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FUNCTIONAL LINEAR REGRESSION WITH POINTS OF IMPACT

BY ALOIS KNEIP1, DOMINIK POSS2 AND PASCAL SARDA

Universität Bonn and Institut de Mathématiques de Toulouse

The paper considers functional linear regression, where scalar responses
Y1, . . . , Yn are modeled in dependence of i.i.d. random functions X1, . . . ,Xn.
We study a generalization of the classical functional linear regression model.
It is assumed that there exists an unknown number of “points of impact,” that
is, discrete observation times where the corresponding functional values pos-
sess significant influences on the response variable. In addition to estimating
a functional slope parameter, the problem then is to determine the number
and locations of points of impact as well as corresponding regression coef-
ficients. Identifiability of the generalized model is considered in detail. It is
shown that points of impact are identifiable if the underlying process gen-
erating X1, . . . ,Xn possesses “specific local variation.” Examples are well-
known processes like the Brownian motion, fractional Brownian motion or
the Ornstein–Uhlenbeck process. The paper then proposes an easily imple-
mentable method for estimating the number and locations of points of impact.
It is shown that this number can be estimated consistently. Furthermore, rates
of convergence for location estimates, regression coefficients and the slope
parameter are derived. Finally, some simulation results as well as a real data
application are presented.

1. Introduction. We consider linear regression involving a scalar response
variable Y and a functional predictor variable X ∈ L2([a, b]), where [a, b] is a
bounded interval of R. It is assumed that data consist of an i.i.d. sample (Xi, Yi),
i = 1, . . . , n, from (X,Y ). The functional variable X is such that E(

∫ b
a X2(t) dt) <

+∞ and for simplicity the variables are supposed to be centered in the following:
E(Y ) = 0 and E(X(t)) = 0 for t ∈ [a, b] a.e.

In this paper, we study the following functional linear regression model with
points of impact

Yi =
∫ b

a
β(t)Xi(t) dt +

S∑
r=1

βrXi(τr) + εi, i = 1, . . . , n,(1.1)

where εi , i = 1, . . . , n are i.i.d. centered real random variables with E(ε2
i ) =

σ 2 < ∞, which are independent of Xi(t) for all t , β ∈ L2([a, b]) is an unknown,
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bounded slope function and
∫ b
a β(t)Xi(t) dt describes a common effect of the

whole trajectory Xi(·) on Yi . In addition, the model incorporates an unknown
number S ∈ N of “points of impact,” that is, specific time points τ1, . . . , τS with
the property that the corresponding functional values Xi(τ1), . . . ,Xi(τS) possess
some significant influence on the response variable Yi . The function β(t), the num-
ber S ≥ 0, as well as τr and βr , r = 1, . . . , S, are unknown and have to be estimated
from the data. Throughout the paper, we will assume that all points of impact are
in the interior of the interval, τr ∈ (a, b), r = 1, . . . , S. Standard functional linear
regression with S = 0 as well as the point impact model of McKeague and Sen
(2010), which assumes β(t) ≡ 0 and S = 1, are special cases of the above model.

If S = 0, then (1.1) reduces to Yi = ∫ b
a β(t)Xi(t) dt + εi . This model has been

studied in depth in theoretical and applied statistical literature. The most frequently
used approach for estimating β(t) then is based on functional principal compo-
nents regression [see, e.g., Frank and Friedman (1993), Bosq (2000), Cardot, Fer-
raty and Sarda (1999), Cardot, Mas and Sarda (2007) or Müller and Stadtmüller
(2005) in the context of generalized linear models]. Rates of convergence of the
estimates are derived in Hall and Horowitz (2007) and Cai and Hall (2006). Al-
ternative approaches and further theoretical results can, for example, be found in
Crambes, Kneip and Sarda (2009), Cardot and Johannes (2010), Comte and Jo-
hannes (2012) or Delaigle and Hall (2012).

There are many successful applications of the standard linear functional regres-
sion model. At the same time, results are often difficult to analyze from the points
of view of model building and substantial interpretation. The underlying problem
is that

∫ b
a β(t)Xi(t) dt is a weighted average of the whole trajectory Xi(·) which

makes it difficult to assess specific effects of local characteristics of the process.
This lead James, Wang and Zhu (2009) to consider “interpretable functional re-
gression” by assuming that β(t) = 0 for most points t ∈ [a, b] and identifying
subintervals of [a, b] with nonzero β(t).

A different approach based on impact points is proposed by Ferraty, Hall and
Vieu (2010). For a pre-specified q ∈ N, they aim to identify a function g as well
as those design points τ1, . . . , τq which are “most influential” in the sense that
g(Xi(τ1), . . . ,Xi(τq)) provides a best possible prediction of Yi . Nonparametric
smoothing methods are used to estimate g, while τ1, . . . , τq are selected by a cross-
validation procedure. The method is applied to data from spectroscopy, where it is
of practical interest to know which values Xi(t) have greatest influence on Yi .

To our knowledge, McKeague and Sen (2010) are the first to explicitly study
identifiability and estimation of a point of impact in a functional regression model.
For centered variables, their model takes the form Yi = βXi(τ ) + εi with a single
point of impact τ ∈ [a, b]. The underlying process X is assumed to be a fractional
Brownian motion with Hurst parameter H . The approach is motivated by the anal-
ysis of gene expression data, where a key problem is to identify individual genes
associated with the clinical outcome. McKeague and Sen (2010) show that consis-
tent estimators are obtained by least squares, and that the estimator of τ has the
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rate of convergence n−1/(2H). The coefficient β can be estimated with a parametric
rate of convergence n−1/2.

There also exists a link between our approach and the work of Hsing and Ren
(2009) who for a given grid t1, . . . , tp of observation points propose a procedure
for estimating linear combinations m(Xi) = ∑p

j=1 cjXi(tj ) influencing Yi . Their
approach is based on an RKHS formulation of the inverse regression dimension-
reduction problem which for any k = 1,2,3, . . . allows to determine a suitable ele-
ment (ĉ1, . . . , ĉp)T of the eigenspace spanned by the eigenvectors of the k leading
eigenvalues of the empirical covariance matrix of (Xi(t1), . . . ,Xi(tp))T . They then
show consistency of the resulting estimators m̂(Xi) as n,p → ∞ and then k → ∞.
Note that (1.1) necessarily implies that Yi = m(Xi) + εi , where as p → ∞ m(Xi)

may be written as a linear combination as considered by Hsing and Ren (2009).
Their method therefore offers a way to determine consistent estimators m̂(Xi) of
m(Xi), although the structure of the estimator will not allow a straightforward
identification of model components.

Assuming a linear relationship between Y and X, (1.1) constitutes a unified ap-
proach which incorporates the standard linear regression model as well as specific
effects of possible point of impacts. The latter may be of substantial interest in
many applications.

Although in this paper we concentrate on the case of unknown points of impact,
we want to emphasize that in practice also models with pre-specified points of
impact may be of potential importance. This in particular applies to situations with
a functional response variable Yi (t), defined over the same time period t ∈ [a, b]
as Xi . For a specified time point τ ∈ [a, b], the standard approach [see, e.g., He,
Müller and Wang (2000)] will then assume that Yi := Yi (τ ) = ∫ b

a βτ (t)Xi(t) dt +
εi , where βτ ∈ L2([a, b]) may vary with τ . But the value Xi(τ) of Xi at the point τ

of interest may have a specific influence, and the alternative model Yi := Yi (τ ) =∫ b
a βτ (t)Xi(t) dt + β1Xi(τ) + εi with S = 1 and a fixed point of impact may be

seen as a promising alternative. The estimation procedure proposed in Section 5
can also be applied in this situation, and theoretical results imply that under mild
conditions β1 as well as βτ (t) can be consistently estimated with nonparametric
rates of convergence. A similar modification may be applied in the related context
of functional autoregression, where X1, . . . ,Xn denote a stationary time series of
random function, and Y(τ ) ≡ Xi(τ) is to be predicted from Xi−1 [see, e.g., Bosq
(2000)].

The focus of our work lies on developing conditions ensuring identifiability of
the components of model (1.1) as well as on determining procedures for estimat-
ing number and locations of points of impact, regression coefficients and slope
parameter.

The problem of identifiability is studied in detail in Section 2. The key assump-
tion is that the process possesses “specific local variation.” Intuitively, this means
that at least some part of the local variation of X(t) in a small neighborhood
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[τ − ε, τ + ε] of a point τ ∈ [a, b] is essentially uncorrelated with the remainder
of the trajectories outside the interval [τ − ε, τ + ε]. Model (1.1) is uniquely iden-
tified for all processes exhibiting specific local variation. It is also shown that the
condition of specific local variation is surprisingly weak and only requires some
suitable approximation properties of the corresponding Karhunen–Loève basis.

Identifiability of (1.1) does not impose any restriction on the degree of smooth-
ness of the random functions Xi or of the underlying covariance function. The
same is true for the theoretical results of Section 5 which yield rates of conver-
gence of coefficient estimates, provided that points of impact are known or that
locations can be estimated with sufficient accuracy.

But nonsmooth trajectories are advantageous when trying to identify points of
impact. In order to define a procedure for estimating number and locations of
points of impact, we therefore restrict attention to processes whose covariance
function is nonsmooth at the diagonal. It is proved in Section 3 that any such pro-
cess has specific local variation. Prominent examples are the fractional Brownian
motion or the Ornstein–Uhlenbeck process. From a practical point of view, the set-
ting of processes with nonsmooth trajectories covers a wide range of applications.
Examples are given in Section 7 and in the supplementary material [Kneip, Poss
and Sarda (2015)], where the methodology is applied to temperature curves and
near infrared data.

An easily implementable and computationally efficient algorithm for estimating
number and locations of points of impact is presented in Section 4. The basic
idea is to perform a decorrelation. Instead of regressing on Xi(t), we analyze the
empirical correlation between Yi and a process Zδ,i(t) := Xi(t) − 1

2(Xi(t − δ) +
Xi(t +δ)) for some δ > 0. For the class of processes defined in Section 3, Zδ,i(t) is
highly correlated with Xi(t) but only possesses extremely weak correlations with
Xi(s) if |t − s| is large. This implies that under model (1.1) local maxima τ̂r of the
empirical correlation between Yi and Zδ,i(t) should be found at locations close to
existing points of impact. The number S is then estimated by a cut-off criterion.
It is proved that the resulting estimator Ŝ of S is consistent, and we derive rates
of convergence for the estimators τ̂r . In the special case of a fractional Brownian
motion and S = 1, we retrieve the basic results of McKeague and Sen (2010).

In Section 5, we introduce least squares estimates of β(t) and βr , r = 1, . . . , S,
based on a Karhunen–Loève decomposition. Rates of convergence for these esti-
mates are then derived. A simulation study is performed in Section 6, while ap-
plications to a dataset is presented in Section 7. The Appendix is devoted to the
proofs of some of the main results. The remaining proofs as well as the application
of our method to a second dataset are gathered in the supplementary material.

2. Identifiability. Our setup implies that X1, . . . ,Xn are i.i.d. random func-
tions with the same distribution as a generic X ∈ L2([a, b]). In the following,
we will additionally assume that X possesses a continuous covariance function
σ(t, s), t, s ∈ [a, b].
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In a natural way, the components of model (1.1) possess different interpreta-
tions. The linear functional

∫ b
a β(t)Xi(t) dt describes a common effect of the whole

trajectory Xi(·) on Yi . The additional terms
∑S

r=1 βrXi(τr) quantify specific ef-
fects of the functional values Xi(τ1), . . . ,Xi(τS) at the points of impact τ1, . . . , τS .
Identifiability of an impact point τr quite obviously requires that at least some
part of the local variation of Xi(t) in small neighborhoods of τr , is uncorrelated
with the remainder of the trajectories. This idea is formalized by introducing the
concept of “specific local variation.”

DEFINITION 1. A process X ∈ L2([a, b]) with continuous covariance func-
tion σ(·, ·) possesses specific local variation if for any t ∈ (a, b) and all suf-
ficiently small ε > 0 there exists a real random variable ζε,t (X) such that with
fε,t (s) := cov(X(s),ζε,t (X))

var(ζε,t (X))
the following conditions are satisfied:

(i) 0 < var(ζε,t (X)) < ∞,
(ii) fε,t (t) > 0,

(iii) |fε,t (s)| ≤ (1 + ε)fε,t (t) for all s ∈ [a, b],
(iv) |fε,t (s)| ≤ ε · fε,t (t) for all s ∈ [a, b] with s /∈ [t − ε, t + ε].

The definition of course implies that for given t ∈ (a, b) and small ε > 0 any
process X with specific local variation can be decomposed into

X(s) = Xε,t (s) + ζε,t (X)fε,t (s), s ∈ [a, b],(2.1)

where Xε,t (s) = X(s) − ζε,t (X)fε,t (s) is a process which is uncorrelated with
ζε,t (X). If σε,t (·, ·) denotes the covariance function of Xε,t (s), then obviously

σ(s, u) = σε,t (s, u) + var
(
ζε,t (X)

)
fε,t (s)fε,t (u), s, u ∈ [a, b].(2.2)

By condition (iv), we can infer that for small ε > 0 the component ζε,t (X)fε,t (s)

essentially quantifies local variation in a small interval around the given point t ,

since fε,t (s)
2

fε,t (t)2 ≤ ε2 for all s /∈ [t −ε, t +ε]. When X is a standard Brownian motion it

is easily verified that conditions (i)–(iv) are satisfied for ζε,t (X) = X(t)− 1
2(X(t −

ε)+X(t + ε)). Then fε,t (s) := cov(X(s),ζε,t (X))

var(ζε,t (X))
= 1 for t = s, while fε,t (s) = 0 for

all s ∈ [a, b] with |t − s| ≥ ε. Figure 1 illustrates the decomposition of X(s) in
Xε,t (s) and ζε,t (X)fε,t (s) for a trajectory of a Brownian motion.

The following theorem shows that under our setup all impact points in
model (1.1) are uniquely identified for any process possessing specific local vari-
ation. Recall that (1.1) implies that

m(X) := E(Y |X) =
∫ b

a
β(t)X(t) dt +

S∑
r=1

βrX(τr).



6 A. KNEIP, D. POSS AND P. SARDA

FIG. 1. The figure illustrates the decomposition of a trajectory from a Brownian motion X (black
line) in Xε,t (red line) and ζε,t (X)fε,t (blue line). The component ζε,t (X)fε,t can be seen to quantify
the local variation of X in an interval around t .

THEOREM 1. Under our setup, assume that X possesses specific local varia-
tion. Then, for any bounded function β∗ ∈ L2([a, b]), all S∗ ≥ S, all β∗

1 , . . . , β∗
S∗ ∈

R, and all τ1, . . . , τS∗ ∈ (a, b) with τk /∈ {τ1, . . . , τS}, k = S + 1, . . . , S∗, we obtain

E

((
m(X) −

∫ b

a
β∗(t)X(t) dt −

S∗∑
r=1

β∗
r Xi(τr)

)2)
> 0,(2.3)

whenever E((
∫ b
a (β(t) − β∗(t))X(t) dt)2) > 0, or supr=1,...,S |βr − β∗

r | > 0, or
supr=S+1,...,S∗ |β∗

r | > 0.

The question arises whether it is possible to find general conditions which en-
sure that a process possesses specific variation. From a theoretical point of view,
the Karhunen–Loève decomposition provides a tool for analyzing this problem.

For f,g ∈ L2([a, b]) let 〈f,g〉 = ∫ b
a f (t)g(t) dt and ‖f ‖ the associated norm.

We will use λ1 ≥ λ2 ≥ · · · to denote the nonzero eigenvalues of the covariance
operator 
 of X, while ψ1,ψ2, . . . denote a corresponding system of orthonormal
eigenfunctions. It is then well known that X can be decomposed in the form

X(t) =
∞∑

r=1

〈X,ψr〉ψr(t),(2.4)

where E(〈X,ψr〉2) = λr , and 〈X,ψr〉 is uncorrelated with 〈X,ψl〉 for l �= r .
The existence of specific local variation requires that the structure of the process

is not too simple in the sense that the realizations Xi a.s. lie in a finite dimensional
subspace of L2([a, b]). Indeed, if 
 only possesses a finite number K < ∞ of
nonzero eigenvalues, then model (1.1) is not identifiable. This is easily verified:
X(t) = ∑K

r=1〈X,ψr〉ψr(t) implies that
∫ b
a β(t)X(t) dt = ∑K

r=1 αr〈X,ψr〉 with
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αr = 〈ψr,β〉. Hence, there are infinitely many different collections of K points
τ1, . . . , τK and corresponding coefficients β1, . . . , βK such that∫ b

a
β(t)X(t) dt =

K∑
s=1

αs〈X,ψs〉 =
K∑

s=1

〈X,ψs〉
K∑

r=1

βrψs(τr) =
K∑

r=1

βrX(τr).

Most work in functional data analysis, however, relies on the assumption
that 
 possesses infinitely many nonzero eigenvalues. In theoretically oriented
papers, it is often assumed that ψ1,ψ2, . . . form a complete orthonormal sys-
tem of L2([a, b]) such that ‖∑∞

r=1〈f,ψr〉ψr − f ‖ = 0 for any function f ∈
L2([a, b]).

The following theorem shows that X possesses specific local variation if for a
suitable class of functions L2-convergence generalizes to L∞-convergence.

For t ∈ (a, b) and ε > 0, let C(t, ε, [a, b]) denote the space of all continuous
functions f ∈ L2([a, b]) with the properties that f (t) = sups∈[a,b] f (s) = 1 and
f (s) = 0 for s /∈ [t − ε, t + ε].

THEOREM 2. Let ψ1,ψ2, . . . be a system of orthonormal eigenfunctions cor-
responding to the nonzero eigenvalues of the covariance operator 
 of X. If for all
t ∈ (a, b) there exists an εt > 0 such that

lim
k→∞ inf

f ∈C(t,ε,[a,b]) sup
s∈[a,b]

∣∣∣∣∣f (s) −
k∑

r=1

〈f,ψr〉ψr(s)

∣∣∣∣∣ = 0

(2.5)
for every 0 < ε < εt ,

then the process X possesses specific local variation.

The message of the theorem is that existence of specific local variation only re-
quires that the underlying basis ψ1,ψ2, . . . possesses suitable approximation prop-
erties. Somewhat surprisingly, the degree of smoothness of the realized trajectories
does not play any role.

As an example consider a standard Brownian motion defined on [a, b] = [0,1].
The corresponding Karhunen–Loève decomposition possesses eigenvalues λr =

1
(r−0.5)2π2 and eigenfunctions ψr(t) = √

2 sin((r − 1/2)πt), r = 1,2, . . . . In the

Supplementary Appendix B [Kneip, Poss and Sarda (2015)], it is verified that
this system of orthonormal eigenfunctions satisfies (2.5). Although all eigenfunc-
tions are smooth, it is well known that realized trajectories of a Brownian mo-
tion are a.s. not differentiable. This can be seen as a consequence of the fact
that the eigenvalues λr ∼ 1

r2 decrease fairly slowly, and, therefore, the sequence

E((
∑k

r=1〈X,ψr〉ψ ′
r (t))

2) = ∑k
r=1 λr(ψ

′
r (t))

2 diverges as k → ∞. At the same
time, another process with the same system of eigenfunctions but exponentially
decreasing eigenvalues λ∗

r ∼ exp(−r) will a.s. show sample paths possessing an
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infinite number of derivatives. Theorem 2 states that any process of this type still
has specific local variation.

3. Covariance functions which are nonsmooth at the diagonal. In the fol-
lowing, we will concentrate on developing a theoretical framework which allows
to define an efficient procedure for estimating number and locations of points of
impact.

Although specific local variation may well be present for processes possessing
very smooth sample paths, it is clear that detection of points of impact will profit
from a high local variability which goes along with nonsmoothness. As pointed out
in the Introduction, we also believe that assuming nonsmooth trajectories reflect
the situation encountered in a number of important applications. McKeague and
Sen (2010) convincingly demonstrate that genomics data lead to sample paths with
fractal behavior. All important processes analyzed in economics exhibit strong ran-
dom fluctuations. Observed temperatures or precipitation rates show wiggly trajec-
tories over time, as can be seen in our application in Section 7. Furthermore, any
growth process will to some extent be influenced by random changes in environ-
mental conditions. In functional data analysis, it is common practice to smooth
observed (discrete) sample paths and to interpret nonsmooth components as “er-
rors.” We want to emphasize that, unless observations are inaccurate and there
exists some important measurement error, such components are an intrinsic part of
the process. For many purposes as, for example, functional principal component
analysis, smoothing makes a lot of sense since local variation has to be seen as
nuisance. But in the present context local variation actually is a key property for
identifying impact points.

Therefore, further development will focus on processes with nonsmooth sam-
ple paths which will be expressed in terms of a nonsmooth diagonal of the cor-
responding covariance function σ(t, s). It will be assumed that σ(t, s) possesses
nonsmooth trajectories when passing from σ(t, t − �) to σ(t, t + �), but is twice
continuously differentiable for all (t, s), t �= s. An example is the standard Brow-
nian motion whose covariance function σ(t, s) = min(t, s) has a kink at the diag-
onal. Indeed, in view of decomposition (2.2) a nonsmooth transition at diagonal
may be seen as a natural consequence of pronounced specific local variation.

For a precise analysis, it will be useful to reparametrize the covariance function.
Obviously, the symmetry of σ(t, s) implies that

σ(t, s) = σ
(1

2

(
t + s + |t − s|), 1

2

(
t + s − |t − s|))

=: ω∗(
t + s, |t − s|) for all t, s ∈ [a, b].

Instead of σ(t, s), we may thus equivalently consider the function ω∗(x, y) with
x = t + s and y = |t − s|. When passing from s = t −� to s = t +�, the degree of
smoothness of σ(t, s) at s = t is reflected by the behavior of ω∗(2t, y) as y → 0.



POINT IMPACT 9

First, consider the case that σ is twice continuously differentiable and for fixed
x and y > 0 let ∂

∂y+ ω∗(x, y)|y=0 denote the right (partial) derivative of ω∗(x, y) as
y → 0. It is easy to check that in this case for all t ∈ (a, b) we obtain

∂

∂y+
ω∗(2t, y)

∣∣∣∣
y=0

= ∂

∂y
σ

(
t + y

2
, t − y

2

)∣∣∣∣
y=0

(3.1)

= 1

2

(
∂

∂s
σ (s, t)

∣∣∣∣
s=t

− ∂

∂s
σ (t, s)

∣∣∣∣
s=t

)
= 0.

In contrast, any process with ∂
∂y+ ω∗(x, y)|y=0 �= 0 is nonsmooth at the diag-

onal. If this function is smooth for all other points (x, y), y > 0, then the pro-
cess, similar to the Brownian motion, possesses a kink at the diagonal. Now
note that, for any process with σ(t, s) = ω∗(t + s, |t − s|) continuously differ-
entiable for t �= s but ∂

∂y+ ω∗(x, y)|y=0 < 0, it is possible to find a twice contin-
uously differentiable function ω(x, y, z) with σ(t, s) = ω(t, s, |t − s|) such that

∂
∂y+ ω∗(t + t, y)|y=0 = ∂

∂y
ω(t, t, y)|y=0.

In a still more general setup, the above ideas are formalized by Assumption 1
below which, as will be shown in Theorem 3, provides sufficient conditions in
order to guarantee that the underlying process X possesses specific variation. We
will also allow for unbounded derivatives as |t − s| → 0.

ASSUMPTION 1. For some open subset � ⊂R
3 with [a, b]2 ×[0, b−a] ⊂ �,

there exists a twice continuously differentiable function ω : � →R as well as some
0 < κ < 2 such that for all t, s ∈ [a, b]

σ(t, s) = ω
(
t, s, |t − s|κ)

.(3.2)

Moreover,

0 < inf
t∈[a,b] c(t) where c(t) := − ∂

∂z
ω(t, t, z)

∣∣∣∣
z=0

.(3.3)

One can infer from (3.1) that for every twice continuously differentiable covari-
ance function σ there exists some function ω such that (3.2) holds with κ = 2. But
note that formally introducing |t − s|κ as an extra argument establishes an easy
way of capturing nonsmooth behavior as |t − s| → 0, since σ is not twice differen-
tiable at the diagonal if κ < 2. In Assumption 1, the value of κ < 2 thus quantifies
the degree of smoothness of σ at the diagonal. A very small κ will reflect pro-
nounced local variability and extremely nonsmooth sample paths. There are many
well-known processes satisfying this assumption.

Fractional Brownian motion with Hurst coefficient 0 < H < 1 on an interval
[a, b], a > 0: The covariance function is then given by

σ(t, s) = 1
2

(
t2H + s2H − |t − s|2H )

.
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In this case, Assumption 1 is satisfied with κ = 2H , ω(t, s, z) = 1
2(t2H + s2H − z)

and c(t) = 1/2.
Ornstein–Uhlenbeck process with parameters σ 2

u , θ > 0: The covariance func-
tion is then defined by

σ(t, s) = σ 2
u

2θ

(
exp

(−θ |t − s|) − exp
(−θ(t + s)

))
.

Then Assumption 1 is satisfied with κ = 1, ω(t, s, z) = σ 2
u

2θ
(exp(−θz) −

exp(−θ(t + s))) and c(t) = σ 2
u /2.

Theorem 3 below now states that any process respecting Assumption 1 pos-
sesses specific local variation. In Section 2, we already discussed the structure of
an appropriate r.v. ζε,t (X) for the special case of a standard Brownian motion. The
same type of functional may now be used in a more general setting.

For δ > 0 and [t − δ, t + δ] ⊂ [a, b], define

Zδ(X, t) = X(t) − 1
2

(
X(t − δ) + X(t + δ)

)
.(3.4)

THEOREM 3. Under our setup, assume that the covariance function σ of X

satisfies Assumption 1. Then X possesses specific local variation, and for any ε > 0
there exists a δ > 0 such that conditions (i)–(iv) of Definition 1 are satisfied for
ζε,t (X) = Zδ(X, t), where Zδ(X, t) is defined by (3.4).

4. Estimating points of impact. When analyzing model (1.1), a central prob-
lem is to estimate number and locations of points of impact. Recall that we assume
an i.i.d. sample (Xi, Yi), i = 1, . . . , n, where Xi possesses the same distribution
as a generic X. Furthermore, we consider the case that each Xi is evaluated at p

equidistant points tj = a + j−1
p−1(b − a), j = 1, . . . , p.

REMARK. Note that all variables have been assumed to have means equal to
zero. Any practical application of the methodology introduced below, however,
should rely on centered data to be obtained from the original data by subtracting
sample means. Obviously, the theoretical results developed in this section remain
unchanged for this situation with however substantially longer proofs.

Determining τ1, . . . , τS of course constitutes a model selection problem. Since
in practice the random functions Xi are observed on a discretized grid of p

points, one may tend to use multivariate model selection procedures like Lasso
or related methods. But these procedures are multivariate in nature and are not
well adapted to a functional context. An obvious difficulty is the linear func-
tional

∫ b
a β(t)Xi(t) dt ≈ 1

p

∑p
j=1 β(tj )Xi(tj ) which contradicts the usual sparse-

ness assumption by introducing some common effects of all variables. But even if∫ b
a β(t)Xi(t) dt ≡ 0, results may heavily depend on the number p of observations
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per function. Note that in our functional setup for any fixed m ∈ N we necessar-
ily have Var(Xi(tj ) − Xi(tj−m)) → 0 as p → ∞. Lasso theory, however, is based
on the assumption that variables are not too heavily correlated. For example, the
results of Bickel, Ritov and Tsybakov (2009) indicate that convergence of param-
eter estimates at least requires that

√
n/ logp(Var(Xi(tj ) − Xi(tj−1))) → ∞ as

n → ∞. This follows from the distribution version of the restricted eigenvalue as-
sumption and Theorem 5.2 of Bickel, Ritov and Tsybakov (2009) [see also Zhou,
van de Geer and Bühlmann (2009) for a discussion on correlation assumptions
for selection models]. As a consequence, standard multivariate model selection
procedures cannot work unless the number p of grid points is sufficiently small
compared to n.

In this paper, we propose a very simple approach which is based on the concepts
developed in the preceding sections. The idea is to identify points of impact by de-
termining the grid points tj , where Zδ,i(tj ) := Zδ(Xi, tj ) possesses a particularly
high correlation with Yi .

The motivation of this approach is easily seen when considering our regression
model (1.1) more closely. Note that Zδ,i(t) is strongly correlated with Xi(t), but
it is “almost” uncorrelated with Xi(s) for |t − s| � δ. This in turn implies that
the correlation between Yi and Zδ,i(t) will be comparably high if and only if a
particular point t is close to a point of impact. More precisely, Lemmas 3 and 4
in the Supplementary Appendix C [Kneip, Poss and Sarda (2015)] show that as
δ → 0 and minr �=s |τs − τr | � δ

E
(
Zδ,i(tj )Yi

) = βrc(τr)δ
κ + O

(
max

{
δκ+1, δ2})

if |tj − τr | ≈ 0,

E
(
Zδ,i(tj )Yi

) = O
(
max

{
δκ+1, δ2})

if min
r=1,...,S

|tj − τr | � δ.

Moreover, assuming that the process X possesses a Gaussian distribution, then
since Var(Zδ,i(tj )) = O(δκ) [see (A.3) in the proof of Theorem 3], the Cauchy–
Schwarz inequality lead to Var(Zδ,i(tj )Yi) = O(δκ), and hence∣∣∣∣∣1

n

n∑
i=1

Zδ,i(tj )Yi −E
(
Zδ,i(tj )Yi

)∣∣∣∣∣ = OP

(√
δκ

n

)
.

These arguments indicate that points of impact may be estimated by using the lo-
cations of sufficiently large local maxima of | 1

n

∑n
i=1 Zδ,i(tj )Yi |. A sensible identi-

fication will require a suitable choice of δ > 0 in dependence of the sample size n.
If δ is too large, it will not be possible to distinguish between the influence of
points of impact which are close to each other. On the other hand, if δ is too small
compared to n (as, e.g., δk ∼ n−1), then “true” maxima may perish in a flood of
random peaks.

The situation is illustrated in Figure 2. It shows a simulated example of the
regression model (1.1) with n = 5000, β(t) ≡ 0, and S = 5 points of impact.
The error term is standard normal, while Xi are independent realizations of an
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FIG. 2. The figure shows | 1
n

∑n
i=1 Zδ,i(tj )Yi | for different choices of δ in a point of impact model

with 5 points of impact whose locations are indicated by vertical lines. The upper left panel corre-
sponds to a very small δ, where the noise level overlays the signal. By increasing δ the location of the
points of impact becomes more and more visible. By choosing δ too large, as in the lower right panel,
we are not able to distinguish between the influence of points of impact in close vicinity anymore.

Ornstein–Uhlenbeck process with θ = 5 and σu = 3.5, evaluated over p = 10,001
equidistant grid points in the interval [0,1]. The figure shows the behavior of
| 1
n

∑n
i=1 Zδ,i(tj )Yi | for different choices δ = 10/10,001 ≈ 5/n, δ = 142/10,001 ≈

1/
√

n, δ = 350/10,001 ≈ 2.47/
√

n, and δ = 750/10,001 ≈ 5.3/
√

n.
In order to consistently estimate S, our estimation procedure requires to exclude

all points t in an interval of size
√

δ around the local maxima of | 1
n

∑n
i=1 Zδ,i(tj )Yi |

from further considerations. The vertical lines in Figure 2 indicate the true location
of the points of impact, whereas the tick marks on the horizontal axis represent our
possible candidates for τ when applying the following estimation procedure.

Estimation procedure: Choose some δ > 0 such that there exists some kδ ∈ N

with 1 ≤ kδ <
p−1

2 and δ = kδ(b − a)/(p − 1). In a first step, determine for all
j ∈ J0,δ := {kδ + 1, . . . , p − kδ}

Zδ,i(tj ) := Xi(tj ) − 1
2

(
Xi(tj − δ) + Xi(tj + δ)

)
.

Iterate for l = 1,2,3, . . . :
• Determine

jl = arg max
j∈Jl−1,δ

∣∣∣∣∣1

n

n∑
i=1

Zδ,i(tj )Yi

∣∣∣∣∣
and set τ̂l := tjl

.
• Set Jl,δ := {j ∈ Jl−1,δ||tj − τ̂l| ≥ √

δ/2}, that is, eliminate all points in an in-
terval of size

√
δ around τ̂l . Stop iteration if Jl,δ =∅.
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Choose a suitable cut-off parameter λ > 0.

• Estimate S by

Ŝ = arg min
l=0,1,2,...

∣∣∣∣ (1/n)
∑n

i=1 Zδ,i(τ̂l+1)Yi

((1/n)
∑n

i=1 Zδ,i(τ̂l+1)2)1/2

∣∣∣∣ < λ.

• τ̂1, . . . , τ̂Ŝ then are the final estimates of the points of impact.

A theoretical justification for this estimation procedure is given by Theorem 4.
Its proof along with the proofs of Propositions 1 and 2 below can be found in the
Supplementary Appendix C. Theory relies on an asymptotics n → ∞ with p ≡
pn ≥ Ln1/κ for some constant 0 < L < ∞. It is based on the following additional
assumption on the structure of X and Y .

ASSUMPTION 2. (a) X1, . . . ,Xn are i.i.d. random functions distributed ac-
cording to X. The process X is Gaussian with covariance function σ(t, s).

(b) The error terms ε1, . . . , εn are i.i.d. N(0, σ 2) r.v. which are independent
of Xi .

THEOREM 4. Under our setup and Assumptions 1 as well as 2 let δ ≡ δn → 0
as n → ∞ such that nδκ

| log δ| → ∞ as well as δκ

n−κ+1 → 0. As n → ∞ we then obtain

max
r=1,...,Ŝ

min
s=1,...,S

|τ̂r − τs | = OP

(
n−1/k).(4.1)

Additionally, assume that δ2 = O(n−1) and that the algorithm is applied with cut-
off parameter

λ ≡ λn = A

√
Var(Yi)

n
log

(
b − a

δ

)
where A >

√
2.

Then

P(Ŝ = S) → 1 as n → ∞.(4.2)

The theorem of course implies that the rates of convergence of the estimated
points of impact depend on κ . If κ = 1 as, for example, for the Brownian mo-
tion or the Ornstein–Uhlenbeck process, then maxr=1,...,Ŝ mins=1,...,S |τ̂r − τs | =
OP (n−1). Arbitrarily fast rates of convergence can be achieved for very nonsmooth
processes with κ � 1.

A suitable choice of δ satisfying the requirements of the theorem for all possible
κ < 2 is δ = Cn−1/2 for some constant C.

Recall that for l > 1, our algorithm requires that τ̂l is determined only from
those points tj which are not in

√
δ/2-neighborhoods of any previously selected

τ̂1, . . . , τ̂l−1. This implies that for any δ the number Mδ of iteration steps is finite,
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and Mδ = O( b−a√
δ/2

) is the maximal possible number of “candidate” impact points

which can be detected for a fixed n and δ ≡ δn. The size of these intervals is due to
the use of the cut-off criterion for estimating S. It can easily be seen from the proof
of the theorem that in order to establish (4.1) it suffices to eliminate all points in
δ| log δ| neighborhoods of τ̂1, . . . , τ̂l−1 which is a much weaker restriction.

We also want to emphasize that the cut-off value provided by the theorem heav-
ily relies on the Gaussian assumption. A different approach that may work under
more general conditions is to consider all selected local maxima τ̂1, . . . , τ̂Mδ and
to estimate S by usual model selection criteria like BIC.

This is quite easily done if it can additionally be assumed that, in model (1.1),
β(t) = 0 for all t ∈ [a, b]. One may then apply a best subset selection by regressing
Yi on all possible subsets of Xi(τ̂1), . . . ,Xi(τ̂Mδ ), and by calculating the residual
sum of squares RSSs for each subset of size s. An estimate Ŝ is obtained by mini-
mizing

BICs = n log(RSSs/n) + s log(n)(4.3)

over all possible values of s.
If

∫ b
a β(t)Xi(t) dt �= 0, this approach will of course lead to biased results, since

part of the influence of this component on the response variable Yi may be approx-
imated by adding additional artificial “points of impact.” But an obvious idea is
then to incorporate estimates of the linear functional by relying on functional prin-
cipal components. Recall the Karhunen–Loève decomposition already discussed
in Section 2, and note that

∫ b
a β(t)Xi(t) dt = ∑∞

r=1 αr〈X,ψr〉 with αr = 〈ψr,β〉.
For k, S ∈ N, estimates ψ̂r of ψr and a subset τ̃1, . . . , τ̃S ∈ {τ̂1, . . . , τ̂Mδ } one may
consider an approximate relationship which resembles an “augmented model” as
proposed by Kneip and Sarda (2011) in a different context:

Yi ≈
k∑

r=1

αr〈Xi, ψ̂r〉 +
S∑

r=1

βrXi(τ̃r ) + ε∗
i .(4.4)

Based on corresponding least-squares estimates of the coefficients αr and βr , the
number S and an optimal value of k may then be estimated by the BIC criterion.

This approach also offers a way to select a sensible value of δ = Cn−1/2

for a suitable range of values C ∈ [Cmin,Cmax]. For finite n, different choices
of C (and δ) may of course lead to different candidate values τ̂r , r = 1,2, . . . .

A straightforward approach is then to choose the value of δ, where the respective
estimates of impact points lead to the best fitting augmented model (4.4). In ad-
dition to estimating S and an optimal value of k, BIC may thus also be used to
approximate an optimal value of C (and δ).

Recall that the above approach is applicable if Assumption 1 holds for some
κ < 2. In a practical application, one may thus want to check the applicability of
the theory by estimating the value of κ from the data. We have E(Zδ,i(tj )

2) =
δκ(2c(tj )− 2κ

2 c(tj ))+ o(δκ) [see (A.3) in the proof of Theorem 3]. Consequently,
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E(Zδ,i (tj )2)

E(Zδ/2,i (tj )2)
= 2κ + o(1) as δ → 0. Without restriction assume that kδ is an even

number. The above arguments motivate the estimator

κ̂ = log2

( (1/(p − 2kδ))
∑

j∈J0,δ

∑n
i=1 Zδ,i(tj )

2

(1/(p − 2kδ))
∑

j∈J0,δ

∑n
i=1 Zδ/2,i(tj )2

)
of κ . In Proposition 1 below, it is shown that κ̂ is a consistent estimator of κ

as n → ∞, δ → 0. In practice, an estimate κ̂ � 2 will indicate a process whose
covariance function possesses a nonsmooth diagonal.

PROPOSITION 1. Under the conditions of Theorem 4, we have

κ̂ = κ + OP

(
n−1/2 + δmin{2,2/κ}).(4.5)

A final theoretical result concerns the distance between Xi(τ̂r ) and Xi(τr). It
will be of crucial importance in the next section on parameter estimation. Without
restriction, we will in the following assume that points of impact are ordered in
such a way that τr = arg mins=1,...,S |τ̂r − τs |, r = 1, . . . , S.

PROPOSITION 2. Under the assumptions of Theorem 4, we obtain for every
r = 1, . . . , S

1

n

n∑
i=1

(
Xi(τr) − Xi(τ̂r )

)2 = Op

(
n−1)

,(4.6)

1

n

n∑
i=1

(
Xi(τr) − Xi(τ̂r )

)
εi = Op

(
n−1)

.(4.7)

5. Parameter estimates. Recall that Assumption 1 is only a sufficient, not a
necessary condition of identifiability. Even if this assumption is violated and the
covariance function σ(t, s) is very smooth, there may exist alternative procedures
leading to sensible estimators τ̂r . In the following, we will thus only assume that
the points of impacts are estimated by some procedure such that P(Ŝ = S) → 1
as n → ∞ and such that (4.6) as well as (4.7) hold for all r = 1, . . . , S. Note that
this assumption is trivially satisfied if analysis is based on pre-specified points of
impact as discussed in the Introduction.

In situations where it can be assumed that
∫ b
a β(t)Xi(t) dt = 0 a.s., we have

Yi = ∑S
r=1 βrXi(τr) + εi , i = 1, . . . , n, and the regression coefficient may be

obtained by least squares when replacing the unknown points of impact τr by
their estimates τ̂r . More precisely, in this case an estimator β̂ = (β̂1, . . . , β̂Ŝ)T of
β = (β1, . . . , βS)T is determined by minimizing

1

n

n∑
i=1

(
Yi −

Ŝ∑
r=1

brXi(τ̂r )

)2

(5.1)



16 A. KNEIP, D. POSS AND P. SARDA

over all possible values b1, . . . , bŜ .
Let Xi(τ ) := (Xi(τ1), . . . ,Xi(τS))T , and let �τ := E(Xi (τ )Xi(τ )T ). Note that

identifiability of the regression model as stated in Theorem 1 in particular implies
that �τ is invertible.

If Ŝ = S, then by (4.6) and (4.7) the differences between τ̂r and τr , r = 1, . . . , S

are asymptotically negligible, and the asymptotic distribution of β̂ coincides with
the asymptotic distribution the least squares estimator to be obtained if points of
impact were known:

√
n(β̂ − β) →D N

(
0, σ 2�−1

τ

)
(5.2)

as n → ∞. A proof is straightforward, and thus omitted.
In the general case with β(t) �= 0 for some t , we propose to rely on the aug-

mented model (4.4). Thus, let λ̂1 ≥ λ̂2 ≥ · · · and ψ̂1, ψ̂2, . . . denote eigenvalues
and eigenfunctions of the empirical covariance operator of X1, . . . ,Xn. Given es-
timates τ̂1, . . . , τ̂Ŝ and a suitable cut-off parameter k estimates β̂ = (β̂1, . . . , β̂Ŝ)T

of β = (β1, . . . , βS)T and α̂1, . . . , α̂k of α1, . . . , αk are determined by minimizing

n∑
i=1

(
Yi −

k∑
r=1

ar〈Xi, ψ̂r〉 −
Ŝ∑

r=1

brXi(τ̂r )

)2

(5.3)

over all ar, bs , r = 1, . . . , k, s = 1, . . . , Ŝ. Based on the estimated coefficients
α̂1, . . . , α̂k , and estimator of the slope function β is then given by β̂(t) :=∑k

r=1 α̂kψ̂r (t).
In the following we will rely on a slight change of notation in the sense that Yi ,

Xi (and εi ) are centered data obtained for each case by subtracting sample means.
As pointed out in the remark, we argue that theoretical results stated in Section 4
remain unchanged for this situation. In the context of (5.3) centering ensures that
Xi , i = 1, . . . , n, can be exactly represented by Xi = ∑n

j=1〈Xi, ψ̂r〉ψ̂r (necessarily

λ̂j = 0 for j > n).
Our theoretical analysis of the estimators defined by (5.3) relies on the work of

Hall and Horowitz (2007) who derive rates of convergence of the estimator β̂(t) in
a standard functional regression model with S = 0. Under our Assumption 2 their
results are additionally based on the following assumption on the eigendecompo-
sitions of X and β .

ASSUMPTION 3. (a) There exist some μ > 1 and some σ 2 < C0 < ∞ such
that λj − λj+1 ≥ C−1

0 j−μ−1 for all j ≥ 1.
(b) β(t) = ∑∞

j=1 αjψ(t) for all t , and |αj | ≥ C0j
−ν for some ν > 1 + 1

2μ.

Hall and Horowitz (2007) show that if S = 0 and k = O(n1/(μ+2ν)), then∫ b
a (β̂(t) − β(t))2 dt = Op(n−(2ν−1)/(μ+2ν)). This is known to be an optimal rate

of convergence under the standard model.
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When dealing with points of impact, some additional conditions are required.
Note that σ(t, s) = ∑∞

j=1 λjψj (t)ψj (s). Let σ [k](t, s) := ∑∞
j=k+1 λjψj (t)ψj (s),

and let Mk denote the S × S matrix with elements σ [k](τr , τs), r, s = 1, . . . , S.
Furthermore, let λmin(Mk) denote the smallest eigenvalue of the matrix Mk .

ASSUMPTION 4. (a) supt supj ψj (t)
2 ≤ Cψ for some Cψ < ∞.

(b) There exists some 0 < C1 < ∞ such that λj ≤ C1j
−μ for all j .

(c) There exists some 0 < D < ∞ such that λmin(Mk) ≥ Dk−μ+1 for all k.

Condition (a) is, for example, satisfied if ψ1,ψ2, . . . correspond to a Fourier-
type basis. Note that Assumption 3(a) already implies that λj must not be less
than a constant multiple of j−μ, and thus condition (b) requires that j−μ is
also an upper bound for the rate of convergence of λj . This in turn implies that∑∞

j=k+1 λj ≤ C2k
−μ+1 as well as |σ [k](t, s)| ≤ C2C

2
ψk−μ+1 for some C2 < ∞

and all k. Condition (c) therefore only introduces an additional regularity condi-
tion on the matrix Mk . For the Brownian motion discussed in Section 3, it is easily
seen that these requirements are necessarily fulfilled with μ = 2.

We now obtain the following theorem.

THEOREM 5. Under our setup and Assumptions 2–4 suppose that Ŝ = S and
that estimators τ̂r satisfy (4.6) as well as (4.7) for all r = 1, . . . , S. If additionally
k = O(n1/(μ+2ν)) and n1/(μ+2ν) = O(k) as n → ∞, then

‖β̂ − β‖2
2 = Op

(
n−2ν/(μ+2ν)),(5.4) ∫ b

a

(
β̂(t) − β(t)

)2
dt = Op

(
n−(2ν−1)/(μ+2ν)).(5.5)

In the presence of points of impact the slope function β(t) can thus be esti-
mated with the same rate of convergence as in the standard model with S = 0. The
estimators β̂r of βr , r = 1, . . . , S, achieve a slightly faster rate of convergence.

6. Simulation study. We proceed by studying the finite sample performance
of our estimation procedure described in the preceding sections. For different val-
ues of n, p, observations (Xi, Yi) are generated according to the points of impact
model (1.1) where εi ∼ N(0,1) are independent error terms. The algorithms are
implemented in R, and all tables are based on 1000 repetitions of the simulation
experiments. The corresponding R-code can be obtained from the authors upon
request.

The data X1, . . . ,Xn are generated as independent Ornstein–Uhlenbeck pro-
cesses (κ = 1) with parameters θ = 5 and σu = 3.5 at p equidistant grid points
over the interval [0,1]. Simulated trajectories are determined by using exact up-
dating formulas as proposed by Gillespie (1996). The simulation study is based
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TABLE 1
Estimation errors for different sample sizes for the simulation study (OU-process, τ1 = 0.25,

τ2 = 0.75, β1 = 2, β2 = 1). The column containing the estimate P̂ (Ŝ = S) contains two numbers:
the estimate derived from the BIC followed by its value derived from the cut-off procedure

Sample sizes Parameter estimates

p n |τ̂1 − τ1| |τ̂2 − τ2| |̂β1 − β1| |̂β2 − β2| ̂S ̂P(̂S = S) ̂k ∫(̂β − β)2 MSE κ̂

Simulation results if β(t) ≡ 0
1001 50 0.0130 0.0357 0.393 0.353 1.74 0.65/0.34 1.33 6.82 1.21 0.89

100 0.0069 0.0226 0.274 0.249 1.96 0.77/0.40 1.05 3.43 1.21 0.94
250 0.0027 0.0099 0.129 0.145 2.14 0.83/0.61 0.67 1.11 1.13 0.97
500 0.0012 0.0061 0.070 0.097 2.15 0.86/0.73 0.45 0.51 1.08 0.98

5000 0.0000 0.0004 0.012 0.012 2.04 0.96/0.98 0.03 0.00 1.00 1.00
20,001 50 0.0118 0.0333 0.393 0.350 1.71 0.64/0.35 1.78 6.91 1.19 0.89

100 0.0068 0.0246 0.279 0.276 1.94 0.76/0.46 1.46 3.81 1.19 0.94
250 0.0025 0.0108 0.121 0.144 2.15 0.83/0.62 0.74 1.02 1.12 0.97
500 0.0013 0.0063 0.064 0.092 2.14 0.88/0.75 0.48 0.40 1.08 0.98

5000 0.0001 0.0005 0.013 0.012 2.06 0.94/0.94 0.04 0.00 1.01 1.00

Simulation results if β(t) �= 0
1001 50 0.0150 0.0423 0.465 0.499 1.54 0.49/0.30 2.10 10.82 1.27 0.88

100 0.0097 0.0317 0.376 0.400 1.86 0.63/0.34 2.06 5.93 1.27 0.94
250 0.0039 0.0151 0.206 0.234 2.25 0.68/0.46 1.83 2.21 1.17 0.97
500 0.0015 0.0083 0.107 0.164 2.30 0.72/0.59 1.69 0.90 1.10 0.99

5000 0.0000 0.0006 0.036 0.027 2.25 0.79/0.97 2.01 0.05 1.01 1.00
20,001 50 0.0166 0.0399 0.467 0.465 1.52 0.47/0.29 2.14 11.19 1.29 0.89

100 0.0099 0.0286 0.370 0.378 1.90 0.64/0.36 2.08 5.95 1.26 0.94
250 0.0037 0.0171 0.185 0.263 2.27 0.67/0.49 1.90 2.19 1.15 0.97
500 0.0018 0.0104 0.118 0.177 2.32 0.71/0.62 1.78 1.11 1.11 0.99

5000 0.0002 0.0007 0.038 0.028 2.23 0.82/0.95 2.03 0.05 1.02 1.00

on S = 2 points of impact located at τ1 = 0.25 and τ2 = 0.75 with corresponding
coefficients β1 = 2 as well as β2 = 1. Results are reported in Table 1, where the
upper part of the table refers to the situation with β(t) ≡ 0, while the lower part
represents a model with β(t) = 3.5t3 − 5.5t2 + 3t + 0.5.

In both cases, estimation of the points of impact relies on setting δ = C 1√
n

for C = 1, but similar results could be obtained for a wide range of values C. The
results are then obtained by performing best subset selection with the BIC-criterion
via the R package bestglm on the augmented model (4.4)

Yi ≈
k∑

r=1

αr〈Xi, ψ̂r〉 +
S̃∑

r=1

βrXi(τ̃r ) + ε∗
i .(6.1)

Here, S̃ is the number of all possible candidates for the points of impact and k

is initially set to 6 principal components, but tendencies remain unchanged for a
broad range of values k.
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For different sample sizes n and p, Table 1 provides the average absolute errors
of our estimates, the frequency of Ŝ = S, as well as average values of Ŝ, k̂, the
prediction error MSE = 1

n

∑n
i=1(ŷi − yi)

2 and κ̂ . The column containing P̂ (Ŝ =
S) consists of two values. The first one being the frequency of Ŝ = S resulting
from the BIC. For the second one, S was estimated by the cut-off procedure using

λ = 2
√

V̂ar(Y )/n log(b−a
δ

), where V̂ar(Y ) denotes the estimated sample variance

of Yi . The cut-off criterion yields very reliable estimates Ŝ of S for n = 5000,
but showed a clear tendency to underestimate S for smaller sample sizes. The
BIC-criterion however proves to possess a much superior behavior in this regards
for small n but is outperformed by the cut-off criterion for n = 5000 in the case
β(t) �= 0.

In order to match {τ̂s}s=1,...,Ŝ and {τr}r=1,2 the interval [0,1] is divided into
I1 = [0, 1

2(τ1 + τ2)] and I2 = [1
2(τ1 + τ2),1]. The estimate τ̂s in interval Ir with

the minimal distance to τr is then used as an estimate for τr . No point of impact
candidate in interval Ir results in an “unmatched” τr , r = 1, . . . , S and a missing
value when computing averages.

The table shows that estimates of points of impact are generally quite accurate
even for smaller sample sizes. The error decreases rapidly as n increases, and this
improvement is essentially independent of p. As expected, since β2 < β1, the error
of the absolute distance between the second point of impact and its estimate is
larger than the error for the first point of impact.

Moreover, due to the common effect of the trajectory Xi(·) on Yi , the overall
estimation error in the case where β(t) �= 0 is slightly higher than in the first case.
At a first glance, one may be puzzled by the fact that for n = 5000 and p = 1001
the average error |τ̂r − τr | is considerably smaller than the distance 1

p−1 = 1
1000

between two adjacent grid points. But note that our simulation design implies that
τr ∈ {tj |j = 1, . . . , p}, r = 1, . . . , S, for p = 1001 as well as p = 20,001. For
medium to large sample sizes, there is thus a fairly high probability that τ̂r = τr .
The case p = 1001 particularly profits from this situation. Finally, it can be seen
that estimates for κ̂ tend to slightly underestimate the true value κ = 1 for small
values of n.

7. Applications to real data. In this section, the algorithm from Section 4
is applied to a dataset consisting of Canadian weather data. In this dataset, we
relate the mean relative humidity to hourly temperature data. In the Supplementary
Appendix A [Kneip, Poss and Sarda (2015)], a further application can be found.
We there analyze spectral data which play an important role in spectrophotometry
and different applied scientific fields.

In both examples, the algorithm is applied to centered observations and the esti-
mation procedure from Section 4 is modified by eliminating all points in an interval
of size δ| log δ| around a point of impact candidate τ̂j , which is still sufficient to
establish assertion (4.1).
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After estimating S̃ possible candidates for the points of impact, the approximate
model (4.4),

Yi ≈
k∑

r=1

αr〈Xi, ψ̂r〉 +
S̃∑

r=1

βrXi(τ̃r ) + ε∗
i ,

is used, where initially k = 6 is chosen. Over a fine grid of different values of δ,
points of impact and principal components are selected simultaneously by best
subset selection with the BIC-criterion and the model corresponding to the mini-
mal BIC is then chosen. The maximum number of variables selected by the BIC-
criterion is set to 6 and all curves have been transformed to be observed over [0,1]
when applying the algorithm from Section 4. The performance of the model is then
measured by means of a cross-validated prediction error.

In the Canadian weather dataset, the hourly mean temperature and relative hu-
midity from the 15 closest weather stations in an area around 100 km from Mon-
treal was obtained for each of the 31 days in December 2013. The data was com-
piled from http://climate.weather.gc.ca. Weather stations with more than ten miss-
ing observations on the temperature or relative humidity were discarded from the
dataset. The remaining stations had their nonavailable observations replaced by
the mean of their closest observed predecessor and successor. After preprocessing
a total of n = 13 weather stations remained and for each station p = 744 equidis-
tant hourly observations of the temperature were observed. The response variable
Yi was taken to be the mean over all observed values of the relatively humidity at
station i.

A cross-validated prediction error was calculated for three competing regression
models based on (4.4). In the first model, the mean relative humidity for each
station was explained by using the approximate model which combines the points
of impacts with a functional part. The second and third model describe the cases
k = 0 and S̃ = 0 in the approximate model, consisting only of points of impact
and the functional part, respectively. For the first two models, points of impact
were determined by considering a total of 146 equidistant values of δ between
0.10 and 0.49. In all models BIC was used to approximate the optimal values
of the respective tuning parameters δ, S and/or k in a first step. The mean squared
prediction error MSPE = 1

n

∑n
i=1(yi − ŷi )

2 was then calculated by means of a leave
one out cross-validation based on the chosen points of impact and/or principal
components from the first step. Additionally, the median of (yi − ŷi)

2, i = 1, . . . , n,
has been calculated as a more robust measure of the error. Depicted in the upper
panel of Figure 3 is the observed temperature trajectory for the weather station
“McTavish,” showing a rather rough process. The lower panel of this figure shows
| 1
n

∑n
i=1 Zδ,i(tj )Yi | for the optimal value of δ = 0.18 as obtained by the best model

fit of the approximate model. While orange lines represent the locations of the
points of impact which were actually selected with the help of the BIC-criterion,
the location of the remaining candidates are indicated by black vertical lines.

http://climate.weather.gc.ca
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FIG. 3. The upper panel of this figure shows a trajectory from the observed temperature curves
of the Canadian weather data. The lower panel shows | 1

n

∑n
i=1 Zδ,i (tj )Yi | during the selection

procedure. Locations of selected points of impact in the augmented model are indicated by orange
lines. The location of the remaining candidate is displayed by a black line.

Table 2 provides the empirical results when fitting the three competing mod-
els. In terms of the prediction error, it can clearly be seen from the table that
the frequently applied functional linear regression model is outperformed by the
model consisting solely of points of impact as well as the augmented (approxi-
mate) model. This impression is supported by the last column of the table which
gives the median value of (yi − ŷi)

2, showing additionally that, typically, the aug-
mented model performs even better than the plain points of impact model.

An estimate κ̂ = 0.14 for κ was obtained for δ ≈ 0.3, that is, the midpoint of the
chosen values of δ. The estimated value of κ = 0.14 corresponds to rather rough
sample paths as shown in the upper plot of Figure 3.

In view of the small sample size results have to be interpreted with care, and
we therefore do not claim that this application provides important substantial in-

TABLE 2
Estimated number of principal components k, points of impact S, prediction error and the median

of (yi − ŷi )
2 for the Canadian weather data

Model ̂k ̂S MSPE median((y − ŷ)2)

Augmented 3 3 2.314 0.251
Points of impact 0 3 1.714 0.974
FLR 6 0 5.346 1.269
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sights. Its main purpose is to serve as illustration for classes of problems where
our approach may be of potential importance. It clearly shows that some relevant
processes observed in practice are nonsmooth. With contemporary technical tools
temperatures can be measured very accurately, leading to a negligible measure-
ment error. But temperatures, especially in Canada, can vary rapidly over time.
The rough sample paths thus must be interpreted as an intrinsic feature of temper-
ature processes and cannot be explained by any type of “error.”

APPENDIX: PROOFS OF THEOREMS

This appendix provides the proofs of some of the main results. Remaining
proofs can be found in the supplementary material. Some of them rely on results
from van de Geer and Lederer (2013), van der Vaart and Wellner (1996) as well as
Zhou, Lafferty and Wasserman (2008).

PROOF OF THEOREM 1. Set βr := 0 for r = S + 1, . . . , S∗, and consider an
arbitrary j ∈ {1, . . . , S∗}. Choose 0 < ε < minr,s∈{1,...,S∗},r �=s |τr − τs | small
enough such that conditions (i)–(iv) of Definition 1 are satisfied. Using (2.1),
we obtain a decomposition into two uncorrelated components Xε,τj

(·) and
ζε,τj

(X)fε,τj
(·):

E

((∫ b

a

(
β(t) − β∗(t)

)
X(t) dt +

S∗∑
r=1

(
βr − β∗

r

)
X(τr)

)2)

= E

((∫ b

a

(
β(t) − β∗(t)

)
Xε,τj

(t) dt +
S∗∑

r=1

(
βr − β∗

r

)
Xε,τj

(τr)

)2)

+E

((∫ b

a

(
β(t) − β∗(t)

)
ζε,τj

(X)fε,τj
(t) dt

+
S∗∑

r=1

(
βr − β∗

r

)
ζε,τj

(X)fε,τj
(τr)

)2)

≥ E

((∫ b

a

(
β(t) − β∗(t)

)
ζε,τj

(X)fε,τj
(t) dt

+ ∑
r �=j

(
βr − β∗

r

)
ζε,τj

(X)fε,τj
(τr) + (

βj − β∗
j

)
ζε,τj

(X)fε,τj
(τj )

)2)
≥ 2 var

(
ζε,τj

(X)
)(

βj − β∗
j

)
fε,τj

(τj )

×
(∫ b

a

(
β(t) − β∗(t)

)
fε,τj

(t) dt + ∑
r �=j

(
βr − β∗

r

)
fε,τj

(τr)

)

+ var
(
ζε,τj

(X)
)(

βj − β∗
j

)2
fε,τj

(τj )
2.
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By condition (iv), we have∣∣∣∣∑
r �=j

(
βr − β∗

r

)
fε,τj

(τr)

∣∣∣∣ ≤ εS∗ max
r �=j

∣∣βr − β∗
r

∣∣∣∣fε,τj
(τj )

∣∣,
while boundedness of β(·) and β∗(·) implies that there exits a constant 0 ≤ D < ∞
such that for all sufficiently small ε > 0∣∣∣∣∫ b

a

(
β(t) − β∗(t)

)
fε,τj

(t) dt

∣∣∣∣ ≤ ε

∫
[a,b]\[τj −ε,τj+ε]

D
∣∣fε,τj

(τj )
∣∣dt

+
∫ τj+ε

τj−ε
(1 + ε)D

∣∣fε,τj
(τj )

∣∣dt

≤ ε
(
b − a + 2(1 + ε)

)
D

∣∣fε,τj
(τj )

∣∣.
When combining these inequalities, we can conclude that for all sufficiently small
ε we have E(

∫ b
a (β(t)−β∗(t))X(t) dt +∑S∗

r=1(βr −β∗
r )X(τr))

2 > 0 if βj −β∗
j �= 0.

Since j ∈ {1, . . . , S∗} is arbitrary, the assertion of the theorem is an immediate
consequence. �

PROOF OF THEOREM 2. Choose some arbitrary t ∈ (a, b) and some 0 < ε < 1
with ε ≤ εt . By assumption, there exists a k ∈ N as well as some f ∈ C(t, ε, [a, b])
such that |〈f,ψr〉| > 0 for some r ∈ {1, . . . , k} and sups∈[a,b] |fk(s)−f (s)| ≤ ε/3,
where fk(s) = ∑k

r=1〈f,ψr〉ψr(s). The definition of C(t, ε, [a, b]) then implies
that fk(t) ≥ 1 − ε/3 as well as

sup
s∈[a,b]

∣∣fk(s)
∣∣ ≤ 1 + ε

3
≤ (1 + ε)

(
1 − ε

3

)
≤ (1 + ε)fk(t),

(A.1)

sup
s∈[a,b],s /∈[t−ε,t+ε]

∣∣fk(s)
∣∣ ≤ ε

3
≤ ε

(
1 − ε

3

)
≤ εfk(t).

Now define the functional ζε,t by ζε,t (X) := ∑k
r=1

〈f,ψr 〉
λr

〈X,ψr〉. Recall that the
coefficients 〈X,ψr〉 are uncorrelated and var(〈X,ψr〉) = λr . By (2.4), we obtain

fε,t (s) := E(X(s)ζε,t (X))

var(ζε,t (X))

= E((
∑∞

j=1〈X,ψj 〉ψj(s))(
∑k

r=1(〈f,ψr〉/λr)〈X,ψr〉))
var(ζε,t (X))

=
∑k

r=1〈f,ψr〉ψr(s)

var(ζε,t (X))
= fk(s)

var(ζε,t (X))
.

Furthermore, var(ζε,t (X)) = ∑k
r=1

〈f,ψr 〉2

λr
> 0, and it thus follows from (A.1) that

the functional ζ(t,X) satisfies conditions (i)–(iv) of Definition 1. Since t ∈ (a, b)

and ε are arbitrary, X thus possesses specific local variation. �
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PROOF OF THEOREM 3. First note that Assumption 1 implies that the abso-
lute values of all first and second-order partial derivatives of ω(t, s, z) are uni-
formly bounded by some constant M < ∞ for all (t, s, z) in the compact subset
[a, b]2 × [0, b − a] of �.

By definition of Zδ , it thus follows from a Taylor expansion of ω that for t ∈
(a, b), any sufficiently small δ > 0 and some constant M1 < ∞

E
(
X(t)Zδ(X, t)

) = σ(t, t) − 1

2
σ(t, t − δ) − 1

2
σ(t, t + δ)

= ω(t, t,0) − 1

2
ω

(
t, t − δ, δκ) − 1

2
ω

(
t, t + δ, δκ)

(A.2)

= δκc(t) + R1;δ,t with sup
t∈[a+δ,b−δ]

|R1;δ,t | ≤ M1δ
min{2κ,2}.

For the variance of Zδ(X, t), we obtain by similar arguments

var
(
Zδ(X, t)

) = 2ω(t, t,0) − ω
(
t, t − δ, δκ) − ω

(
t, t + δ, δκ)

− 1

2

(
ω(t, t,0) − ω

(
t + δ, t − δ, (2δ)κ

))
− 1

4

(
2ω(t, t,0) − ω(t − δ, t − δ,0) − ω(t + δ, t + δ,0)

)
(A.3)

= δκ

(
2c(t) − 2κ

2
c(t)

)
+ R2;δ,t

with supt∈[a+δ,b−δ] |R2;δ,t | < M2δ
min{2κ,2}

for some constant M2 < ∞. Moreover, for any 0 < c < ∞ Taylor expansions of ω

yield that for any sufficiently small δ > 0 and all u ∈ [−c, c]
E

(
X(t + uδ)Zδ(X, t)

)
= σ(t + uδ, t) − 1

2σ(t + uδ, t − δ) − 1
2σ(t + uδ, t + δ)

= ω(t, t,0) − 1
2ω

(
t, t − δ, δκ) − 1

2ω
(
t, t + δ, δκ)

− c(t)δκ(|u|κ − 1
2

(|u + 1|κ − 1
) − 1

2

(|u − 1|κ − 1
)) + R3;c,u,δ,t(A.4)

= −c(t)δκ(|u|κ − 1
2 |u + 1|κ − 1

2 |u − 1|κ) + R4;c,u,δ,t ,(A.5)

where for some constants M3,c < ∞ and M4,c < ∞
sup

t∈[a+δ,b−δ]
R3;c,u,δ,t ≤ M3,c

(|u|1/2δ
)min{2κ,2}

,

sup
t∈[a+δ,b−δ]

R4;c,u,δ,t ≤ M4,cδ
min{2κ,2}
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hold for all u ∈ [−c, c]. Finally, Assumption 1 implies that there exists a constant
M5 < ∞ such that for all s ∈ [a, b] with |t − s| ≥ δ∣∣E(

X(s)Zδ(X, t)
)∣∣

= ∣∣ω(
s, t, |s − t |κ) − 1

2ω
(
s, t − δ, |s − t + δ|κ)

(A.6)
− 1

2ω
(
s, t + δ, |s − t − δ|κ)∣∣

≤
⎧⎪⎨⎪⎩M5

δ2

|t − s|2−κ
, if κ �= 1,

M5δ
2, if κ = 1.

It follows from (A.2), (A.5) and (A.6) that for arbitrary t ∈ (a, b) and any ε > 0
there exist a δε > 0 as well as a constant aε ≥ 1 such that for all δ ≤ δε∣∣E(

X(s)Zδ(X, t)
)∣∣ ≤ (1 + ε)E

(
X(t)Zδ(X, t)

)
for all s ∈ [a, b], s �= t,∣∣E(

X(s)Zδ(X, t)
)∣∣ ≤ ε ·E(

X(t)Zδ(X, t)
)

for all s ∈ [a, b], |s − t | ≥ aεδ.

Together with (A.3), the assertion of the theorem is an immediate consequence.
�

PROOF OF THEOREM 5. Let θ̂ij := 〈Xi, ψ̂j 〉, θij := 〈Xi,ψj 〉, and α̃j :=
〈β, ψ̂j 〉 for all i, j . Using empirical eigenfunctions, we obtain Xi = ∑n

j=1 θ̂ij ψ̂j

and
∫ b
a β(t)Xi(t) dt = ∑n

j=1 α̃j θ̂ij . Therefore,

Yi =
n∑

j=1

(
α̃j +

S∑
r=1

βrψ̂j (τr)

)
θ̂ij + εi,(A.7)

and for all possible values b1, . . . , bS and all a1, . . . , ak

k∑
j=1

aj θ̂ij +
S∑

r=1

brXi(τ̂r )

(A.8)

=
k∑

j=1

(
aj +

S∑
r=1

brψ̂j (τ̂r )

)
θ̂ij +

n∑
j=k+1

S∑
r=1

brψ̂j (τ̂r )θ̂ij

for all i = 1, . . . , n. By definition, λ̂j = 1
n

∑n
i=1 θ̂2

ij , j = 1, . . . , n, and for j �= l

the coefficients θ̂ij and θ̂il are empirically uncorrelated, that is,
∑n

i=1 θ̂ij θ̂il = 0. It
follows that for any given values b1, . . . , bS the values α̂(b)j , j = 1, . . . , k, mini-
mizing

∑n
i=1(Yi − ∑k

j=1 aj θ̂ij − ∑S
r=1 brXi(τ̂r ))

2 over all a1, . . . , ak are given by

α̂(b)j = α̃j + λ̂−1
j

1

n

n∑
i=1

θ̂ij εi +
S∑

r=1

(
βrψ̂j (τr) − brψ̂j (τ̂r )

)
,

(A.9)
j = 1, . . . , k.

Note that α̃j + λ̂−1
j

1
n

∑n
i=1 θ̂ij εi is identical to the estimate of αj to be obtained in

a standard functional linear regression model with no points of impact. Theorem 1
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of Hall and Horowitz (2007) thus implies that∫ b

a

(
β(t) −

k∑
j=1

(
α̃j + λ̂−1

j

1

n

n∑
i=1

θ̂ij εi

)
ψ̂j (t) dt

)2

dt

(A.10) = Op

(
n−(2ν−1)/(μ+2ν)).

Further analysis requires to analyze the differences between θij ,ψj and their em-
pirical counterparts θ̂ij , ψ̂j . By Assumptions 2–4 and k = O(n1/(μ+2ν)), Theorems
1 and 2 together with equation (2.8) of Hall and Hosseini-Nasab (2006) imply that
for any q = 1,2,3, . . . there exists some Aq,Bq < ∞ such that

E
(|λj − λ̂j |q) ≤ Aqn−q/2,

(A.11)
sup

t
E

(∣∣ψ̂j (t) − ψj(t)
∣∣) ≤ Bqn−q/2jq(μ+1), j = 1, . . . , k + 1

for all sufficiently large n. Let X
[k]
i := Xi −∑k

j=1 θ̂ij ψ̂j . Recall that λj = O(j−μ)

and note that by Assumptions 3 and 4, n−1/2n2/(μ+2ν) = o(n(−μ+1)/(μ+2ν)), while
n(−μ+1)/(μ+2ν) = O(σ [k](τr , τr)). By (A.11), we thus obtain for all t, s ∈ [a, b]

1

n

n∑
i=1

X
[k]
i (t)X

[k]
i (s)

= 1

n

n∑
i=1

Xi(t)Xi(s) −
k∑

j=1

λ̂j ψ̂j (t)ψ̂j (s)

= σ(t, s) −
k∑

j=1

λjψj (t)ψj (s) +
k∑

j=1

λj

(
ψj(t)ψj (s) − ψ̂j (t)ψ̂j (s)

)
(A.12)

+
k∑

j=1

(λj − λ̂j )ψ̂j (t)ψ̂j (s) + OP

(
n−1/2)

= σ [k](t, s) + OP

(
n−1/2n2/(μ+2ν))

= σ [k](t, s) + oP

(
n(−μ+1)/(μ+2ν)).

At the same time, (4.6) leads to

1

n

n∑
i=1

(
X

[k]
i (τr) − X

[k]
i (τ̂r )

)2

= 1

n

n∑
i=1

(
Xi(τr) − Xi(τ̂r )

)2 −
k∑

j=1

λ̂j

(
ψ̂j (τr) − ψ̂j (τ̂r )

)2(A.13)

≤ 1

n

n∑
i=1

(
Xi(τr) − Xi(τ̂r )

)2 = OP

(
n−1)
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for all r = 1, . . . , S. Expressions (A.12) and (A.13) together imply that for all r, s

1

n

n∑
i=1

X
[k]
i (τ̂r )X

[k]
i (τ̂s) = σ [k](τr , τs) + oP

(
n(−μ+1)/(μ+2ν)).(A.14)

Let X[k]
i := (X

[k]
i (τ̂1), . . . ,X

[k]
i (τ̂S))T and note that by (A.14) we have 1

n
×∑n

i=1 X[k]
i (X[k]

i )T = Mk + oP (n(−μ+1)/(μ+2ν)). By Assumption 4(b), we can con-

clude that with probability tending to 1 as n → ∞ the matrix 1
n

∑n
i=1 X[k]

i (X[k]
i )T

is invertible,

n(−μ+1)/(μ+2ν)

(
1

n

n∑
i=1

X[k]
i

(
X[k]

i

)T )−1

(A.15)
= n(−μ+1)/(μ+2ν)(Mk)

−1 + oP (1)

and hence by (A.7)–(A.9) the least squares estimator β̂ of β can be written in the
form

β̂ =
(

1

n

n∑
i=1

X[k]
i

(
X[k]

i

)T )−1

(A.16)

× 1

n

n∑
i=1

X[k]
i

(
S∑

r=1

βrX
[k]
i (τr ) +

n∑
j=k+1

α̃j θ̂ij + εi

)
.

By (A.13) and (A.14), we obtain

1

n

n∑
i=1

X[k]
i

S∑
r=1

βrX
[k]
i (τr)

(A.17)

= 1

n

n∑
i=1

X[k]
i

(
X[k]

i

)T
β + OP

(
n(−μ+1)/2(μ+2ν) · n−1/2)

.

The results of Hall and Horowitz (2007) imply that
∑n

j=k+1 α̃2
j =

OP (n−(2ν−1)/(μ+2ν)). The Cauchy–Schwarz inequality thus leads to∣∣∣∣∣1

n

n∑
i=1

X
[k]
i (τ̂r )

(
n∑

j=k+1

α̃j θ̂ij

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=k+1

α̃j λ̂j ψ̂j (τ̂r )

∣∣∣∣∣
(A.18)

≤
√√√√ n∑

j=k+1

λ̂j α̃
2
j

√√√√ n∑
j=k+1

λ̂j ψ̂j (τ̂r )2 ≤
√√√√λ̂k+1

n∑
j=k+1

α̃2
j

√√√√1

n

n∑
i=1

X
[k]
i (τ̂r )2

= OP

(
n−(μ+2ν−1)/2(μ+2ν) · n(−μ+1)/2(μ+2ν))
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for all r = 1, . . . , S. Furthermore, ψ̂j (t) = λ̂−1
j

1
n

∑n
i=1 θ̂ijXi(t), and hence the

Cauchy–Schwarz inequality yields

∣∣ψ̂j (τr) − ψ̂j (τ̂r )
∣∣ =

∣∣∣∣∣λ̂−1
j

1

n

n∑
i=1

θ̂ij

(
Xi(τr) − Xi(τ̂r )

)∣∣∣∣∣
(A.19)

≤ λ̂
−1/2
j

√√√√1

n

n∑
l=1

(
Xl(τr) − Xl(τ̂r )

)2
.

Now note that by the independence of θ̂ij and εi we have λ̂
−1/2
j

1
n

∑n
i=1 θ̂ij εi =

OP (n−1/2). By (4.7), it therefore follows from (A.19) that

1

n

n∑
i=1

(
X

[k]
i (τ̂r ) − X

[k]
i (τr )

)
εi

= 1

n

n∑
i=1

(
Xi(τ̂r ) − Xi(τr)

)
εi −

k∑
j=1

1

n

n∑
i=1

θ̂ij εi

(
ψ̂j (τ̂r ) − ψ̂j (τr)

)
= OP

(
(k + 1)n−1) = OP

(
n−(μ+2ν−1)/(μ+2ν)).

Using (A.12), it is immediately seen that 1
n

∑n
i=1 X

[k]
i (τr )εi = OP (n−1/2 ×

n(−μ+1)/2(μ+2ν)). Consequently,

1

n

n∑
i=1

X
[k]
i (τ̂r )εi = 1

n

n∑
i=1

X
[k]
i (τr)εi + 1

n

n∑
i=1

(
X

[k]
i (τ̂r ) − X

[k]
i (τr)

)
εi

(A.20)
= OP

(
n−1/2n(−μ+1)/2(μ+2ν)).

By Assumption 4(c), we can infer from (A.15) that the maximal eigenvalue
of the matrix ( 1

n

∑n
i=1 X[k]

i (X[k]
i )T )−1 can be bounded by λmax((

1
n

∑n
i=1 X[k]

i ×
(X[k]

i )T )−1) = OP (n(μ−1)/(μ+2ν)). It therefore follows from (A.16)–(A.20) that

β̂ = β + OP

(
n(μ−1)/(μ+2ν) · n(−μ+1)/2(μ+2ν) · n−(μ+2ν−1)/2(μ+2ν))

= β + OP

(
n−ν/(μ+2ν)).

This proves (5.4). Using (A.9), it follows that the least squares estimators α̂j of α̃j

are given by

α̂j = α̃j + λ̂−1
j

1

n

n∑
i=1

θ̂ij εi +
S∑

r=1

(βr − β̂r )ψ̂j (τr)

(A.21)

−
S∑

r=1

β̂r

(
ψ̂j (τ̂r ) − ψ̂j (τr)

)
, j = 1, . . . , k.



POINT IMPACT 29

But (A.11) and (5.4) imply that

k∑
j=1

(
S∑

r=1

(βr − β̂r )ψ̂j (τr)

)2

= OP

(
kn−2ν/(μ+2ν)) = OP

(
n−(2ν−1)/(μ+2ν)),(A.22)

while by (A.11) and (A.19)

k∑
j=1

(
ψ̂j (τr) − ψ̂j (τ̂r )

)2 ≤ k

λk

1

n

n∑
i=1

(
Xi(τr) − Xi(τ̂r )

)2 = OP

(
n−(2ν−1)/(μ+2ν)),

and therefore

k∑
j=1

(
S∑

r=1

β̂r

(
ψ̂j (τ̂r ) − ψ̂j (τr)

))2

= OP

(
n−(2ν−1)/(μ+2ν)).(A.23)

Assertion (5.5) now is an immediate consequence of (A.10) and (A.21)–(A.23).
�

SUPPLEMENTARY MATERIAL

Supplement to “Functional linear regression with points of impact” (DOI:
10.1214/15-AOS1323SUPP; .pdf). The supplementary document by Kneip, Poss
and Sarda (2015) contains three Appendices. An application to NIR data can be
found in Appendix A. In Appendix B, it is shown that the eigenfunctions of a
Brownian motion satisfy assertion 2.5 in Theorem 2. Appendix C provides the
proofs of Theorem 4 and Propositions 1 and 2.
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