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PROJECTED PRINCIPAL COMPONENT ANALYSIS IN
FACTOR MODELS1
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This paper introduces a Projected Principal Component Analysis
(Projected-PCA), which employs principal component analysis to the pro-
jected (smoothed) data matrix onto a given linear space spanned by covari-
ates. When it applies to high-dimensional factor analysis, the projection re-
moves noise components. We show that the unobserved latent factors can
be more accurately estimated than the conventional PCA if the projection
is genuine, or more precisely, when the factor loading matrices are related
to the projected linear space. When the dimensionality is large, the factors
can be estimated accurately even when the sample size is finite. We pro-
pose a flexible semiparametric factor model, which decomposes the factor
loading matrix into the component that can be explained by subject-specific
covariates and the orthogonal residual component. The covariates’ effects
on the factor loadings are further modeled by the additive model via sieve
approximations. By using the newly proposed Projected-PCA, the rates of
convergence of the smooth factor loading matrices are obtained, which are
much faster than those of the conventional factor analysis. The convergence
is achieved even when the sample size is finite and is particularly appealing
in the high-dimension-low-sample-size situation. This leads us to developing
nonparametric tests on whether observed covariates have explaining powers
on the loadings and whether they fully explain the loadings. The proposed
method is illustrated by both simulated data and the returns of the compo-
nents of the S&P 500 index.

1. Introduction. Factor analysis is one of the most useful tools for modeling
common dependence among multivariate outputs. Suppose that we observe data
{yit }i≤p,t≤T that can be decomposed as

yit =
K∑

k=1

λikftk + uit , i = 1, . . . , p, t = 1, . . . , T ,(1.1)

where {ft1, . . . , ftK} are unobservable common factors; {λi1, . . . , λiK} are corre-
sponding factor loadings for variable i, and uit denotes the idiosyncratic compo-
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nent that cannot be explained by the static common component. Here, p and T ,
respectively, denote the dimension and sample size of the data.

Model (1.1) has broad applications in the statistics literature. For instance, yt =
(y1t , . . . , ypt )

′ can be expression profiles or blood oxygenation level dependent
(BOLD) measurements for the t th microarray, proteomic or fMRI-image, whereas
i represents a gene or protein or a voxel. See, for example, Desai and Storey
(2012), Efron (2010), Fan, Han and Gu (2012), Friguet, Kloareg and Causeur
(2009), Leek and Storey (2008). The separations between the common factors
and idiosyncratic components are carried out by the low-rank plus sparsity de-
composition. See, for example, Cai, Ma and Wu (2013), Candès and Recht (2009),
Fan, Liao and Mincheva (2013), Koltchinskii, Lounici and Tsybakov (2011), Ma
(2013), Negahban and Wainwright (2011).

The factor model (1.1) has also been extensively studied in the econometric lit-
erature, in which yt is the vector of economic outputs at time t or excessive returns
for individual assets on day t . The unknown factors and loadings are typically esti-
mated by the principal component analysis (PCA) and the separations between the
common factors and idiosyncratic components are characterized via static perva-
siveness assumptions. See, for instance, Bai (2003), Bai and Ng (2002), Breitung
and Tenhofen (2011), Lam and Yao (2012), Stock and Watson (2002) among oth-
ers. In this paper, we consider static factor model, which differs from the dynamic
factor model [Forni and Lippi (2001), Forni et al. (2000, 2015)]. The dynamic
model allows more general infinite dimensional representations. For this type of
model, the frequency domain PCA [Brillinger (1981)] was applied on the spectral
density. The so-called dynamic pervasiveness condition also plays a crucial role in
achieving consistent estimation of the spectral density.

Accurately estimating the loadings and unobserved factors are very important in
statistical applications. In calculating the false-discovery proportion for large-scale
hypothesis testing, one needs to adjust accurately the common dependence via sub-
tracting it from the data in (1.1) [Friguet, Kloareg and Causeur (2009), Leek and
Storey (2008), Efron (2010), Desai and Storey (2012), Fan, Han and Gu (2012)].
In financial applications, we would like to understand accurately how each individ-
ual stock depends on unobserved common factors in order to appreciate its relative
performance and risks. In the aforementioned applications, dimensionality is much
higher than sample-size. However, the existing asymptotic analysis shows that the
consistent estimation of the parameters in model (1.1) requires a relatively large T .
In particular, the individual loadings can be estimated no faster than OP (T −1/2).
But large sample sizes are not always available. Even with the availability of “Big
Data,” heterogeneity and other issues make direct applications of (1.1) with large
T infeasible. For instance, in financial applications, to pertain the stationarity in
model (1.1) with time-invariant loading coefficients, a relatively short time series
is often used. To make observed data less serially correlated, monthly returns are
frequently used to reduce the serial correlations, yet a monthly data over three
consecutive years contain merely 36 observations.
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1.1. This paper. To overcome the aforementioned problems, and when rele-
vant covariates are available, it may be helpful to incorporate them into the model.
Let Xi = (Xi1, . . . ,Xid)′ be a vector of d-dimensional covariates associated with
the ith variables. In the seminal papers by Connor and Linton (2007) and Connor,
Hagmann and Linton (2012), the authors studied the following semi-parametric
factor model:

yit =
K∑

k=1

gk(Xi )ftk + uit , i = 1, . . . , p, t = 1, . . . , T ,(1.2)

where loading coefficients in (1.1) are modeled as λik = gk(Xi) for some functions
gk(·). For instance, in health studies, Xi can be individual characteristics (e.g.,
age, weight, clinical and genetic information); in financial applications Xi can be
a vector of firm-specific characteristics (market capitalization, price-earning ratio,
etc.).

The semiparametric model (1.2), however, can be restrictive in many cases, as
it requires that the loading matrix be fully explained by the covariates. A natural
relaxation is the following semiparametric model:

λik = gk(Xi) + γik, i = 1, . . . , p, k = 1, . . . ,K,(1.3)

where γik is the component of loading coefficient that cannot be explained by the
covariates Xi . Let γ i = (γi1, . . . , γiK)′. We assume that {γ i}i≤p have mean zero,
and are independent of {Xi}i≤p and {uit }i≤p,t≤T . In other words, we impose the
following factor structure:

yit =
K∑

k=1

{
gk(Xi) + γik

}
ftk + uit , i = 1, . . . , p, t = 1, . . . , T ,(1.4)

which reduces to model (1.2) when γik = 0 and model (1.1) when gk(·) = 0. When
Xi genuinely explains a part of loading coefficients λik , the variability of γik is
smaller than that of λik . Hence, the coefficient γik can be more accurately es-
timated by using regression model (1.3), as long as the functions gk(·) can be
accurately estimated.

Let Y be the p × T matrix of yit , F be the T × K matrix of ftk , G(X) be the
p × K matrix of gk(Xi ), � be the p × K matrix of γik and U be p × T matrix of
uit . Then model (1.4) can be written in a more compact matrix form:

Y = {
G(X) + �

}
F′ + U.(1.5)

We treat the loadings G(X) and � as realizations of random matrices throughout
the paper. This model is also closely related to the supervised singular value de-
composition model, recently studied by Li et al. (2015). The authors showed that
the model is useful in studying the gene expression and single-nucleotide poly-
morphism (SNP) data, and proposed an EM algorithm for parameter estimation.
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We propose a Projected-PCA estimator for both the loading functions and fac-
tors. Our estimator is constructed by first projecting Y onto the sieve space spanned
by {Xi}i≤p , then applying PCA to the projected data or fitted values. Due to the
approximate orthogonality condition of X, U and �, the projection of Y is approx-
imately G(X)F′, as the smoothing projection suppresses the noise terms � and
U substantially. Therefore, applying PCA to the projected data allows us to work
directly on the sample covariance of G(X)F′, which is G(X)G(X)′ under normal-
ization conditions. This substantially improves the estimation accuracy, and also
facilitates the theoretical analysis. In contrast, the traditional PCA method for fac-
tor analysis [e.g., Stock and Watson (2002), Bai and Ng (2002)] is no longer suit-
able in the current context. Moreover, the idea of Projected-PCA is also potentially
applicable to dynamic factor models of Forni et al. (2000), by first projecting the
data onto the covariate space.

The asymptotic properties of the proposed estimators are carefully studied. We
demonstrate that as long as the projection is genuine, the consistency of the pro-
posed estimator for latent factors and loading matrices requires only p → ∞, and
T does not need to grow, which is attractive in the typical high-dimension-low-
sample-size (HDLSS) situations [e.g., Ahn et al. (2007), Jung and Marron (2009),
Shen, Shen and Marron (2013)]. In addition, if both p and T grow simultaneously,
then with sufficiently smooth gk(·), using the sieve approximation, the rate of con-
vergence for the estimators is much faster than those of the existing results for
model (1.1). Typically, the loading functions can be estimated at a convergence
rate OP ((pT )−1/2), and the factor can be estimated at OP (p−1). Throughout the
paper, K = dim(ft ) and d = dim(Xi ) are assumed to be constant and do not grow.

Let � be a p × K matrix of (λik)T ×K . Model (1.3) implies a decomposition of
the loading matrix:

� = G(X) + �, E(�|X) = 0,

where G(X) and � are orthogonal loading components in the sense that
EG(X)�′ = 0. We conduct two specification tests for the hypotheses:

H 1
0 : G(X) = 0 a.s. and H 2

0 : � = 0 a.s.

The first problem is about testing whether the observed covariates have explain-
ing power on the loadings. If the null hypothesis is rejected, it gives us the the-
oretical basis to employ the Projected-PCA, as the projection is now genuine.
Our empirical study on the asset returns shows that firm market characteristics do
have explanatory power on the factor loadings, which lends further support to our
Projected-PCA method. The second tests whether covariates fully explain the load-
ings. Our aforementioned empirical study also shows that model (1.2) used in the
financial econometrics literature is inadequate and more generalized model (1.5) is
necessary. As claimed earlier, even if H 2

0 does not hold, as long as G(X) �= 0, the
Projected-PCA can still consistently estimate the factors as p → ∞, and T may
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or may not grow. Our simulated experiments confirm that the estimation accuracy
is gained more significantly for small T ’s. This shows one of the benefits of using
our Projected-PCA method over the traditional methods in the literature.

In addition, as a further illustration of the benefits of using projected data, we
apply the Projected-PCA to consistently estimate the number of factors, which is
similar to those in Ahn and Horenstein (2013) and Lam and Yao (2012). Different
from these authors, our method applies to the projected data, and we demonstrate
numerically that this can significantly improve the estimation accuracy.

We focus on the case when the observed covariates are time-invariant. When T

is small, these covariates are approximately locally constant, so this assumption is
reasonable in practice. On the other hand, there may exist individual characteristics
that are time-variant [e.g., see Park et al. (2009)]. We expect the conclusions in the
current paper to still hold if some smoothness assumptions are added for the time
varying components of the covariates. Due to the space limit, we provide heuristic
discussions on this case in the supplementary material of this paper [Fan, Liao and
Wang (2015)]. In addition, note that in the usual factor model, � was assumed to
be deterministic. In this paper, however, � is mainly treated to be stochastic, and
potentially depend on a set of covariates. But we would like to emphasize that the
results presented in Section 3 under the framework of more general factor models
hold regardless of whether � is stochastic or deterministic. Finally, while some
financial applications are presented in this paper, the Projected-PCA is expected
to be useful in broad areas of statistical applications [e.g., see Li et al. (2015) for
applications in gene expression data analysis].

1.2. Notation and organization. Throughout this paper, for a matrix A, let
‖A‖F = tr1/2(A′A) and ‖A‖2 = λ

1/2
max(A′A), ‖A‖max = maxij |Aij | denote its

Frobenius, spectral and max- norms. Let λmin(·) and λmax(·) denote the minimum
and maximum eigenvalues of a square matrix. For a vector v, let ‖v‖ denote its
Euclidean norm.

The rest of the paper is organized as follows. Section 2 introduces the new
Projected-PCA method and defines the corresponding estimators for the loadings
and factors. Sections 3 and 4 provide asymptotic analysis of the introduced estima-
tors. Section 5 introduces new specification tests for the orthogonal decomposition
of the semiparametric loadings. Section 6 concerns about estimating the number
of factors. Section 7 presents numerical results. Finally, Section 8 concludes. All
the proofs are given in the Appendix and the supplementary material [Fan, Liao
and Wang (2015)].

2. Projected principal component analysis.

2.1. Overview. In the high-dimensional factor model, let � be the p × K ma-
trix of loadings. Then the general model (1.1) can be written as

Y = �F′ + U.(2.1)
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Suppose we additionally observe a set of covariates {Xi}i≤p . The basic idea
of the Projected-PCA is to smooth the observations {Yit }i≤p for each given day t

against its associated covariates. More specifically, let {Ŷit }i≤p be the fitted value
after regressing {Yit }i≤p on {Xi}i≤p for each given t . This results in a smooth or
projected observation matrix Ŷ, which will also be denoted by PY. The Projected-
PCA then estimates the factors and loadings by running the PCA based on the
projected data Ŷ.

Here, we heuristically describe the idea of Projected-PCA; rigorous analysis
will be carried out afterward. Let X be a space spanned by X = {Xi}i≤p , which is
orthogonal to the error matrix U. Let P denote the projection matrix onto X [whose
formal definition will be given in (2.6) below. At the population level, P approx-
imates the conditional expectation operator E(·|X), which satisfies E(U|X) = 0],
then P2 = P and PU ≈ 0. Hence, analyzing the projected data Ŷ = PY is an ap-
proximately noiseless problem, and the sample covariance has the following ap-
proximation:

1

T
Ŷ′Ŷ = 1

T
Y′PY ≈ 1

T
F�′P�F′.(2.2)

We now argue that F and P� can be recovered from the projected data Ŷ under
some suitable normalization condition. The normalization conditions we impose
are

1

T
F′F = IK, �′P� is a diagonal matrix with distinct entries.(2.3)

Under this normalization, using (2.2), 1
T

Y′PYF ≈ F�′P�. We conclude that the
columns of F are approximately

√
T times the first K eigenvectors of the T × T

matrix 1
T

Y′PY. Therefore, the Projected-PCA naturally defines a factor estimator
F̂ using the first K principal components of 1

T
Y′PY.

The projected loading matrix P� can also be recovered from the projected data
PY in two (equivalent) ways. Given F, from 1

T
PYF = P�+ 1

T
PUF, we see P� ≈

1
T

PYF. Alternatively, consider the p × p projected sample covariance:

1

T
PYY′P = P��′P + �̃,

where �̃ is a remaining term depending on PU. Right multiplying P� and ignoring
�̃, we obtain ( 1

T
PYY′P)P� ≈ P�(�′P�). Hence, the (normalized) columns of

P� approximate the first K eigenvectors of 1
T

PYY′P, the p×p sample covariance
matrix based on the projected data. Therefore, we can either estimate P� by 1

T
PYF̂

given F̂, or by the leading eigenvectors of 1
T

PYY′P. In fact, we shall see later that
these two estimators are equivalent. If in addition, � = P�, that is, the loading
matrix belongs to the space X , then � can also be recovered from the projected
data.
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The above arguments are the fundament of the Projected-PCA, and provide the
rationale of our estimators to be defined in Section 2.3. We shall make the above
arguments rigorous by showing that the projected error PU is asymptotically neg-
ligible and, therefore, the idiosyncratic error term U can be completely removed
by the projection step.

2.2. Semiparametric factor model. As one of the useful examples of forming
the space X and the projection operator, this paper considers model (1.4), where
Xi’s and yit ’s are the only observable data, and {gk(·)}k≤K are unknown nonpara-
metric functions. The specific case (1.2) (with γik = 0) was used extensively in
the financial studies by Connor and Linton (2007), Connor, Hagmann and Linton
(2012) and Park et al. (2009), with Xi’s being the observed “market characteristic
variables.” We assume K to be known for now. In Section 6, we will propose a
projected-eigenvalue-ratio method to consistently estimate K when it is unknown.

We assume that gk(Xi) does not depend on t , which means the loadings repre-
sent the cross-sectional heterogeneity only. Such a model specification is reason-
able since in many applications using factor models, to pertain the stationarity of
the time series, the analysis can be conducted within each fixed time window with
either a fixed or slowly-growing T . Through localization in time, it is not strin-
gent to require the loadings be time-invariant. This also shows one of the attractive
features of our asymptotic results: under mild conditions, our factor estimates are
consistent even if T is finite.

To nonparametrically estimate gk(Xi ) without the curse of dimensionality when
Xi is multivariate, we assume gk(·) to be additive: for each k ≤ K, i ≤ p, there are
(gk1, . . . , gkd) nonparametric functions such that

gk(Xi ) =
d∑

l=1

gkl(Xil), d = dim(Xi).(2.4)

Each additive component of gk is estimated by the sieve method. Define {φ1(x),

φ2(x), . . .} to be a set of basis functions (e.g., B-spline, Fourier series, wavelets,
polynomial series), which spans a dense linear space of the functional space for
{gkl}. Then for each l ≤ d ,

gkl(Xil) =
J∑

j=1

bj,klφj (Xil) + Rkl(Xil), k ≤ K, i ≤ p, l ≤ d.(2.5)

Here, {bj,kl}j≤J are the sieve coefficients of the lth additive component of gk(Xi),
corresponding to the kth factor loading; Rkl is a “remaining function” representing
the approximation error; J denotes the number of sieve terms which grows slowly
as p → ∞. The basic assumption for sieve approximation is that supx |Rkl(x)| →
0 as J → ∞. We take the same basis functions in (2.5) purely for simplicity of
notation.
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Define, for each k ≤ K and for each i ≤ p,

b′
k = (b1,k1, . . . , bJ,k1, . . . , b1,kd , . . . , bJ,kd) ∈ R

Jd,

φ(Xi )
′ = (

φ1(Xi1), . . . , φJ (Xi1), . . . , φ1(Xid), . . . , φJ (Xid)
) ∈R

Jd .

Then we can write

gk(Xi) = φ(Xi )
′bk +

d∑
l=1

Rkl(Xil).

Let B = (b1, . . . ,bK) be a (Jd) × K matrix of sieve coefficients, �(X) =
(φ(X1), . . . , φ(Xp))′ be a p × (Jd) matrix of basis functions, and R(X) be p ×K

matrix with the (i, k)th element
∑d

l=1 Rkl(Xil). Then the matrix form of (2.4) and
(2.5) is

G(X) = �(X)B + R(X).

Substituting this into (1.5), we write

Y = {
�(X)B + �

}
F′ + R(X)F′ + U.

We see that the residual term consists of two parts: the sieve approximation error
R(X)F′ and the idiosyncratic U. Furthermore, the random effect assumption on
the coefficients � makes it also behave like noise, and hence negligible when the
projection operator P is applied.

2.3. The estimator. Based on the idea described in Section 2.1, we propose a
Projected-PCA method, where X is the sieve space spanned by the basis functions
of X, and P is chosen as the projection matrix onto X , defined by the p × p

projection matrix

P = �(X)
(
�(X)′�(X)

)−1
�(X)′.(2.6)

The estimators of the model parameters in (1.5) are defined as follows. The
columns of F̂/

√
T are defined as the eigenvectors corresponding to the first K

largest eigenvalues of the T × T matrix Y′PY, and

Ĝ(X) = 1

T
PYF̂(2.7)

is the estimator of G(X).
The intuition can be readily seen from the discussions in Section 2.1, which also

provides an alternative formulation of Ĝ(X) as follows: let D̂ be a K × K diago-
nal matrix consisting of the largest K eigenvalues of the p × p matrix 1

T
PYY′P.

Let �̂ = (̂ξ1, . . . , ξ̂K) be a p × K matrix whose columns are the corresponding
eigenvectors. According to the relation ( 1

T
PYY′P)P� ≈ P�(�′P�) described in

Section 2.1, we can also estimate G(X) or P� by

Ĝ(X) = �̂D̂1/2.



PROJECTED-PCA 227

We shall show in Lemma A.1 that this is equivalent to (2.7). Therefore, unlike
the traditional PCA method for usual factor models [e.g., Bai (2003), Stock and
Watson (2002)], the Projected-PCA takes the principal components of the pro-
jected data PY. The estimator is thus invariant to the rotation-transformations of
the sieve bases.

The estimation of the loading component � that cannot be explained by the co-
variates can be estimated as follows. With the estimated factors F̂, the least-squares
estimator of loading matrix is �̂ = YF̂/T , by using (2.1) and (2.3). Therefore,
by (1.5), a natural estimator of � is

�̂ = �̂ − Ĝ(X) = 1

T
(I − P)YF̂.(2.8)

2.4. Connection with panel data models with time-varying coefficients. Con-
sider a panel data model with time-varying coefficients as follows:

yit = X′
iβ t + μt + uit , i ≤ p, t ≤ T ,(2.9)

where Xi is a d-dimensional vector of time-invariant regressors for individual i;
μt denotes the unobservable random time effect; uit is the regression error term.
The regression coefficient β t is also assumed to be random and time-varying, but
is common across the cross-sectional individuals.

The semiparametric factor model admits (2.9) as a special case. Note that (2.9)
can be rewritten as yit = g(Xi)

′ft + uit with K = d + 1 unobservable “factors”
ft = (μt ,β

′
t )

′ and “loading” g(Xi) = (1,X′
i)

′. The model (1.4) being considered,
on the other hand, allows more general nonparametric loading functions.

3. Projected-PCA in conventional factor models. Let us first consider the
asymptotic performance of the Projected-PCA in the conventional factor model:

Y = �F′ + U.(3.1)

In the usual statistical applications for factor analysis, the latent factors are as-
sumed to be serially independent, while in financial applications, the factors are
often treated to be weakly dependent time series satisfying strong mixing condi-
tions.

We now demonstrate by a simple example that latent factors F can be estimated
at a faster rate of convergence by Projected-PCA than the conventional PCA and
that they can be consistently estimated even when sample size T is finite.

EXAMPLE 3.1. To appreciate the intuition, let us consider a specific case in
which K = 1 so that model (1.4) reduces to

yit = g(Xi)ft + γift + uit .
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Assume that g(·) is so smooth that it is in fact a constant β (otherwise, we can use
a local constant approximation), where β > 0. Then the model reduces to

yit = βft + γift + uit .

The projection in this case is averaging over i, which yields

ȳ·t = βft + γ̄·ft + ū·t ,

where ȳ·t , γ̄· and ū·t denote the averages of their corresponding quantities over i.
For the identification purpose, suppose Eγi = Euit = 0, and

∑T
t=1 f 2

t = T . Ignor-
ing the last two terms, we obtain estimators

β̂ =
(

1

T

T∑
t=1

ȳ2·t

)1/2

and f̂t = ȳ·t /β̂.(3.2)

These estimators are special cases of the Projected-PCA estimators. To see this,
define ȳ = (ȳ·1, . . . , ȳ·T )′, and let 1p be a p-dimensional column vector of ones.
Take a naive basis �(X) = 1p; then the projected data matrix is in fact PY = 1pȳ′.
Consider the T × T matrix Y′PY = (1pȳ′)′1pȳ′ = pȳȳ′, whose largest eigenvalue
is p‖ȳ‖2. From

Y′PY
ȳ

‖ȳ‖ = p‖ȳ‖2 ȳ
‖ȳ‖ ,

we have the first eigenvector of Y′PY equals ȳ/‖ȳ‖. Hence, the Projected-PCA
estimator of factors is F̂ = √

T ȳ/‖ȳ‖. In addition, the Projected-PCA estimator of
the loading vector β1p is

1

T
1pȳ′F̂ = 1√

T
1p‖ȳ‖.

Hence, the Projected-PCA-estimator of β equals ‖ȳ‖/√T . These estimators
match with (3.2). Moreover, since the ignored two terms γ̄· and ū·t are of order
Op(p−1/2), β̂ and f̂t converge whether or not T is large. Note that this simple
example satisfies all the assumptions to be stated below, and β̂ and f̂t achieve the
same rate of convergence as that of Theorem 4.1. We shall present more details
about this example in Appendix G in the supplementary material [Fan, Liao and
Wang (2015)].

3.1. Asymptotic properties of Projected-PCA. We now state the conditions
and results formally in the more general factor model (3.1). Recall that the pro-
jection matrix is defined as

P = �(X)
(
�(X)′�(X)

)−1
�(X)′.

The following assumption is the key condition of the Projected-PCA.
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ASSUMPTION 3.1 (Genuine projection). There are positive constants cmin and
cmax such that, with probability approaching one (as p → ∞),

cmin < λmin
(
p−1�′P�

)
< λmax

(
p−1�′P�

)
< cmax.

Since the dimensions of �(X) and � are, respectively, p × Jd and p × K ,
Assumption 3.1 requires Jd ≥ K , which is reasonable since we assume K , the
number of factors, to be fixed throughout the paper.

Assumption 3.1 is similar to the pervasive condition on the factor loadings
[Stock and Watson (2002)]. In our context, this condition requires the covariates
X have nonvanishing explaining power on the loading matrix, so that the projec-
tion matrix �′P� has spiked eigenvalues. Note that it rules out the case when X
is completely unassociated with the loading matrix � (e.g., when X is pure noise).
One of the typical examples that satisfies this assumption is the semiparametric
factor model [model (1.4)]. We shall study this specific type of factor model in
Section 4, and prove Assumption 3.1 in the supplementary material [Fan, Liao and
Wang (2015)].

Note that F and � are not separately identified, because for any nonsingular H,
�F′ = �H−1HF′. Therefore, we assume the following.

ASSUMPTION 3.2 (Identification). Almost surely, T −1F′F = IK and �′P� is
a K × K diagonal matrix with distinct entries.

This condition corresponds to the PC1 condition of Bai and Ng (2013), which
separately identifies the factors and loadings from their product �F′. It is often
used in factor analysis for identification, and means that the columns of factors
and loadings can be orthogonalized [also see Bai and Li (2012)].

ASSUMPTION 3.3 (Basis functions). (i) There are dmin and dmax > 0 so that
with probability approaching one (as p → ∞),

dmin < λmin
(
p−1�(X)′�(X)

)
< λmax

(
p−1�(X)′�(X)

)
< dmax.

(ii) maxj≤J,i≤p,l≤d Eφj (Xil)
2 < ∞.

Note that p−1�(X)′�(X) = p−1 ∑p
i=1 φ(Xi )

′φ(Xi) and φ(Xi ) is a vector of
dimensionality Jd  p. Thus, condition (i) can follow from the strong law of
large numbers. For instance, {Xi}i≤p are weakly correlated and in the population
level Eφ(Xi )

′φ(Xi ) is well-conditioned. In addition, this condition can be sat-
isfied through proper normalizations of commonly used basis functions such as
B-splines, wavelets, Fourier basis, etc. In the general setup of this paper, we allow
{Xi}i≤p’s to be cross-sectionally dependent and nonstationary. Regularity condi-
tions about weak dependence and stationarity are imposed only on {(ft ,ut )} as
follows.
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We impose the strong mixing condition. Let F0−∞ and F∞
T denote the σ -

algebras generated by {(ft ,ut ) : t ≤ 0} and {(ft ,ut ) : t ≥ T }, respectively. Define
the mixing coefficient

α(T ) = sup
A∈F0−∞,B∈F∞

T

∣∣P(A)P (B) − P(AB)
∣∣.

ASSUMPTION 3.4 (Data generating process). (i) {ut , ft }t≤T is strictly sta-
tionary. In addition, Euit = 0 for all i ≤ p, j ≤ K ; {ut }t≤T is independent of
{Xi , ft}i≤p,t≤T .

(ii) Strong mixing: there exist r1,C1 > 0 such that for all T > 0,

α(T ) < exp
(−C1T

r1
)
.

(iii) Weak dependence: there is C2 > 0 so that

max
j≤p

p∑
i=1

|Euitujt | < C2,

1

pT

p∑
i=1

p∑
j=1

T∑
t=1

T∑
s=1

|Euitujs | < C2,

max
i≤p

1

pT

p∑
k=1

p∑
m=1

T∑
t=1

T∑
s=1

∣∣cov(uitukt , uisums)
∣∣ < C2.

(iv) Exponential tail: there exist r2, r3 > 0 satisfying r−1
1 + r−1

2 + r−1
3 > 1 and

b1, b2 > 0, such that for any s > 0, i ≤ p and j ≤ K ,

P
(|uit | > s

) ≤ exp
(−(s/b1)

r2
)
, P

(|fjt | > s
) ≤ exp

(−(s/b2)
r3

)
.

Assumption 3.4 is standard, especially condition (iii) is commonly imposed
for high-dimensional factor analysis [e.g., Bai (2003), Stock and Watson (2002)],
which requires {uit }i≤p,t≤T be weakly dependent both serially and cross-
sectionally. It is often satisfied when the covariance matrix Eutu′

t is sufficiently
sparse under the strong mixing condition. We provide primitive conditions of con-
dition (iii) in the supplementary material [Fan, Liao and Wang (2015)].

Formally, we have the following theorem:

THEOREM 3.1. Consider the conventional factor model (3.1) with Assump-
tions 3.1–3.4. The Projected-PCA estimators F̂ and Ĝ(X) defined in Section 2.3
satisfy, as p → ∞ [J,T may either grow simultaneously with p satisfying J =
o(

√
p) or stay constant with Jd ≥ K],

1

T
‖F̂ − F‖2

F = OP

(
J

p

)
,(3.3)

1

p

∥∥Ĝ(X) − P�
∥∥2
F = OP

(
J

pT
+ J 2

p2

)
.(3.4)
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To compare with the traditional PCA method, the convergence rate for the es-
timated factors is improved for small T . In particular, the Projected-PCA does
not require T → ∞, and also has a good rate of convergence for the loading ma-
trix up to a projection transformation. Hence, we have achieved a finite-T consis-
tency, which is particularly interesting in the “high-dimensional-low-sample-size”
(HDLSS) context, considered by Jung and Marron (2009). In contrast, the tradi-
tional PCA method achieves a rate of convergence of OP (1/p + 1/T 2) for esti-
mating factors, and OP (1/T +1/p) for estimating loadings. See Remarks 4.1, 4.2
below for additional details.

Let 	 = cov(yt ) be the p × p covariance matrix of yt = (y1t , . . . , ypt )
′. Con-

vergence (3.4) in Theorem 3.1 also describes the relationship between the leading
eigenvectors of 1

T
PYY′P and those of 	. To see this, let � = (ξ1, . . . , ξK) be

the eigenvectors of 	 corresponding to the first K eigenvalues. Under the per-
vasiveness condition, � can be approximated by � multiplied by a positive defi-
nite matrix of transformation [Fan, Liao and Mincheva (2013)]. In the context of
Projected-PCA, by definition, �̂ = Ĝ(X)D̂−1/2; here we recall that D̂ is a diago-
nal matrix consisting of the largest K eigenvalues of 1

T
PYY′P, and �̂ is a p × K

matrix whose columns are the corresponding eigenvectors. Then (3.4) immedi-
ately implies the following corollary, which complements the PCA consistency in
spiked covariance models [e.g., Johnstone (2001) and Paul (2007)].

COROLLARY 3.1. Under the conditions of Theorem 3.1, there is a K × K

positive definite matrix V, whose eigenvalues are bounded away from both zero and
infinity, so that as p → ∞ [J,T may either grow simultaneously with p satisfying
J = o(

√
p) or stay constant with Jd ≥ K],

‖�̂ − �V‖F = OP

(
1

p
‖	u‖2 +

√
J

pT
+ J

p
+ 1√

p
‖P� − �‖F

)
.

4. Projected-PCA in semiparametric factor models.

4.1. Sieve approximations. In the semiparametric factor model, it is assumed
that λik = gk(Xi ) + γik , where gk(Xi ) is a nonparametric smooth function for the
observed covariates, and γik is the unobserved random loading component that is
independent of Xi . Hence, the model is written as

yit =
K∑

k=1

{
gk(Xi) + γik

}
ftk + uit , i = 1, . . . , p, t = 1, . . . , T .

In the matrix form,

Y = {
G(X) + �

}
F′ + U,

and G(X) does not vanish (pervasive condition; see Assumption 4.2 below).
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The estimators F̂ and Ĝ(X) are the Projected-PCA estimators as defined in
Section 2.3. We now define the estimator of the nonparametric function gk(·),
k = 1, . . . ,K . In the matrix form, the projected data has the following sieve ap-
proximated representation:

PY = �(X)BF′ + Ẽ,(4.1)

where Ẽ = P�F′ + PR(X)F′ + PU is “small” because � and U are orthogonal to
the function space spanned by X, and R(X) is the sieve approximation error. The
sieve coefficient matrix B = (b1, . . . ,bK) can be estimated by least squares from
the projected model (4.1): Ignore Ẽ, replace F with F̂, and solve (4.1) to obtain

B̂ = (b̂1, . . . , b̂K) = 1

T

[
�(X)′�(X)

]−1
�(X)′YF̂.

We then estimate gk(·) by

ĝk(x) = φ(x)′b̂k ∀x ∈ X , k = 1, . . . ,K,

where X denotes the support of Xi .

4.2. Asymptotic analysis. When � = G(X) + �, G(X) can be understood as
the projection of � onto the sieve space spanned by X. Hence, the following as-
sumption is a specific version of Assumptions 3.1 and 3.2 in the current context.

ASSUMPTION 4.1. (i) Almost surely, T −1F′F = IK and G(X)′G(X) is a K ×
K diagonal matrix with distinct entries.

(ii) There are two positive constants cmin and cmax so that with probability ap-
proaching one (as p → ∞),

cmin < λmin
(
p−1G(X)′G(X)

)
< λmax

(
p−1G(X)′G(X)

)
< cmax.

In this section, we do not need to assume {γ i}i≤p to be i.i.d. for the estimation
purpose. Cross-sectional weak dependence as in Assumption 4.2(ii) below would
be sufficient. The i.i.d. assumption will be only needed when we consider specifi-
cation tests in Section 5. Write γ i = (γi1, . . . , γiK)′, and

νp = max
k≤K

1

p

∑
i≤p

var(γik).

ASSUMPTION 4.2. (i) Eγik = 0 and {Xi}i≤p is independent of {γik}i≤p .
(ii) maxk≤K,i≤p Egk(Xi )

2 < ∞, νp < ∞ and

max
k≤K,j≤p

∑
i≤p

|Eγikγjk| = O(νp).

The following set of conditions is concerned about the accuracy of the sieve
approximation.
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ASSUMPTION 4.3 (Accuracy of sieve approximation). ∀l ≤ d, k ≤ K ,
(i) the loading component gkl(·) belongs to a Hölder class G defined by

G = {
g : ∣∣g(r)(s) − g(r)(t)

∣∣ ≤ L|s − t |α}
for some L > 0;

(ii) the sieve coefficients {bk,j l}j≤J satisfy for κ = 2(r + α) ≥ 4, as J → ∞,

sup
x∈Xl

∣∣∣∣∣gkl(x) −
J∑

j=1

bk,j lφj (x)

∣∣∣∣∣
2

= O
(
J−κ)

,

where Xl is the support of the lth element of Xi , and J is the sieve dimension.
(iii) maxk,j,l b

2
k,j l < ∞.

Condition (ii) is satisfied by common basis. For example, when {φj } is polyno-
mial basis or B-splines, condition (ii) is implied by condition (i) [see, e.g., Lorentz
(1986) and Chen (2007)].

THEOREM 4.1. Suppose J = o(
√

p). Under Assumptions 3.3, 3.4, 4.1–4.3,
as p,J → ∞, T can be either divergent or bounded, we have that

1

T
‖F̂ − F‖2

F = OP

(
1

p
+ 1

J κ

)
,

1

p

∥∥Ĝ(X) − G(X)
∥∥2
F = OP

(
J

p2 + J

pT
+ J

J κ
+ Jνp

p

)
,

max
k≤K

sup
x∈X

∣∣ĝk(x) − gk(x)
∣∣ = OP

(
J

p
+ J√

pT
+ J

J κ/2 + J

√
νp

p

)
max
j≤J

sup
x

∣∣φj (x)
∣∣.

In addition, if T → ∞ simultaneously with p and J , then

1

p
‖�̂ − �‖2

F = OP

(
J

p2 + 1

T
+ 1

J κ
+ Jνp

p

)
.

The optimal J ∗ = (p min{T ,p, ν−1
p })1/κ simultaneously minimizes the conver-

gence rates of the factors and nonparametric loading function gk(·). It also satisfies
the constraint J ∗ = o(

√
p) as κ ≥ 4. With J = J ∗, we have

1

T

T∑
t=1

‖̂ft − ft‖2 = OP

(
1

p

)
,

1

p

p∑
i=1

∣∣ĝk(Xi) − gk(Xi )
∣∣2 = OP

(
1

(p min{T ,p, v−1
p })1−1/κ

)
∀k,

max
k≤K

sup
x∈X

∣∣ĝk(x) − gk(x)
∣∣ = OP

(
maxj≤J supx |φj (x)|

(p min{T ,p, ν−1
p })1/2−1/κ

)
,
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and �̂ = (γ̂ 1, . . . , γ̂ p)′ satisfies

1

p

p∑
i=1

‖γ̂ i − γ i‖2 = OP

(
1

(p min{T ,p, v−1
p })1−1/κ

+ 1

T

)
.

Some remarks about these rates of convergence compared with those of the
conventional factor analysis are in order.

REMARK 4.1. The rates of convergence for factors and nonparametric func-
tions do not require T → ∞. When T = O(1),

1

T

T∑
t=1

‖̂ft − ft‖2 = OP

(
1

p

)
,

1

p

p∑
i=1

∣∣ĝk(Xi) − gk(Xi)
∣∣2 = OP

(
1

p1−1/κ

)
.

The rates still converge fast when p is large, demonstrating the blessing of dimen-
sionality. This is an attractive feature of the Projected-PCA in the HDLSS context,
as in many applications, the stationarity of a time series and the time-invariance
assumption on the loadings hold only for a short period of time. In contrast, in
the usual factor analysis, consistency is granted only when T → ∞. For example,
according to Fan, Liao and Shi (2015) (Lemma C.1), the regular PCA method has
the following convergence rate:

1

T

T∑
t=1

‖̃ft − ft‖2 = OP

(
1

p
+ 1

T 2

)
,

which is inconsistent when T is bounded.

REMARK 4.2. When both p and T are large, the Projected-PCA estimates
factors as well as the regular PCA does, and achieves a faster rate of convergence
for the estimated loadings when γik vanishes. In this case, λik = gk(Xi), the load-
ing matrix is estimated by �̂ = Ĝ(X), and

1

p

p∑
i=1

|̂λik − λik|2 = 1

p

p∑
i=1

∣∣ĝk(Xi ) − gk(Xi )
∣∣2 = OP

(
1

(pT )1−1/κ
+ 1

p2−2/κ

)
.

In contrast, the regular PCA method as in Stock and Watson (2002) yields

1

p

p∑
i=1

|̃λik − λik|2 = OP

(
1

T
+ 1

p

)
.

Comparing these rates, we see that when gk(·)’s are sufficiently smooth (larger κ),
the rate of convergence for the estimated loadings is also improved.
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5. Semiparametric specification test. The loading matrix always has the fol-
lowing orthogonal decomposition:

� = G(X) + �,

where � is interpreted as the loading component that cannot be explained by X. We
consider two types of specification tests: testing H 1

0 : G(X) = 0, and H 2
0 : � = 0.

The former tests whether the observed covariates have explaining powers on the
loadings, while the latter tests whether the covariates fully explain the loadings.
The former provides a diagnostic tool as to whether or not to employ the Projected-
PCA; the latter tests the adequacy of the semiparametric factor models in the liter-
ature.

5.1. Testing G(X) = 0. Testing whether the observed covariates have explain-
ing powers on the factor loadings can be formulated as the following null hypoth-
esis:

H 1
0 : G(X) = 0 a.s.

Due to the approximate orthogonality of X and �, we have P� ≈ G(X). Hence,
the null hypothesis is approximately equivalent to

H0 : P� = 0 a.s.

This motivates a statistic ‖P�̃‖2
F = tr(�̃

′P�̃) for a consistent loading estimator �̃.
Normalizing the test statistic by its asymptotic variance leads to the test statistic

SG = 1

p
tr

(
W1�̃

′P�̃
)
, W1 =

(
1

p
�̃

′
�̃

)−1

,

where the K × K matrix W1 is the weight matrix. The null hypothesis is rejected
when SG is large.

The Projected-PCA estimator is inappropriate under the null hypothesis as the
projection is not genuine. We therefore use the least squares estimator �̃ = YF̃/T ,
leading to the test statistic

SG = 1

T 2p
tr

(
W1F̃′Y′PYF̃

)
.

Here, we take F̃ as the traditional PCA estimator: the columns of F̃/
√

T are the
first K eigenvectors of the T × T data matrix Y′Y.

5.2. Testing � = 0. Connor, Hagmann and Linton (2012) applied the semi-
parametric factor model to analyzing financial returns, who assumed that � = 0,
that is, the loading matrix can be fully explained by the observed covariates. It is
therefore natural to test the following null hypothesis of specification:

H 2
0 : � = 0 a.s.
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Recall that G(X) ≈ P� so that � ≈ P� + �. Therefore, essentially the specifica-
tion testing problem is equivalent to testing

H0 : P� = � a.s.

That is, we are testing whether the loading matrix in the factor model belongs to
the space spanned by the observed covariates.

A natural test statistic is thus based on the weighted quadratic form

tr
(
�̂

′W2�̂
) = tr

(
�̂

′
(I − P)′W2(I − P)�̂

)
,

for some p × p positive definite weight matrix W2, where F̂ is the Projected-
PCA estimator for factors and �̂ = YF̂/T . To control the size of the test, we take
W2 = 	−1

u , where 	u is a diagonal covariance matrix of ut under H0, assuming
that (u1t , . . . , upt ) are uncorrelated.

We replace 	−1
u with its consistent estimator: let Û = Y − �̂F̂′. Define

	̂u = T −1 diag
{
ÛÛ′} = T −1 diag

{
Y

(
I − T −1F̂F̂′)Y′}.

Then the operational test statistic is defined to be

S� = tr
(
�̂

′
(I − P)′	̂−1

u (I − P)�̂
)
.

The null hypothesis is rejected for large values of S� .

5.3. Asymptotic null distributions. For the testing purpose, we assume {Xi ,

γ i} to be i.i.d., and let T ,p,J → ∞ simultaneously. The following assumption
regulates the relation between T and p.

ASSUMPTION 5.1. Suppose (i) {Xi ,γ i}i≤p are independent and identically
distributed;

(ii) T 2/3 = o(p), and p(logp)4 = o(T 2);
(iii) J and κ satisfy: J = o(min{√p,

√
T }), and max{T √

p,p} = o(J κ).

Condition (ii) requires a balance of the dimensionality and the sample size. On
one hand, a relatively large sample size is desired [p(logp)4 = o(T 2)] so that
the effect of estimating 	−1

u is negligible asymptotically. On the other hand, as is
common in high-dimensional factor analysis, a lower bound of the dimensionality
is also required [condition T 2/3 = o(p)] to ensure that the factors are estimated
accurately enough. Such a required balance is common for high-dimensional factor
analysis [e.g., Bai (2003), Stock and Watson (2002)] and in the recent literature for
PCA [e.g., Jung and Marron (2009), Shen et al. (2013)]. The i.i.d. assumption of
covariates Xi in condition (i) can be relaxed with further distributional assumptions
on γ i (e.g., assuming γ i to be Gaussian). The conditions on J in condition (iii) is
consistent with those of the previous sections.
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We focus on the case when ut is Gaussian, and show that under H 1
0 ,

SG = (
1 + oP (1)

) 1

p
tr

(
W1�

′P�
)
,

and under H 2
0

S� = (
1 + oP (1)

) 1

T 2 tr
(
F′U′	−1

u UF
)
,

whose conditional distributions (given F) under the null are χ2 with degree of
freedom, respectively, JdK and pK . We can derive their standardized limiting
distribution as J,T ,p → ∞. This is given in the following result.

THEOREM 5.1. Suppose Assumptions 3.3, 3.4, 4.2, 5.1 hold. Then under H 1
0 ,

pSG − JdK√
2JdK

d→N(0,1),

where K = dim(ft ) and d = dim(Xi ). In addition, suppose Assumptions 4.1
and 4.3 further hold, {ut }t≤T is i.i.d. N(0,	u) with a diagonal covariance ma-
trix 	u whose elements are bounded away from zero and infinity. Then under H 2

0 ,

T S� − pK√
2pK

d→N(0,1).

In practice, when a relatively small sieve dimension J is used, one can instead
use the upper α-quantile of the χ2

JdK distribution for pSG.

REMARK 5.1. We require uit be independent across t , which ensures that
the covariance matrix of the leading term vec( 1√

T
UF′) to have a simple form

	−1
u ⊗ IK . This assumption can be relaxed to allow for weakly dependent {ut }t≤T ,

but many autocovariance terms will be involved in the covariance matrix. One
may regularize standard autocovariance matrix estimators such as Newey and West
(1987) and Andrews (1991) to account for the high dimensionality. Moreover, we
assume 	u be diagonal to facilitate estimating 	−1

u , which can also be weakened
to allow for a nondiagonal but sparse 	u. Regularization methods such as thresh-
olding [Bickel and Levina (2008)] can then be employed, though they are expected
to be more technically involved.

6. Estimating the number of factors from projected data. We now address
the problem of estimating K = dim(ft ) when it is unknown. Once a consistent
estimator of K is obtained, all the results achieved carry over to the unknown
K case using a conditioning argument.2 In principle, many consistent estimators

2One can first conduct the analysis conditioning on the event {K̂ = K}, then argue that the results
still hold unconditionally as P(K̂ = K) → 1.
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of K can be employed, for example, Bai and Ng (2002), Alessi, Barigozzi and
Capasso (2010), Breitung and Pigorsch (2009), Hallin and Lis̆ka (2007). More
recently, Ahn and Horenstein (2013) and Lam and Yao (2012) proposed to select
the largest ratio of the adjacent eigenvalues of Y′Y, based on the fact that the K

largest eigenvalues of the sample covariance matrix grow as fast as p increases,
while the remaining eigenvalues either remain bounded or grow slowly.

We extend Ahn and Horenstein’s (2013) theory in two ways. First, when the
loadings depend on the observable characteristics, it is more desirable to work on
the projected data PY. Due to the orthogonality condition of U and X, the projected
data matrix is approximately equal to G(X)F′. The projected matrix PY(PY)′ thus
allows us to study the eigenvalues of the principal matrix component G(X)G(X)′,
which directly connects with the strengths of those factors. Since the nonvanishing
eigenvalues of PY(PY)′ and (PY)′PY = Y′PY are the same, we can work directly
with the eigenvalues of the matrix Y′PY. Second, we allow p/T → ∞.

Let λk(Y′PY) denote the kth largest eigenvalue of the projected data matrix
Y′PY. We assume 0 < K < Jd/2, which naturally holds if the sieve dimension J

slowly grows. The estimator is defined as

K̂ = arg max
0<k<Jd/2

λk(Y′PY)

λk+1(Y′PY)
.

The following assumption is similar to that of Ahn and Horenstein (2013). Re-
call that U = (u1, . . . ,uT ) is a p × T matrix of the idiosyncratic components, and
	u = Eutu′

t denotes the p × p covariance matrix of ut .

ASSUMPTION 6.1. The error matrix U can be decomposed as

U = 	1/2
u EM1/2,(6.1)

where:

(i) the eigenvalues of 	u are bounded away from zero and infinity,
(ii) M is a T by T positive semidefinite nonstochastic matrix, whose eigenval-

ues are bounded away from zero and infinity,
(iii) E = (eit )p×T is a p × T stochastic matrix, where eit is independent in

both i and t , and et = (e1t , . . . , ept )
′ are i.i.d. isotropic sub-Gaussian vectors, that

is, there is C > 0, for all s > 0,

sup
‖v‖=1

P
(∣∣v′et

∣∣ > s
) ≤ exp

(
1 − Cs2)

.

(iv) There are dmin, dmax > 0, almost surely,

dmin ≤ λmin
(
�(X)′�(X)/p

) ≤ λmax
(
�(X)′�(X)/p

) ≤ dmax.

This assumption allows the matrix U to be both cross-sectionally and serially
dependent. The T × T matrix M captures the serial dependence across t . In the
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special case of no-serial-dependence, the decomposition (6.1) is satisfied by taking
M = I. In addition, we require ut to be sub-Gaussian to apply random matrix
theories of Vershynin (2012). For instance, when ut is N(0,	u), for any ‖v‖ =
1, v′et ∼ N(0,1), and thus condition (iii) is satisfied. Finally, the almost surely
condition of (iv) seems somewhat strong, but is still satisfied by bounded basis
functions (e.g., Fourier basis).

We show in the supplementary material [Fan, Liao and Wang (2015)] that when
	u is diagonal (uit is cross-sectionally independent), both the sub-Gaussian as-
sumption and condition (iv) can be relaxed.

The following theorem is the main result of this section.

THEOREM 6.1. Under assumptions of Theorem 4.1 and Assumption 6.1, as
p,T → ∞, if J satisfies J = o(min{√p,T }) and K < Jd/2 (J may either grow
or stay constant), we have

P(K̂ = K) → 1.

7. Numerical studies. This section presents numerical results to demonstrate
the performance of Projected-PCA method for estimating loadings and factors us-
ing both real data and simulated data.

7.1. Estimating loading curves with real data. We collected stocks in S&P
500 index constituents from CRSP which have complete daily closing prices from
year 2005 through 2013, and their corresponding market capitalization and book
value from Compustat. There are 337 stocks in our data set, whose daily excess
returns were calculated. We considered four characteristics X as in Connor, Hag-
mann and Linton (2012) for each stock: size, value, momentum and volatility,
which were calculated using the data before a certain data analyzing window so
that characteristics are treated known. See Connor, Hagmann and Linton (2012)
for detailed descriptions of these characteristics. All four characteristics are stan-
dardized to have mean zero and unit variance. Note that the construction makes
their values independent of the current data.

We fix the time window to be the first quarter of the year 2006, which contains
T = 63 observations. Given the excess returns {yit }i≤337,t≤63 and characteristics
Xi as the input data and setting K = 3, we fit loading functions gk(Xi ) = αik +∑4

l=1 gkl(Xil) for k = 1,2,3 using the Projected-PCA method. The four additive
components gkl(·) are fitted using the cubic spline in the R package “GAM” with
sieve dimension J = 4. All the four loading functions for each factor are plotted in
Figure 1. The contribution of each characteristic to each factor is quite nonlinear.

7.2. Calibrating the model with real data. We now treat the estimated func-
tions gkl(·) as the true loading functions, and calibrate a model for simulations.
The “true model” is calibrated as follows:
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FIG. 1. Estimated additive loading functions gkl , l = 1, . . . ,4 from financial returns of 337 stocks
in S&P 500 index. They are taken as the true functions in the simulation studies. In each panel
(fixed l), the true and estimated curves for k = 1,2,3 are plotted and compared. The solid, dashed
and dotted red curves are the true curves corresponding to the first, second and third factors, respec-
tively. The blue curves are their estimates from one simulation of the calibrated model with T = 50,
p = 300.

1. Take the estimated gkl(·) from the real data as the true loading functions.
2. For each p, generate {ut }t≤T from N(0,D	0D) where D is diagonal and 	0

sparse. Generate the diagonal elements of D from Gamma(α,β) with α = 7.06,
β = 536.93 (calibrated from the real data), and generate the off-diagonal elements
of 	0 from N(μu,σ

2
u ) with μu = −0.0019, σu = 0.1499. Then truncate 	0 by

a threshold of correlation 0.03 to produce a sparse matrix and make it positive
definite by R package “nearPD.”
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TABLE 1
Parameters used for the factor generating process, obtained by calibration to the real data

	ε A

0.9076 0.0049 0.0230 −0.0371 −0.1226 −0.1130
0.0049 0.8737 0.0403 −0.2339 0.1060 −0.2793
0.0230 0.0403 0.9266 0.2803 0.0755 −0.0529

3. Generate {γik} from the i.i.d. Gaussian distribution with mean 0 and standard
deviation 0.0027, calibrated with real data.

4. Generate ft from a stationary VAR model ft = Aft−1 + εt where εt ∼
N(0,	ε). The model parameters are calibrated with the market data and listed
in Table 1.

5. Finally, generate Xi ∼ N(0,	X). Here 	X is a 4 × 4 correlation matrix
estimated from the real data.

We simulate the data from the calibrated model, and estimate the loadings and
factors for T = 10 and 50 with p varying from 20 through 500. The “true” and
estimated loading curves are plotted in Figure 1 to demonstrate the performance
of Projected-PCA. Note that the “true” loading curves in the simulation are taken
from the estimates calibrated using the real data. The estimates based on simulated
data capture the shape of the true curve, though we also notice slight biases at
boundaries. But in general, Projected-PCA fits the model well.

We also compare our method with the traditional PCA method [e.g., Stock and
Watson (2002)]. The mean values of ‖�̂ − �‖max, ‖�̂ − �‖F /

√
p, ‖F̂ − F0‖max

and ‖F̂ − F0‖F /
√

T are plotted in Figures 2 and 3 where � = G0(X) + � [see
Section 7.3 for definitions of G0(X) and F0]. The breakdown error for G0(X) and
� are also depicted in Figure 2. In comparison, Projected-PCA outperforms PCA
in estimating both factors and loadings including the nonparametric curves G(X)

and random noise �. The estimation errors for G(X) of Projected-PCA decrease
as the dimension increases, which is consistent with our asymptotic theory.

7.3. Design 2. Consider a different design with only one observed covariate
and three factors. The three characteristic functions are g1 = x,g2 = x2 − 1, g3 =
x3 −2x with the characteristic X being standard normal. Generate {ft }t≤T from the
stationary VAR(1) model, that is, ft = Aft−1 +εt where εt ∼ N(0, I). We consider
� = 0.

We simulate the data for T = 10 or 50 and various p ranging from 20 to 500.
To ensure that the true factor and loading satisfy the identifiability conditions, we
calculate a transformation matrix H such that 1

T
HF′FH = IK , H−1G′GH′−1 is

diagonal. Let the final true factors and loadings be F0 = FH, G0 = GH′−1. For
each p, we run the simulation for 500 times.
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FIG. 2. Averaged ‖�̂ − �‖ by Projected-PCA (P-PCA, red solid) and traditional PCA (dashed
blue) and ‖Ĝ − G0‖, ‖�̂ − �‖ by P-PCA over 500 repetitions. Left panel: ‖ · ‖max, right panel:
‖ · ‖F /

√
p.

We estimate the loadings and factors using both Projected-PCA and PC. For
Projected-PCA, as in our theorem, we choose J = C(p min(T ,p))1/κ , with κ = 4
and C = 3. To estimate the loading matrix, we also compare with a third method:
sieve-least-squares (SLS), assuming the factors are observable. In this case, the
loading matrix is estimated by PYF0/T , where F0 is the true factor matrix of
simulated data.

The estimation error measured in max and standardized Frobenius norms for
both loadings and factors are reported in Figures 4 and 5. The plots demonstrate
the good performance of Projected-PCA in estimating both loadings and factors. In
particular, it works well when we encounter small T but a large p. In this design,
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FIG. 3. Averaged ‖F̂ − F0‖max and ‖F̂ − F0‖F /
√

T over 500 repetitions, by Projected-PCA
(P-PCA, solid red) and traditional PCA (dashed blue).

� = 0, so the accuracy of estimating � = G0 is significantly improved by using
the Projected-PCA. Figure 5 shows that the factors are also better estimated by
Projected-PCA than the traditional one, particularly when T is small. It is also
clearly seen that when p is fixed, the improvement on estimating factors is not
significant as T grows. This matches with our convergence results for the factor
estimator.

It is also interesting to compare Projected-PCA with SLS (Sieve Least-Squares
with observed factors) in estimating the loadings, which corresponds to the cases
of unobserved and observed factors. As we see from Figure 4, when p is small,
the Projected-PCA is not as good as SLS. But the two methods behave similarly
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FIG. 4. Averaged ‖Ĝ − G0‖max and ‖Ĝ − G0‖F /
√

p over 500 repetitions. P-PCA, PCA and
SLS, respectively, represent Projected-PCA, regular PCA and sieve least squares with known factors:
Design 2. Here, � = 0, so � = G0. Upper two panels: p grows with fixed T ; bottom panels: T grows
with fixed p.
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FIG. 5. Average estimation error of factors over 500 repetitions, that is, ‖F̂ − F0‖max and
‖F̂ − F0‖F /

√
T by Projected-PCA (solid red) and PCA (dashed blue): Design 2. Upper two panels:

p grows with fixed T ; bottom panels: T grows with fixed p.
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FIG. 6. Mean and standard deviation of the estimated number of factors over 50 repetitions. True
K = 3. P-PCA and AH, respectively, represent the methods of Projected-PCA and Ahn and Horen-
stein (2013). Left panel: mean; right panel: standard deviation.

as p increases. This further confirms the theory and intuition that as the dimension
becomes larger, the effects of estimating the unknown factors are negligible.

7.4. Estimating number of factors. We now demonstrate the effectiveness of
estimating K by the projected-PC’s eigenvalue-ratio method. The data are simu-
lated in the same way as in Design 2. T = 10 or 50 and we took the values of p

ranging from 20 to 500. We compare our Projected-PCA based on the projected
data matrix Y′PY to the eigenvalue-ratio test (AH) of Ahn and Horenstein (2013)
and Lam and Yao (2012), which works on the original data matrix Y′Y.

For each pair of T ,p, we repeat the simulation for 50 times and report the
mean and standard deviation of the estimated number of factors in Figure 6. The
Projected-PCA outperforms AH after projection, which significantly reduces the
impact of idiosyncratic errors. When T = 50, we can recover the number of fac-
tors almost all the time, especially for large dimensions (p > 200). On the other
hand, even when T = 10, projected-PCA still obtains a closer estimated number
of factors.

7.5. Loading specification tests with real data. We test the loading specifica-
tions on the real data. We used the same data set as in Section 7.1, consisting of
excess returns from 2005 through 2013. The tests were conducted based on rolling
windows, with the length of windows spanning from 10 days, a month, a quarter
and half a year. For each fixed window-length (T ), we computed the standardized
test statistic of SG and S� , and plotted them along the rolling windows respec-
tively in Figure 7. In almost all cases, the number of factors is estimated to be one
in various combinations of (T ,p,J ).
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FIG. 7. Normalized SG,S� from 2006/01/03 to 2012/11/30. The dotted lines are ±1.96.

Figure 7 suggests that the semiparametric factor model is strongly supported
by the data. Judging from the upper panel [testing H 1

0 : G(X) = 0], we have very
strong evidence of the existence of nonvanishing covariate effect, which demon-
strates the dependence of the market beta’s on the covariates X. In other words,
the market beta’s can be explained at least partially by the characteristics of assets.
The results also provide the theoretical basis for using Projected-PCA to get more
accurate estimation.

In the bottom panel of Figure 7 (testing H 2
0 : � = 0), we see for a majority

of periods, the null hypothesis is rejected. In other words, the characteristics of
assets cannot fully explain the market beta as intuitively expected, and model (1.2)
in the literature is inadequate. However, fully nonparametric loadings could be
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possible in certain time range mostly before financial crisis. During 2008–2010,
the market’s behavior had much more complexities, which causes more rejections
of the null hypothesis. The null hypothesis � = 0 is accepted more often since
2012. We also notice that larger T tends to yield larger statistics in both tests,
as the evidence against the null hypothesis is stronger with larger T . After all, the
semiparametric model being considered provides flexible ways of modeling equity
markets and understanding the nonparametric loading curves.

8. Conclusions. This paper proposes and studies a high-dimensional factor
model with nonparametric loading functions that depend on a few observed co-
variate variables. This model is motivated by the fact that observed variables can
explain partially the factor loadings. We propose a Projected-PCA to estimate the
unknown factors, loadings, and number of factors. After projecting the response
variable onto the sieve space spanned by the covariates, the Projected-PCA yields
a significant improvement on the rates of convergence than the regular methods.
In particular, consistency can be achieved without a diverging sample size, as long
as the dimensionality grows. This demonstrates that the proposed method is useful
in the typical HDLSS situations. In addition, we propose new specification tests
for the orthogonal decomposition of the loadings, which fill the gap of the testing
literature for semiparametric factor models. Our empirical findings show that firm
characteristics can explain partially the factor loadings, which provide theoreti-
cal basis for employing Projected-PCA method. On the other hand, our empirical
study also shows that the firm characteristics cannot fully explain the factor load-
ings so that the proposed generalized factor model is more appropriate.

APPENDIX A: PROOFS FOR SECTION 3

Throughout the proofs, p → ∞ and T may either grow simultaneously with p

or stay constant. For two matrices A,B with fixed dimensions, and a sequence aT ,
by writing A = B + oP (aT ), we mean ‖A − B‖F = oP (aT ).

In the regular factor model Y = �F′ +U, let K denote a K ×K diagonal matrix
of the first K eigenvalues of 1

Tp
Y′PY. Then by definition, 1

Tp
Y′PYF̂ = F̂K. Let

M = 1
Tp

�′P�F′F̂K−1. Then

F̂ − FM =
3∑

i=1

DiK−1,(A.1)

where

D1 = 1

Tp
F�′PUF̂, D2 = 1

Tp
U′PUF̂, D3 = 1

Tp
U′P�F′F̂.

We now describe the structure of the proofs for

1

T
‖F̂ − F‖2

F = Op

(
J

p

)
.
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Note that F̂ − F = F̂ − FM + F(M − I). Hence, we need to bound 1
T
‖F̂ − FM‖2

F

and 1
T
‖F(M − I)‖2

F , respectively.
Step 1: prove that 1

T
‖F̂ − FM‖2

F = OP (J/p).
Due to the equality (A.1), it suffices to bound ‖K−1‖2 as well as the 1

T
‖ · ‖2

F

norm of D1,D2,D3, respectively. These are obtained in Lemmas A.2, A.3 below.
Step 2: prove that 1

T
‖F′(F̂ − FM)‖F = OP (

√
J/(pT ) + J/p).

Still by the equality (A.1), 1
T
‖F′(F̂ − FM)‖F ≤ 1

T
‖K−1‖2

∑3
i=1 ‖F′Di‖F .

Hence, this step is achieved by bounding ‖F′Di‖F for i = 1,2,3. Note that in this
step, we shall not apply a simple inequality ‖F′Di‖F ≤ ‖F‖F ‖Di‖F , which is too
crude. Instead, with the help of the result 1

T
‖F̂ − FM‖2

F = Op(J/p) achieved in
step 1, sharper upper bounds for ‖F′Di‖F can be achieved. We do so in Lemma B.2
in the supplementary material [Fan, Liao and Wang (2015)].

Step 3: prove that ‖M − I‖2
F = OP (J/(pT ) + (J/p)2).

This step is achieved in Lemma A.4 below, which uses the result in step 2.
Before proceeding to step 1, we first show that the two alternative definitions

for Ĝ(X) described in Section 2.3 are equivalent.

LEMMA A.1. 1
T

PYF̂ = �̂D̂1/2.

PROOF. Consider the singular value decomposition: 1√
T

PY = V1SV′
2, where

V1 is a p ×p orthogonal matrix, whose columns are the eigenvectors of 1
T

PYY′P;
V2 is a T × T matrix whose columns are the eigenvectors of 1

T
Y′PY; S is a p ×

T rectangular diagonal matrix, with diagonal entries as the square roots of the
nonzero eigenvalues of 1

T
PYY′P. In addition, by definition, D̂ is a K ×K diagonal

matrix consisting of the largest K eigenvalues of 1
T

PYY′P; �̂ is a p × K matrix
whose columns are the corresponding eigenvectors. The columns of F̂/

√
T are the

eigenvectors of 1
T

Y′PY, corresponding to the first K eigenvalues.

With these definitions, we can write V1 = (�̂, Ṽ1), V2 = (F̂/
√

T , Ṽ2), and

S =
(

D̂1/2 0
0 D̃

)
, F̂′Ṽ2 = 0, F̂′F̂/T = IK,

for some matrices Ṽ1, Ṽ2 and D̃. It then follows that

1

T
PYF̂ = V1SV′

2
1√
T

F̂ = (�̂, Ṽ1)

(
D̂1/2 0

0 D̃

)(
F̂′/

√
T

Ṽ′
2

)
1√
T

F̂ = �̂D̂1/2. �

LEMMA A.2. ‖K‖2 = OP (1), ‖K−1‖2 = OP (1), ‖M‖2 = OP (1).

PROOF. The eigenvalues of K are the same as those of

W = 1

Tp

(
�(X)′�(X)

)−1/2
�(X)′YY′�(X)

(
�(X)′�(X)

)−1/2
.
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Substituting Y = �F′ + U, and F′F/T = IK , we have W = ∑4
i=1 Wi , where

W1 = 1

p

(
�(X)′�(X)

)−1/2
�(X)′��′�(X)

(
�(X)′�(X)

)−1/2
,

W2 = 1

p

(
�(X)′�(X)

)−1/2
�(X)′

(
�F′U′

T

)
�(X)

(
�(X)′�(X)

)−1/2
,

W3 = W′
2,

W4 = 1

p

(
�(X)′�(X)

)−1/2
�(X)′ UU′

T
�(X)

(
�(X)′�(X)

)−1/2
.

By Assumption 3.3, ‖�(X)‖2 = λ
1/2
max(�(X)′�(X)) = OP (

√
p),∥∥(

�(X)′�(X)
)−1/2∥∥

2 = λ1/2
max

((
�(X)′�(X)

)−1) = OP

(
p−1/2)

,

‖P�‖2 = λ1/2
max

(
1

p
�′P�

)
p1/2 = OP

(
p1/2)

.

Hence,

‖W2‖2 ≤ 1

p

∥∥(
�(X)′�(X)

)−1/2∥∥2
2

∥∥�(X)
∥∥

2‖�‖F

∥∥∥∥ 1

T
F′U′�(X)

∥∥∥∥
F

= OP

(
1

pT

)∥∥F′U′�(X)
∥∥
F .

By Lemma B.1 in the supplementary material [Fan, Liao and Wang (2015)],

‖W2‖2 = OP (
√

J√
pT

). Similarly,

‖W4‖2 ≤ 1

pT

∥∥(
�(X)′�(X)

)−1/2∥∥2
2

∥∥�(X)′U
∥∥2
F

= OP

(
1

p2T

)∥∥�(X)′U
∥∥2
F = OP

(
J

p

)
.

Using the inequality that for the kth eigenvalue, |λk(W)−λk(W1)| ≤ ‖W−W1‖2,
we have |λk(W) − λk(W1)| = OP (T −1/2 + p−1), for k = 1, . . . ,K . Hence, it suf-
fices to prove that the first K eigenvalues of W1 are bounded away from both zero
and infinity, which are also the first K eigenvalues of 1

p
�′P�. This holds under the

theorem’s assumption (Assumption 3.1). Thus, ‖K−1‖2 = OP (1) = ‖K‖2, which
also implies ‖M‖2 = OP (1). �

LEMMA A.3. (i) ‖D1‖2
F = OP (T J/p), (ii) ‖D2‖2

F = OP (J/p2),
(iii) ‖D3‖2

F = OP (T J/p), (iv) 1
T
‖F̂ − FM‖2

F = OP (J/p).

PROOF. It follows from Lemma B.1 in the supplementary material [Fan, Liao
and Wang (2015)] that ‖PU‖F = OP (

√
T J ). Also, ‖F‖2

F = OP (T ) = ‖F̂‖2
F and
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Assumption 3.1 implies ‖P�‖2
2 = OP (p). So

‖D1‖2
F =

∥∥∥∥ 1

Tp
F�′PUF̂

∥∥∥∥2

F

≤ 1

T 2p2 ‖F‖2
F ‖F̂‖2

F ‖P�‖2
2‖PU‖2

F = OP (T J/p),

‖D2‖2
F =

∥∥∥∥ 1

Tp
U′PUF̂

∥∥∥∥2

F

≤ 1

T 2p2 ‖PU‖2
F ‖F̂‖2

F = OP

(
J/p2)

,

‖D3‖2
F =

∥∥∥∥ 1

Tp
U′P�F′F̂

∥∥∥∥2

F

≤ 1

T 2p2 ‖PU‖2
F ‖P�‖2

2‖F‖2
F ‖F̂‖2

F = OP (T J/p).

By Lemma A.2, ‖K−1‖2 = OP (1). Part (iv) then follows directly from

1

T
‖F̂ − FM‖2

F ≤ OP

(
1

T

∥∥K−1∥∥
2

)(‖D1‖2
F + ‖D2‖2

F + ‖D3‖2
F

)
. �

LEMMA A.4. In the regular factor model, ‖M − I‖F = OP (
√

J/(pT ) +
J/p).

PROOF. By Lemma B.2 in the supplementary material [Fan, Liao and Wang
(2015)] and the triangular inequality, ‖ 1

T
(F̂ − FM)′F‖ = OP (

√
J/(pT ) + J/p).

Hence,

F̂′F/T = M′ + 1

T
(F̂ − FM)′F = M′ + OP

(√
J/(pT ) + J/p

)
.

Right multiplying M to both sides F̂′FM/T = M′M + OP (
√

J/(pT ) + J/p). In
addition, ∥∥F̂′(F̂ − FM)/T

∥∥
F ≤ 1

T
‖F̂ − FM‖2

F + ∥∥F′(F̂ − FM)/T
∥∥
F

= OP

(√
J/(pT ) + J/p

)
.

Hence,

I = M′M + OP

(√
J/(pT ) + J/p

)
.

In addition, from M = 1
Tp

�′P�F′F̂K−1 = 1
p
�′P�MK−1 + OP (

√
J/(pT ) +

J/p),

MK = 1

p
�′P�M + OP

(√
J/(pT ) + J/p

)
.

Because �′P� is diagonal, the same proofs of those of Proposition C.3 lead to the
desired result. �

PROOF OF THEOREM 3.1. It follows from Lemmas A.3(iv) and A.4 that

1

T
‖F̂ − F‖2

F ≤ 2

T
‖F̂ − FM‖2

F + 2‖M − I‖2
F = Op

(
J

p

)
.
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As for the estimated loading matrix, note that

Ĝ(X) = 1

T
PYF̂ = 1

T
P�F′F̂ + 1

T
PUF̂ = P� + E,

where E = 1
T

P�F′(F̂ − F) + 1
T

PU(F̂ − F) + 1
T

PUF.
By Lemmas B.2 and A.4,∥∥∥∥ 1

T
P�F′(F̂ − F)

∥∥∥∥
F

≤ OP

(√
p

T

)∥∥F′(F̂ − FM)
∥∥
F + OP (

√
p)‖M − I‖F

= OP

(√
J

T
+ J√

p

)
.

By Lemma B.1, ‖ 1
T

PU(F̂ − F)‖F ≤ 1
T
‖PU‖2‖F̂ − F‖F = OP ( J√

p
), and from

Lemma B.2 ‖ 1
T

PUF‖F = OP (
√

J
T
). Hence, ‖E‖F = OP (

√
J
T

+ J√
p
), which im-

plies

1

p

∥∥Ĝ(X) − P�
∥∥2
F = OP

(
J

pT
+ J 2

p2

)
. �

All the remaining proofs are given in the supplementary material [Fan, Liao and
Wang (2015)].

SUPPLEMENTARY MATERIAL

Technical proofs Fan, Liao and Wang (2015) (DOI: 10.1214/15-
AOS1364SUPP; .pdf). This supplementary material contains all the remaining
proofs.
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