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BOOTSTRAP CONFIDENCE SETS UNDER MODEL
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Berlin†, Moscow Institute of Physics and Technology‡, Institute for Information

Transmission Problems RAS§ and Higher School of Economics, Moscow¶

A multiplier bootstrap procedure for construction of likelihood-based
confidence sets is considered for finite samples and a possible model mis-
specification. Theoretical results justify the bootstrap validity for a small or
moderate sample size and allow to control the impact of the parameter dimen-
sion p: the bootstrap approximation works if p3/n is small. The main result
about bootstrap validity continues to apply even if the underlying paramet-
ric model is misspecified under the so-called small modelling bias condition.
In the case when the true model deviates significantly from the considered
parametric family, the bootstrap procedure is still applicable but it becomes
a bit conservative: the size of the constructed confidence sets is increased
by the modelling bias. We illustrate the results with numerical examples for
misspecified linear and logistic regressions.

1. Introduction. Since introducing in 1979 by Efron (1979), the bootstrap
procedure became one of the most powerful and common tools in statistical confi-
dence estimation and hypothesis testing. Many versions and extensions of the orig-
inal bootstrap method have been proposed in the literature; see, for example, Barbe
and Bertail (1995), Bücher and Dette (2013), Chatterjee and Bose (2005), Chen
and Pouzo (2009, 2015), Horowitz (2001), Janssen (1994), Lavergne and Patilea
(2013), Ma and Kosorok (2005), Mammen (1993), Newton and Raftery (1994),
Wu (1986) among many others. This paper focuses on the multiplier bootstrap pro-
cedure which attracted a lot of attention last time due to its nice theoretical prop-
erties and numerical performance. We mention the papers of Chatterjee and Bose
(2005), Arlot, Blanchard and Roquain (2010) and Chernozhukov, Chetverikov and
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Kato (2013) for the most advanced recent results. Chatterjee and Bose (2005)
showed some results on asymptotic bootstrap consistency in a very general frame-
work for estimators obtained by solving estimating equations. Chernozhukov,
Chetverikov and Kato (2013) presented a number of nonasymptotic results on
bootstrap validity with applications to special problems like testing many mo-
ment restrictions or parameter choice for a LASSO procedure. Arlot, Blanchard
and Roquain (2010) constructed a nonasymptotical confidence bound in �s -norm
(s ∈ [1,∞]) for the mean of a sample of high dimensional i.i.d. Gaussian vectors
(or with a symmetric and bounded distribution), using the generalized weighted
bootstrap for resampling of the quantiles.

This paper makes a further step in studying the multiplier bootstrap method
in the problem of confidence estimation by a quasi maximum likelihood method.
For a rather general parametric model, we consider likelihood-based confidence
sets with the radius determined by a multiplier bootstrap. The aim of the study
is to check the validity of the bootstrap procedure in situations with a growing
parameter dimension, a limited sample size, and a possible misspecification of
the parametric assumption. The main result of the paper explicitly describes the
error term of the bootstrap approximation. This particularly allows to track the
impact of the parameter dimension p and of the sample size n in the quality of the
bootstrap procedure. As one of the corollaries, we show bootstrap validity under
the constraint “p3/n-small.” Chatterjee and Bose (2005) stated results under the
condition “p/n-small” but their results only apply to low dimensional projections
of the MLE vector. In the likelihood-based approach, the construction involves the
Euclidean norm of the MLE which leads to completely different tools and results.
Chernozhukov, Chetverikov and Kato (2013) allowed a huge parameter dimension
with “log(p)/n small” but they essentially work with a family of univariate tests
which again differs essentially from the maximum likelihood approach.

Another interesting and important issue is the impact of the model misspecifi-
cation on the accuracy of bootstrap approximation. A surprising corollary of our
error bounds is that the bootstrap confidence set can be used even if the underlying
parametric model is slightly misspecified under the so-called small modelling bias
(SmB) condition. If the modelling bias becomes large, the bootstrap confidence
sets are still applicable, but they become more and more conservative. (SmB) con-
dition is given in Section 4 and it is consistent with classical bias–variance relation
in nonparametric estimation.

Our theoretical study uses the square-root Wilks (sq-Wilks) expansion from
Spokoiny (2012, 2013) which approximates the square root likelihood ratio statis-
tic by the norm of the standardized score vector. Further, we extend the sq-Wilks
expansion to the bootstrap log-likelihood and adopt the Gaussian approximation
theory (GAR) to the special case when the distribution of the Euclidean norm of a
non-Gaussian vector is approximated by the distribution of the norm of a Gaussian
one with the same first and second moments. The Gaussian comparison technique
based on the Pinsker inequality completes the study and allows to bridge the real
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unknown coverage probability and the conditional bootstrap coverage probability
under (SmB) condition. In the case of a large modelling bias, we state a one-sided
bound: the bootstrap quantiles are uniformly larger than the real ones. This effect
is nicely confirmed by our simulation study.

Now consider the problem and the approach in more detail. Let the data sample
Y = (Y1, . . . , Yn)

� consist of independent random observations and belong to the
probability space (�,F,P). We do not assume that the observations Yi are identi-
cally distributed; moreover, no specific parametric structure of P is being required.
In order to explain the idea of the approach we start here with a parametric case,
however, assumption (1.1) below is not required for the results. Let P belong to

some known regular parametric family {Pθ } def= {Pθ � μ0, θ ∈ � ⊂ R
p}. In this

case, the true parameter θ∗ ∈ � is such that

P ≡ Pθ∗ ∈ {Pθ },(1.1)

and the initial problem of finding the properties of unknown distribution P is re-
duced to the equivalent problem for the finite-dimensional parameter θ∗. The para-
metric family {Pθ } induces the log-likelihood process L(θ) of the sample Y,

L(θ) = L(Y, θ)
def= log

(
dPθ

dμ0
(Y)

)

and the maximum likelihood estimate (MLE) of θ∗,

θ̃
def= argmax

θ∈�

L(θ).(1.2)

The asymptotic Wilks phenomenon [Wilks (1938)] states that for the case of i.i.d.
observations with the sample size tending to the infinity the likelihood ratio statis-
tic converges in distribution to χ2

p/2, where p is the parameter dimension

2
{
L(̃θ) − L

(
θ∗)} w−→ χ2

p, n → ∞.

Define the likelihood-based confidence set as

E(z)
def= {

θ : L(̃θ) − L(θ) ≤ z2/2
}
,(1.3)

then the Wilks phenomenon implies

P
{
θ∗ ∈ E(zα,χ2

p
)
} → α, n → ∞,

where z2
α,χ2

p
is the (1 − α)-quantile for the χ2

p distribution. This result is very im-

portant and useful under the parametric assumption, that is, when (1.1) holds. In
this case, the limit distribution of the likelihood ratio is independent of the model
parameters or in other words it is pivotal. By this result, a sufficiently large sample
size allows to construct the confidence sets for θ∗ with a given coverage probabil-
ity. However, a possibly low speed of convergence of the likelihood ratio statistic
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makes the asymptotic Wilks result hardly applicable to the case of small or mod-
erate samples. Moreover, the asymptotical pivotality breaks down if the paramet-
ric assumption (1.1) does not hold [see Huber (1967)] and, therefore, the whole
approach may be misleading if the model is considerably misspecified. If the as-
sumption (1.1) does not hold, then the “true” parameter is defined by the projection
of the true measure P on the parametric family {Pθ }:

θ∗ def= argmax
θ∈�

EL(θ).(1.4)

The recent results by Spokoiny (2012, 2013) provide a nonasymptotic version of
square-root Wilks phenomenon for the case of misspecified model. It holds with
an exponentially high probability∣∣√2

{
L(̃θ) − L

(
θ∗)} − ‖ξ‖∣∣ ≤ �W � p√

n
,(1.5)

where ξ
def= D−1

0 ∇θL(θ∗), D2
0

def= −∇2
θEL(θ∗). The bound is nonasymptotical, the

approximation error term �W has an explicit form (the precise statement is given
in Theorem B.2, Section B.1 of the supplementary material [Spokoiny and Zhilova
(2015)], and it depends on the parameter dimension p, sample size n and the prob-
ability of the random set on which the result holds.

Due to this bound, the original problem of finding a quantile of the LR test
statistic L(̃θ)−L(θ∗) is reduced to a similar question for the approximating quan-
tity ‖ξ‖. The difficulty here is that in general ‖ξ‖ is nonpivotal, it depends on the
unknown distribution P and the target parameter θ∗.

In the present work, we study the multiplier bootstrap (or weighted bootstrap)
procedure for estimation of the quantiles of the likelihood ratio statistic. The idea
of the procedure is to mimic a distribution of the likelihood ratio statistic by
reweighing its summands with random multipliers independent of the data

L◦(θ)
def=

n∑
i=1

log
(

dPθ

dμ0
(Yi)

)
ui.

Here, the probability distribution is taken conditionally on the data Y, which is
denoted by the sign ◦ (also E

◦ and Var◦ denote expectation and variance operators
w.r.t. the probability measure conditional on Y). The random weights u1, . . . , un

are i.i.d., independent of Y and it holds for them: E
◦(ui) = 1, Var◦(ui) = 1,

E
◦ exp(ui) < ∞. Therefore, the multiplier bootstrap induces the probability space

conditional on the data Y. A simple but important observation is that E◦L◦(θ) ≡
L(θ), and hence,

argmax
θ

E
◦L◦(θ) = argmax

θ
L(θ) = θ̃ .

This means that the target parameter in the bootstrap world is precisely known and
it coincides with the maximum likelihood estimator θ̃ conditioned on Y, therefore,

the bootstrap likelihood ratio statistic L◦(̃θ◦
) − L◦(̃θ)

def= supθ∈� L◦(θ) − L◦(̃θ) is
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fully computable and leads to a simple computational procedure for the approxi-
mation of the distribution of L(̃θ) − L(θ∗).

The goal of the present study is to show in a nonasymptotic way the validity
of the described multiplier bootstrap procedure and to obtain an explicit bound on
the error of coverage probability. In other words, we are interested in nonasymp-
totic approximation of the distribution of {L(̃θ) − L(θ∗)}1/2 with the distribution
of {L◦(̃θ◦

) − L◦(̃θ)}1/2. So far there exist very few theoretical nonasymptotic re-
sults about bootstrap validity. Classical asymptotic tools for showing the bootstrap
consistency are based on weak convergence arguments which are not applicable in
the finite sample set-up. Some different methods have to be applied. In particular,
the approach of Liu (1988) based on Berry–Esseen theorem can be extended to a
finite sample set-up with a univariate parameter. For a high dimensional param-
eter space, important contributions are done in the recent papers by Arlot, Blan-
chard and Roquain (2010) and Chernozhukov, Chetverikov and Kato (2013). The
latter paper used a Gaussian approximation, Gaussian comparison and Gaussian
anti-concentration technique in high dimension. Our approach is similar but we
combine it with the square-root Wilks expansion and use Pinsker’s inequality for
Gaussian comparison and anti-concentration steps. The main steps of our theoret-
ical study are illustrated by the following scheme:

sq-Wilks Gauss.
theorem approx.

Y-world:
√

2L(̃θ) − 2L
(
θ∗) ≈

p/
√

n
‖ξ‖ w≈

(p3/n)1/8
‖ξ‖
w ≈ √pδ2

smb

Gauss.
compar.

Bootstrap
world:

√
2L◦(̃θ◦) − 2L◦(̃θ) ≈

p/
√

n

∥∥ξ◦∥∥ w≈
(p3/n)1/8

∥∥ξ◦∥∥
(1.6)

where

ξ◦ def= ξ◦(θ∗) def= D−1
0 ∇θ

[
L◦(θ∗) −E

◦L◦(θ∗)]
.

The vectors ξ and ξ
◦

are zero mean Gaussian and they mimic the covariance struc-
ture of the vectors ξ and ξ◦: ξ ∼ N(0,Var ξ), ξ

◦ ∼ N(0,Var◦ ξ◦).
The error term shown below each arrow corresponds to the i.i.d. case consid-

ered in details in Section 4.4. The upper line of the scheme corresponds to the
Y-world, the lower line—to the bootstrap world. In both lines, we apply two steps
for approximating the corresponding likelihood ratio statistics. The first approxi-
mating step is the nonasymptotic square-root Wilks theorem: the bound (1.5) for
the Y-case and a similar statement for the bootstrap world, which is obtained in
Theorem B.4, Section B.2 in Spokoiny and Zhilova (2015). The corresponding er-
ror is of order p/

√
n for the case of i.i.d. observations; in the bootstrap world the

square-root Wilks expansion implies∣∣√2L◦(̃θ◦) − 2L◦(̃θ) − ∥∥ξ◦(̃θ)
∥∥∣∣ ≤ Cp/

√
n
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for ξ◦(θ)
def= D−1

0 ∇θ [L◦(θ) − E
◦L◦(θ)]. In our approximation diagram, we use

ξ◦(θ∗) instead of ξ◦(̃θ) which is more convenient for the GAR step and is justified
by Lemma B.7 in Spokoiny and Zhilova (2015) showing that ‖ξ◦(̃θ) − ξ◦(θ∗)‖ ≤
Cp/

√
n.

The next step is called Gaussian approximation (GAR) which means that the
distribution of the Euclidean norm ‖ξ‖ of a centered random vector ξ is close to the
distribution of the similar norm of a Gaussian vector ‖ξ‖ with the same covariance
matrix as ξ . A similar statement holds for the vector ξ◦. Thus, the initial problem of
comparing the distributions of the likelihood ratio statistics is reduced to the com-
parison of the distributions of the Euclidean norms of two centered normal vectors
ξ and ξ

◦
(Gaussian comparison). This last step links their distributions and en-

closes the approximating scheme. The Gaussian comparison step is done by com-
puting the Kullback–Leibler divergence between two multivariate Gaussian distri-
butions [i.e., by comparison of the covariance matrices of ∇θL(θ∗) and ∇θL

◦(θ∗)]
and applying Pinsker’s inequality [Lemma A.7 in Spokoiny and Zhilova (2015)].
At this point, we need to introduce the “small modelling bias” condition (SmB)

from Section 4.2. It is formulated in terms of the following nonnegative-definite
p × p symmetric matrices:

H 2
0

def=
n∑

i=1

E
[∇θ�i

(
θ∗)∇θ�i

(
θ∗)�]

,(1.7)

B2
0

def=
n∑

i=1

E
[∇θ�i

(
θ∗)]

E
[∇θ�i

(
θ∗)]�(1.8)

for �i(θ)
def= log(

dPθ
dμ0

(Yi)), so that Var{∇θL(θ∗)} = H 2
0 − B2

0 . If the parametric as-
sumption (1.1) is true or if the data Y are i.i.d., then it holds E[∇θ�i(θ

∗)] ≡ 0
and B2

0 = 0. The (SmB) condition roughly means that the bias term B2
0 is small

relative to H 2
0 . Below we show that the Kullback–Leibler distance between the

distributions of two Gaussian vectors ξ and ξ
◦

is bounded by p‖H−1
0 B2

0H−1
0 ‖2/2.

The (SmB) condition precisely means that this quantity is small [in scheme (1.6)
it is denoted by

√
pδ2

smb]. In Section 4.3, the value ‖H−1
0 B2

0H−1
0 ‖ is evaluated for

some commonly used models: the case of i.i.d. observations, generalized linear
model and linear quantile regression. Below we distinguish between two situa-
tions: when the condition (SmB) is fulfilled and the opposite case. Theorems 2.1
and 2.2 in Section 2 deal with the first case. It provides the cumulative error term
for the coverage probability of the confidence set (1.3), taken at the (1 − α)-
quantile computed with the multiplier bootstrap procedure. The proof of this re-
sult [see Section B.4 in Spokoiny and Zhilova (2015)] summarizes the steps of
scheme (1.6). The biggest term in the full error is induced by Gaussian approxi-
mation and requires the ratio p3/n to be small. In the case of a “large modelling
bias,” that is, when (SmB) does not hold, the multiplier bootstrap procedure con-
tinues to apply. It turns out that the bootstrap quantiles increase with the growing
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modelling bias; hence, the confidence set based on it remains valid, however, it
may become conservative. This result is given in Theorem 2.5 of Section 2. The
problems of Gaussian approximation and comparison for the Euclidean norm are
considered in Sections A.2 and A.4 of the supplementary material [Spokoiny and
Zhilova (2015)] in general terms independently of the statistical setting of the pa-
per, and might be interesting by themselves. Section A.4 in Spokoiny and Zhilova
(2015) presents also an anti-concentration inequality for the Euclidean norm of a
Gaussian vector. This inequality shows how the deviation probability changes with
a threshold. The general results on GAR are summarized in Theorem A.1 in the
supplementary material [Spokoiny and Zhilova (2015)] and restated in Proposi-
tion B.12 in Spokoiny and Zhilova (2015) for the setting of scheme (1.6). These
results are also nonasymptotic with explicit errors and apply under the condition
that the ratio p3/n to be small.

In Theorem 2.4, we consider the case of a scalar parameter p = 1 with an im-
proved error term. Furthermore, in Section 2.2 we propose a modified version of
a quantile function based on a smoothed probability distribution. In this case, the
obtained error term is also better than in the general result.

Notation: ‖ · ‖ denotes Euclidean norm for vectors and spectral norm for ma-
trices; C is a generic constant. The value x > 0 describes our tolerance level: all
the results will be valid on a random set of probability (1 − Ce−x) for an explicit
constant C. Everywhere we give explicit error bounds and show how they depend
on p and n for the case of the i.i.d. observations Y1, . . . , Yn and x≤ C logn. More
details on it are given in Section 4.4. In Section B.3 in the supplementary material
[Spokoiny and Zhilova (2015)], we also consider generalized linear model and lin-
ear quantile regression, and show for them the dependence on p and n of all the
values appearing in main results and their conditions.

The paper is organized as follows: the main results are stated in Section 2.
Their proofs are given in Sections B.4, B.5 and B.6 of the supplementary mate-
rial [Spokoiny and Zhilova (2015)]. Section 3 contains numerical results for mis-
specified linear and logistic regressions. In Section 4, we give all the required
conditions, provide information about dependence of the involved terms on n and
p and consider the (SmB) condition for some models. Section A in Spokoiny and
Zhilova (2015) collects some useful statements on Gaussian approximation and
Gaussian comparison.

2. Multiplier bootstrap procedure. Let �i(θ) denote the parametric log-
density of the ith observation

�i(θ)
def= log

(
dPθ

dμ0
(Yi)

)
,

then L(θ) = ∑n
i=1 �i(θ). Consider i.i.d. scalar random variables ui independent

of Y with Eui = 1, Varui = 1, E exp(ui) < ∞ for all i = 1, . . . , n. Multiply the
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summands of the likelihood function L(θ) with the new random variables

L◦(θ)
def=

n∑
i=1

�i(θ)ui,

then it holds E
◦L◦(θ) = L(θ), where E

◦ stands for the conditional expectation
given Y. Therefore, the quasi MLE for the Y-world is a target parameter for the
bootstrap world:

argmax
θ∈�

E
◦L◦(θ) = argmax

θ∈�

L(θ) = θ̃ .

The corresponding quasi MLE under the conditional measure P
◦ is defined as

θ̃
◦ def= argmax

θ∈�

L◦(θ).

The likelihood ratio statistic in the bootstrap world is equal to L◦(̃θ◦
) − L◦(̃θ) in

which all the entries are known including the function L◦(θ) and the arguments
θ̃

◦
, θ̃ .
Let 1 − α ∈ (0,1) be an unknown desirable confidence level of the set E(z):

P
(
θ∗ ∈ E(z)

) ≥ 1 − α.(2.1)

Here, the parameter z ≥ 0 determines the size of the confidence set. Define zα as
the minimal possible value of z such that (2.1) is fulfilled:

zα
def= inf

{
z≥ 0:P

(
L(̃θ) − L

(
θ∗)

> z2/2
) ≤ α

}
.(2.2)

For evaluating this value, we apply the multiplier bootstrap procedure which re-
places the unknown data distribution with the artificial bootstrap distribution given
the observed sample. The target value zα is approximated by the value z◦α defined
as the upper α-quantile of {2L◦(̃θ◦

) − 2L◦(̃θ)}1/2:

z◦α
def= inf

{
z ≥ 0:P◦(L◦(̃θ◦) − L◦(̃θ) > z2/2

) ≤ α
}
.(2.3)

Note that the bootstrap probability P
◦ and log-likelihood excess L◦(̃θ◦

) − L◦(̃θ)

depends on the data Y and thus, z◦α is random as well. Theoretical results of the
next section justify the proposed approach.

2.1. Main results. Now we state the main results for the general set-up. The
approximating error terms and the conditions are specified in Section B.3 of the
supplementary material [Spokoiny and Zhilova (2015)] for popular examples in-
cluding i.i.d. observations, generalized regression model and linear quantile regres-
sion. Our first result claims that the random quantity P

◦(L◦(̃θ◦
) − L◦(̃θ) > z2/2)

is close in probability to the value P(L(̃θ) − L(θ∗) > z2/2) for a wide range of
z-values.
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THEOREM 2.1. Let the conditions of Section 4 be fulfilled, then it holds for
z ≥ max{2,

√
p} + C(p + x)/

√
n with probability ≥ 1 − 12e−x:∣∣P(

L(̃θ) − L
(
θ∗)

> z2/2
) − P

◦(L◦(̃θ◦) − L◦(̃θ) > z2/2
)∣∣ ≤ �full.

The error term �full ≤ C{(p+x)3/n}1/8 in the case of i.i.d. model; see Section 4.4.
Explicit definition of the error term �full is given in Section B.4 of the supplemen-
tary material [Spokoiny and Zhilova (2015)]; see (B.41) and (B.42) therein.

The term �full can be viewed as a sum of the error terms corresponding to
each step in the scheme (1.6). The largest error term equal to C{(p + x)3/n}1/8 is
induced by GAR. This error rate is not always optimal for GAR, for example, in
the case of p = 1 or for the i.i.d. observations [see Remark A.2 in Spokoiny and
Zhilova (2015)]. In Theorems 2.4 and 2.6, the rate is C{(p + x)3/n}1/2.

The next result can be viewed as “bootstrap validity.”

THEOREM 2.2 (Validity of the bootstrap under a small modelling bias). As-
sume the conditions of Theorem 2.1. Then for α ≤ 1 − 8e−x, it holds∣∣P(

L(̃θ) − L
(
θ∗)

>
(
z◦α

)2
/2

) − α
∣∣ ≤ �z,full.

The error term �z,full ≤ C{(p + x)3/n}1/8 in the case of the i.i.d. model; see Sec-
tion 4.4. For a precise description, see (B.46) and (B.47) of the supplementary
material [Spokoiny and Zhilova (2015)].

In view of definition (1.3) of the likelihood-based confidence set, Theorem 2.1
implies the following:

COROLLARY 2.3 (Coverage probability error). Under the conditions of The-
orem 2.2, it holds that ∣∣P{

θ∗ ∈ E(z◦α)
} − (1 − α)

∣∣ ≤ �z,full.

REMARK 2.1 (Critical dimension). The error term �full depends on the ra-
tio p3/n. The bootstrap validity can be only stated if this ratio is small. The ob-
tained error bound seems to be mainly of theoretical interest, because the condition
“(p3/n)1/8 is small” may require a huge sample. However, it provides some quali-
tative information about the bootstrap behavior as the parameter dimension grows.
Our numerical results show that the accuracy of bootstrap approximation is very
reasonable in a variety of examples with p � n.

In the following theorem, we consider the case of the scalar parameter p = 1.
The obtained error rate is 1/

√
n, which is sharper than 1/n1/8. Instead of the GAR

for the Euclidean norm from Section A in Spokoiny and Zhilova (2015), we use
here the Berry–Esseen theorem [see also Remark A.2 in Spokoiny and Zhilova
(2015)].
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THEOREM 2.4 (The case of p = 1, using the Berry–Esseen theorem). Let the
conditions of Section 4 be fulfilled.

1. For z ≥ 1 + C(1 + x)/
√

n, it holds with probability ≥ 1 − 12e−x∣∣P(
L(̃θ) − L

(
θ∗)

> z2/2
) − P

◦(L◦(̃θ◦) − L◦(̃θ) > z2/2
)∣∣ ≤ �B.E.,full.

2. For α ≤ 1 − 8e−x∣∣P(
L(̃θ) − L

(
θ∗)

>
(
z◦α

)2
/2

) − α
∣∣ ≤ �B.E. z,full.

The error terms �B.E.,full,�B.E. z,full ≤ C(1 + x)/
√

n in the case 4.4. Explicit def-
initions of �B.E.,full is given in (B.48) and (B.49) in Section B.4 of the supplemen-
tary material [Spokoiny and Zhilova (2015)].

REMARK 2.2 (Bootstrap validity and weak convergence). The standard way
of proving the bootstrap validity is based on weak convergence arguments; see, for
example, Mammen (1992), van der Vaart and Wellner (1996), Janssen and Pauls
(2003), Chatterjee and Bose (2005). If the statistic L(̃θ)−L(θ∗) weakly converges
to a χ2-type distribution, one can state an asymptotic version of the results of The-
orems 2.1, 2.4. Our way is based on a kind of nonasymptotic Gaussian approxima-
tion and Gaussian comparison for random vectors and allows to get explicit error
terms.

REMARK 2.3 (Use of Edgeworth expansion). The classical results on confi-
dence sets for the mean of population states the accuracy of order 1/n based on
the second-order Edgeworth expansion; see Hall (1992). Unfortunately, if the con-
sidered parametric model can be misspecified, even the leading term is affected by
the modelling bias, and the use of Edgeworth expansion cannot help in improving
the bootstrap accuracy.

REMARK 2.4 (Choice of the weights). In our construction, similarly to
Chatterjee and Bose (2005), we apply a general distribution of the bootstrap
weights ui under some moment conditions. One particularly can use Gaussian
multipliers as suggested by Chernozhukov, Chetverikov and Kato (2013). This
leads to the exact Gaussian distribution of the vectors ξ◦ and is helpful to avoid
one step of Gaussian approximation for these vectors.

REMARK 2.5 (Skipping the Gaussian approximation step). The biggest er-
ror term C{(p + x)3/n}1/8 in Theorem 2.1 is induced by the Gaussian approx-
imation step. In some particular cases, the Gaussian approximation step can be
avoided leading to better error bounds. For example, if the marginal score vectors
∇θ�i(θ

∗) are normally distributed, and the random bootstrap weights are normal
as well, ui ∼ N(1,1), then the vectors ξ and ξ◦ are automatically normal, and the
GAR step can be skipped. If the marginal score vectors ∇θ�i(θ

∗) are i.i.d. and



BOOTSTRAP CONFIDENCE SETS 2663

symmetrically distributed [s.t. ∇θ�i(θ
∗) ∼ −∇θ�i(θ

∗)], and the centered bootstrap
weights follow the Rademacher distribution [ui ∼ 2 Bernoulli(0.5)], then the re-
cent results by Arlot, Blanchard and Roquain (2010) can be applied to show that
the conditional distribution of ‖ξ◦(θ∗)‖ given the data is close to the distribution
of ‖ξ‖. However, such methods require some special structural conditions on the
underlying measure P like symmetricity or Gaussianity of the errors and may fail
if these conditions are violated. It remains a challenging question how a nice per-
formance of a general bootstrap procedure even for small or moderate samples can
be explained.

Now we discuss the impact of modelling bias, which comes from a possible
misspecification of the parametric model. As explained by the approximating dia-
gram (1.6), the distance between the distributions of the likelihood ratio statistics
can be characterized via the distance between two multivariate normal distribu-
tions. To state the result, let us recall the definition of the full Fisher information

matrix D2
0

def= −∇2
θEL(θ∗). For the matrices H 2

0 and B2
0 , given in (1.7) and (1.8), it

holds H 2
0 > B2

0 ≥ 0. If the parametric assumption (1.1) is true or in the case of an
i.i.d. sample Y, B2

0 = 0. Under the condition (SmB) ‖H−1
0 B2

0H−1
0 ‖ enters linearly

in the error term �full in Theorem 2.1.
The first statement in Theorem 2.5 below says that the effective coverage proba-

bility of the confidence set based on the multiplier bootstrap is larger than the nom-
inal coverage probability up to the error term �b,full ≤ C{(p + x)3/n}1/8. The in-
equalities in the second part of Theorem 2.5 prove the conservativeness of the boot-

strap quantiles: the quantity
√

tr{D−1
0 H 2

0 D−1
0 }−

√
tr{D−1

0 (H 2
0 − B2

0 )D−1
0 } ≥ 0 in-

creases with the growing modelling bias.

THEOREM 2.5 (Performance of the bootstrap for a large modelling bias). Un-
der the conditions of Section 4 except for (SmB), it holds for z ≥ max{2,

√
p} +

C(p + x)/
√

n with probability ≥ 1 − 14e−x:

1.

P
(
L(̃θ) − L

(
θ∗)

> z2/2
) ≤ P

◦(L◦(̃θ◦) − L◦(̃θ) > z2/2
) + �b,full.

2.

z◦α ≥ z(α+�b,full)

+
√

tr
{
D−1

0 H 2
0 D−1

0

} −
√

tr
{
D−1

0

(
H 2

0 − B2
0

)
D−1

0

} − �qf,1,

z◦α ≤ z(α−�b,full)

+
√

tr
{
D−1

0 H 2
0 D−1

0

} −
√

tr
{
D−1

0

(
H 2

0 − B2
0

)
D−1

0

} + �qf,2.

The term �b,full ≤ C{(p+x)3/n}1/8 is given in (B.51) in Section B.5 of the supple-
mentary material [Spokoiny and Zhilova (2015)]. The positive values �qf,1,�qf,2
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are given in (B.55), (B.54) in Section B.5 in Spokoiny and Zhilova (2015); they are
bounded from above with (a2 + a2

B)(
√

8xp + 6x) for the constants a2 > 0,a2
B ≥ 0

from conditions (I), (IB).

REMARK 2.6. There exists some literature on robust (and heteroscedastic-
ity robust) bootstrap procedures; see, for example, Mammen (1993), Aerts and
Claeskens (2001), Kline and Santos (2012). However, to our knowledge there are
no robust bootstrap procedures for the likelihood ratio statistic, most of the results
compare the distribution of the estimator obtained from estimating equations, or
Wald/score test statistics with their bootstrap counterparts in the i.i.d. setup. In our
context, this would correspond to the noise misspecification in the log-likelihood
function and it is addressed automatically by the multiplier bootstrap. Our notion
of modelling bias includes the situation when the target value θ∗ from (1.4) only
defines a projection (the best parametric fit) of the data distribution. In particularly,
the quantities E∇θ�i(θ

∗) for different i do not necessarily vanish yielding a signif-
icant modelling bias. Similar notion of misspecification is used in the literature on
Generalized Method of Moments; see, for example, Hall (2005). Chapter 5 therein
considers the hypothesis testing problem with two kinds of misspecification: lo-
cal and nonlocal, which would correspond to our small and large modelling bias
cases.

An interesting message of Theorem 2.5 is that the multiplier bootstrap pro-
cedure ensures a prescribed coverage level for this target value θ∗ even without
small modelling bias restriction; however, in this case, the method is somehow
conservative because the modelling bias is transferred into the additional variance
in the bootstrap world. The numerical experiments in Section 3 agree with this
result.

2.2. Smoothed version of a quantile function. This section explains how to im-
prove the accuracy of bootstrap approximation using a smoothed quantile function.

The (1 − α)-quantile of
√

2L(̃θ) − 2L(θ∗) is defined as

zα
def= inf

{
z≥ 0:P

(
L(̃θ) − L

(
θ∗)

> z2/2
) ≤ α

}
= inf

{
z≥ 0:E1

{
L(̃θ) − L

(
θ∗)

> z2/2
} ≤ α

}
.

Introduce for x ≥ 0 and z,� > 0 the following function:

g�(x, z)
def= g

(
1

2�z

(
x2 − z2))

,(2.4)

where g(x) is a three times differentiable nonnegative function, and grows
monotonously from 0 to 1, g(x) = 0 for x ≤ 0 and g(x) = 1 for x ≥ 1, therefore,

1{x > 1} ≤ g(x) ≤ 1{x > 0} ≤ g(x + 1).
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An example of such function is given in (A.8) in Spokoiny and Zhilova (2015). It
holds

1{x − z > �} ≤ g�(x, z) ≤ 1(x − z > 0) ≤ g�(x, z + �).

This approximation is used in the proofs of Theorems 2.1, 2.2 and 2.5 in the part of
Gaussian approximation of Euclidean norm of a sum of independent vectors [see
Section A.2 in Spokoiny and Zhilova (2015)] yielding the error rate (p3/n)1/8 in
the final bound [Theorems 2.1, 2.2 and A.1 in Spokoiny and Zhilova (2015)]. The
next result shows that the use of a smoothed quantile function helps to improve the
accuracy of bootstrap approximation: it becomes (p3/n)1/2 instead of (p3/n)1/8.
The reason is that we do not need to account for the error induced by a smooth
approximation of the indicator function.

THEOREM 2.6 [Validity of the bootstrap in the smoothed case under (SmB)

condition]. Let the conditions of Section 4 be fulfilled. It holds for z ≥
max{2,

√
p} + C(p + x)/

√
n and � ∈ (0,0.22] with probability ≥ 1 − 12e−x:

∣∣Eg�

(√
2L(̃θ) − 2L

(
θ∗)

, z
) −E

◦g�

(√
2L◦(̃θ◦) − 2L◦(̃θ), z

)∣∣ ≤ �sm,

where �sm ≤ C{(p + x)3/n}1/2�−3 in the case 4.4. An explicit definition of �sm
is given in (B.59), (B.60) in Section B.6 of the supplementary material [Spokoiny
and Zhilova (2015)].

The modified bootstrap quantile function reads as

z◦�,α
def= min

{
z≥ 0:E◦g�

(√
2L◦(̃θ◦) − 2L◦(̃θ), z

) ≤ α
}
.

3. Numerical results. This section illustrates the performance of the multi-
plier bootstrap for some artificial examples. We especially aim to address the issues
of noise misspecification and of increasing modelling bias. It should be mentioned
that the obtained results are nicely consistent with the theoretical statements.

In all the experiments, we took 104 data samples for estimation of the empirical

c.d.f. of
√

2L(̃θ) − 2L(θ∗), and 104 {u1, . . . , un} samples for each of the 104 data

samples for the estimation of the quantiles of
√

2L◦(̃θ◦
) − 2L◦(̃θ).

3.1. Computational error. Here, we check numerically how well the multi-
plier procedure works in the case of the correct model. Here, the modelling bias
term ‖H−1

0 B2
0H−1

0 ‖ from the (SmB) condition equals to zero by its definition.
Let the data come from the following model: Yi = 	�

i θ0 + εi , for i = 1, . . . , n,

where εi ∼ N (0,1), 	i
def= (1,Xi,X

2
i , . . . ,X

p−1
i )�, the design points X1, . . . ,Xn

are equidistant on [0,1], and the parameter vector θ0 = (1, . . . ,1)� ∈ R
p . The

true likelihood function is L(θ) = −∑n
i=1(Yi − 	�

i θ)2/2. In this experiment, we
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TABLE 1
Coverage probabilities for the correct model

Confidence levels

n p L(ui) 0.99 0.95 0.90 0.85 0.80 0.75

50 1 2 Bernoulli(0.5) 0.986 0.942 0.892 0.838 0.792 0.745
N (1,1) 0.988 0.945 0.895 0.847 0.803 0.751
exp(1) 0.988 0.942 0.885 0.833 0.784 0.729

50 3 2 Bernoulli(0.5) 0.984 0.938 0.885 0.838 0.788 0.736
N (1,1) 0.994 0.949 0.897 0.844 0.789 0.736
exp(1) 0.984 0.917 0.835 0.776 0.707 0.650

50 10 2 Bernoulli(0.5) 0.975 0.923 0.866 0.813 0.764 0.715
N (1,1) 0.996 0.950 0.877 0.780 0.721 0.644
exp(1) 0.952 0.827 0.710 0.617 0.541 0.473

consider three cases: the scalar parameter p = 1, and the multivariate parameter
p = 3,10.

Table 1 shows the effective coverage probabilities of the quantiles estimated
using the multiplier bootstrap. The second line contains the range of the nomi-
nal confidence levels: 0.99, . . . ,0.75. The first left column shows the sample size
n and the second column—the parameter’s dimension p. The third left column
describes the distribution of the bootstrap weights: 2 Bernoulli(0.5), N (1,1) or
exp(1). Below its second line, the table contains the frequencies of the event: “the
real likelihood ratio ≤ the quantile of the bootstrap likelihood ratio.”

3.2. Linear regression with misspecified heteroscedastic errors. Here, we
show on a linear regression model that the quality of the confidence sets ob-
tained by the multiplier bootstrap procedure is not significantly deteriorated by
misspecified heteroscedastic errors. Let the data be defined as Yi = 	�

i θ0 + σiεi ,
i = 1, . . . , n. The i.i.d. random variables εi ∼ Laplace(0,2−1/2) are s.t. E(εi) = 0,

Var(εi) = 1. The coefficients σi are deterministic: σi
def= 0.5{4 − i(mod 4)}. The

regressors 	i are the same as in the experiment 3.1. The quasi-likelihood func-
tion is also the same as in the previous section: L(θ) = −∑n

i=1(Yi − 	�
i θ)2/2,

and it is misspecified, since it corresponds to σiεi ∼ N (0,1). The target point
θ∗ = θ0, therefore, the modelling bias term ‖H−1

0 B2
0H−1

0 ‖ from the (SmB) con-
dition equals to zero.

Here, we also consider three different parameter’s dimensions: p = 1,3,10 with
θ0 = (1, . . . ,1)� ∈R

p . Table 2 describes the second experiment’s results similarly
to the Table 1.

One can see from the Tables 1 and 2 that the bootstrap procedure does a good
job even for small or moderate samples like 50 or 100 if the parameter dimension
is not too large. The results are stable w.r.t. the noise misspecification.
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TABLE 2
Coverage probabilities for case of misspecified heteroscedastic noise

Confidence levels

n p L(ui) 0.99 0.95 0.90 0.85 0.80 0.75

50 1 2 Bernoulli(0.5) 0.988 0.947 0.896 0.849 0.799 0.752
N (1,1) 0.990 0.949 0.893 0.844 0.794 0.746
exp(1) 0.989 0.941 0.881 0.825 0.770 0.714

50 3 2 Bernoulli(0.5) 0.984 0.937 0.885 0.834 0.788 0.739
N (1,1) 0.996 0.955 0.897 0.839 0.780 0.722
exp(1) 0.988 0.924 0.846 0.765 0.701 0.634

50 10 2 Bernoulli(0.5) 0.976 0.927 0.870 0.815 0.765 0.715
N (1,1) 0.998 0.959 0.891 0.810 0.731 0.655
exp(1) 0.967 0.850 0.726 0.630 0.552 0.479

100 10 2 Bernoulli(0.5) 0.985 0.935 0.885 0.833 0.781 0.733
N (1,1) 0.998 0.970 0.917 0.857 0.786 0.723
exp(1) 0.989 0.921 0.826 0.741 0.663 0.591

The Rademacher and Gaussian weights demonstrate nearly the same nice per-
formance while the procedure with exponential weights tends to underestimate
the real quantiles. This effect becomes especially prominent when the parameter
dimension grows to 10.

3.3. Biased constant regression with misspecified errors. In the third experi-
ment, we consider biased regression with misspecified i.i.d. errors:

Yi = β sin(Xi) + εi, εi ∼ Laplace
(
0,2−1/2)

, i.i.d.,

Xi are equidistant in [0,2π ].
Taking the likelihood function L(θ) = −∑n

i=1(Yi − θ)2/2 yields θ∗ = 0. There-
fore, the larger is the deterministic amplitude β > 0, the bigger is bias of the mean
constant regression. The (SmB) condition reads as

∥∥H−1
0 B2

0H−1
0

∥∥ = 1 −
∑n

i=1 VarYi

β2 ∑n
i=1 sin2(Xi) + ∑n

i=1 VarYi

= 1 − 1

β2(n − 1)/2n + 1

≤ 1/
√

n.

Consider the sample size n = 50, and two cases: β = 0.25 with fulfilled (SmB)

condition and β = 1.25 when (SmB) does not hold. Table 3 shows that for the
large bias quantiles yielded by the multiplier bootstrap are conservative. This con-
servative property of the multiplier bootstrap quantiles is also illustrated with the
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TABLE 3
Coverage probabilities for the noise-misspecified biased regression

Confidence levels

n L(ui) β 0.99 0.95 0.90 0.85 0.80 0.75

50 N (1,1) 0.25 0.98 0.94 0.89 0.84 0.79 0.74
1.25 1.0 0.99 0.97 0.94 0.91 0.87

graphs in Figure 1. They show the empirical distribution functions of the likeli-
hood ratio statistics L(̃θ)−L(θ∗) and L◦(̃θ◦

)−L◦(̃θ) for β = 0.25 and β = 1.25.
On the right graph for β = 1.25 the empirical distribution functions for the boot-
strap case are smaller than the one for the Y case. It means that for the large bias
the bootstrap quantiles are bigger than the Y quantiles, which increases the di-
ameter of the confidence set based on the bootstrap quantiles. This confidence set
remains valid, since it still contains the true parameter with a given confidence
level.

Figure 2 shows the growth of the difference between the quantiles of L◦(̃θ◦
) −

L◦(̃θ) and L(̃θ) − L(θ∗) with increasing β for the range of the confidence levels:
0.75,0.8, . . . ,0.99.

3.4. Logistic regression with bias. In this example, we consider logistic re-
gression. Let the data come from the following distribution:

Yi ∼ Bernoulli(βXi), Xi are equidistant in [0,2], β ∈ (0,1/2].

Yi = 0.25 sin(Xi) + Lap(0,2−1/2), n = 50 Yi = 1.25 sin(Xi) + Lap(0,2−1/2), n = 50

FIG. 1. Empirical distribution functions of the likelihood ratios. Empirical distribution func-
tion of L(̃θ) − L(θ∗) estimated with 104 Y samples. 50 empirical distribution functions of
L◦(̃θ◦

) − L◦(̃θ) estimated with 104{ui} ∼ exp(1) samples.
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FIG. 2. The difference (“Bootstrap quantile”−“Y-quantile”) growing with modelling bias.

Consider the likelihood function corresponding to the i.i.d. observations

L(θ) =
n∑

i=1

{
Yiθ − log

(
1 + eθ )}

.

By definition (1.4) θ∗ = log{β/(1 − β)}, bigger values of β induce larger mod-
elling bias. Indeed, the (SmB) condition reads as

∥∥H−1
0 B2

0H−1
0

∥∥ = β2 ∑n
i=1(Xi − 1)2

nβ2 + β(1 − 2β)
∑n

i=1 Xi

= β

1 − β
· n + 1

3(n − 1)

≤ 1/
√

n.

The graphs on Figure 3 demonstrate the conservativeness of bootstrap quantiles.
Here, we consider two cases: β = 0.1 and β = 0.5. Similarly to the Example 3.3
in the case of the bigger β on the right graph of Figure 3, the empirical distribution
functions of L◦(̃θ◦

) − L◦(̃θ) are smaller than the one for L(̃θ) − L(θ∗).

4. Conditions. Here, we state the conditions required for the main results.
The conditions in Section 4.1 come from the general finite sample theory by
Spokoiny (2012). They are required for the results of Sections B.1 and B.2 in the
supplementary material [Spokoiny and Zhilova (2015)]. The conditions in Sec-
tion 4.2 are necessary to prove the results on multiplier bootstrap from Section 2.
In Section B.3 in Spokoiny and Zhilova (2015), we consider these conditions in
detail for several examples: i.i.d. observations, generalized linear model and linear
quantile regression.
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Yi ∼ Bernoulli(0.1Xi),n = 50 Yi ∼ Bernoulli(0.5Xi),n = 50

FIG. 3. Empirical distribution functions of the likelihood ratios for logistic regression. Em-
pirical distribution function of L(̃θ) − L(θ∗) estimated with 104 Y samples. 50 empirical dis-
tribution functions of L◦(̃θ◦

) − L◦(̃θ) estimated with 104{ui} ∼ exp(1) samples.

4.1. Basic conditions. Introduce the stochastic part of the likelihood process:

ζ(θ)
def= L(θ) −EL(θ), and its marginal summand: ζi(θ)

def= �i(θ) −E�i(θ).

(ED0) There exist a positive-definite symmetric matrix V 2
0 and constants g>

0, ν0 ≥ 1 such that Var{∇θζ(θ∗)} ≤ V 2
0 and

sup
γ∈Rp

logE exp
{
λ
γ �∇θζ

(
θ∗)

‖V0γ ‖
}

≤ ν2
0λ2/2, |λ| ≤ g.

(ED2) There exist a constant ω > 0 and for each r> 0 a constant g2(r) such
that it holds for all θ ∈ �0(r) and for j = 1,2

sup
γ j∈Rp‖γ j‖≤1

logE exp
{

λ

ω
γ �

1 D−1
0 ∇2

θ ζ(θ)D−1
0 γ 2

}
≤ ν2

0λ2/2, |λ| ≤ g2(r).

(L0) For each r ∈ [0,r0] [r0 comes from condition (B.1) of Theorem B.1 in
Spokoiny and Zhilova (2015)] there exists a constant δ(r) ∈ [0,1/2] s.t. for all
θ ∈ �0(r) it holds ∥∥D−1

0 D2(θ)D−1
0 − Ip

∥∥ ≤ δ(r),

where D2(θ)
def= −∇2

θEL(θ), �0(r)
def= {θ : ‖D0(θ − θ∗)‖ ≤ r}.

(I) There exists a constant a> 0 s.t. a2D2
0 ≥ V 2

0 .

(Lr) For each r > r0 there exists a value b(r) > 0 s.t. rb(r) → +∞ for
r→ +∞ and ∀θ : ‖D0(θ − θ∗)‖ = r it holds

−2
{
EL(θ) −EL

(
θ∗)} ≥ r2b(r).
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4.2. Conditions required for the bootstrap validity.

(SmB) There exists a constant δ2
smb ∈ [0,1/8] such that it holds for the matrices

H 2
0 , B2

0 defined in (1.7) and (1.8).∥∥H−1
0 B2

0H−1
0

∥∥ ≤ δ2
smb ≤ Cpn−1/2.

(ED2m) For each r > 0, i = 1, . . . , n, j = 1,2 and for all θ ∈ �0(r) it holds
for the values ω ≥ 0 and g2(r) from the condition (ED2)

sup
γ j∈Rp

‖γ j‖≤1

logE exp
{

λ

ω
γ �

1 D−1
0 ∇2

θ ζi(θ)D−1
0 γ 2

}
≤ ν2

0λ2

2n
, |λ| ≤ g2(r).

(L0m) For each r > 0, i = 1, . . . , n and for all θ ∈ �0(r), there exists a con-
stant Cm(r) ≥ 0 such that∥∥D−1

0 ∇2
θE�i(θ)D−1

0

∥∥ ≤ Cm(r)n−1.

(IB) There exists a constant a2
B ≥ 0 s.t. a2

BD2
0 ≥ B2

0 .

(SD1) There exists a constant 0 ≤ δ2
v ≤ Cp/n. such that it holds for all i =

1, . . . , n with exponentially high probability∥∥H−1
0

{∇θ�i

(
θ∗)∇θ�i

(
θ∗)� −E

[∇θ�i

(
θ∗)∇θ�i

(
θ∗)�]}

H−1
0

∥∥ ≤ δ2
v.

(Eb) The bootstrap weights ui are i.i.d., independent of the data Y, and

Eui = 1, Varui = 1,

logE exp
{
λ(ui − 1)

} ≤ ν2
0λ2/2, |λ| ≤ g.

4.3. Small modelling bias condition for some models. Here, we specify the
condition (SmB) for some particular models. If the observations Y1, . . . , Yn are
i.i.d., then ∇θEL(θ∗) = n∇θE�i(θ

∗) = 0, and B2
0 = 0. The next example is the

generalized linear model: the parametric probability distribution family {Pυ} is
an exponential family with a canonical parameterization. The log-density for this
family can be expressed as

�(υ) = yv − h(υ)

for a convex function h(·). Table 4 provides some examples of {Pυ} and h(·).
Taking {Pυ} as a parametric family and 	�

i θ as linear predictors for some deter-
ministic regressors 	i ∈ R

p yields the following quasi log-likelihood function:

L(θ) =
n∑

i=1

{
Yi	

�
i θ − h

(
	�

i θ
)}

.
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TABLE 4
Examples of the GLM

Pυ h(υ) h′(υ) (natural parameter)

N (υ,1) υ2/2 υ

Exp(−υ) − log(−υ) −1/υ

Pois(eυ) eυ eυ

Binom(1, eυ

eυ+1 ) log(eυ + 1) eυ

eυ+1

It holds ∥∥H−1
0 B2

0H−1
0

∥∥
≤ 1 − min

1≤i≤n

VarYi

VarYi + {EYi − h′(	�
i θ∗)}2

∈ [0,1).

It is important that Eθ∗Yi = h′(	�
i θ∗), that is, in the case of the correct parametric

model P ∈ {Pυ} the modelling bias is indeed equal to zero.
Now let us consider the linear quantile regression. Let the observations

Y1, . . . , Yn be scalar, and the design points X1, . . . ,Xn be deterministic. Let
τ ∈ (0,1) denote a fixed known quantile level. The object of estimation is a quan-
tile function qτ (x) s.t.

P
(
Yi < qτ (Xi)

) = τ ∀i = 1, . . . , n.

Using the quantile regression approach by Koenker and Bassett (1978), this prob-
lem can be treated with the quasi maximum likelihood method and the following
log-likelihood function:

L(θ) = −
n∑

i=1

ρτ

(
Yi − 	�

i θ
)
,

(4.1)
ρτ (x)

def= x
(
τ − 1{x < 0}),

where 	i ∈ R
p are known regressors. This log-likelihood function corresponds to

asymmetric Laplace distribution with the density τ(1 − τ)e−ρτ (x−a). It holds∥∥H−1
0 B2

0H−1
0

∥∥
≤ 1 − min

1≤i≤n

Var(τ − 1{Yi − 	�
i θ∗ < 0})

Var(τ − 1{Yi − 	�
i θ∗ < 0}) + (τ − P{Yi − 	�

i θ∗ < 0})2
.

If P{Yi −	�
i θ∗ < 0} ≡ τ , then the right-hand side of the last inequality is equal to

zero.
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4.4. Dependence of the involved terms on the sample size and parameter di-
mension. Here, we consider the case of the i.i.d. observations Y1, . . . , Yn and
x = C logn in order to specify the dependence of the nonasymptotic bounds on
n and p. In Section B.3 of the supplementary material [Spokoiny and Zhilova
(2015)], we also consider generalized linear model and quantile regression. Ex-
ample 5.1 in Spokoiny (2012) demonstrates that in this situation g = C

√
n and

ω = C/
√

n. This yields Z(x) = C
√

p + x for some constant C≥ 1.85, for the func-
tion Z(x) given in (B.4) in Section B.1 of the supplementary material [Spokoiny
and Zhilova (2015)]. Similarly, it can be checked that g2(r) from condition (ED2)

is proportional to
√

n: due to independence of the observations

logE exp
{

λ

ω
γ �

1 D−1
0 ∇2

θ ζ(θ)D−1
0 γ 2

}

=
n∑

i=1

logE exp
{

λ√
n

1

ω
√

n
γ �

1 d−1
0 ∇2

θ ζi(θ)d−1
0 γ 2

}

≤ n
λ2

n
C for |λ| ≤ g2(r)

√
n,

where ζi(θ)
def= �i(θ)−E�i(θ), d2

0
def= −∇2

θE�i(θ
∗) and D2

0 = nd2
0 in the i.i.d. case.

Function g2(r) denotes the marginal analog of g2(r).
Let us show that for the value δ(r) from condition (L0) it holds δ(r) = Cr/

√
n.

Suppose for all θ ∈ �0(r) and γ ∈ R
p : ‖γ ‖ = 1 ‖D−1

0 γ �∇3
θEL(θ)D−1

0 ‖ ≤ C,
then it holds for some θ ∈ �0(r)∥∥D−1

0 D2(θ)D−1
0 − Ip

∥∥ = ∥∥D−1
0

(
θ∗ − θ

)�∇3
θEL(θ)D−1

0

∥∥
= ∥∥D−1

0

(
θ∗ − θ

)�
D0D

−1
0 ∇3

θEL(θ)D−1
0

∥∥
≤ r

∥∥D−1
0

∥∥∥∥D−1
0 γ �∇3

θEL(θ)D−1
0

∥∥ ≤ Cr/
√

n.

Similarly, Cm(r) ≤ Cr/
√

n + C in condition (L0m).
The next remark helps to check the global identifiability condition (Lr) in many

situations. Suppose that the parameter domain � is compact and n is sufficiently
large, then the value b(r) from condition (Lr) can be taken as C{1 −r/

√
n} ≈ C.

Indeed, for θ : ‖D0(θ − θ∗)‖ = r

−2
{
EL(θ) −EL

(
θ∗)} ≥ r2{

1 − r
∥∥D−1

0

∥∥∥∥D−1
0 γ �∇3

θEL(θ)D−1
0

∥∥}
≥ r2(1 − Cr/

√
n).

Due to the obtained orders, conditions (B.1) and (B.19) of Theorems B.1 and B.6
(in the supplementary material [Spokoiny and Zhilova (2015)]) on concentration
of the MLEs θ̃ , θ̃

◦
require r0 ≥ C

√
p + x.
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SUPPLEMENTARY MATERIAL

Supplement to “Bootstrap confidence sets under model misspecification”
(DOI: 10.1214/15-AOS1355SUPP; .pdf). The supplementary material contains a
proof of the square-root Wilks approximation for the bootstrap world, proofs of the
main results from Section 2, and results on Gaussian approximation for �2-norm
of a sum of independent vectors.
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