i . Here, the sum may be replaced

by an integral. See also discussions in [5] and [7] of this problem in the asymmetric
case of Stein’s lemma. While our method for proving Theorem 1 does shed some
light on this problem, it seems that a complete solution needs further ideas.

APPENDIX: PROOF OF PROPOSITION 7

For an arbitrary nonnegative matrix A = ∑
k λkQk written in the spectral de-

composition form, define the modified version of A as

A′ =
M∑

m=1

2mλmin(A)
∑

k:λk∈Om

Qk,

where M := �log2
2λmax(A)
λmin(A)

� = �(A′) and Om := {λk : 2m−1λmin(A) ≤ λk <

2mλmin(A)}. Then we have A ≤ A′ ≤ 2A, and also A and A′ commute. Now for
A1, . . . ,Ar , we define A′

1, . . . ,A
′
r in a similar way as A′ was defined. Obviously,

�(A′
i ) = �log2

2λmax(Ai)
λmin(Ai)

�. Applying Theorem 2, we can evaluate

P ∗
e

({
A′

1, . . . ,A
′
r

})
(40)

≤ 10(r − 1)2L2 · 4
∑

(i,j):i<j

∑
k,	

min{λik, λj	}TrQikQj	.

On the other hand, since for all i, Ai ≤ A′
i , we have by the definition of P ∗

e that

P ∗
e

({A1, . . . ,Ar}) ≤ P ∗
e

({
A′

1, . . . ,A
′
r

})
.(41)

Equations (40) and (41) together lead to the advertised result.
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