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A PARTIALLY LINEAR FRAMEWORK FOR MASSIVE
HETEROGENEOUS DATA
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Princeton University∗ and Purdue University†

We consider a partially linear framework for modeling massive heteroge-
neous data. The major goal is to extract common features across all subpop-
ulations while exploring heterogeneity of each subpopulation. In particular,
we propose an aggregation type estimator for the commonality parameter
that possesses the (nonasymptotic) minimax optimal bound and asymptotic
distribution as if there were no heterogeneity. This oracle result holds when
the number of subpopulations does not grow too fast. A plug-in estimator
for the heterogeneity parameter is further constructed, and shown to possess
the asymptotic distribution as if the commonality information were available.
We also test the heterogeneity among a large number of subpopulations. All
the above results require to regularize each subestimation as though it had
the entire sample. Our general theory applies to the divide-and-conquer ap-
proach that is often used to deal with massive homogeneous data. A technical
by-product of this paper is statistical inferences for general kernel ridge re-
gression. Thorough numerical results are also provided to back up our theory.

1. Introduction. In this paper, we propose a partially linear regression frame-
work for modeling massive heterogeneous data. Let {(Yi,Xi ,Zi)}Ni=1 be samples
from an underlying distribution that may change with N . We assume that there ex-
ist s independent subpopulations, and the data from the j th subpopulation follow
a partially linear model:

Y = XT β
(j)
0 + f0(Z) + ε,(1.1)

where ε has zero mean and known variance σ 2. In the above model, Y depends
on X through a linear function that may vary across all subpopulations, and de-
pends on Z through a nonlinear function that is common to all subpopulations.
The possibly different values of β

(j)
0 are viewed as the source of heterogeneity. In

reality, the number of subpopulations grows and some subpopulations may have
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extremely high sample sizes. Note that (1.1) is a typical “semi-nonparametric”
model [Cheng and Shang (2015)] since we infer both commonality and hetero-
geneity components throughout the paper.

The model (1.1) is motivated by the following scenario: different labs conduct
the same experiment on the relationship between a response variable Y (e.g., heart
disease) and a set of predictors Z,X1,X2, . . . ,Xp . It is known from biological
knowledge that the dependence structure between Y and Z (e.g., blood pressure)
should be homogeneous for all humans. However, for the other covariates (e.g.,
certain genes), we allow their (linear) relations with Y to potentially vary in dif-
ferent labs. For example, the genetic functionality of different races might be het-
erogenous. The linear relation is assumed here for simplicity, and particularly suit-
able when the covariates are discrete.

Statistical modeling for massive data has attracted a flurry of recent research.
For homogeneous data, the statistical studies of the divide-and-conquer method
currently focus on either parametric inferences, for example, Li, Lin and Li (2013),
Bag of Little Bootstraps [Kleiner et al. (2012)], and parallel MCMC comput-
ing [Wang and Dunson (2013)], or nonparametric minimaxity [Zhang, Duchi and
Wainwright (2013)]. The other relevant work includes high dimensional linear
models with variable selection [Chen and Xie (2012)] and structured percep-
tron [McDonald, Hall and Mann (2010)]. Heterogenous data are often handled
by fitting mixture models [Aitkin and Rubin (1985), Figueiredo and Jain (2002),
McLachlan and Peel (2000)], time varying coefficient models [Fan and Zhang
(1999), Hastie and Tibshirani (1993)] or multitask regression [Huang and Zhang
(2010), Nardi and Rinaldo (2008), Obozinski, Wainwright and Jordan (2008)].
The recent high dimensional work includes Meinshausen and Bühlmann (2015),
Städler, Bühlmann and van de Geer (2010). However, as far as we are aware,
semi-nonparametric inference for massive homogeneous/heterogeneous data still
remains untouched.

In this paper, our primary goal is to extract common features across all sub-
populations while exploring heterogeneity of each subpopulation. Specifically, we
employ a simple aggregation procedure, which averages commonality estimators
across all subpopulations, and then construct a plug-in estimator for each hetero-
geneity parameter based on the combined estimator for commonality. A similar
two-stage estimation method was proposed in Li and Liang (2008), but for the
purpose of variable selection in β based on a single data set. The secondary goal is
to apply the divide-and-conquer method to the subpopulation with a huge sample
size that is unable to be processed in one single computer. The above purposes are
achieved by estimating our statistical model (1.1) with the kernel ridge regression
(KRR) method. In the partially linear literature, there also exist other estimation
and inference methods (based on a single dataset) such as profile least squares
method, partial residual method and backfitting method; see Härdle, Liang and
Gao (2000), Ruppert, Wand and Carroll (2003), Yatchew (2003).
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The KRR framework is known to be very flexible and well supported by the
general reproducing kernel Hilbert space (RKHS) theory [Mendelson (2002),
Steinwart et al. (2009), Zhang (2005)]. In particular, partial smoothing spline mod-
els [Cheng, Zhang and Shang (2015)] can be viewed as a special case of our
general framework. An important technical contribution of this paper is statisti-
cal inferences for general kernel ridge regression by extending smoothing spline
results developed in Cheng and Shang (2015). This theoretical innovation makes
our work go beyond the existing statistical study on the KRR for large datastes,
which mainly focus on their nonparametric minimaxity, for example, Bach (2012),
Raskutti, Wainwright and Yu (2014), Zhang, Duchi and Wainwright (2013).

Our theoretical studies are mostly concerned with the so-called “oracle rule” for
massive data. Specifically, we define the “oracle estimate” for commonality (het-
erogeneity) as the one computed when all the heterogeneity information are given
(the commonality information is given in each subpopulation), that is, β

(j)
0 ’s are

known (f0 is known). We claim that a commonality estimator satisfies the oracle
rule if it possesses the same minimax optimality and asymptotic distribution as
the “oracle estimate” defined above. A major contribution of this paper is to de-
rive the largest possible diverging rate of s under which our combined estimator
for commonality satisfies the oracle rule. In other words, our aggregation proce-
dure is shown to “filter out” the heterogeneity in data when s does not grow too
fast with N . On the other hand, we have to set a lower bound on s for our het-
erogeneity estimate to possess the asymptotic distribution as if the commonality
information were available, that is, oracle rule. Our second contribution is to test
the heterogeneity among a large number of subpopulations by employing a recent
Gaussian approximation theory [Chernozhukov, Chetverikov and Kato (2013)].

In the standard implementation of KRR, we must invert a kernel matrix, which
requires costs O(N3) in time and O(N2) in memory, respectively; see Saunders,
Gammerman and Vovk (1998). This is computationally prohibitive for a large N .
Hence, when some subpopulation has a huge sample size, we may apply the divide-
and-conquer approach whose statistical analysis directly follows from the above
results. In this case, the “oracle estimate” is defined as those computed based on
the entire (homogeneous) data in those subpopulations. A rather different goal
here is to explore the most computationally efficient way to split the whole sample
while performing the best possible statistical inference. Specifically, we derive the
largest possible number of splits under which the averaged estimators for both
components enjoy the same statistical properties as the oracle estimators.

In both homogeneous and heterogeneous settings above, we note that the upper
bounds established for s increase with the smoothness of f0. Hence, our aggrega-
tion procedure favors smoother regression functions in the sense that more subpop-
ulations/splits are allowed in the massive data. On the other hand, we have to admit
that our upper and lower bound results for s are only sufficient conditions although
empirical results show that our bounds are quite sharp. Another interesting finding
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is that even the semi-nonparametric estimation is applied to only one fraction of
the entire data; it is nonetheless essential to regularize each subestimation as if it
had the entire sample.

In the end, we highlight two key technical challenges: (i) delicate interplay be-
tween the parametric and nonparametric components in the semi-nonparametric
estimation. In particular, we observe a “bias propagation” phenomenon: the bias
introduced by the penalization of the nonparametric component propagates to the
parametric component, and the resulting parametric bias in turn propagates back
to the nonparametric component. To analyze this complicated propagation mecha-
nism, we extend the existing RKHS theory to an enlarged partially linear function
space by defining a novel inner product under which the expectation of the Hes-
sian of the objective function becomes identity; see Proposition 2.2. (ii) double
asymptotics framework in terms of diverging s and N . In this challenging regime,
we develop more refined concentration inequalities in characterizing the concen-
tration property of an averaged empirical process. These very refined theoretical
analyses show that an average of s asymptotic linear expansions is still a valid one
as s ∧ N → ∞.

The rest of the paper is organized as follows: Section 2 briefly introduces the
general RKHS theory and discusses its extension to an enlarged partially linear
function space. Section 3 describes our aggregation procedure, and studies the “or-
acle” property of this procedure from both asymptotic and nonasymptotic perspec-
tives. The efficiency boosting of heterogeneity estimators and heterogenous testing
results are also presented in this section. Section 4 applies our general theory to
various examples with different smoothness. Section 5 is devoted to the analysis
of divide-and-conquer algorithms for homogeneous data. Section 6 presents some
numerical experiments. All the technical details are deferred to Section 7 or Online
Supplementary [Zhao, Cheng and Liu (2015)].

Notation. Denote ‖ · ‖2 and ‖ · ‖∞ as the Euclidean L2 and infinity norm in
R

p , respectively. For any function f : S �→R, let ‖f ‖sup = supx∈S |f (x)|. We use
‖ · ‖ to denote the spectral norm of matrices. For positive sequences an and bn,
we write an � bn (an � bn) if there exists some universal constant c > 0 (c′ > 0)

independent of n such that an ≤ cbn (an ≥ c′bn) for all n ∈ N. We denote an � bn

if both an � bn and an � bn.

2. Preliminaries. In this section, we briefly introduce the general RKHS the-
ory, and then extend it to a partially linear function space. Below is a generic
definition of RKHS [Berlinet and Thomas-Agnan (2004)].

DEFINITION 2.1. Denote by F(S,R) a vector space of functions from a gen-
eral set S to R. We say that H is a reproducing kernel Hilbert space (RKHS) on S ,
provided that:

(i) H is a vector subspace of F(S,R);



1404 T. ZHAO, G. CHENG AND H. LIU

(ii) H is endowed with an inner product, denoted as 〈·, ·〉H, under which it be-
comes a Hilbert space;

(iii) for every y ∈ S , the linear evaluation functional defined by Ey(f ) = f (y) is
bounded.

If H is a RKHS, by Riesz representation, we have that for every y ∈ S , there
exists a unique vector, Ky ∈ H, such that for every f ∈ H, f (y) = 〈f,Ky〉H. The
reproducing kernel for H is defined as K(x,y) = Ky(x).

Denote U := (X,Z) ∈ X × Z ⊂ R
p × R, and PU as the distribution of U

(PX and PZ are defined similarly). According to Definition 2.1, if S = Z and
F(Z,R) = L2(PZ), then we can define a RKHS H ⊂ L2(PZ) (endowed with
a proper inner product 〈·, ·〉H), in which the true function f0 is believed to
lie. The corresponding kernel for H is denoted by K such that for any z ∈ Z :
f (z) = 〈f,Kz〉H. By Mercer’s theorem, this kernel function has the following
unique eigen-decomposition:

K(z1, z2) =
∞∑

�=1

μ�φ�(z1)φ�(z2),

where μ1 ≥ μ2 ≥ · · · > 0 are eigenvalues and {φ�}∞�=1 are an orthonormal basis
in L2(PZ). Mercer’s theorem together with the reproducing property implies that
〈φi,φj 〉H = δij /μi , where δij is Kronecker’s delta. The smoothness of the func-
tions in RKHS can be characterized by the decaying rate of {μ�}∞�=1. Below, we
present three different decaying rates together with the corresponding kernel func-
tions.

Finite rank kernel: The kernel has finite rank r if μ� = 0 for all � > r . For
example, the linear kernel K(z1, z2) = 〈z1, z2〉Rd has rank d , and generates a
d-dimensional linear function space. The eigenfunctions are given by φ�(z) = z�

for � = 1, . . . , d . The polynomial kernel K(z1, z2) = (1 + z1z2)
d has rank d + 1,

and generates a space of polynomial functions with degree at most d . The eigen-
functions are given by φ� = z�−1 for � = 1, . . . , d + 1.

Exponentially decaying kernel: The kernel has eigenvalues that satisfy μ� �
c1 exp(−c2�

p) for some c1, c2 > 0. An example is the Gaussian kernel K(z1, z2) =
exp(−|z1 − z2|2). The eigenfunctions are given by Sollich and Williams (2005)

φ�(x) = (
√

5/4)1/4(2�−2(� − 1)!)−1/2
e−(

√
5−1)x2/4H�−1

(
(
√

5/2)1/2x
)
,(2.1)

for � = 1,2, . . . , where H�(·) is the �th Hermite polynomial.

Polynomially decaying kernel: The kernel has eigenvalues that satisfy μ� �
�−2ν for some ν ≥ 1/2. Examples include those underlying for Sobolev space
and Besov space [Birman and Solomyak (1967)]. In particular, the eigenfunctions
of a νth order periodic Sobolev space are trigonometric functions as specified in
Section 4.3. The corresponding Sobolev kernels are given in Gu (2013).



STATISTICAL INFERENCE FOR MASSIVE HETEROGENEOUS DATA 1405

In this paper, we consider the following penalized estimation:

(
β̂

†
, f̂ †) = argmin

(β,f )∈A

{
1

n

n∑
i=1

(
Yi − XT

i β − f (Zi)
)2 + λ‖f ‖2

H

}
,(2.2)

where λ > 0 is a regularization parameter and A is defined as the parameter space
R

p ×H. For simplicity, we do not distinguish m = (β, f ) ∈ A from its associated
function

m ∈M := {
m | m(u) = βT x + f (z), for u = (x, z) ∈ X ×Z, (β, f ) ∈ A

}
,

throughout the paper. We call (β̂
†
, f̂ †) as partially linear kernel ridge regression

(KRR) estimate in comparison with the nonparametric KRR estimate in Shawe-
Taylor and Cristianini (2004). In particular, when H is a νth order Sobolev space

endowed with 〈f, f̃ 〉H := ∫
Z f (ν)(z)f̃ (ν)(z) dz, (β̂

†
, f̂ †) becomes the commonly

used partial smoothing spline estimate.
We next illustrate that A can be viewed as a partially linear extension of H in

the sense that it shares some nice reproducing properties as this RKHS H under
the following inner product: for any m = (β, f ) ∈ A and m̃ = (β̃, f̃ ) ∈A, define

〈m,m̃〉A := 〈m,m̃〉L2(PX,Z) + λ〈f, f̃ 〉H,(2.3)

where 〈m,m̃〉L2(PX,Z) = EX,Z[(XT β + f (Z))(XT β̃ + f̃ (Z))]. Note that m and m̃

in 〈m,m̃〉L2(PX,Z) are both functions in the set M. Similar to the kernel function
Kz, we can construct a linear operator Ru(·) ∈ A such that 〈Ru,m〉A = m(u) for
any u ∈ X × Z . Also, construct another linear operator Pλ : A �→ A such that
〈Pλm, m̃〉A = λ〈f, f̃ 〉H for any m and m̃. See Proposition 2.3 for the construction
of Ru and Pλ.

We next present a proposition illustrating the rationale behind the definition of
〈·, ·〉A. Denote ⊗ as the outer product on A. Hence, EU [RU ⊗ RU ] + Pλ is an
operator from A to A.

PROPOSITION 2.2. EU [RU ⊗RU ]+Pλ = id, where id is an identity operator
on A.

PROOF. For any m = (β, f ) ∈A and m̃ = (β̃, f̃ ) ∈ A, we have〈(
EU [RU ⊗ RU ] + Pλ

)
m,m̃

〉
A = 〈

EU [RU ⊗ RU ]m,m̃
〉
A + 〈Pλm, m̃〉A

= EU

[
m(U)m̃(U)

] + λ〈f, f̃ 〉H = 〈m,m̃〉A.

Since the choice of (m, m̃) is arbitrary, we complete our proof. �

As will be seen in the subsequent analysis, for example, in Theorem 3.4, the
operator E[RU ⊗ RU ] + Pλ is essentially the expectation of the Hessian of the
objective function (w.r.t. Fréchet derivative) minimized in (2.2). Proposition 2.2
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shows that the inversion of this Hessian matrix is trivial when the inner product is

designed as in (2.3). Due to that, the theoretical analysis of m̂† = (β̂
†
, f̂ †) based

on the first order optimality condition becomes much more transparent.
To facilitate the construction of Ru and Pλ, we need to endow a new inner

product with H:

〈f, f̃ 〉C = 〈f, f̃ 〉L2(PZ) + λ〈f, f̃ 〉H,(2.4)

for any f, f̃ ∈ H. Under (2.4), H is still a RKHS as the evaluation functional
is bounded by Lemma A.1 in the supplemental material [Zhao, Cheng and Liu
(2015)]. We denote the new kernel function as K̃(·, ·), and define a positive definite
self-adjoint operator Wλ : H �→ H:

〈Wλf, f̃ 〉C = λ〈f, f̃ 〉H for any f, f̃ ∈ H′,(2.5)

whose existence is proven in Lemma A.2 in the supplemental material [Zhao,
Cheng and Liu (2015)]. We next define two crucial quantities needed in the con-
struction: Bk := E[Xk | Z] and its Riesz representer Ak ∈H satisfying 〈Ak,f 〉C =
〈Bk,f 〉L2(PZ) for all f ∈ H. Here, we implicity assume Bk is square integrable.
The existence of Ak follows from the boundedness of the linear functional Bkf :=
〈Bk,f 〉L2(PZ) (by Riesz’s representer theorem) as follows:

|Bkf | = ∣∣〈Bk,f 〉L2(PZ)

∣∣ ≤ ‖Bk‖L2(PZ)‖f ‖L2(PZ) ≤ ‖Bk‖L2(PZ)‖f ‖C .
We are now ready to construct Ru and Pλ based on K̃z, Wλ, B and A introduced

above, where B = (B1, . . . ,Bp)T and A = (A1, . . . ,Ap)T . Define � = E[(X −
B)(X − B)T ] and �λ = E[B(Z)(B(Z) − A(Z))T ].

PROPOSITION 2.3. For any u = (x, z), Ru can be expressed as Ru : u �→
(Lu,Nu) ∈ A, where

Lu = (� + �λ)
−1(x − A(z)

)
and Nu = K̃z − AT Lu.

Moreover, for any m = (β, f ) ∈ A, Pλm can be expressed as Pλm = (Lλf,Nλf ) ∈
A, where

Lλf = −(� + �λ)
−1〈B,Wλf 〉L2(PZ) and Nλf = Wλf − AT Lλf.

The quantities Ru and Pλ correspond to the variance, that is, n−1 ∑n
i=1 RUi

εi ,
and bias, that is, Pλm0, in the stochastic expansion of m̂† − m0, where m̂† =
(β̂

†
, f̂ †), m0 = (β0, f0); see equation (7.2) in Section 7.1. We remark that the

penalized loss function in (2.2) can be written as (1/n)
∑n

i=1(Yi − 〈RUi
,m〉A)2 +

〈Pλm,m〉A. This explains why Ru and Pλ show up in the stochastic expansion,
which is derived from the KKT condition of the above loss function and Propo-
sition 2.2. Moreover, Ru = (Lu,Nu) and Pλm = (Lλf,Nλf ). Hence, Lu,Lλf0

and Nu,Nλf0 appear in the stochastic expansions of β̂
† − β0 and f̂ † − f0; see

Lemma 3.1.
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3. Heterogeneous data: Aggregation of commonality. In this section, we
start from describing our aggregation procedure and model assumptions in Sec-
tion 3.1. The main theoretical results are presented in Sections 3.2–3.4 showing
that our combined estimate for commonality enjoys the “oracle property.” To be
more specific, we show that it possesses the same (nonasymptotic) minimax op-
timal bound (in terms of mean-squared error) and asymptotic distribution as the
“oracle estimate” f̂or computed when all the heterogeneity information are avail-
able:

f̂or = argmin
f ∈H

{
1

N

s∑
j=1

∑
i∈Sj

(
Yi − (

β
(j)
0

)T Xi − f (Zi)
)2 + λ‖f ‖2

H

}
,(3.1)

where Sj denotes the index set of all samples from the subpopulation j . The above
nice properties hold when the number of subpopulations does not grow too fast
and the smoothing parameter is chosen according to the entire sample size N .
Based on this combined estimator, we further construct a plug-in estimator for
each heterogeneity parameter β

(j)
0 , which possesses the asymptotic distribution as

if the commonality were known, in Section 3.5. Interestingly, this oracular result
holds when the number of subpopulation is not too small. In the end, Section 3.6
tests the possible heterogeneity among a large number of subpopulations.

3.1. Method and assumptions. The heterogeneous data setup and averaging
procedure are described below:

1. Observe data (Xi ,Zi, Yi) with the known labels indicating the subpopulation it
belongs to, for i = 1, . . . ,N . The size of samples from each subpopulation is
assumed to be the same, denoted by n, for simplicity. Hence, N = n × s.

2. On the j th subpopulation, obtain the following penalized estimator:(
β̂

(j)

n,λ, f̂
(j)
n,λ

) = argmin
(β,f )∈A

{
1

n

∑
i∈Sj

(
Yi − XT

i β − f (Zi)
)2 + λ‖f ‖2

H

}
.(3.2)

3. Obtain the final nonparametric estimate3 for commonality by averaging

f̄N,λ = 1

s

s∑
j=1

f̂
(j)
n,λ .(3.3)

We point out that β̂
(j)

n,λ is not our final estimate for heterogeneity. In fact, it can be
further improved based on f̄N,λ; see Section 3.5.

3The commonality estimator f̄N,λ can be adjusted as a weighted sum
∑s

j=1(nj /N)f̂
(j)
n,λ if sub-

sample sizes are different. In particular, the divide-and-conquer method can be applied to those sub-
populations with huge sample sizes; see Section 5.
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For simplicity, we will drop the subscripts (n,λ) and (N,λ) in those notation
defined in (3.2) and (3.3) throughout the rest of this paper. Moreover, we make the
technical assumption that s � Nψ , although ψ could be very close to 1. The main
assumptions of this section are stated below.

ASSUMPTION 3.1 (Regularity condition). (i) εi ’s are i.i.d. sub-Gaussian ran-
dom variables independent of the designs; (ii) Bk ∈ L2(PZ) for all k, and � :=
E[(X − B(Z))(X − B(Z))T ] is positive definite; (iii) Xi’s are uniformly bounded
by a constant cx .

Conditions in Assumption 3.1 are fairly standard in the literature. For example,
the positive definiteness of � is needed for obtaining semiparametric efficient es-
timation; see Mammen and van de Geer (1997). Note that we do not require the
independence between X and Z throughout the paper.

ASSUMPTION 3.2 (Kernel Condition). We assume that there exist 0 < cφ <

∞ and 0 < cK < ∞ such that sup� ‖φ�‖sup ≤ cφ and supz K(z, z) ≤ cK .

Assumption 3.2 is commonly assumed in kernel ridge regression literature [Guo
(2002), Lafferty and Lebanon (2005), Zhang, Duchi and Wainwright (2013)]. In
the case of finite rank kernel, for example, linear and polynomial kernels, the
eigenfunctions are uniformly bounded as long as Z has finite support. As for the
exponentially decaying kernels such as Gaussian kernel, we prove in Section 4.2
that the eigenfunctions given in (2.1) are uniformly bounded by 1.336. Finally, for
the polynomially decaying kernels, Proposition 2.2 in Shang and Cheng (2013)
showed that the eigenfunctions induced from a νth order Sobolev space (under a
proper inner product 〈·, ·〉H) are uniformly bounded under mild smoothness con-
ditions for the density of Z.

ASSUMPTION 3.3. For each k = 1, . . . , p, Bk(·) ∈ H. This is equivalent to
∞∑

�=1

μ−1
� 〈Bk,φ�〉2

L2(PZ) < ∞.

Assumption 3.3 requires the conditional expectation of Xk given Z = z is as
smooth as f0(z). As can be seen in Section 3.4, this condition is imposed to con-
trol the bias of the parametric component, which is caused by penalization on
the nonparametric component. We call this interaction the “bias propagation phe-
nomenon” and study it in Section 3.4.

Before laying out our main theoretical results, we define a key quantity used
throughout the paper:

d(λ) :=
∞∑

�=1

1

1 + λ/μ�

.(3.4)
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The quantity d(λ) is essentially the “effective dimension,” which was introduced
in [Zhang (2005)]. For a finite dimensional space, d(λ) corresponds to the true
dimension, for example, d(λ) � r for the finite rank kernel (with rank r). For an
infinite-dimensional space, d(λ) is jointly determined by the size of that space and
the smoothing parameter λ. For example, d(λ) � (− logλ)1/p for exponentially
decaying kernel, and d(λ) � λ−1/(2m) for polynomially decaying kernels. More
details are provided in Section 4, where the three RKHS examples are carefully
discussed.

In the end, we state a technical lemma that is crucially important in the subse-
quent theoretical derivations. For any function space F , define an entropy integral

J (F, δ) =:
∫ δ

0

√
logN

(
F,‖ · ‖sup, ε

)
dε,

where N (F,‖ · ‖sup, ε) is an ε-covering number of F w.r.t. supreme norm.
Define the following sets of functions: F1 = {f | f (x) = xT β for x ∈ X ,β ∈
R

p,‖f ‖sup ≤ 1}, F2 = {f ∈ H : ‖f ‖sup ≤ 1,‖f ‖H ≤ d(λ)−1/2λ−1/2}, F := {f =
f1 + f2 : f1 ∈F1, f2 ∈ F2,‖f ‖sup ≤ 1/2}.

LEMMA 3.1. For any fixed j = 1, . . . , s, we have

β̂
(j) − β

(j)
0 = 1

n

∑
i∈Sj

LUi
εi − Lλf0 − Rem(j)

β ,(3.5)

and

f̂ (j) − f0 = 1

n

∑
i∈Sj

NUi
εi − Nλf0 − Rem(j)

f ,(3.6)

where (Rem(j)
β ,Rem(j)

f ) ∈ A. Moreover, suppose Assumptions 3.1 and 3.2 hold,

and d(λ)n−1/2(J (F,1) + logn) = o(1), then we have

E
[∥∥Rem(j)

β

∥∥2
2

] ≤ a(n,λ, J ),(3.7)

and

P
(∥∥Rem(j)

β

∥∥
2 ≥ b(n,λ, J )

)
� n exp

(−c log2 n
)
,(3.8)

where a(n,λ, J ) = Cd(λ)2n−1r2
n,λ(J (F,1)2 + 1) + Cd(λ)2λ−1n exp(−c log2 n),

and b(n,λ, J ) = Cd(λ)n−1/2rn,λ(J (F,1) + logn), with rn,λ = (logn)2(d(λ)/

n)1/2 + λ1/2. The same inequalities also hold for ‖Rem(j)
f ‖C under the same set

of conditions.

Equations (3.5) and (3.6) in the above lemma are fundamentally important in de-
riving the subsequent asymptotic and nonasymptotic results. In particular, by (3.6)
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and the definition of f̄ , we obtain the stochastic expansion

f̄ − f0 = 1

N

N∑
i=1

NUi
εi − Nλf0 − 1

s

s∑
j=1

Rem(j)
f ,(3.9)

which is the starting point for deriving the results in Theorems 3.2 and 3.4. These
two equations are also of independent interest. For example, they trivially apply
to the classical setup where there is only one dataset, that is, s = 1. In addition,
they can be used in the other model settings where subpopulations do not share the
same sample size or are not independent. As far as we know, the (nonasymptotic)
moment and probability inequalities (3.7) and (3.8) on the remainder term are new.
They are useful in determining a proper growth rate of s such that the aggregated
remainder term (1/s)

∑s
j=1 Rem(j)

f still vanishes in probability.

3.2. Nonasymptotic bound for mean-squared error. The primary goal of this
section is to evaluate the estimation quality of the combined estimate from a non-
asymptotic point of view. Specifically, we derive a finite sample upper bound for
the mean-squared error MSE(f̄ ) := E[‖f̄ −f0‖2

L2(PZ)]. When s does not grow too

fast, we show that MSE(f̄ ) is of the order O(d(λ)/N + λ), from which the aggre-
gation effect on f can be clearly seen. If λ is chosen in the order of N , the mean-
squared error attains the (unimprovable) optimal minimax rate. As a by-product,

we establish a nonasymptotic upper bound for the mean-squared error of β̂
(j)

, that

is, MSE(β̂
(j)

) := E[‖β̂(j) − β
(j)
0 ‖2

2]. The results in this section together with The-
orem 3.6 in Section 3.4 determine an upper bound of s under which f̄ enjoys the
same statistical properties (minimax optimality and asymptotic distribution) as the
oracle estimate f̂or.

Define τmin(�) as the minimum eigenvalue of � and Tr(K) := ∑∞
�=1 μ� as

the trace of K . Moreover, let C′
1 = 2τ−2

min(�)(c2
xp + c2

φ Tr(K)
∑p

k=1 ‖Bk‖2
H),

C1 = 2c2
φ(1 + C′

1
∑p

k=1 ‖Bk‖2
L2(PZ)), C′

2 = τ−2
min(�)‖f0‖2

H
∑p

k=1 ‖Bk‖2
H and C2 =

2C′
2
∑p

k=1 ‖Bk‖2
L2(PZ).

THEOREM 3.2. Under Assumptions 3.1–3.3, if s = o(Nd(λ)−2(J (F,1) +
logN)−2), then we have

MSE(f̄ ) ≤ C1σ
2d(λ)/N + 2‖f0‖2

Hλ + C2λ
2 + s−1a(n,λ, J ),(3.10)

where a(n,λ, J ) is defined in Lemma 3.1.

Typically, we require an upper bound for s so that the fourth term in the RHS
of (3.10) can be dominated by the first two terms, which correspond to variance
and bias, respectively. To attain the optimal bias-variance trade-off, we choose
λ � d(λ)/N . Solving this equation yields the choice of regularization parameter λ,
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which varies in different RKHS. The resulting rate of convergence for MSE(f̄ ) co-
incides with the minimax optimal rate of the oracle estimate in different RKHS;
see Section 4. This can be viewed as a nonasymptotic version of the “oracle prop-
erty” of f̄ . In comparison with the nonparametric KRR result in Zhang, Duchi
and Wainwright (2013), we realize that adding one parametric component does
not affect the finite sample upper bound (3.10).

As a by-product, we obtain a nonasymptotic upper bound for MSE(β̂
(j)

). This
result is new, and also of independent interest.

THEOREM 3.3. Suppose that Assumptions 3.1–3.3 hold. Then we have

MSE
(
β̂

(j)) ≤ C′
1σ

2n−1 + C′
2λ

2 + a(n,λ, J ),(3.11)

where a(n,λ, J ) is defined in Lemma 3.1, and C′
1 and C′

2 are defined before The-
orem 3.2.

Again, the first term and second term in the RHS of (3.11) correspond to the
variance and bias, respectively. In particular, the second term comes from the bias
propagation effect to be discussed in Section 3.4. By choosing λ = o(n−1/2), we

can obtain the optimal rate of MSE(β̂
(j)

), that is, O(n−1/2), but may lose the
minimax optimality of MSE(f̄ ) in most cases.

3.3. Joint asymptotic distribution. In this section, we derive a preliminary re-

sult on the joint limit distribution of (β̂
(j)

, f̄ (z0)) at any z0 ∈ Z . A key issue with
this result is that their centering is not at the true value. However, we still choose
to present it here since we will observe an interesting phenomenon when removing
the bias in Section 3.4.

THEOREM 3.4 (Joint Asymptotics I). Suppose that Assumptions 3.1 and 3.2
hold, and that as N → ∞, ‖K̃z0‖L2(PZ)/d(λ)1/2 → σz0 , (WλA)(z0)/d(λ)1/2 →
αz0 ∈ R

p , and A(z0)/d(λ)1/2 → −γ z0
∈ R

p . Suppose the following conditions
are satisfied:

s = o
(
Nd(λ)−2(J (F,1) + logN

)−2)
,(3.12)

sd(λ)/N log4 N + λ = o
(
d(λ)−2(J (F,1) + logN

)−2 log−2 N
)
.(3.13)

Denote (β
(j)∗
0 , f ∗

0 ) as (id − Pλ)m
(j)
0 , where m

(j)
0 = (β

(j)
0 , f0). We have for any

z0 ∈ Z and j = 1, . . . , s:

(i) if s → ∞ then( √
n
(
β̂

(j) − β
(j)∗
0

)
√

N/d(λ)
(
f̄ (z0) − f ∗

0 (z0)
)) � N

(
0, σ 2

(
�−1 0

0 
22

))
,(3.14)

where 
22 = σ 2
z0

+ 2γ T
z0

�−1αz0 + γ T
z0

�−1γ z0
;
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(ii) if s is fixed, then( √
n
(
β̂

(j) − β
(j)∗
0

)
√

N/d(λ)
(
f̄ (z0) − f ∗

0 (z0)
)) � N

(
0, σ 2

(
�−1 s−1/2�21

s−1/2�12 
22

))
,(3.15)

where �12 = �T
12 = �−1(αz0 + γ z0

).

Part (i) of Theorem 3.4 says that
√

nβ̂
(j)

and
√

N/d(λ)f̄ (z0) are asymptotically
independent as s → ∞. This is not surprising since only samples in one subpop-
ulation (with size n) contribute to the estimation of the heterogeneity component
while the entire sample (with size N ) to commonality. As n/N = s−1 → 0, the
former data becomes asymptotically independent of (or asymptotically ignorable
to) the latter data. So are these two estimators. The estimation bias Pλm

(j)
0 can

be removed by placing a smoothness condition on Bk , that is, Assumption 3.3.
Interestingly, given this additional condition, even when s is fixed, these two es-
timators can still achieve the asymptotic independence if d(λ) → ∞. Please see
more details in next section.

The norming d(λ)1/2 needed in these conditions ‖K̃z0‖L2(PZ)/d(λ)1/2 → σz0 ,
(WλA)(z0)/d(λ)1/2 → αz0 ∈ R

p , and A(z0)/d(λ)1/2 → −γ z0
∈ R

p is due to the
following variance calculation:

Var
(√

N/d(λ)
(
f̄ − f ∗

0
))

≈ {[‖K̃z0‖L2(PZ)/d(λ)1/2]2 + 2
[
A(z0)/d(λ)1/2]T �−1[WλA(z0)/d(λ)1/2]

+ [
A(z0)/d(λ)1/2]T �−1[A(z0)/d(λ)1/2]},

where the first term is dominating and ‖K̃z0‖L2(PZ) = O(d(λ)1/2). So, by the
norming d(λ)1/2, we obtain the order of

√
N/d(λ)(f̄ − f ∗

0 ) as OP(1).

Our last result in this section is the joint asymptotic distribution of {β̂(j)}sj=1
(expressed in a linear contrast form). Denote

β̂˜ = (
β̂

(1)T
, . . . , β̂

(s)T )T ∈ R
ps and β˜ 0 = (

β
(1)T
0 , . . . ,β

(s)T
0

)T ∈ R
ps.

THEOREM 3.5. Suppose Assumptions 3.1–3.3 hold. If λ = o(N−1/2), and s

satisfies (3.12) and

s2d(λ)/N log4 N + sλ = o
(
d(λ)−2(J (F,1) + logN

)−2 log−2 N
)
,(3.16)

then for any u˜ = (uT
1 , . . . ,uT

s ) ∈ R
ps with ‖u˜ ‖2 = 1, it holds

√
nV −1

s

T
u˜(β̂˜ − β˜ 0) � N

(
0, σ 2),

where V 2
s = ∑s

j=1 uT
j �−1uj , as N → ∞.

Note that the upper bound condition on s is slightly different from that in The-
orem 3.4.
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3.4. Bias propagation. In this section, we first analyze the source of estima-
tion bias observed in the joint asymptotics Theorem 3.4. In fact, these analysis
leads to a bias propagation phenomenon, which intuitively explains how Assump-
tion 3.3 removes the estimation bias. More importantly, we show that f̄ shares
exactly the same asymptotic distribution as f̂or, that is, oracle rule, when s does
not grow too fast and λ is chosen in the order of N .

Our study on propagation mechanism is motivated by the following simple ob-
servation. Denote X ∈ R

n×p and Z ∈ R
n as the designs based on the samples from

the j th subpopulation and let ε(j) = [εi]i∈Sj
∈ R

n. The first order optimality con-
dition (w.r.t. β) gives

β̂
(j) − β

(j)
0 = (

X
T
X
)−1

X
T ε(j) − (

X
T
X
)−1

X
T (

f̂ (j)(Z) − f0(Z)
)
,(3.17)

where f0(Z) is a n-dimensional vector with entries f0(Zi) for i ∈ Sj and f̂ (j)(Z)

is defined similarly. Hence, the estimation bias of β̂
(j)

inherits from that of f̂ (j).
A more complete picture on the propagation mechanism can be seen by decom-
posing the total bias Pλm

(j)
0 into two parts:

parametric bias: Lλf0 = −(� + �λ)
−1〈B,Wλf0〉L2(PZ),(3.18)

nonparametric bias: Nλf0 = Wλf0 − AT Lλf0(3.19)

according to Proposition 2.3. The first term in (3.19) explains the bias intro-
duced by penalization; see (2.5). This bias propagates to the parametric compo-
nent through B, as illustrated in (3.18). The parametric bias Lλf0 propagates back
to the nonparametric component through the second term of (3.19). Therefore,
by strengthening Bk ∈ L2(PZ) to Bk ∈ H, that is, Assumption 3.3, it can be shown
that the order of Lλf0 in (3.18) reduces to that of λ. And then we can remove Lλf0

asymptotically by choosing a sufficiently small λ. In this case, the nonparametric
bias becomes Wλf0.

We summarize the above discussions in the following theorem.

THEOREM 3.6 (Joint Asymptotics II). Suppose Assumption 3.3 and the con-
ditions in Theorem 3.4 hold. If we choose λ = o(

√
d(λ)/N ∧ n−1/2), then:

(i) if s → ∞ then( √
n
(
β̂

(j) − β
(j)
0

)√
N/d(λ)

(
f̄ (z0) − f0(z0) − Wλf0(z0)

)
)

(3.20)

� N

(
0, σ 2

(
�−1 0

0 
∗
22

))
,

where 
∗
22 = σ 2

z0
+ γ T

z0
�−1γ z0

;
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(ii) if s is fixed, then( √
n
(
β̂

(j) − β
(j)
0

)√
N/d(λ)

(
f̄ (z0) − f0(z0) − Wλf0(z0)

)
)

(3.21)

� N

(
0, σ 2

(
�−1 s−1/2�∗

21
s−1/2�∗

12 
∗
22

))
,

where �∗
12 = �∗T

12 = �−1γ z0
and 
∗

22 is the same as in (i).

Moreover, if d(λ) → ∞, then �∗
12 = �∗

21 = 0 and 
∗
22 = σ 2

z0
in (i) and (ii).

The nonparametric estimation bias Wλf0(z0) can be further removed by per-
forming undersmoothing, a standard procedure in nonparametric inference; see,
for example, Shang and Cheng (2013). We will illustrate this point in Section 4.

By examining the proof for case (ii) of Theorem 3.6 (and taking s = 1), we know
that the oracle estimate f̂or defined in (3.1) attains the same asymptotic distribution
as that of f̄ in (3.20) when s grows at a proper rate. Therefore, we claim that our
combined estimate f̄ satisfies the desirable oracle property.

In Section 4, we apply Theorem 3.6 to several examples, and find that even
though the minimization (3.2) is based only on one fraction of the entire sample,
it is nonetheless essential to regularize each subestimation as if it had the entire
sample. In other words, λ should be chosen in the order of N . Similar phenomenon
also arises in analyzing minimax optimality of each subestimation; see Section 3.2.

When s = 1, our model reduces to the standard partially linear model. The joint
distribution of parametric and nonparametric estimators is shown in Part (ii) of
Theorem 3.6, where their asymptotic covariance is derived as �−1γ z0

with γ z0
=

limN→∞ −A(z0)/d(λ)1/2. In Section 7.5, we show that A(z0) is bounded for any
z0 ∈ Z (uniformly over λ). Hence, the asymptotic correlation disappears, that is,
γ z0

= 0, as d(λ) → ∞. This corresponds to the exponentially decaying kernel and
polynomially decaying kernel. In fact, this finding generalizes the joint asymptotics
phenomenon recently discovered for partial smoothing spline models; see Cheng
and Shang (2015). However, when d(λ) is finite, for example, finite rank kernel,
the asymptotic correlation remains. This is not surprising since the semiparametric
estimation in this case essentially reduces to a parametric one.

REMARK 3.1. Theorem 3.6 implies that
√

n(β̂
(j) − β

(j)
0 ) � N(0, σ 2�−1)

when λ = o(n−1/2). When the error ε follows a Gaussian distribution, it is well
known that β̂

(j)
achieves the semiparametric efficiency bound [Kosorok (2008)].

Hence, the semiparametric efficient estimate can be obtained by applying the ker-
nel ridge method. However, we can further improve its estimation efficiency to
a parametric level by taking advantage of f̄ (built on the whole samples). This
represents an important feature of massive data: strength-borrowing.



STATISTICAL INFERENCE FOR MASSIVE HETEROGENEOUS DATA 1415

REMARK 3.2. We can also construct a simultaneous confidence band for
f0 based on the stochastic expansion of f̄ and strong approximation techniques
[Bickel and Rosenblatt (1973)]. Specifically, we start from (3.9) that implies∥∥∥∥∥f̄ − f ∗

0 − 1

N

N∑
i=1

εiNUi

∥∥∥∥∥
sup

=
∥∥∥∥∥1

s

s∑
j=1

Rem(j)
f

∥∥∥∥∥
sup

.(3.22)

Similar to the pointwise case, we can show that the remainder term on the RHS
of (3.22) is oP (1) once s does not grow too fast. Hence, the distribution of
supz |f̄ (z)−f ∗

0 (z)| can be approximated by that of supz |N−1 ∑N
i=1 εiNUi

(z)|. We
next apply strong approximation techniques to prove that N−1 ∑N

i=1 εiNUi
can be

further approximated by a proper Gaussian process. This would yield a simultane-
ous confidence band. More rigorous arguments can be adapted from the proof of
Theorem 5.1 in Shang and Cheng (2013).

3.5. Efficiency boosting: From semiparametric level to parametric level. The
previous sections show that the combined estimate f̄ achieves the “oracle prop-
erty” in both asymptotic and nonasymptotic senses when s does not grow too fast
and λ is chosen according to the entire sample size. In this section, we further

employ f̄ to boost the estimation efficiency of β̂
(j)

from semiparametric level to

parametric level. This leads to our final estimate for heterogeneity, that is, β̌
(j)

defined in (3.23). More importantly, β̌
(j)

possesses the limit distribution as if the
commonality in each subpopulation were known, and hence satisfies the “oracle
rule.” This interesting efficiency boosting phenomenon will be empirically verified
in Section 6. A similar two-stage estimation method was proposed in Li and Liang
(2008), but for the purpose of variable selection in β based on a single data set.

Specifically, we define the following improved estimator for β0:

β̌
(j) = argmin

β∈Rp

1

n

∑
i∈Sj

(
Yi − XT

i β − f̄ (Zi)
)2

.(3.23)

Theorem 3.7 below shows that β̌
(j)

achieves the parametric efficiency bound as if
the nonparametric component f were known. This is not surprising given that the
nonparametric estimate f̄ now possesses a faster convergence rate after aggrega-
tion. What is truly interesting is that we need to set a lower bound for s, that is,

(3.24), which slows down the convergence rate of β̌
(j)

, that is,
√

n, such that f̄ can
be treated as if it were known. Note that the homogeneous data setting is trivially
excluded in this case.

THEOREM 3.7. Suppose Assumptions 3.1 and 3.2 hold. If s satisfies condi-
tions (3.12), (3.13) and

s−1 = o
(
d(λ)−2 log−4 N

)
,(3.24)
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and we choose λ = o(d(λ)/N), then we have

√
n
(
β̌

(j) − β
(j)
0

)
� N

(
0, σ 2�−1),

where � = E[XXT ].

Note that X and Z are not assumed to be independent. Hence, the parametric
efficiency bound �−1 is not larger than the semiparametric efficiency bound �−1.
The intuition for this lower bound of s is that the total sample size N should grow
much faster than the subsample size n, so that the nonparametric estimator f̄ con-

verges faster than the parametric estimator β̌
(j)

. In this case, the error of estimating

f0 is negligible so that β̌
(j)

behaves asymptotically as if f were known, resulting
in parametric efficiency.

3.6. Testing for heterogeneity. The heterogeneity across different sub-popula-
tions is a crucial feature of massive data. However, there is still some chance that
some subpopulations may share the same underlying distribution. In this section,
we consider testing for the heterogeneity among subpopulations. We start from
a simple pairwise testing, and then extend it to a more challenging simultaneous
testing that can be applied to a large number of subpopulations.

Consider a general class of pairwise heterogeneity testing:

H0 : Q(
β

(j)
0 − β

(k)
0

) = 0 for j �= k,(3.25)

where Q = (QT
1 , . . . ,QT

q )T is a q ×p matrix with q ≤ p. The general formulation

(3.25) can test either the whole vector or one fraction of β
(j)
0 is equal to that of β

(k)
0 .

A test statistic can be constructed based on either β̂ or its improved version β̌ .
Let Cα ⊂ R

q be a confidence region satisfying P(b ∈ Cα) = 1 − α for any b ∼
N(0, Iq). Specifically, we have the following α-level Wald tests:

�1 = I
{
Q

(
β̂

(j) − β̂
(k))

/∈
√

2/nσ
(
Q�−1QT )1/2

Cα

}
,

�2 = I
{
Q

(
β̌

(j) − β̌
(k))

/∈
√

2/nσ
(
Q�−1QT )1/2

Cα

}
.

The consistency of the above tests are guaranteed by Theorem 3.8 below. In ad-
dition, we note that the power of the latter test is larger than the former; see the
analysis below Theorem 3.8. The price we need to pay for this larger power is to
require a lower bound on s.

THEOREM 3.8. Suppose that the conditions in Theorem 3.6 are satisfied. Un-
der the null hypothesis specified in (3.25), we have

√
nQ

(
β̂

(j) − β̂
(k)) � N

(
0,2σ 2Q�−1QT )

.
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Moreover, under the conditions in Theorem 3.7, we have
√

nQ
(
β̌

(j) − β̌
(k)) � N

(
0,2σ 2Q�−1QT )

,

where � = E[XXT ].

The larger power of �2 is due to the smaller asymptotic variance of β̌
(j)

,
and can be deduced from the following power function. For simplicity, we con-
sider H0 : β

(j)
01 − β

(k)
01 = 0, that is, Q = (1,0,0 . . . ,0). In this case, we have

�1 = I {|β̂(j)
1 − β̂

(k)
1 | >

√
2σ [�−1]1/2

11 zα/2/
√

n}, and �2 = I {|β̌(j)
1 − β̌

(k)
1 | >√

2σ [�−1]1/2
11 zα/2/

√
n}. The (asymptotic) power function under the alternative

that β
(j)
01 − β

(k)
01 = β∗ for some nonzero β∗ is

Power
(
β∗) = 1 − P

(
W ∈

[
−β∗√n

σ ∗ ± zα/2

])
,

where W ∼ N(0,1) and σ ∗ is
√

2σ [�−1]1/2
11 for �1 and

√
2σ [�−1]1/2

11 for �2.
Hence, a smaller σ ∗ gives rise to a larger power, and �2 is more powerful than �1.
Please see Section 6 for empirical support for this power comparison.

We next consider the problem of heterogeneous testing for a large number of
subpopulations:

H0 : β(j) = β̃
(j)

for all j ∈ G,(3.26)

where G ⊂ {1,2, . . . , s}, versus the alternative:

H1 : β(j) �= β̃
(j)

for some j ∈ G.(3.27)

The above β̃
(j)

’s are pre-specified for each j ∈ G. If all β̃
(j)

’s are the same, then
it becomes a type of heterogeneity test for the group of subpopulations indexed
by G. Here, we allow |G| to be as large as s, and thus it can increase with n.
Let �̂

(j) be the sample covariance matrix of X for the j th subpopulation, that is,
n−1 ∑

i∈Sj
XiXT

i . Define the test statistic

TG := max
j∈G,1≤k≤p

√
n
(
β̌

(j)

k − β̃
(j)

k

)
.

We approximate the distribution of the above test statistic using multiplier boot-
strap. Define the following quantity:

WG := max
j∈G,1≤k≤p

1√
n

∑
i∈Sj

(
�̂

(j))−1
k Xiei ,

where ei ’s are i.i.d. N(0, σ 2) independent of the data and (�̂
(j)

)−1
k is the kth row

of (�̂
(j)

)−1. Let cG(α) = inf{t ∈ R : P(WG ≤ t | X) ≥ 1 − α}. We employ the
recent Gaussian approximation and multiplier bootstrap theory [Chernozhukov,
Chetverikov and Kato (2013)] to obtain the following theorem.
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THEOREM 3.9. Suppose Assumptions 3.1 and 3.2 hold. In addition, suppose
(3.12) and (3.13) in Theorem 3.4 hold. For any G ⊂ {1,2, . . . , s} with |G| = d ,
if (i) s � d(λ)2 log(pd) log4 N , (ii) (log(pdn))7/n ≤ C1n

−c1 for some constants
c1,C1 > 0, and (iii) p2 log(pd)/

√
n = o(1), then under H0 and choosing λ =

o(d(λ)/N), we have

sup
α∈(0,1)

∣∣P(TG > cG(α)
) − α

∣∣ = o(1).

REMARK 3.3. We can perform heterogeneity testing even without specifying

β̃
(j)

’s. This can be done by simply reformulating the null hypothesis as follows
(for simplicity we set G = [s]): H0 : α(j) = 0 for j ∈ [s − 1], where α(j) = β(j) −
β(j+1) for j = 1, . . . , s − 1. The test statistic is T ′

G = max1≤j≤s−1 max1≤k≤p α
(j)
k .

The bootstrap quantity is defined as

W ′
G := max

1≤j≤s−1,1≤k≤p

1√
n

∑
i∈Sj

(
�̂

(j))−1
k Xiei − 1√

n

∑
i∈Sj+1

(
�̂

(j+1))−1
k Xiei .

The proof is similar to that of Theorem 3.9 and is omitted.

4. Examples. In this section, we consider three specific classes of RKHS with
different smoothness, characterized by the decaying rate of the eigenvalues: finite
rank, exponential decay and polynomial decay. In particular, we give explicit upper
bounds for s under which the combined estimate enjoys the oracle property, and
also explicit lower bounds for obtaining efficiency boosting studied in Section 3.5.
Interestingly, we find that the upper bound for s increases for RKHS with faster
decaying eigenvalues. Hence, our aggregation procedure favors smoother regres-
sion functions in the sense that more subpopulations are allowed to be included in
the observations. The choice of λ is also explicitly characterized in terms of the
entire sample size and the decaying rate of eigenvalues. In all three examples, the
undersmoothing is implicitly assumed for removing the nonparametric estimation
bias. Our bounds on s and λ here are not the most general ones, but are those that
can easily deliver theoretical insights.

4.1. Example I: Finite rank kernel. The RKHS with finite rank kernels in-
cludes linear functions, polynomial functions, and, more generally, functional
classes with finite dictionaries. In this case, the effective dimension is simply pro-
portional to the rank r . Hence, d(λ) � r . Combining this fact with Theorem 3.6,
we get the following corollary for finite rank kernels.

COROLLARY 4.1. Suppose Assumptions 3.1–3.3 hold and s → ∞. For any
z0 ∈ Z , if λ = o(N−1/2), log(λ−1) = o(N2 log−12 N) and s = o( N√

logλ−1 log6 N
),

then ( √
n
(
β̂

(j) − β
(j)
0

)
√

N
(
f̄ (z0) − f0(z0)

)) � N

(
0, σ 2

(
�−1 0

0 
∗
22

))
,
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where 
∗
22 = ∑r

�=1 φ�(z0)
2 + γ T

z0
�−1γ z0

and γ z0
= ∑r

�=1〈B, φ�〉L2(PZ)φ�(z0).

From the above corollary, we can easily tell that the upper bound for s can be as
large as o(N log−7 N) by choosing a sufficiently large λ. Hence, s can be chosen
nearly as large as N . As for the lower bound of s for boosting the efficiency, we
have s � r2 log4 N by plugging d(λ) � r into (3.24). This lower bound is clearly
smaller than the upper bound. Hence, the efficiency boosting is feasible.

Corollary 4.2 below specifies conditions on s and λ under which f̄ achieves the
nonparametric minimaxity.

COROLLARY 4.2. Suppose that Assumptions 3.1–3.3 hold. When λ = r/N

and s = o(N log−5 N), we have

E
[‖f̄ − f0‖2

L2(PZ)

] ≤ Cr/N,

for some constant C.

4.2. Example II: Exponential decay kernel. We next consider the RKHS for
which the kernel has exponentially decaying eigenvalues, that is, μ� = exp(−α�p)

for some α > 0. In this case, we have d(λ) � (logλ−1)1/p by explicit calculations.

COROLLARY 4.3. Suppose Assumptions 3.1–3.3 hold, and for any z0 ∈ Z ,
f0 ∈ H satisfies

∑∞
�=1 |φ�(z0)〈f0, φ�〉H| < ∞. If λ = o(N−1/2 log1/(2p) N ∧

n−1/2), log(λ−1) = o(Np/(p+4) log−6p/(p+4) N) and s = o( N

log6 N log(p+4)/p(λ−1)
),

then ( √
n
(
β̂

(j) − β
(j)
0

)
√

N/d(λ)
(
f̄ (z0) − f0(z0)

)) � N

(
0, σ 2

(
�−1 0

0 σ 2
z0

))
,

where σ 2
z0

= limλ→0 d(λ)−1 ∑∞
�=1

φ2
� (z0)

(1+λ/μ�)
2 .

Corollary 4.3 implies the shrinking rate of the confidence interval for f0(z0)

as
√

d(λ)/N . This motivates us to choose λ [equivalently d(λ)] as large as pos-
sible (as small as possible). Plugging such a λ into the upper bound of s yields
s = o(N log−(7p+4)/p N). For example, when p = 1 (p = 2), the upper bound
is s = o(N log−11 N)(s = o(N log−9 N)). Note that this upper bound for s only
differs from that for the finite rank kernel up to some logarithmic term. This is
mainly because RKHS with exponentially decaying eigenvalues has an effective
dimension (logN)1/p (for the above λ). Again, by (3.24) we get the lower bound
of s � (logλ−1)2/p log2 N . When λ � N−1/2 log1/(2p) N ∧ n−1/2, it is approxi-
mately s � log(4p+2)/p N .

As a concrete example, we consider the Gaussian kernel K(z1, z2) =
exp(−|z1 − z2|2/2). The eigenfunctions are given in (2.1), and the eigenvalues
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are exponentially decaying, as μ� = η2�+1, where η = (
√

5 − 1)/2. According to
Krasikov (2004), we can get that

cφ = sup
�∈N

‖φ�‖sup ≤ 2e15/8(
√

5/4)1/4

3
√

2π21/6
≤ 1.336.

Thus, Assumption 3.2 is satisfied. We next give an upper bound of σ 2
z0

in Corol-
lary 4.3 as follows:

σ 2
z0

≤ lim
N→∞σ 2c2

φh

∞∑
�=0

(
1 + λη exp

(−2(logη)�
))−2 = (1/2)c2

φσ 2 log−1(1/η)

≤ 4.27σ 2,

where equality follows from Lemma C.1 in Appendix C [Zhao, Cheng and Liu
(2015)] for the case t = 2. Hence, a (conservative) 100(1 − α)% confidence inter-
val for f0(z0) is given by f̄ (z0) ± 1.3106σzα/2

√
d(λ)/N .

COROLLARY 4.4. Suppose that Assumptions 3.1–3.3 hold. By choosing λ =
(logN)1/p/N and s = o(N log−(5p+3)/p N), we have

E
[‖f̄ − f0‖2

L2(PZ)

] ≤ C(logN)1/p/N.

We know that the above rate is minimax optimal according to Zhang, Duchi and
Wainwright (2013). Note that the upper bound for s required here is similar to that
for obtaining the joint limiting distribution in Corollary 4.3.

4.3. Example III: Polynomial decay kernel. We now consider the RKHS for
which the kernel has polynomially decaying eigenvalues, that is, μ� = c�−2ν for
some ν > 1/2. Hence, we can explicitly calculate that d(λ) = λ−1/(2ν). The result-
ing penalized estimate is called as “partial smoothing spline” in the literature; see
Gu (2013), Wang (2011).

COROLLARY 4.5. Suppose Assumptions 3.1–3.3 hold, and
∑∞

�=1 |φ�(z0)〈f0,

φ�〉H| < ∞ for any z0 ∈ Z and f0 ∈ H. For any ν > 1+√
3/2 ≈ 1.866, if λ � N−d

for some 2ν
4ν+1 < d < 4ν2

10ν−1 , λ = o(n−1/2) and s = o(λ(10ν−1)/(4ν2)N log−6 N),
then ( √

n
(
β̂

(j) − β
(j)
0

)
√

N/d(λ)
(
f̄ (z0) − f0(z0)

)) � N

(
0, σ 2

(
�−1 0

0 σ 2
z0

))
,

where σ 2
z0

= limλ→0 d(λ)−1 ∑∞
�=1

φ2
� (z0)

(1+λ/μ�)
2 .
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Similarly, we choose λ � N−2ν/(4ν+1) ∧ n−1/2 to get the fastest shrinking rate
of the confidence interval. Plugging the above λ into the upper bound for s, we get

s = o
(
N(8ν2−8ν+1)/(2ν(4ν+1)) log−6 N ∧ N(logN)−(48ν2)/(8ν2+10ν+1)).

When N is large, the above bound reduces to s = o(N(8ν2−8ν+1)/(2ν(4ν+1)) ×
log−6 N). We notice that the upper bound for s increases as ν increases, indi-
cating that the aggregation procedure favors smoother functions. As an example,
for the case that ν = 2, we have the upper bound for s = o(N17/36 log−6 N) ≈
o(N0.47 log−6 N). Again, we obtain the lower bound s � λ−1/ν log4 N by plugging
d(λ) � λ−1/(2ν) into (3.24). When λ � N−2ν/(4ν+2), we get s � N1/(4ν+1) log2 N .
For ν = 2, this is approximately s � N0.22 log4 N .

As a concrete example, we consider the periodic Sobolev space Hν
0 [0,1] with

the following eigenfunctions:

φ�(x) =
⎧⎨⎩

1, � = 0,√
2 cos(�πx), � = 2k for k = 1,2, . . . ,√
2 sin

(
(� + 1)πx

)
, � = 2k − 1 for k = 1,2, . . . ,

(4.1)

and eigenvalues

μ� =
⎧⎨⎩

∞, � = 0,
(�π)−2ν, � = 2k, for k = 1,2, . . . ,(
(� + 1)π

)−2ν
, � = 2k − 1, for k = 1,2, . . . .

(4.2)

Hence, Assumption 3.2 trivially holds. Under the above eigen-system, the follow-
ing lemma gives an explicit expression of σ 2

z0
.

LEMMA 4.1. Under the eigen-system defined by (4.1) and (4.2), we can ex-
plicitly calculate

σ 2
z0

= lim
λ→0

d(λ)−1
∞∑

�=1

φ2
� (z0)

(1 + λ/μ�)2 =
∫ ∞

0

1

(1 + x2ν)2 dx = π

2ν sin(π/(2ν))
.

Therefore, by Corollary 4.5, we have that when λ � N−2ν/(4ν+1) and s =
o(N(8ν2−8ν+1)/(2ν(4ν+1)) log−6 N),( √

n
(
β̂

(j) − β
(j)
0

)
√

N/d(λ)
(
f̄ (z0) − f0(z0)

)) � N

(
0, σ 2

(
�−1 0

0 σ 2
z0

))
,(4.3)

where σ 2
z0

is given in Lemma 4.1. When ν = 2, λ � N−4/9 and the upper bound

for s = o(N17/36 log−6 N).

COROLLARY 4.6. Suppose that Assumptions 3.1–3.3 hold. If we choose λ =
N−2ν/(2ν+1), and s = o(N(4ν2−4ν+1)/(4ν2+2ν) log−4 N), the combined estimator
achieves optimal rate of convergence, that is,

E
[‖f̄ − f0‖2

L2(PZ)

] ≤ CN−2ν/(2ν+1).(4.4)
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The above rate is known to be minimax optimal for the class of functions in
consideration [Stone (1985)].

5. Application to homogeneous data: Divide-and-conquer approach. In
this section, we apply the divide-and-conquer approach, which is commonly used
to deal with massive homogeneous data, to some subpopulations that have huge
sample sizes. A general goal of this section is to explore the most computationally
efficient way to split the sample in those subpopulations while preserving the best
possible statistical inference. Specifically, we want to derive the largest possible
number of splits under which the averaged estimators for both components enjoy
the same statistical performances as the “oracle” estimator that is computed based
on the entire sample. Without loss of generality, we assume the entire sample to be
homogeneous by setting all β

(j)
0 ’s to be equal throughout this section. It is worth

mentioning that Li, Lin and Li (2013) have done an earlier and interesting work on
parametric or nonparametric models.

The divide-and-conquer method randomly splits the massive data into s mutu-
ally exclusive subsamples. For simplicity, we assume all the subsamples share the
same sample size, denoted as n. Hence, N = n × s. With a bit abuse of notation,

we define the divide-and-conquer estimators as β̂
(j)

and f̂ (j) when they are based
on the j th subsample. Thus, the averaged estimator is defined as

β̄ = (1/s)

s∑
j=1

β̂
(j)

and f̄ (·) = (1/s)

s∑
j=1

f̂ (j)(·).

Comparing to the oracle estimator, the aggregation procedure reduces the com-
putational complexity in terms of the entire sample size N to the subsample size
N/s. In the case of kernel ridge regression, the complexity is O(N3), while our
aggregation procedure (run in one single machine) reduces it to O(N3/s2). Propo-
sitions 5.1 below state conditions under which the divide-and-conquer estimators
maintain the same statistical properties as oracle estimate, that is, so-called oracle
property.

PROPOSITION 5.1. Suppose that the conditions in Theorem 3.6 hold. If we
choose λ = o(N−1/2), then( √

N(β̄ − β0)√
N/d(λ)

(
f̄ (z0) − f0(z0) − Wλf0(z0)

)) � N

(
0,

(
σ 2�−1 �∗

12
�∗

21 
∗
22

))
,

where �∗
12 = �∗T

21 = σ 2�−1γ z0
and 
∗

22 = σ 2(σ 2
z0

+ γ T
z0

�−1γ z0
). Moreover, if

d(λ) → ∞, then γ z0
= 0. In this case, �∗

12 = �∗T
21 = 0 and 
∗

22 = σ 2σ 2
z0

.

The conclusion of Proposition 5.1 holds no matter s is fixed or diverges (once
the condition for s in Theorem 3.6 are satisfied). In view of Proposition 5.1, we
note that the above joint asymptotic distribution is exactly the same as that for the
oracle estimate, that is, s = 1.
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REMARK 5.1. We can also derive the minimax rate of MSE(f̄ ), which is
exactly the same as that in Theorem 3.2, based on similar proof techniques.

6. Numerical experiment. In this section, we empirically examine the im-

pact of the number of subpopulations on the statistical inference built on (β̂
(j)

, f̄ ).
As will be seen, the simulation results strongly support our general theory.

Specifically, we consider the partial smoothing spline models in Section 4.3. In
the simulation setup, we let ε ∼ N(0,1), p = 1 and ν = 2 (cubic spline). Moreover,
Z ∼ Uniform(−1,1) and X = (W + Z)/2, where W ∼ Uniform(−1,1), such that
X and Z are dependent. It is easy to show that � = E[(X − E[X | Z])2] = 1/12
and � = E[X2] = 1/6. To design the heterogenous data setting, we let β

(j)
0 = j for

j = 1,2, . . . , s on the j th subpopulation. The nonparametric function f0(z), which
is common across all subpopulations, is assumed to be 0.6b30,17(z) + 0.4b3,11,
where ba1,a2 is the density function for Beta(a1, a2).

We start from the 95% predictive interval [at (x0, z0)] implied by the joint
asymptotic distribution (4.3):[

Ŷ (j) ± 1.96σ

√
xT

0 �−1x0/n + σ 2
z0

/
(
Nλ1/(2ν)

) + 1
]
,

where Ŷ (j) = xT
0 β̂

(j) + f̄ (z0) is the predicted response. The unknown error vari-

ance σ is estimated by (σ̂ (j))2 = n−1 ∑
i∈Sj

(Yi − XT
i β̂

(j) − f̂ (j)(Zi))
2/(n −

T r(A(λ))), where A(λ) denotes the smoothing matrix, followed by an aggre-
gation σ̄ 2 = 1/s

∑s
j=1(σ̂

(j))2. In the simulations, we fix x0 = 0.5 and choose
z0 = 0.25,0.5,0.75 and 0.95. The coverage probability is calculated based on 200
repetitions. As for N and s, we set N = 256,528,1024,2048,4096, and choose
s = 20,21, . . . ,2t−3 when N = 2t . The simulation results are summarized in Fig-
ure 1. We notice an interesting phase transition from Figure 1: when s ≤ s∗ where
s∗ ≈ N0.45, the coverage probability is approximately 95%; when s ≥ s∗, the cov-
erage probability drastically decreases. This empirical observation is strongly sup-
ported by our theory developed in Section 4.3 where s∗ ≈ N0.42 log−6 N for ν = 2.

We next compute the mean-squared errors of f̄ under different choices of N and
s in Figure 2. It is demonstrated that the increasing trends of MSE as s increases are
very similar for different N . More importantly, all the MSE curves suddenly blow
up when s ≈ N0.4. This is also close to our theoretical result that the transition
point is around N0.45 log−6 N .

We next empirically verify the efficiency boosting theory developed in Sec-

tion 3.5. Based on β̂
(j)

and β̌
(j)

, we construct the following two types of 95%
confidence intervals for β

(j)
0 :

CI1 = [
β̂

(j) ± 1.96�−1/2n−1/2σ̄
]
,

and

CI2 = [
β̌

(j) ± 1.96�−1/2n−1/2σ̄
]
.
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FIG. 1. Coverage probability of 95% predictive interval with different choices of s and N .

Obviously, CI2 is shorter than CI1. However, Theorem 3.7 shows that CI2 is valid
only when s satisfies both a upper bound and a lower bound. This theoretical con-
dition is empirically verified in Figure 3 which exhibits the validity range of CI2
in terms of s. In Figure 4, we further compare CI2 and CI1 in terms of their cover-
age probabilities and lengths. This figure shows that when s is in a proper range,
the coverage probabilities of CI1 and CI2 are similar, while CI2 is significantly
shorter.

Finally, we consider the heterogeneity testing. In Figure 5, we compare tests �1
and �2 under different choices of N and s ≥ 2. Specifically, Figure 5(i) compares
the nominal levels, while Figure 5(ii)–(iv) compare the powers under various al-

ternative hypotheses H1 : β(j)
0 −β

(k)
0 = �, where � = 0.5,1,1.5. It is clearly seen

that both tests are consistent, and their powers increase as � or N increases. In
addition, we observe that �2 has uniformly larger powers than �1.
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FIG. 2. Mean-square errors of f̄ under different choices of N and s.

7. Proof of main results. In this section, we present main proofs of Lem-
ma 3.1 and Theorems 3.2, 3.4 and 3.6 in the main text.

7.1. Proof of Lemma 3.1. We start from analyzing the minimization problem
(3.2) on each subpopulation. Recall m = (β, f ) and U = (X,Z). The objective

FIG. 3. Coverage probability of 95% confidence interval based on β̌
(j)

.
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FIG. 4. Coverage probabilities and average lengths of 95% for two types of confidence intervals.

In the above figures, dashed lines represent CI1, which is constructed based on β̂
(j), and solid lines

represent CI2, which is constructed based on β̌
(j)

.

function can be rewritten as

1

n

∑
i∈Sj

(
Yi − XT

i β − f (Zi)
)2 + λ‖f ‖2

H

= 1

n

∑
i∈Sj

(
Yi − m(Ui)

)2 + 〈Pλm,m〉A

= 1

n

∑
i∈Sj

(
Yi − 〈RUi

,m〉A)2 + 〈Pλm,m〉A.
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FIG. 5. (i) Nominal level of heterogeneity tests �1 and �2; (ii)–(iv) Power of heterogeneity tests �1
and �2 when � = 0.5,1.0,1.5. In the above figures, dashed lines represent �1, which is constructed
based on β̌ , and solid lines represent �2, which is constructed based on β̂ .

The first-order optimality condition (w.r.t. Fréchet derivative) gives

1

n

∑
i∈Sj

RUi

(
m̂(j)(Ui) − Yi

) + Pλm̂
(j) = 0,

where m̂(j) = (β̂
(j)

, f̂ (j)). This implies that

−1

n

∑
i∈Sj

RUi
εi + 1

n

∑
i∈Sj

RUi

(
m̂(j)(Ui) − m

(j)
0 (Ui)

) + Pλm̂
(j) = 0,
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where m
(j)
0 = (β

(j)
0 , f0). Define �m(j) := m̂(j)−m

(j)
0 . Adding EU [RU�m(j)(U)]

on both sides of the above equation, we have

EU

[
RU�m(j)(U)

] + Pλ�m(j)

= 1

n

∑
i∈Sj

RUi
εi − Pλm

(j)
0(7.1)

− 1

n

∑
i∈Sj

(
RUi

�m(j)(Ui) −EU

[
RU�m(j)(U)

])
.

The LHS of (7.1) can be rewritten as

EU

[
RU�m(j)(U)

] + Pλ�m(j) = EU

[
RU

〈
RU,�m(j)〉

A
] + Pλ�m(j)

= (
EU [RU ⊗ RU ] + Pλ

)
�m(j) = �m(j),

where the last equality follows from proposition 2.2. Then (7.1) becomes

m̂(j) − m
(j)
0 = 1

n

∑
i∈Sj

RUi
εi − Pλm

(j)
0

(7.2)

− 1

n

∑
i∈Sj

(
RUi

�m(j)(Ui) −EU

[
RU�m(j)(U)

])
.

We denote the last term in the RHS of (7.2) as

Rem(j) := 1

n

∑
i∈Sj

(
RUi

�m(j)(Ui) −EU

[
RU�m(j)(U)

])
.

Recall that Ru = (Lu,Nu) and Pλm
(j)
0 = (Lλf0,Nλf0). Thus, the above remain-

der term decomposes into two components:

Rem(j)
β := 1

n

∑
i∈Sj

(
LUi

�m(j)(Ui) −EU

[
LU�m(j)(U)

])
,

Rem(j)
f := 1

n

∑
i∈Sj

(
NUi

�m(j)(Ui) −EU

[
NU�m(j)(U)

])
.

Therefore, (7.2) can be rewritten into equations (3.5) and (3.6) for all j = 1, . . . , s.
This completes the proof of the first part of Lemma 3.1. Taking average of (3.6)
for all j over s, and by definition of f̄ , we have

f̄ − f0 = 1

N

N∑
i=1

NUi
εi − Nλf0 − 1

s

s∑
j=1

Rem(j)
f ,(7.3)
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where we used 1/N
∑N

i=1 NUi
εi = 1/s

∑s
j=1 1/n

∑
i∈Sj

NUi
εi . Equations (3.5)

and (7.3) are the basic equalities to derive the finite sample rate of convergence

and joint limit distribution of β̂
(j)

and f̄ . To this end, we need to control the re-
mainder terms in the above two equalities, which is the second part of Lemma 3.1.
We delegate the proofs to the following two lemmas.

LEMMA 7.1. Suppose the conditions in Lemma 3.1 hold. We have for all j =
1, . . . , s

E
[∥∥Rem(j)

β

∥∥2
2

] ≤ a(n,λ, J ),

for sufficiently large n, where a(n,λ, J ) is as defined in Lemma 3.1. Moreover, the
inequality also holds for E[‖Rem(j)

f ‖2
C].

LEMMA 7.2. Suppose the conditions in Lemma 3.1 hold. We have the follow-
ing two sets of results that control the remainder terms:

(i) For all j = 1, . . . , s, it holds that

P
(∥∥Rem(j)

β

∥∥
2 ≥ b(n,λ, J )

)
� n exp

(−c log2 n
)
,(7.4)

where b(n,λ, J ) is as defined in Lemma 3.1.
(ii) In addition, we have∥∥∥∥∥1

s

s∑
j=1

Rem(j)
β

∥∥∥∥∥
2

= oP

(
s−1/2b(n,λ, J ) logN

)
.(7.5)

Furthermore, (7.4) and (7.5) also hold if ‖Rem(j)
β ‖2 and ‖s−1 ∑s

j=1 Rem(j)
β ‖2

are replaced by ‖Rem(j)
f ‖C and ‖s−1 ∑s

j=1 Rem(j)
f ‖C .

By the above two lemmas, we complete the second part of Lemma 3.1.

7.2. Proof of Theorem 3.2. By (7.3), it follows that

E
[‖f̄ − f0‖2

C
] ≤ 3E

[∥∥∥∥∥ 1

N

N∑
i=1

NUi
εi

∥∥∥∥∥
2

C

]
+ 3‖Nλf0‖2

C

(7.6)

+ 3E

[∥∥∥∥∥1

s

s∑
j=1

Rem(j)
f

∥∥∥∥∥
2

C

]
.

By Lemma A.5 in the supplemental material [Zhao, Cheng and Liu (2015)] and
the fact that each NUi

εi is i.i.d., it follows that

E

[∥∥∥∥∥ 1

N

N∑
i=1

NUi
εi

∥∥∥∥∥
2

C

]
= 1

N
E
[‖NUε‖2

C
] ≤ C1σ

2 d(λ)

N
,(7.7)
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and

‖Nλf0‖2
C ≤ 2‖f0‖2

Hλ + C2λ
2,(7.8)

where C1 and C2 are constants specified in Lemma A.5. As for the third term
in (7.6), we have by independence across subpopulations that

E

[∥∥∥∥∥1

s

s∑
j=1

Rem(j)
f

∥∥∥∥∥
2

C

]
= 1

s2

s∑
j=1

E
[∥∥Rem(j)

f

∥∥2
C
]
.(7.9)

Combining (7.6)–(7.9) and Lemma 7.1, and by the fact that ‖f̄ − f0‖2
L2(PZ) ≤

‖f̄ − f0‖2
C , we complete the proof of Theorem 3.2.

7.3. Proof of Theorem 3.4. Recall that m
(j)∗
0 = (β

(j)∗
0 , f ∗

0 ) = (id − Pλ)m
(j)
0

where m
(j)
0 = (β

(j)
0 , f0). This implies that β

(j)∗
0 = β

(j)
0 − Lλf0 and f ∗

0 = f0 −
Nλf0. By (3.5) and (7.3), for arbitrary x and z0,(

xT ,1
)( √

n
(
β̂

(j) − β
(j)∗
0

)
√

N/d(λ)
(
f̄ (z0) − f ∗

0 (z0)
))

= √
nxT (

β̂
(j) − β

(j)∗
0

) +
√

N/d(λ)
(
f̄N,λ(z0) − f ∗

0 (z0)
)

= 1√
n

∑
i∈Sj

xT LUi
εi + 1√

N

N∑
i=1

d(λ)−1/2NUi
(z0)εi

︸ ︷︷ ︸
(I)

+ √
nxT Rem(j)

β +
√

N/d(λ)s−1
s∑

j=1

Rem(j)
f (z0)︸ ︷︷ ︸

(II)

.

In what follows, we will show that the main term (I) is asymptotically normal and
the remainder term (II) is of order oP (1). Given that x is arbitrary, we apply Wold
device to complete the proof of joint asymptotic normality.

Asymptotic normality of (I): We present the result for showing asymptotic nor-
mality of (I) in the following lemma and defer its proof to supplemental material
[Zhao, Cheng and Liu (2015)].

LEMMA 7.3. Suppose Assumptions 3.1, 3.2 hold and that ‖K̃z0‖L2(PZ)/

d(λ)1/2 → σz0 , (WλA)(z0)/d(λ)1/2 → αz0 ∈ R
p , and A(z0)/d(λ)1/2 → −γ z0

∈
R

p as N → ∞. We have:

(i) if s → ∞, then

(I ) � N
(
0, σ 2(xT �−1x + 
22

))
.(7.10)
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(ii) if s is fixed, then

(I ) � N
(
0, σ 2(xT �−1x + 
22 + 2s−1/2xT �12

))
.(7.11)

Control of the remainder term (II): We now turn to bound the remainder
term (II). We can show that if (3.12) holds, then d(λ)n−1/2(J (F,1) + logn) =
o(1). Hence, by Lemma 7.2, we have

√
n
∣∣xT Rem(j)

β

∣∣ ≤ √
n‖x‖2

∥∥Rem(j)
β

∥∥
2 = oP

(
n1/2b(n,λ, J )

)
(7.12)

= oP

(√
Ns−1/2b(n,λ, J )

)
,

where we used the boundedness of x. Also,√
N/d(λ)

∣∣∣∣∣s−1
s∑

j=1

Rem(j)
f (z0)

∣∣∣∣∣ ≤
√

N/d(λ)‖K̃z0‖C
∥∥∥∥∥s−1

s∑
j=1

Rem(j)
f

∥∥∥∥∥
C

�
√

N

∥∥∥∥∥s−1
s∑

j=1

Rem(j)
f

∥∥∥∥∥
C

(7.13)

= oP

(√
Ns−1/2b(n,λ, J ) logN

)
,

where the second inequality follows from Lemma A.4 in the supplemental material
[Zhao, Cheng and Liu (2015)]. Therefore, by (7.12) and (7.13), we have

(II) = oP

(√
Ns−1/2b(n,λ, J ) logN

)
.(7.14)

Now by definition of b(n,λ, J ) and condition (3.13), we have (II) = oP (1).
Combining (7.10) and (7.14), it follows that if s → ∞, then(

xT ,1
)( √

n
(
β̂

(j) − β
(j)∗
0

)
√

N/d(λ)
(
f̄ (z0) − f ∗

0 (z0)
)) � N

(
0, σ 2(xT �−1x + 
22

))
.

Combining (7.11) and (7.14), it follows that if s is fixed, then(
xT ,1

)( √
n
(
β̂

(j) − β
(j)∗
0

)
√

N/d(λ)
(
f̄ (z0) − f ∗

0 (z0)
))

� N
(
0, σ 2(xT �−1x + 
22 + 2s−1/2xT �12

))
.

By the arbitrariness of x, we reach the conclusion of the theorem using Wold de-
vice.

7.4. Proof of Lemma 7.2: Controlling the remainder term.
(i) Recall that Rem(j) = (Rem(j)

β ,Rem(j)
f ) ∈ A. We first derive the bound of

‖Rem(j) ‖A. Recall

Rem(j) = 1

n

∑
i∈Sj

�m(j)(Ui)RUi
−EU

[
�m(j)(U)RU

]
.
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Let Zn(m) = c−1
r d(λ)−1/2n−1/2 ∑

i∈Sj
{m(Ui)RUi

−E[m(U)RU ]}, where cr is the
constant specified in Lemma A.4. Note that Zn(m) is implicitly related to j but we
omit the superscript of (j). We have Rem(j) = c−1

r

√
n/d(λ)Zn(�m(j)). We apply

Lemma F.1 in the supplemental material [Zhao, Cheng and Liu (2015)] to obtain an
exponential inequality for supm∈F ‖Zn(m)‖A. The first step is to show that Zn(m)

is a sub-Gaussian process by Lemma G.1 in the supplemental material [Zhao,
Cheng and Liu (2015)]. Let g(Ui,m) = c−1

r

√
n/d(λ)(m(Ui)RUi

− E[m(U)RU ]).
Now for any m1 and m2,∥∥g(Ui,m1) − g(Ui,m2)

∥∥
A

= c−1
r

√
n/d(λ)

{∥∥(m1(Ui) − m2(Ui)
)
RUi

∥∥
A

+ ∥∥E[(
m1(U) − m2(U)

)
RU

]∥∥
A
}

≤ 2
√

n‖m1 − m2‖sup,

where we used the fact that ‖Ru‖A ≤ crd(λ)1/2 by Lemma A.4. Note that Zn(m) =
1
n

∑
i∈Sj

g(Ui,m). Therefore, by Lemma G.1, we have for any t > 0,

P
(∥∥Zn(m1) − Zn(m2)

∥∥
A ≥ t

)
= P

(∥∥∥∥∥1

n

n∑
i=1

{
g(Ui,m1) − g(Ui,m2)

}∥∥∥∥∥
A

≥ t

)
(7.15)

≤ 2 exp
(
− t2

8‖m1 − m2‖2
sup

)
.

Then by Lemma G.1, we have

P

(
sup
m∈F

∥∥Zn(m)
∥∥
A ≥ CJ

(
F,diam(F)

) + x
)

≤ C exp
( −x2

C diam(F)2

)
,(7.16)

where diam(F) = supm1,m2∈F ‖m1 − m2‖sup.

Define qn,λ = crrn,λd(λ)1/2 and m̃ = q−1
n,λ�m(j)/2. Again we do not specify its

relationship with j . Define the event E = {‖�m(j)‖A ≤ rn,λ}. On the event E , we
have

‖m̃‖sup ≤ crd(λ)1/2(2qn,λ)
−1∥∥�m(j)

∥∥
A ≤ 1/2,

where we used the fact that ‖m̃‖sup ≤ crd(λ)1/2‖m̃‖A by Lemma A.4. This implies
|xT β̃ + f̃ (z)| ≤ 1/2 for any (x, z). Letting x = 0, one gets ‖f̃ ‖sup ≤ 1/2, which
further implies |xT β̃| ≤ 1 for all x by triangular inequality. Moreover, on the even
E we have

‖f̃ ‖H ≤ λ−1/2‖m̃‖A ≤ λ−1/2/(2qn,λ)
∥∥�m(j)

∥∥
A ≤ c−1

r d(λ)−1/2λ−1/2
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by the definition of ‖ · ‖A. Hence, we have shown that E ⊂ {m̃ ∈ F}. Combining
this fact with (7.16), and noting that diam(F) ≤ 1, we have

P
({∥∥Zn(m̃)

∥∥
A ≥ CJ(F,1) + x

} ∩ E
) ≤ C exp

(−x2/C
)
,(7.17)

by Lemma F.1. Using the definition of m̃, and the relationship that Rem(j) =
c−1
r

√
n/d(λ)Zn(�m(j)), we calculate that

Zn(m̃) = (1/2)d(λ)−1/2n1/2q−1
n,λ Rem(j) = (1/2)c−1

r d(λ)−1n1/2r−1
n,λ Rem(j) .

Plugging the above form of Zn(m̃) into (7.17) and letting x = logn in (7.17), we
have

P
({∥∥Rem(j)

∥∥
A ≥ b(n,λ, J )

} ∩ E
) ≤ C exp

(− log2 n/C
)
,(7.18)

where we used the definition that b(n,λ, J ) = Cd(λ)n−1/2rn,λ(J (F,1) + logn).
Therefore, we have

P
(∥∥Rem(j)

∥∥
A ≥ b(n,λ, J )

)
≤ P

({∥∥Rem(j)
∥∥
A ≥ b(n,λ, J )

} ∩ E
) + P

(
Ec)(7.19)

≤ C exp
(− log2 n/C

) + P
(
Ec).

We have the following lemma that controls P(Ec).

LEMMA 7.4. Suppose the conditions in Lemma 3.1 hold. There exist a con-
stant c such that

P
(
Ec) = P

(∥∥�m(j)
∥∥
A ≥ rn,λ

)
� n exp

(−c log2 n
)
,

for all j = 1, . . . , s.

By Lemma 7.4 and (7.19), we have

P
(∥∥Rem(j)

∥∥
A ≥ b(n,λ, J )

)
� n exp

(−c log2 n
)
.(7.20)

We can apply similar arguments as above to bound ‖Rem(j)
f ‖C , by changing

ω(F,1) to ω(F2,1), which is dominated by ω(F,1). The bound of ‖Rem(j)
β ‖2

then follows from triangular inequality.
(ii) We will use an Azuma-type inequality in Hilbert space to control the aver-

aging remainder term s−1 ∑s
j=1 Rem(j), as all Rem(j) are independent and have

zero mean. Define the event Aj = {‖Rem(j) ‖A ≤ b(n,λ, J )}. By Lemma G.1, we
have

P

({⋂
j

Aj

}
∩

{∥∥∥∥∥s−1
s∑

j=1

Rem(j)

∥∥∥∥∥
A

> s−1/2b(n,λ, J ) logN

})
(7.21)

≤ 2 exp
(− log2 N/2

)
.
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Moreover, by (7.20),

P
(
Ac

j

)
� n exp

(−c log2 n
)
.(7.22)

Hence, it follows that

P

(∥∥∥∥∥s−1
s∑

j=1

Rem(j)

∥∥∥∥∥
A

> s−1/2b(n,λ, J ) logN

)

≤ P

({
s⋂

j=1

Aj

}
∩

{∥∥∥∥∥s−1
s∑

j=1

Rem(j)

∥∥∥∥∥
A

> s−1/2b(n,λ, J ) logN

})

+ P

(⋃
j

Ac
j

)

� 2 exp
(− log2 N/2

) + ns exp
(−c log2 n

)
� N exp

(−c log2 n
)
,

where the second inequality follows from (7.21), (7.22) and union bound. By
our technical assumption that s � Nψ (stated before Assumption 3.1), we have
N exp(−c log2 n) � N exp(−c′ log2 N) → 0 as N → ∞. This completes the proof
of Part (ii).

Applying similar arguments as in (i), we get the similar inequalities for
‖1/s

∑s
j=1 Rem(j)

β ‖2 and ‖1/s
∑s

j=1 Rem(j)
f ‖C .

7.5. Proof of Theorem 3.6. In view of Theorem 3.6, we first prove( √
n
(
β

(j)∗
0 − β

(j)
0

)
√

N/d(λ)
(
f ∗

0 (z0) − f0(z0) − Wλf0(z0)
)) → 0(7.23)

for both (i) and (ii). By Proposition 2.3, we have(
β

(j)∗
0 − β

(j)
0

f ∗
0 (z0) − f0(z0)

)
=

(
Lλf0

Wλf0(z0) + A(z0)
T Lλf0

)
.(7.24)

By Lemma A.5, it follows that under Assumption 3.3, ‖Lλf0‖2 � λ. Now we turn
to f ∗

0 (z0) − f0(z0). Observe that

A(z) = 〈A, K̃z〉C = 〈B, K̃z〉L2(PZ) =
∞∑

�=1

〈B, φ�〉L2(PZ)

1 + λ/μ�

φ�(z).(7.25)

Applying Cauchy–Schwarz, we obtain

Ak(z0)
2 ≤

( ∞∑
�=1

〈Bk,φ�〉2
L2(PZ)

μ�

φ2
� (z0)

)( ∞∑
�=1

μ�

(1 + λ/μ�)2

)
≤ c2

φ‖Bk‖2
H Tr(K),

where the last inequality follows from the uniform boundedness of φ�. Hence,
we have that Ak(z0) is uniformly bounded, which implies A(z0)

T Lλf0 ≤
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‖A(z0)‖2‖Lλf0‖2 � λ. Therefore, if we choose λ = o(
√

d(λ)/N ∧ n−1/2), then
we get (7.23), which eliminates the estimation bias for β

(j)
0 .

Now we consider the asymptotic variance for cases (i) and (ii). It suffices to
show that αz0 = 0 under Assumption 3.3. Recall that

αz0 = lim
N→∞d(λ)−1/2WλA(z0).

By Lemma A.2 in the supplemental material [Zhao, Cheng and Liu (2015)] and
(7.25), we have

WλAk(z0) =
∞∑

�=1

〈Bk,φ�〉L2(PZ)

1 + λ/μ�

λ

λ + μ�

φ�(z0)

≤
( ∞∑

�=1

〈Bk,φ�〉2
L2(PZ)

μ�

φ2
� (z0)

)( ∞∑
�=1

μ�

(1 + λ/μ�)2

)

≤ c2
φ‖Bk‖2

H Tr(K).

Hence, by dominated conference theorem, as λ → 0 we have WλAk(z0) → 0. As
d(λ)−1 = O(1), it follows that αz0 = limN→∞ d(λ)−1/2WλA(z0) = 0.

When d(λ) → ∞, we have γ z0
= − limN→∞ A(z0)/d(λ)1/2 = 0, as Ak(z0) is

uniformly bounded. Hence, �∗
12 = �∗

21 = 0 and 
∗
22 = σ 2σ 2

z0
.
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SUPPLEMENTARY MATERIAL

Supplement to “A partially linear framework for massive heterogeneous
data” (DOI: 10.1214/15-AOS1410SUPP; .pdf). We provide the detailed proofs in
the supplement.
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