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Canonical correlation analysis is a widely used multivariate statistical
technique for exploring the relation between two sets of variables. This pa-
per considers the problem of estimating the leading canonical correlation di-
rections in high-dimensional settings. Recently, under the assumption that
the leading canonical correlation directions are sparse, various procedures
have been proposed for many high-dimensional applications involving mas-
sive data sets. However, there has been few theoretical justification available
in the literature. In this paper, we establish rate-optimal nonasymptotic mini-
max estimation with respect to an appropriate loss function for a wide range
of model spaces. Two interesting phenomena are observed. First, the min-
imax rates are not affected by the presence of nuisance parameters, namely
the covariance matrices of the two sets of random variables, though they need
to be estimated in the canonical correlation analysis problem. Second, we al-
low the presence of the residual canonical correlation directions. However,
they do not influence the minimax rates under a mild condition on eigengap.
A generalized sin-theta theorem and an empirical process bound for Gaus-
sian quadratic forms under rank constraint are used to establish the minimax
upper bounds, which may be of independent interest.

1. Introduction. Canonical correlation analysis (CCA) [20] is one of the
most classical and important tools in multivariate statistics [3, 28]. It has been
widely used in various fields to explore the relation between two sets of variables
measured on the same sample.

On the population level, given two random vectors X ∈ Rp and Y ∈ Rm, CCA
first seeks two vectors u1 ∈ Rp and v1 ∈ Rm such that the correlation between the
projected variables u′

1X and v′
1Y is maximized. More specifically, (u1, v1) is the

solution to the following optimization problem:

max
u∈Rp,v∈Rm

Cov
(
u′X,v′Y

)
, subject to Var

(
u′X

) = Var
(
v′Y

) = 1,(1)
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which is uniquely determined up to a simultaneous sign change when there is
a positive eigengap. Inductively, once (ui, vi) is found, one can further obtain
(ui+1, vi+1) by solving the above optimization problem repeatedly subject to the
extra constraint that

Cov
(
u′X,u′

jX
) = Cov

(
v′Y, v′

jY
) = 0 for j = 1, . . . , i.

Throughout the paper, we call the (ui, vi)’s canonical correlation directions. It was
shown by Hotelling [20] that the (�

1/2
x ui,�

1/2
y vi)’s are the successive singular

vector pairs of

�−1/2
x �xy�

−1/2
y ,(2)

where �x = Cov(X),�y = Cov(Y ) and �xy = Cov(X,Y ). When one is only
given a random sample {(Xi, Yi) : i = 1, . . . , n} of size n, classical CCA estimates
the canonical correlation directions by performing singular value decomposition
(SVD) on the sample counterpart of (2) first and then premultiply the singular vec-
tors by the inverse of square roots of the sample covariance matrices. For fixed
dimensions p and m, the estimators are well behaved when the sample size is
large [2].

However, in contemporary datasets, we typically face the situation where the
ambient dimension in which we observe data is very high while the sample size
is small. The dimensions p and m can be much larger than the sample size n. For
example, in cancer genomic studies, X and Y can be gene expression and DNA
methylation measurements, respectively, where the dimensions p and m can be as
large as tens of thousands while the sample size n is typically no larger than sev-
eral hundreds [12]. When applied to datasets of such nature, classical CCA faces
at least three key challenges. First, the canonical correlation directions obtained
through classical CCA procedures involve all the variables measured on each sub-
ject, and hence are difficult to interpret. Second, due to the amount of noise that
increases dramatically as the ambient dimension grows, it is typically impossible to
consistently estimate even the leading canonical correlation directions without any
additional structural assumption [5, 22]. Third, successive canonical correlation
directions should be orthogonal with respect to the population covariance matrices
which are notoriously hard to estimate in high-dimensional settings. Indeed, it is
not possible to obtain a substantially better estimator than the sample covariance
matrix [27] which usually behaves poorly [21]. So, the estimation of such nuisance
parameters further complicates the problem of high-dimensional CCA.

Motivated by genomics, neuroimaging and other applications, there have been
growing interests in imposing sparsity assumptions on the leading canonical cor-
relation directions. See, for example, [4, 19, 25, 29, 34, 36, 38, 39] for some recent
methodological developments and applications. By seeking sparse canonical cor-
relation directions, the estimated (ui, vi) vectors only involve a small number of
variables, and hence are easier to interpret.
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Despite these recent methodological advances, theoretical understanding about
the sparse CCA problem is lacking. It is unclear whether the sparse CCA algo-
rithms proposed in the literature have consistency or certain rates of convergence
if the population canonical correlation directions are indeed sparse. To the best of
our limited knowledge, the only theoretical work available in the literature is [13].
In this paper, the authors gave a characterization for the sparse CCA problem and
considered an idealistic single canonical pair model where �xy , the covariance be-
tween X and Y , was assumed to have a rank one structure. They reparametrized
�xy as follows:

�xy = �xλuv′�y,(3)

where λ ∈ (0,1) and u′�xu = v′�yv = 1. It can be shown that (u, v) is the solu-
tion to (1), so that they are the leading canonical correlation directions. It is worth
noting that without knowledge of �x and �y , one is not able to obtain (resp.,
estimate) (u, v) by simply applying singular value decomposition to �xy (resp.,
sample covariance �̂xy ). Under this model, Chen et al. [13] studied the minimax
lower bound for estimating the individual vectors u and v, and proposed an iter-
ative thresholding approach for estimating u and v, partially motivated by [26].
However, their results depend on how well the nuisance parameters �x and �y

can be estimated, which to our surprise, turns out to be unnecessary as shown in
this paper.

1.1. Main contributions. The main objective of the current paper is to under-
stand the fundamental limits of the sparse CCA problem from a decision-theoretic
point of view. Such an investigation is not only interesting in its own right, but
will also inform the development and evaluation of practical methodologies in the
future. The model considered in this work is very general. As shown in [13], �xy

can be reparametrized as follows:

�xy = �x

(
U�V ′)�y with U ′�xU = V ′�yV = Ir̄ ,(4)

where r̄ = min(p,m), � = diag(λ1, . . . , λr̄ ) and 1 > λ1 ≥ · · · ≥ λr̄ ≥ 0. Then the
successive columns of U and V are the leading canonical correlation directions.
Therefore, (4) is the most general model for covariance structure, and sparse CCA
actually means the leading columns of U and V are sparse.

We can split U�V ′ as

U�V ′ = U1�1V
′
1 + U2�2V

′
2,(5)

where �1 = diag(λ1, . . . , λr),�2 = diag(λr+1, . . . , λr̄ ), U1 ∈ Rp×r , V1 ∈ Rm×r ,
U2 ∈ Rp×r2 and V2 ∈ Rm×r2 for r2 = r̄ − r . In what follows, we call (U1,V1)

the leading and (U2,V2) the residual canonical correlation directions. Since our
primary interest lies in U1 and V1, both the covariance matrices �x and �y and
the residual canonical correlation directions U2 and V2 are nuisance parameters in
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our problem. This model is more general than (3) considered in [13]. It captures
the situation in real practice where one is interested in recovering the first few
sparse canonical correlation directions while there might be additional directions
in the population structure.

To measure the performance of a procedure, we propose to estimate the matrix
U1V

′
1 under the following loss function:

L
(
U1V

′
1, Û1V

′
1

) = ∥∥U1V
′
1 − Û1V

′
1

∥∥2
F.(6)

We choose this loss function for several reasons. First, even when the λi ’s are all
distinct, U1 and V1 are only determined up to a simultaneous sign change of their
columns. In contrast, the matrix U1V

′
1 is uniquely defined as long as λr > λr+1.

Second, (6) is stronger than the squared projection error loss. For any matrix A,
let PA stand for the projection matrix onto its column space. If the spectra of �x

and �y are both bounded away from zero and infinity, then, in view of Wedin’s
sin-theta theorem [37], any upper bound on the loss function (6) leads to an upper
bound on the loss functions ‖PU1 − P̂U1‖2

F and ‖PV1 − P̂V1‖2
F for estimating the

column subspaces of U1 and V1, which have been used in the related problem of
sparse principal component analysis [11, 33]. Third, this loss function comes up
naturally as the key component in the Kullback–Leibler divergence calculation for
a special class of normal distributions where �x = Ip , �y = Im and λr+1 = · · · =
λr̄ = 0 in (4).

We use weak-�q balls to quantify sparsity. Let ‖(U1)j∗‖ denote the �2 norm of
the j th row of U1, and let ‖(U1)(1)∗‖ ≥ · · · ≥ ‖(U1)(p)∗‖ be the ordered row norms.
One way to characterize the sparsity in U1 (and V1) is to look at its weak-�q radius
for some q ∈ [0,2),

‖U1‖q,w = max
j∈[p] j

∥∥(U1)(j)∗
∥∥q(7)

under the tradition that 0q = 0. For instance, in the case of exact sparsity, that
is, q = 0, ‖U1‖0,w counts the number of nonzero rows in U1. When q ∈ (0,2),
(7) quantifies the decay of the ordered row norms of U1, which is a form of approx-
imate sparsity. Then we define the parameter space Fq(su, sv,p,m, r, λ;κ,M), as
the collection of all covariance matrices

� =
[

�x �xy

�yx �y

]
with the CCA structure (4) and (5), which satisfies:

1. U1 ∈Rp×r and V1 ∈ Rm×r satisfying ‖U1‖q,w ≤ su and ‖V1‖q,w ≤ sv ;
2. ‖�l

x‖op ∨ ‖�l
y‖op ≤ M for l = ±1;

3. 1 > κλ ≥ λ1 ≥ · · · ≥ λr ≥ λ > 0.

Throughout the paper, we assume κλ ≤ 1 − c0 for some absolute constant c0 ∈
(0,1). The key parameters su, sv,p,m, r and λ are allowed to depend on the sam-
ple size n, while κ,M > 1 are treated as absolute constants. Compared with the
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single canonical pair model (3) in [13], where rank(�xy) = 1, in this paper, the
rank of �xy can be as high as p or m and r is allowed to grow. In addition, we
do not need any structural assumption on �x and �y except for condition 2 on the
largest and smallest eigenvalues, which implies that �x and �y are invertible.

Suppose we observe i.i.d. pairs (X1, Y1), . . . , (Xn,Yn) ∼ Np+m(0,�). For two
sequences {an} and {bn} of positive numbers, we write an 
 bn if for some absolute
constant C > 1, 1/C ≤ an/bn ≤ C for all n. By the minimax lower and upper
bound results in Section 2, under mild conditions, we obtain the following tight
nonasymptotic minimax rates for estimating the leading canonical directions when
q = 0:

inf
Û1V

′
1

sup
�∈F0(su,sv,p,m,r,λ)

E�

∥∥U1V
′
1 − Û1V

′
1

∥∥2
F

(8)


 1

nλ2

(
r(su + sv) + su log

ep

su
+ sv log

em

sv

)
.

In Section 2, we give a precise statement of this result and tight minimax rates for
the case of approximate sparsity, that is, q ∈ (0,2).

The result (8) provides a precise characterization of the statistical fundamental
limit of the sparse CCA problem. It is worth noting that the conditions required
for (8) do not involve any additional assumptions on the nuisance parameters
�x,�y,U2 and V2. Therefore, we are able to establish the remarkable fact that
the fundamental limit of the sparse CCA problem is not affected by those nuisance
parameters. This optimality result can serve as an important guideline to evaluate
procedures proposed in the literature.

To obtain minimax upper bounds, we propose an estimator by optimizing
canonical correlation under sparsity constraints. A key element in analyzing the
risk behavior of the estimator is a generalized sin-theta theorem. See Theorem 5
in Section 5.1. The theorem is of interest in its own right and can be useful in
other problems where matrix perturbation analysis is needed. It is worth noting
that the proposed procedure does not require sample splitting, which was needed
in [11]. We bypass sample splitting by establishing a new empirical process bound
for the supreme of Gaussian quadratic forms with rank constraint. See Lemma 7
in Section 5.1. The estimator is shown to be minimax rate optimal by establishing
matching minimax lower bounds based on a local metric entropy approach [8, 11,
24, 41].

1.2. Connection to and difference from sparse PCA. The current paper is re-
lated to the problem of sparse principal component analysis (PCA), which has
received a lot of recent attention in the literature. Most literature on sparse PCA
considers the spiked covariance model [21, 32] where one observes an n × p data
matrix, each row of which is independently sampled from a normal distribution
Np(0,�0) with

�0 = V �V ′ + σ 2Ip.(9)
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Here, V ∈ Rp×r has orthonormal column vectors which are assumed to be sparse
and � = diag(λ1, . . . , λr) with λ1 ≥ · · · ≥ λr > 0. Since the first r eigenvalues
of �0 are {λi + σ 2}ri=1 and the rest are all σ 2, the λi ’s are referred as “spikes,”
and hence the name of the model. Johnstone and Lu [23] proposed a diagonal
thresholding estimator of the sparse principal eigenvector which is provably con-
sistent for a range of sparsity regimes. For fixed r , Birnbaum et al. [9] derived
minimax rate optimal estimators for individual sparse principal eigenvectors, and
Ma [26] proposed to directly estimate sparse principal subspaces, that is, the span
of V , and constructed an iterative thresholding algorithm for this purpose which
is shown to achieve near optimal rate of convergence adaptively. Cai et al. [11]
studied minimax rates and adaptive estimation for sparse principal subspaces with
little constraint on r . See also [33] for the case of a more general model. In ad-
dition, variable selection, rank detection, computational complexity and posterior
contraction rates of sparse PCA have been studied. See, for instance, [1, 6, 10, 17]
and the references therein.

Compared with sparse PCA, the sparse CCA problem studied in the current
paper is different and arguably more challenging in three important ways.

• In sparse PCA, the sparse vectors of interest, that is, the columns of V in (9)
are normalized with respect to the identity matrix. In contrast, in sparse CCA,
the sparse vectors of interest, that is, the columns of U and V are normalized
with respect to �x and �y , respectively, which are not only unknown but also
hard to estimate in high-dimensional settings. The necessity of normalization
with respect to nuisance parameters adds on to the difficulty of the sparse CCA
problem.

• In sparse PCA, especially in the spiked covariance model, there is a clean sepa-
ration between “signal” and “noise”: the signal is in the spiked part and the rest
are noise. However, in the parameter space considered in this paper, we allow
the presence of residual canonical correlations U2�2V

′
2, which is motivated by

the situation statisticians face in practice. It is highly nontrivial to show that the
presence of the residual canonical correlations does not influence the minimax
estimation rates.

• The covariance structures in sparse PCA and sparse CCA have both sparsity and
low-rank structures. However, there is a subtle difference between the two. In
sparse PCA, the sparsity and orthogonality of V in (9) are coherent. This means
that the columns of V are sparse and orthogonal to each other simultaneously.
Such convenience is absent in the sparse CCA problem. It is implied from (4)
that �

1/2
x U1 and �

1/2
y V1 have orthogonal columns, while it is the columns of

U1 and V1 that are sparse. The orthogonal columns and the sparse columns are
different. The consequence is that in order to estimate the sparse matrices U1

and V1, we must appeal to the orthogonality in the nonsparse matrices �
1/2
x U1

and �
1/2
y V1, even when the matrices �x and �y are unknown. If we naively

treat sparse CCA as sparse PCA, the procedure can be inconsistent (see the
simulation results in [13]).
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1.3. Organization of the paper. The rest of the paper is organized as follows.
Section 2 presents the main results of the paper, including upper bounds in Sec-
tion 2.1 and lower bounds in Section 2.2. Section 3 discusses some related issues.
The proofs of the minimax upper bounds are gathered in Section 4, with some
auxiliary results and technical lemmas proved in Section 5. The proof of the lower
bounds and some further technical lemmas are given in the supplementary mate-
rial [15].

1.4. Notation. For any matrix A = (aij ), the ith row of A is denoted by Ai∗
and the j th column by A∗j . For a positive integer p, [p] denotes the index set
{1,2, . . . , p}. For any set I , |I | denotes its cardinality and I c its complement. For
two subsets I and J of indices, we write AIJ for the |I | × |J | submatrices formed
by aij with (i, j) ∈ I × J . When I or J is the whole set, we abbreviate it with an
∗, and so if A ∈ Rp×k , then AI∗ = AI [k] and A∗J = A[p]J . For any square matrix
A = (aij ), denote its trace by Tr(A) = ∑

i aii . Moreover, let O(p, k) denote the set
of all p × k orthonormal matrices and O(k) = O(k, k). For any matrix A ∈ Rp×k ,
σi(A) stands for its ith largest singular value. The Frobenius norm and the operator
norm of A are defined as ‖A‖F = √

Tr(A′A) and ‖A‖op = σ1(A), respectively. The
support of A is defined as supp(A) = {i ∈ [n] : ‖Ai∗‖ > 0}. The trace inner product
of two matrices A,B ∈ Rp×k is defined as 〈A,B〉 = Tr(A′B). For any number a,
we use �a� to denote the smallest integer that is no smaller than a. For any two
numbers a and b, let a ∨ b = max(a, b) and a ∧ b = min(a, b). For any event E,
we use 1{E} to denote its indicator function. We use P� to denote the probability
distribution of Np+m(0,�) and E� for the associated expectation.

2. Main results. In this section, we state the main results of the paper. In
Section 2.1, we introduce a method to estimate the leading canonical correlation
directions. Minimax upper bounds are obtained. Section 2.2 gives minimax lower
bounds which match the upper bounds up to a constant factor. We abbreviate the
parameter space Fq(su, sv,p,m, r, λ;κ,M) as Fq .

2.1. Upper bounds. The main idea of the estimator proposed in this paper is to
maximize the canonical correlations under sparsity constraints. Note that the SVD
approach of the classical CCA [20] can be written in the following optimization
form:

max
(A,B)

Tr
(
A′�̂xyB

)
s.t. A′�̂xA = B ′�̂yB = Ir .(10)

We generalize (10) to the high-dimensional setting by adding sparsity constraints.
Since the leading canonical correlation directions (U1,V1) are weak �q sparse,

we introduce effective sparsity for q ∈ [0,2), which plays a key role in defining
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the procedure. Define

xu
q = max

{
0 ≤ x ≤ p : x ≤ su

(
nλ2

r + log(ep/x)

)q/2}
,(11)

xv
q = max

{
0 ≤ x ≤ m : x ≤ sv

(
nλ2

r + log(em/x)

)q/2}
.(12)

The effective sparsity of U1 and V1 are defined as

ku
q = ⌈

xu
q

⌉
, kv

q = ⌈
xv
q

⌉
.(13)

For j ≥ ku
q , it can be shown that

∥∥(U1)(j)∗
∥∥ ≤

(
r + log(ep/ku

q )

nλ2

)1/2

,

for which the signal is not strong enough to be recovered from the data. It holds
similarly for V1.

For n i.i.d. observations (Xi, Yi), i ∈ [n], we compute the sample covariance
matrix

�̂ =
[

�̂x �̂xy

�̂yx �̂y

]
.

The estimator (Û1, V̂1) for (U1,V1), the leading r canonical correlation directions,
is defined as a solution to the following optimization problem:

max
(A,B)

Tr
(
A′�̂xyB

)
(14)

s.t. A′�̂xA = B ′�̂yB = Ir and ‖A‖0,w = ku
q ,‖B‖0,w = kv

q .

When q = 0, we have ku
q = su and kv

q = sv . Then the program (14) is just a
slight generalization of the classical approach of [20] with additional �0 constraints
‖A‖0,w = su and ‖B‖0,w = sv . By the definition of the parameter space, it is also
natural to impose the �q constraints ‖A‖q,w ≤ su and ‖B‖q,w ≤ sv . Such con-
straints were used by [33] to solve the sparse PCA problem. However, their upper
bounds require more assumptions due to the difficulty in analyzing �q constraints.
We use �0 constraints on the effective sparsity and obtain the optimal upper bound
under minimal assumptions.

Set

ε2
n = 1

nλ2

(
r
(
ku
q + kv

q

) + ku
q log

ep

ku
q

+ kv
q log

em

kv
q

)
,(15)

which is the minimax rate to be shown later.
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THEOREM 1. We assume that

ε2
n ≤ c,(16)

λr+1 ≤ cλ,(17)

for some sufficiently small constant c ∈ (0,1). For any constant C′ > 0, there exists
a constant C > 0 only depending on M,q, κ and C′, such that for any � ∈ Fq ,∥∥Û1V̂

′
1 − U1V

′
1
∥∥2

F ≤ Cε2
n,

with P�-probability at least 1 − exp(−C′(ku
q + log(ep/ku

q ))) − exp(−C′(kv
q +

log(em/kv
q))).

REMARK 1. It will be shown in Section 2.2 that assumption (16) is necessary
for consistent estimation. Assumption (17) implies λr+1 ≤ cλr for c ∈ (0,1), such
that the eigengap is lower bounded as λr − λr+1 ≥ (1 − c)λr > 0.

REMARK 2. The upper bound ε2
n has two parts. The first part 1

nλ2 (r(ku
q +

kv
q)) is caused by low rank structure, and the second part 1

nλ2 (ku
q log(ep/ku

q ) +
kv
q log(em/kv

q)) is caused by sparsity. If r ≤ log(ep/ku
q )∧ log(em/kv

q), the second
part dominates, while the first part dominates if r ≥ log(ep/ku

q ) ∨ log(em/kv
q).

REMARK 3. The upper bound does not require any structural assumption on
the marginal covariance matrices �x and �y other than bounds on the largest and
the smallest eigenvalues. Although in the high-dimensional setting, the sample co-
variance �̂x and �̂y are not good estimators of the matrices �x,�y , the normal-
ization constraints A′�̂xA = B ′�̂yB = Ir , together with the sparsity of A,B , only
involve submatrices of �̂x and �̂y . Under the assumption (16), it can be shown
that a ku

q × ku
q submatrix of �̂x converges to the corresponding submatrix of �x

with the rate

√
k
y
q log(ep/ku

q )

n
under operator norm uniformly over all ku

q × ku
q sub-

matrices. Similar results hold for �̂y and �y . See Lemma 12 in Section 5.4. These
rates are dominated by the minimax rate εn in (15).

REMARK 4. One of the major difficulties of sparse CCA is the presence of
the unknown �x and �y . Suppose �x and �y are known, one may work with
the transformed data {(�−1

x Xi,�
−1
y Yi) : i = 1, . . . , n}. The cross-covariance of

the transformed data is �−1
x �xy�

−1
y = U�V ′, which is a sparse matrix. When

rank(�xy) = 1, algorithms such as [13, 40] can obtain the sparse singular vectors
from �−1

x �̂xy�
−1
y , which estimate U1 and V1 with optimal rate. When �x and

�y are unknown, structural assumptions are required on the covariance matrices
in order that �−1

x and �−1
y can be well estimated. Then one can use the estimated

�−1
x and �−1

y to transform the data and apply the same sparse singular vector
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estimator (see [13]). However, unless �x = Ip and �y = Im, this method cannot
be extended to the case where rank(�xy) ≥ 2, since the orthogonality of U and V

is with respect to general covariance matrices �x and �y , respectively. In the case
where �x = Ip and �y = Im, the problem is similar to sparse PCA, and the proof
of Theorem 1 can be greatly simplified.

To obtain the convergence rate in expectation, we propose a modified estimator.
The modification is inspired by the fact that U1V

′
1 are bounded in Frobenius norm,

because∥∥U1V
′
1
∥∥

F ≤ ∥∥�−1/2
x

∥∥
op

∥∥�1/2
x U1

∥∥
F

∥∥�1/2
y V1

∥∥
op

∥∥�−1/2
y

∥∥
op ≤ M

√
r.(18)

Define Û1V
′
1 to be the truncated version of Û1V̂

′
1 as

Û1V
′
1 = Û1V̂

′
11{‖Û1V̂

′
1‖F≤2M

√
r}.

The modification can be viewed as an improvement, because whenever ‖Û1V̂
′
1‖F >

2M
√

r , we have∥∥Û1V̂
′
1 − U1V

′
1
∥∥

F ≥ ∥∥Û1V̂
′
1
∥∥

F − ∥∥U1V
′
1
∥∥

F ≥ M
√

r ≥ ∥∥0 − U1V
′
1
∥∥

F.

Then it is better to estimate U1V
′
1 by 0.

THEOREM 2. Suppose (16) and (17) hold. In addition, assume that

exp
(
C1

(
ku
q + log

(
ep/ku

q

)))
> nλ2,(19)

exp
(
C1

(
kv
q + log

(
em/kv

q

)))
> nλ2,(20)

for some C1 > 0, then there exists C2 > 0 only depending on M,q, κ and C1, such
that

sup
�∈Fq

E�

∥∥Û1V
′
1 − U1V

′
1
∥∥2

F ≤ C2ε
2
n.

REMARK 5. The assumptions (19) and (20) imply the tail probability in The-
orem 1 is sufficiently small. Once there exists a small constant δ > 0, such that

p ∨ eku
q ≥ nδ and m ∨ ekv

q ≥ nδ

hold, then (19) and (20) also hold with some C1 > 0. Notice that p > nδ is com-
monly assumed in high-dimensional statistics to have convergence results in ex-
pectation. The assumption here is weaker than that.
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2.2. Lower bounds. Theorems 1 and 2 show that the procedure proposed
in (14) attains the rate ε2

n. In this section, we show that this rate is optimal among all
estimators. More specifically, we show that the following minimax lower bounds
hold for q ∈ [0,2).

THEOREM 3. Assume that 1 ≤ r ≤ ku
q∧kv

q

2 , and that

nλ2 ≥ C0

(
r + log

ep

ku
q

∨ log
em

kv
q

)
(21)

for some sufficiently large constant C0. Then there exists a constant c > 0 depend-
ing only on q and an absolute constant c0 such that the minimax risk for estimating
U1V

′
1 satisfies

inf
(Û1,V̂1)

sup
�∈Fq

E�

∥∥Û1V̂
′
1 − U1V

′
1
∥∥2

F ≥ cε2
n ∧ c0.

The proof of Theorem 3 is given in the supplementary material [15].

REMARK 6. Assumption (21) is necessary for consistent estimation.

3. Discussion. We include below discussions on two related issues.

3.1. Minimax rates for individual sparsity. In this paper, we have derived tight
minimax estimation rates for the leading sparse canonical correlation directions
where the sparsity is depicted by the rapid decay of the ordered row norms in U1
and V1 (as characterized by the weak-�q notion).

Another interesting case of sparsity is when the individual column vectors of
U1 and V1 are sparse. For instance, when

‖ui‖q,w ≤ tu and ‖vi‖q,w ≤ tv ∀i ∈ [r],(22)

where the ‖ · ‖q,w is defined as in (7) by treating any p-vector as a p × 1 matrix.
Let Fc

q = Fc
q (tu, tv,p,m, r, λ;κ,M) be defined as in Section 1 following (7) but

with the sparsity notion changed to that in (22). Similar to (11)–(13), let

yu
q = max

{
0 ≤ y ≤ p : y ≤ tu

(
nλ2

log(ep/(ry))

)q/2}
, ju

q = ⌈
yu
q

⌉
,

and yv
q and jv

q be analogously defined. Then we have:

THEOREM 4. Assume that 1 ≤ r ≤ ju
q ∧jv

q

2 , 2rju
q ≤ p, 2rjv

q ≤ m and nλ2 ≥
C0(r + log ep

rju
q

∨ log em
rjv

q
) for some sufficiently large constant C0. Then there is a

constant c > 0 depending only on q and an absolute constant c0 > 0 such that

inf
Û1V

′
1

sup
�∈Fc

q

E�

∥∥U1V
′
1 − Û1V

′
1

∥∥2
F ≥ c0 ∧ c

nλ2 r

(
ju
q log

ep

rju
q

+ jv
q log

em

rjv
q

)
.(23)
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If in addition rju
q ≤ p1−α , rjv

q ≤ m1−α for some small α ∈ (0,1), r ≤ C log(p∧m)

for some C > 0 and the conditions of Theorem 2 are satisfied with ku
q = rju

q and
kv
q = rjv

q , then a matching upper bound is achieved by the estimator in Theorem 2
with ku

q = rju
q and kv

q = rjv
q .

The proof of Theorem 4 is given in the supplementary material [15]. The lower
bound (23) for individual sparsity is larger than the minimax rate (15) for joint
sparsity when tu = su and tv = sv .

3.2. Adaptation, computation and some recent work. The main purpose of
proposing the estimator in (14) is to determine the minimax estimation rates in
sparse CCA problem under weak assumptions. Admittedly, it requires the knowl-
edge of parameter space and is computationally intensive.

Designing adaptive and computationally efficient procedures to achieve statisti-
cally optimal performance is an interesting and important research direction. Built
upon the insights developed in the current paper, Gao et al. [16] have proposed
an adaptive and efficient procedure for sparse CCA. The procedure first obtains a
crude estimator via a convex relaxation of the problem (14) here which is then re-
fined by a group sparse linear regression. The resulting estimator achieves optimal
rates of convergence in estimating the leading sparse canonical directions under a
prediction loss without imposing any structural assumption on �x and �y , when
the residual directions are absent. Notably, the procedure in [16] requires a larger
sample size than in the present paper, which has been shown to be essentially nec-
essary for any computational efficient procedure under the Gaussian CCA model
considered here under the assumption of planted clique hardness. The argument
has also led to a computational lower bounds for the sparse PCA problem under
the Gaussian spiked covariance model, bridging the gap between the sparse PCA
literature and the computational lower bounds in [6] and [35].

It is of great interest to further investigate if there is some adaptive and efficient
estimator that attains the statistical optimality established in the current paper un-
der full generality.

4. Proof of main results. This section is devoted to the proof of Theorems 1–
2. The proof of Theorems 3–4 is given in the supplementary material [15].

4.1. Outline of proof and preliminaries. To prove both Theorems 1 and 2, we
go through the following three steps:

1. We decompose the value of the loss function into multiple terms which result
from different sources;

2. We derive individual high probability bound for each term in the decompo-
sition;

3. We assemble the individual bounds to obtain the desired upper bounds on
the loss and the risk functions.
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In the rest of this subsection, we carry out these three steps in order. To facilitate
the presentation, we introduce below several important quantities to be used in the
proof.

Recall the effective sparsity (ku
q , kv

q) defined in (13). Let Su be the index set
of the rows of U1 with the ku

q largest �2 norms. In case U1 has no more than ku
q

nonzero rows, we include in Su the smallest indices of the zero rows in U1 such
that |Su| = ku

q . We also define Sv analogously. In what follows, we refer to them
as the effective support sets.

We define (U∗
1 ,V ∗

1 ) as a solution to

max
(A,B)

Tr
(
A′�xyB

)
(24)

s.t. A′�xA = B ′�yB = Ir and supp(A) ⊂ Su, supp(B) ⊂ Sv.

In what follows, we refer to them as the sparse approximations to U1 and V1. By
definition, when q = 0, U∗

1 (V ∗
1 )′ = U1V

′
1, which can be derived rigorously from

Theorem 5.
In addition, we define the oracle estimator (Û∗

1 , V̂ ∗
1 ) as a solution to

max
(A,B)

Tr
(
A′�̂xyB

)
(25)

s.t. A′�̂xA = B ′�̂yB = Ir and supp(A) = Su, supp(B) = Sv.

In case the program (24) [or (25)] has multiple global optimizers, we define
(U∗

1 ,V ∗
1 ) [or (Û∗

1 , V̂ ∗
1 )] by picking an arbitrary one.

REMARK 7. The introduction of (24) and (25) is to separate the error brought
by not knowing the covariance �x and �y and by not knowing the effective sup-
ports Su and Sv . The program (25) assumes known effective supports but un-
known covariance and the program (24) assumes both known effective supports
and known covariance.

We note that(
U∗

1
)
Sc

u∗ = (
Û∗

1
)
Sc

u∗ = 0,
(
V ∗

1
)
Sc

v∗ = (
V̂ ∗

1
)
Sc

v∗ = 0.

By definition, the matrices (U∗
1 ,V ∗

1 ) are normalized with respect to �x and �y ,
and (Û∗

1 , V̂ ∗
1 ) are normalized with respect to �̂x and �̂y . Note the notation AS∗

stands for the submatrix of A with rows in S and all columns.
Last but not least, let

Ŝu = supp(Û1), Ŝv = supp(V̂1).(26)

By the definition of (Û1, V̂1) in (14), we have |Ŝu| = ku
q and |Ŝv| = kv

q with proba-
bility one. Remember the minimax rate ε2

n defined in (15).
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4.2. Loss decomposition. In the first step, we decompose the loss function into
five terms as follows.

LEMMA 1. Assume 1
n
(ku

q log(ep/ku
q ) + kv

q log(em/kv
q)) < c for sufficiently

small c > 0. For any constant C′ > 0, there exists a constant C > 0 only depending
on M and C′, such that∥∥Û1V̂

′
1 − U1V

′
1
∥∥2

F

≤ 3
∥∥U∗

1
(
V ∗

1
)′ − U1V

′
1
∥∥2

F(27)

+ 3
∥∥Û∗

1
(
V̂ ∗

1
)′ − U∗

1
(
V ∗

1
)′∥∥2

F(28)

− 6C

λr

〈
�xU2�2V

′
2�y, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉

(29)

+ 6C

λr

〈
�xy − �̂xy, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉

(30)

+ 6C

λr

〈
�̂xÛ

∗
1 �1V̂

∗
1

′�̂y − �xU1�1V
′
1�y, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉
,(31)

with probability at least 1 − exp(−C′ku
q log(ep/ku

q )) − exp(−C′kv
q log(em/kv

q)).

PROOF. See Section 5.2. �

In particular, Lemma 1 decomposes the total loss into the sum of the sparse
approximation error in (27), the oracle loss in (28) which is present even if we
have the oracle knowledge of the effective support sets Su and Sv , the bias term in
(29) caused by the presence of the residual term U2�2V

′
2 in the CCA structure (4)

and the two excess loss terms in (30) and (31) resulting from the uncertainty about
the effective support sets. When q = 0, the sparse approximation error term (27)
vanishes.

4.3. Bounds for individual terms. We now state the bounds for the individual
terms obtained in Lemma 1 as five separate lemmas. The proofs of these lemmas
are deferred to Sections 5.3–5.6.

LEMMA 2 (Sparse approximation). Suppose (16) and (17) hold. There exists
a constant C > 0 only depending on M,κ,q , such that∥∥U∗

1
(
V ∗

1
)′ − U1V

′
1
∥∥2

F ≤ Cq

2 − q
ε2
n,(32)

∥∥U∗
1 �1

(
V ∗

1
)′ − U1�1V

′
1
∥∥2

F ≤ Cq

2 − q
λ2ε2

n.(33)
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LEMMA 3 (Oracle loss). Suppose 1
nλ2 (ku

q +kv
q + log(ep/ku

q )+ log(em/kv
q)) <

c and that (17) holds for some sufficiently small c > 0. For any constant C′ > 0,
there exists a constant C > 0 only depending on M,q, κ and C′, such that∥∥Û∗

1
(
V̂ ∗

1
)′ − U∗

1
(
V ∗

1
)′∥∥2

F ≤ Cr

nλ2

[
ku
q + kv

q + log
(

ep

ku
q

)
+ log

(
em

kv
q

)]
,(34)

with probability at least 1 − exp(−C′(ku
q + log(ep/ku

q ))) − exp(−C′(kv
q +

log(em/kv
q))). Moreover, if (16) also holds, then with the same probability∥∥Û∗

1 �1
(
V̂ ∗

1
)′ − U∗

1 �1
(
V ∗

1
)′∥∥2

F ≤ Cλ2ε2
n.(35)

The proof of Lemma 3 is given in the supplementary material [15]. Since r ≤
ku
q ∧ kv

q , (34) is bounded above by Cε2
n. The error bounds in Lemma 3 are due to

the estimation error of true covariance matrices by sample covariance matrices on
the subset Su × Sv .

LEMMA 4 (Bias). Suppose 1
n
(ku

q log(ep/ku
q )+ kv

q log(em/kv
q)) < C1 for some

constant C1 > 0. For any constant C′ > 0, there exists a constant C > 0 only
depending on M,κ,C1 and C′, such that∣∣〈�xU2�2V

′
2�y, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉∣∣

≤ Cλr+1
(∥∥Û∗

1
(
V̂ ∗

1
)′ − U1V

′
1
∥∥2

F + ∥∥U1V
′
1 − Û1V̂

′
1
∥∥2

F

)
,

with probability at least 1 − exp(−C′ku
q log(ep/ku

q )) − exp(−C′kv
q log(em/kv

q)).

The bias in Lemma 4 is 0 when U2�2V
′
2 is 0.

LEMMA 5 (Excess loss 1). Suppose (16) holds. For any constant C′ > 0, there
exists a constant C > 0 only depending on M and C′, such that∣∣〈�xy − �̂xy, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉∣∣ ≤ Cλεn

∥∥Û1V̂
′
1 − Û∗

1
(
V̂ ∗

1
)′∥∥

F,

with probability at least 1 − exp(−C′(r(ku
q + kv

q) + ku
q log(ep/ku

q ) + kv
q log(em/

kv
q))).

LEMMA 6 (Excess loss 2). Suppose (16) and (17) hold. For any constant
C′ > 0, there exists a constant C > 0 only depending on M,κ,q and C′, such
that ∣∣〈�̂xÛ

∗
1 �1

(
V̂ ∗

1
)′
�̂y − �xU1�1V

′
1�y, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉∣∣

≤ Cλεn

∥∥Û∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
∥∥

F,

with probability at least 1 − exp(−C′(ku
q + log(ep/ku

q ))) − exp(−C′(kv
q +

log(em/kv
q))).
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4.4. Proof of Theorem 1. For notational convenience, let

R = ∥∥Û1V̂
′
1 − U1V

′
1
∥∥

F, θ = ∥∥U∗
1
(
V ∗

1
)′ − U1V

′
1
∥∥

F,

δ = ∥∥Û∗
1
(
V̂ ∗

1
)′ − U∗

1
(
V ∗

1
)′∥∥

F.

Consider the event such that the conclusions of Lemmas 1–6 hold, which oc-
curs with probability at least 1 − exp(−C′(ku

q + log(ep/ku
q ))) − exp(−C′(kv

q +
log(em/kv

q))) according to the union bound. On this event, Lemmas 2 and 3 imply
that

θ2 ≤ Cε2
n and δ2 ≤ Cε2

n.

Moreover, Lemma 4 implies∣∣∣∣ 1

λr

〈
�xU2�2V

′
2�y, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉∣∣∣∣ ≤ Cλr+1

λ

(
R2 + θ2 + δ2)

.

Lemma 5 implies∣∣∣∣ 1

λr

〈
�xy − �̂xy, Û

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉∣∣∣∣ ≤ Cεn(R + θ + δ),

and Lemma 6 implies∣∣∣∣ 1

λr

〈
�̂xÛ

∗
1 �1

(
V̂ ∗

1
)′�̂y − �xU1�1V

′
1�y,U

∗
1
(
V̂ ∗

1
)′ − Û1V̂

′
1
〉∣∣∣∣ ≤ Cεn(R + θ + δ).

Together with Lemma 1, the above bounds lead to

R2 ≤ C
(
θ2 + δ2) + Cλr+1

λ

(
R2 + θ2 + δ2) + Cεn(R + θ + δ)

≤ Cλr+1

λ
R2 + CεnR + Cε2

n.

Under assumption (17), we have 1
2R2 ≤ CεnR + Cε2

n, implying

R2 ≤ Cε2
n,

for some C > 0. We complete the proof by noting that the conditions of Lemmas
1–6 are satisfied under assumptions (16) and (17).

4.5. Proof of Theorem 2. Recall the definition of εn in (15), and let C1 be the
constant in (19) and (20). The result of Theorem 1 implies that we can choose an
arbitrarily large constant C′ such that C′ > C1. Given C′, there exists a constant C,
by which we can bound the risk as follows:

E�

∥∥Û1V
′
1 − U1V

′
1
∥∥2

F

≤ E�

[∥∥Û1V
′
1 − U1V

′
1
∥∥2

F1{‖Û1V
′
1−U1V

′
1‖2

F≤Cε2
n}

]
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+E�

[∥∥Û1V
′
1 − U1V

′
1
∥∥2

F1{‖Û1V
′
1−U1V

′
1‖2

F>Cε2
n}

]
≤ Cε2

n +E�

[(
2
∥∥Û1V

′
1

∥∥2
F + 2

∥∥U1V
′
1
∥∥2

F

)
1{‖Û1V

′
1−U1V

′
1‖2

F>Cε2
n}

]
(36)

≤ Cε2
n + 6M2rP�

(∥∥Û1V̂
′
1 − U1V

′
1
∥∥2

F > Cε2
n

)
(37)

≤ C2ε
2
n.(38)

Here, inequality (36) is due to the triangle inequality and the fact that{∥∥Û1V
′
1 − U1V

′
1
∥∥2

F > Cε2
n

} ⊂ {∥∥Û1V̂
′
1 − U1V

′
1
∥∥2

F > Cε2
n

}
.

In fact, if ‖Û1V̂
′
1 − U1V

′
1‖2

F ≤ Cε2
n, then ‖Û1V̂

′
1‖2

F ≤ Cε2
n + M2r ≤ 2M2r . By

our definition of the estimator, this means Û1V
′
1 = Û1V̂

′
1, which further implies

‖Û1V
′
1 − U1V

′
1‖2

F ≤ Cε2
n. Inequality (37) follows from our definition of estimator

Û1V
′
1 and (18). The last inequality follows from the conclusion of Theorem 1 and

assumptions (19) and (20). This completes the proof.

5. Proof of auxiliary results. In this section, we prove Lemmas 1–2 and 4–
6 used in the proof of Theorem 1 and 2. The proof of Lemma 3 is given in the
supplementary material [15]. Throughout the section, without further notice, ε2

n is
defined as in (15).

5.1. A generalized sin-theta theorem and Gaussian quadratic form with rank
constraint. We first introduce two key results used in the proof of Lemmas 1–6
that might be of independent interest.

The first result is a generalized sin-theta theorem. For the definition of unitarily
invariant norms, we refer the readers to [7, 30]. In particular, both Frobenius norm
‖ · ‖F and operator norm ‖ · ‖op are unitarily invariant.

THEOREM 5. Consider matrices X,Y ∈ Rp×m. Let the SVD of X and Y be

X = A1D1B
′
1 + A2D2B

′
2, Y = Â1D̂1B̂

′
1 + Â2D̂2B̂

′
2,

with D1 = diag(d1, . . . , dr) and D̂1 = diag(d̂1, . . . , d̂r ). Suppose there is a positive
constant δ ∈ (0, dr ] such that ‖D̂2‖op ≤ dr − δ. Let ‖ · ‖ be any unitarily invariant
norm, and ε = ‖A′

1(X − Y)‖ ∨ ‖(X − Y)B1‖. Then we have

∥∥A1D1B
′
1 − Â1D̂1B̂

′
1
∥∥ ≤

(√
2(d1 + d̂1)

δ
+ 1

)
ε.(39)

If further there is an absolute constant κ̄ ≥ 1 such that d1 ∨ d̂1 ≤ κ̄dr , then there is
a constant C > 0 only depending on κ̄ , such that∥∥A1B

′
1 − Â1B̂

′
1
∥∥ ≤ Cε

δ
.(40)
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REMARK 8. In addition, when X and Y are positive semi-definite, Al = Bl ,
Âl = B̂l for l = 1,2, we recover the classical Davis–Kahan sin-theta theorem [14]
‖A1A

′
1 − Â1Â

′
1‖ ≤ Cε/δ up to a constant multiplier.

The second result is an empirical process type bound for Gaussian quadratic
forms with rank constraint.

LEMMA 7. Let {Zi}1≤i≤n be i.i.d. observations from N(0, Id). Then there ex-
ist some C,C′ > 0, such that for any t > 0,

P

(
sup

{K:‖K‖F≤1,rank(K)≤r}

∣∣∣∣∣
〈

1

n

n∑
i=1

ZiZ
′
i − Id,K

〉∣∣∣∣∣ > t

)
≤ exp

(
C′rd − Cn

(
t2 ∧ t

))
.

The proofs of Theorem 5 and Lemma 7 are given in the supplementary mate-
rial [15].

5.2. Proof of Lemma 1. Recall the definition of (Su, Sv) and (Ŝu, Ŝv) in Sec-
tion 4.1. From here on, let

Tu = Su ∪ Ŝu and Tv = Sv ∪ Ŝv.(41)

The proof of Lemma 1 depends on the following two technical results. Their proofs
are given in the supplementary material [15].

LEMMA 8. For matrices A,B,E,F and a diagonal matrix D = (dl)1≤l≤r

with d1 ≥ d2 ≥ · · · ≥ dr > 0 and A′A = B ′B = E′E = F ′F = Ir , we have

dr

2

∥∥AB ′ − EF ′∥∥2
F ≤ 〈

ADB ′,AB ′ − EF ′〉 ≤ d1

2

∥∥AB ′ − EF ′∥∥2
F.

LEMMA 9. Under the assumption of Lemma 1, for any constant C′ > 0, there
exists a constant C > 0 only depending on M and C′, such that for any matrix A

supported on the Tu × Tv , we have

C−1‖A‖2
F ≤ ∥∥�̂1/2

x A�̂1/2
y

∥∥2
F ≤ C‖A‖2

F,

with probability at least 1 − exp(−C′ku
q log(ep/ku

q )) − exp(−C′kv
q log(em/kv

q)).

PROOF OF LEMMA 1. First of all, the triangle inequality and Jensen’s inequal-
ity together lead to∥∥Û1V̂

′
1 − U1V

′
1
∥∥2

F
(42)

≤ 3
(∥∥Û∗

1 V̂ ∗′
1 − U∗

1 V ∗′
1

∥∥2
F + ∥∥Û1V̂

′
1 − Û∗

1 V̂ ∗′
1

∥∥2
F + ∥∥U∗

1 V ∗′
1 − U1V

′
1
∥∥2

F

)
.
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Now, it remains to bound ‖Û1V̂
′
1 − Û∗

1 V̂ ∗′
1 ‖2

F. To this end, we have∥∥Û∗
1 V̂ ∗′

1 − Û1V̂
′
1
∥∥2

F

≤ C
∥∥�̂1/2

x

(
Û∗

1 V̂ ∗′
1 − Û1V̂

′
1
)
�̂1/2

y

∥∥2
F(43)

≤ 2C

λr

〈
�̂1/2

x Û∗
1 �1V̂

∗′
1 �̂1/2

y , �̂1/2
x

(
Û∗

1 V̂ ∗′
1 − Û1V̂

′
1
)
�̂1/2

y

〉
(44)

= 2C

λr

〈
�̂xÛ

∗
1 �1V̂

∗′
1 �̂y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

= 2C

λr

〈
�̂xÛ

∗
1 �1V̂

∗′
1 �̂y − �̂xy, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

+ 2C

λr

〈
�̂xy, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

≤ 2C

λr

〈
�̂xÛ

∗
1 �1V̂

∗′
1 �̂y − �̂xy, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

(45)

= 2C

λr

〈
�̂xÛ

∗
1 �1V̂

∗′
1 �̂y − �xU1�1V

′
1�y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

(46)

− 2C

λr

〈
�xU2�2V

′
2�y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

+ 2C

λr

〈
�xy − �̂xy, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉
.

Here, (43) is implied by Lemma 9 and (44) is implied by Lemma 8. To see (45),
we note (Û1, V̂1) is the solution to (14), and so Tr(Û ′

1�̂xyV̂1) ≥ Tr((Û∗
1 )′�̂xyV̂

∗
1 ),

or equivalently 〈
�̂xy, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉 ≤ 0.

Equality (46) comes from the CCA structure (4) and (5). Combining (42)–(46) and
rearranging the terms, we obtain the desired result. �

5.3. Proof of Lemma 2. The major difficulty in proving the lemma lies in the
presence of the residual structure U2�2V

′
2 in (5) and the possible nondiagonal-

ity of covariance matrices �x and �y . To overcome the difficulty, we introduce
intermediate matrices (Ũ1, Ṽ1) defined as follows. First, we write the SVD of
(�xSuSu)

1/2U1Su∗�1(V1Sv∗)′(�ySvSv )
1/2 as

(�xSuSu)
1/2U1Su∗�1(V1Sv∗)′(�ySvSv )

1/2 = P�̃1Q
′,(47)

and let Ũ
Su

1 = (�xSuSu)
−1/2P and Ṽ

Sv

1 = (�ySvSv )
−1/2Q. Finally, we define Ũ1 ∈

Rp×r and Ṽ1 ∈ Rm×r by setting

(Ũ1)Su∗ = Ũ
Su

1 , (Ũ1)Sc
u∗ = 0, (Ṽ1)Sv∗ = Ṽ

Sv

1 , (Ṽ1)Sc
v∗ = 0.(48)
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By definition, we have U1Su∗�1(V1Su∗)′ = Ũ1Su∗�̃(Ṽ1Su∗)′. Last but not least, we
define

� = P�̃1Q
′

(49)
+ (

I − PP ′)(�xSuSu)
−1/2�xSu∗U2�2V

′
2�y∗Sv (�ySvSv )

−1/2(
I − QQ′).

We now summarize the key properties of the Ũ1, Ṽ1 and �̃1 matrices in the follow-
ing two lemmas, the proofs of which are given in the supplementary material [15].

LEMMA 10. Let P,Q and � be defined in (47) and (49). Then we have:

1. The column vectors of P and Q are the r leading left and right singular
vectors of �.

2. The first and the r th singular values λ̃1 and λ̃r of � satisfy 1.1κλ ≥ λ̃1 ≥
λ̃r ≥ 0.9λ, and the (r + 1)th singular value λ̃r+1 ≤ cλ for some sufficiently small
constant c > 0.

3. The column vectors of �
1/2
x Ũ1 and �

1/2
y Ṽ1 are the r leading left and right

singular vectors of �
1/2
x Ũ1�̃1Ṽ

′
1�

1/2
y .

LEMMA 11. For some constant C > 0,∥∥Ũ ′
1�xU2

∥∥2
F ≤ C‖U1Sc

u∗‖2
F and

∥∥Ṽ ′
1�yV2

∥∥2
F ≤ C‖V1Sc

v∗‖2
F.

In what follows, we prove claims (32) and (33) in order.

PROOF OF (32). By the triangle inequality,∥∥U∗
1 V ∗′

1 − U1V
′
1
∥∥

F ≤ ∥∥U∗
1 V ∗′

1 − Ũ1Ṽ
′
1
∥∥

F + ∥∥Ũ1Ṽ
′
1 − U1V

′
1
∥∥

F.(50)

It is sufficient to bound each of the two terms on the right-hand side.
1◦ Bound for ‖Ũ1Ṽ

′
1 − U1V

′
1‖F. Since the smallest eigenvalues of �x and �y

are bounded from below by some absolute positive constant,∥∥Ũ1Ṽ
′
1 − U1V

′
1
∥∥

F ≤ C
∥∥�1/2

x

(
Ũ1Ṽ

′
1 − U1V

′
1
)
�1/2

y

∥∥
F.

By Lemma 10, �
1/2
x Ũ1 and �

1/2
y Ṽ1 collect the r leading left and right singular

vectors of �
1/2
x Ũ1�̃1Ṽ

′
1�

1/2
y , and by (4), �1/2

x U1 and �
1/2
y V1 collect the r leading

left and right singular vectors of �
1/2
x U1�1V

′
1�

1/2
y . Thus, Theorem 5 implies∥∥�1/2

x

(
Ũ1Ṽ

′
1 − U1V

′
1
)
�1/2

y

∥∥
F ≤ C

λ

∥∥�1/2
x

(
Ũ1�̃1Ṽ

′
1 − U1�1V

′
1
)
�1/2

y

∥∥
F.

The right-hand side of the above inequality is bounded as∥∥Ũ1�̃1Ṽ
′
1 − U1�1V

′
1
∥∥

F

≤ ∥∥Ũ1Su∗�̃1(Ṽ1Sv∗)′ − U1Su∗�1(V1Sv∗)′
∥∥

F + ∥∥U1Sc
u∗�1(V1Sv∗)′

∥∥
F

(51)
+ ∥∥U1Su∗�1(V1Sc

v∗)′
∥∥

F + ∥∥U1Sc
u∗�1(V1Sc

v∗)′
∥∥

F

≤ Cλ
(‖U1Sc

u∗‖F + ‖V1Sc
v∗‖F

)
.
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Here, the last inequality is due to (47) and (48). For the last term, a similar argu-
ment to that used in Lemma 7 of [11] leads to∥∥U1Sc

u∗
∥∥2

F ≤ Cq

2 − q
ku
q

(
su/ku

q

)2/q ≤ Cq

2 − q
ε2
n,

(52)

‖V1Sc
v∗‖2

F ≤ Cq

2 − q
kv
q

(
sv/kv

q

)2/q ≤ Cq

2 − q
ε2
n,

where the last inequalities in both displays are due to (11)–(13). Therefore, we
obtain ∥∥Ũ1Ṽ

′
1 − U1V

′
1
∥∥2

F ≤ Cq

2 − q
ε2
n.(53)

2◦ Bound for ‖U∗
1 V ∗′

1 − Ũ1Ṽ
′
1‖F. Let λ∗

r+1 denote the (r + 1)th singular value
of (�xSuSu)

−1/2�xySuSv (�ySvSv )
−1/2. Then we have∥∥U∗

1 V ∗′
1 − Ũ1Ṽ

′
1
∥∥

F

= ∥∥U∗
1Su∗

(
V ∗

1Sv∗
)′ − Ũ1Su∗(Ṽ1Sv∗)′

∥∥
F

(54)
≤ C

∥∥(�xSuSu)
1/2[

U∗
1Su∗

(
V ∗

1Sv∗
)′ − Ũ1Su∗(Ṽ1Sv∗)′

]
(�ySvSv )

1/2∥∥
F

≤ C‖(�xSuSu)
−1/2�xySuSv (�ySvSv )

−1/2 − �‖F

λ̃r − λ∗
r+1

.

Here, the first equality holds since both U∗
1 V ∗′

1 and Ũ1Ṽ
′
1 are supported on the

Su × Sv submatrix. Noting that by the discussion before (24), (48) and Lemma 10,
((�xSuSu)

1/2U∗
1Su∗, (�ySvSv )

1/2V ∗
1Sv∗) and ((�xSuSu)

1/2Ũ1Su∗, (�ySvSv )
1/2Ṽ1Sv∗)

collect the leading left and right singular vectors of (�xSuSu)
−1/2�xySuSv ×

(�ySvSv )
−1/2 and �, respectively, we obtain the last inequality by applying (40) in

Theorem 5. In what follows, we derive upper bound for the numerator and lower
bound for the denominator in (54) in order.

Upper bound for ‖(�xSuSu)
−1/2�xySuSv (�ySvSv )

−1/2 − �‖F. First, we decom-
pose �xySuSv as

�xySuSv = �xSu∗
(
U1�1V

′
1 + U2�2V

′
2
)
�y∗Sv

= �xSuSuU1Su∗�1V
′
1Sv∗�ySvSv + �xSuSuU1Su∗�1V

′
1Sc

v∗�ySc
vSv(55)

+ �xSuSc
u
U1Sc

u∗�1V
′
1�y∗Sv + �xSu∗U2�2V

′
2�y∗Sv .

Then (55), (49) and (47) jointly imply that∥∥(�xSuSu)
−1/2�xySuSv (�ySvSv )

−1/2 − �
∥∥

F

≤ ∥∥(�xSuSu)
−1/2�xSuSc

u
U1Sc

u∗�1V
′
1�y∗Sv (�ySvSv )

−1/2∥∥
F

+ ∥∥(�xSuSu)
1/2U1Su∗�1V

′
1Sc

v∗�ySc
vSv (�ySvSv )

−1/2∥∥
F
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+ ∥∥PP ′(�xSuSu)
−1/2�xSu∗U2�2V

′
2�y∗Sv (�ySvSv )

−1/2(
I − QQ′)∥∥

F

+ ∥∥(�xSuSu)
−1/2�xSu∗U2�2V

′
2�y∗Sv (�ySvSv )

−1/2QQ′∥∥
F

≤ Cλ
(‖U1Sc

u∗‖F + ‖V1Sc
v∗‖F

)
+ Cλr+1

(∥∥P ′(�xSuSu)
−1/2�xSu∗U2

∥∥
F + ∥∥Q′(�ySvSv )

−1/2�ySv∗V2
∥∥

F

)
= Cλ

(‖U1Sc
u∗‖F + ‖V1Sc

v∗‖F
) + Cλr+1

(∥∥Ũ ′
1�xU2

∥∥
F + ∥∥Ṽ ′

1�yV2
∥∥

F

)
.

Here, the last equality is due to the definition (48). The last display, together
with (52) and Lemma 11, leads to∥∥(�xSuSu)

−1/2�xySuSv (�ySvSv )
−1/2 − �

∥∥2
F ≤ Cq

2 − q
λ2ε2

n.(56)

Lower bound for λ̃r − λ∗
r+1. The bound (56), together with Weyl’s inequality

([18], page 449 and Hoffman–Wielant inequality [31], page 63) implies∣∣λ∗
r+1 − λ̃r+1

∣∣ ∨ ∥∥�∗
1 − �̃1

∥∥
F

(57)

≤ ∥∥(�xSuSu)
−1/2�xySuSv (�ySvSv )

−1/2 − �
∥∥

F ≤ C

√
q

2 − q
λεn ≤ 0.1λ.

Together with Lemma 10, it further implies

λ̃r − λ∗
r+1 ≥ λ̃r − λ̃r+1 − ∣∣̃λr+1 − λ∗

r+1
∣∣ ≥ 0.7λ.(58)

Combining (54), (56) and (58), we obtain∥∥Ũ1Ṽ
′
1 − U∗

1 V ∗′
1

∥∥2
F ≤ Cq

2 − q
ε2
n.(59)

The proof of (32) is completed by combining (50), (53) and (59). �

PROOF OF (33). Note that∥∥U∗
1 �1V

∗′
1 − U1�1V

′
1
∥∥

F

≤ ∥∥U∗
1 �1V

∗′
1 − Ũ1�̃1Ṽ

′
1
∥∥

F + ∥∥Ũ1�̃1Ṽ
′
1 − U1�1V

′
1
∥∥

F

≤ ∥∥U∗
1 �∗

1V
∗′
1 − Ũ1�̃1Ṽ

′
1
∥∥

F + ∥∥Ũ1�̃1Ṽ
′
1 − U1�1V

′
1
∥∥

F

+ C
∥∥�∗

1 − �̃1
∥∥

F + C‖�̃1 − �1‖F

≤ ∥∥U∗
1 �∗

1V
∗′
1 − Ũ1�̃1Ṽ

′
1
∥∥

F + C′∥∥Ũ1�̃1Ṽ
′
1 − U1�1V

′
1
∥∥

F + C
∥∥�∗

1 − �̃1
∥∥

F.

Here, the last inequality is due to

‖�̃1 − �1‖F ≤ ∥∥�1/2
x

(
Ũ1�̃1Ṽ

′
1 − U1�1V

′
1
)
�1/2

y

∥∥
F,(60)

a consequence of Lemma 10 and the Hoffman–Wielandt inequality [31], page 63.
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We now control each of the three terms on the rightmost-hand side of the sec-
ond last display. First, the bound we derived for (51), up to a constant multiplier,
‖Ũ1�̃1Ṽ

′
1 − U1�1V

′
1‖F is upper bounded by the right-hand side of (33). Next, the

bound for ‖�∗
1 − �̃1‖F has been shown in (57). Last but not least, applying (39) in

Theorem 5, we obtain∥∥U∗
1 �∗

1V
∗′
1 − Ũ1�̃1Ṽ

′
1
∥∥

F

≤ C(̃λ1 + λ∗
1)

λ̃r − λ∗
r+1

∥∥(�xSuSu)
−1/2�xySuSv (�ySvSv )

−1/2 − �
∥∥

F ≤ C

√
q

2 − q
λεn,

where the last inequality is due to (56), (57), (58) and Lemma 10. The proof is
completed by assembling the bounds for the three terms. �

5.4. Proof of Lemma 4. In this proof, we need the following technical result,
which is a direct consequence of Lemma 3 in [15] by applying union bound. Re-
member the notation Tu and Tv defined in (41).

LEMMA 12. Assume 1
n
(ku

q log(ep/ku
q ) + kv

q log(em/kv
q)) < C1 for some con-

stant C1 > 0. For any constant C′ > 0, there exists some constant C > 0 only
depending on M,C1 and C′, such that∥∥�̂xTuTu − �xTuTu

∥∥2
op ≤ C

n

(
ku
q log

(
ep/ku

q

))
,

∥∥�̂yTvTv − �yTvTv

∥∥2
op ≤ C

n

(
kv
q log

(
em/kv

q

))
,

with probability at least 1 − exp(−C′ku
q log(ep/ku

q )) − exp(−C′kv
q log(em/kv

q)).

In addition, we need the following result.

LEMMA 13 (Stewart and Sun [30], Theorem II.4.11). For any matrices A,B

with A′A = B ′B = I , we have

inf
W

‖A − BW‖F ≤ ∥∥AA′ − BB ′∥∥
F.

We first bound 〈�xU2�2V
′
2�y, Û1V̂

′
1〉. By the definition of trace product, we

have 〈
�xU2�2V

′
2�y, Û1V̂

′
1
〉 = 〈

�2V
′
2�yV̂

′
1,U

′
2�xÛ1

〉
≤ ∥∥�2V

′
2�yV̂

′
1
∥∥

F

∥∥U ′
2�xÛ1

∥∥
F

≤ λr+1
∥∥V ′

2�yV̂
′
1
∥∥

F

∥∥U ′
2�xÛ1

∥∥
F.

Define the SVD of matrices U1 and Û1 to be

U1 = 
RH ′, Û1 = 
̂R̂Ĥ ′.
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For any matrix W , we have∥∥Û ′
1�xU2

∥∥
F = ∥∥(

Û1 − U1HR−1WR̂Ĥ ′)′�xU2
∥∥

F

≤ C
∥∥Û1 − U1HR−1WR̂Ĥ ′∥∥

F

≤ C‖R̂‖op‖
̂ − 
W‖F,

where ‖R̂‖op ≤ ‖Û1‖op ≤ ‖(�̂xTuTu)
−1/2‖op‖(�̂xTuTu)

1/2Û1Tu∗‖op ≤ C with prob-
ability at least 1 − exp(−C′ku

q log(ep/ku
q )) − exp(−C′kv

q log(em/kv
q)) by Lem-

ma 12. Hence, by Lemma 13, we have∥∥Û ′
1�xU2

∥∥
F ≤ C inf

W
‖
̂ − 
W‖F ≤ C

∥∥
̂
̂′ − 

′∥∥
F.(61)

We note that both 
̂
̂′ and 

′ are the projection matrices of the left singular
spaces of Û1V̂

′
1 and U1V

′
1, respectively, and the eigengap is at constant level since

the r th singular value of U1V
′
1 is bounded below by some constant and the (r +1)th

singular value of Û1V̂
′
1 is zero. Then a direct consequence of Wedin’s sin-theta

theorem [37] gives ∥∥
̂
̂′ − 

′∥∥
F ≤ C

∥∥Û1V̂
′
1 − U1V

′
1
∥∥

F.(62)

Combining (61) and (62), we have ‖Û ′
1�xU2‖F ≤ C1‖Û1V̂

′
1 − U1V

′
1‖F. The same

argument also implies ‖V ′
2�yV̂

′
1‖F ≤ C1‖Û1V̂

′
1 − U1V

′
1‖F. Therefore,∣∣〈�xU2�2V

′
2�y, Û1V̂

′
1
〉∣∣ ≤ C2λr+1

∥∥Û1V̂
′
1 − U1V

′
1
∥∥2

F.

Using a similar argument, we also obtain∣∣〈�xU2�2V
′
2�y, Û

∗
1
(
V̂ ∗

1
)′〉∣∣ ≤ C2λr+1

∥∥Û∗
1
(
V̂ ∗

1
)′ − U1V

′
1
∥∥2

F.

By the triangle inequality, we complete the proof.

5.5. Proof of Lemma 5. Define

W =
[

0 Û∗
1 V̂ ∗′

1 − Û1V̂
′
1(

Û∗
1 V̂ ∗′

1 − Û1V̂
′
1

)′ 0

]
.

Then simple algebra leads to〈
�xy − �̂xy, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉 = 1

2〈� − �̂,W 〉.(63)

In the rest of the proof, we bound 〈� − �̂,W 〉 by using Lemma 7.
Notice that the matrix Û∗

1 V̂ ∗′
1 − Û1V̂

′
1 has nonzero rows with indices in Tu =

Su ∪ Ŝu and nonzero columns with indices in Tv = Sv ∪ Ŝv . Hence, the enlarged
matrix W has nonzero rows and columns with indices in T × T , where

T = Tu ∪ (Tv + p)
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with Tv +p = {j +p : j ∈ Tv}. The cardinality of T is |T | = |Tu| + |Tv| ≤ 2(ku
q +

kv
q). Thus, we can rewrite (63) as〈

�xy − �̂xy, Û
∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

= 1
2〈� − �̂,W 〉

= 1
2〈�T T − �̂T T ,WT T 〉

= 1
2

〈
I|T | − �

−1/2
T T �̂T T �

−1/2
T T ,�

1/2
T T WT T �

1/2
T T

〉
= 1

2

∥∥�1/2
T T WT T �

1/2
T T

∥∥
F

〈
I|T | − �

−1/2
T T �̂T T �

−1/2
T T ,KT 〉

,

where KT = �
1/2
T T WT T �

1/2
T T

‖�1/2
T T WT T �

1/2
T T ‖F

. Note that

1
2

∥∥�1/2
T T WT T �

1/2
T T

∥∥
F ≤ C‖WT T ‖F = C‖W‖F = √

2C
∥∥Û∗

1 V̂ ∗′
1 − Û1V̂

′
1
∥∥

F.

To obtain the desired bound, it suffices to show that∣∣〈I|T | − �
−1/2
T T �̂T T �

−1/2
T T ,KT 〉∣∣(64)

is upper bounded by Cλεn with high probability.
To this end, we note that Tu = Su ∪ Ŝu has at most

(p
ku
q

)
different possible config-

urations since Su is deterministic and Ŝu is a random set of size ku
q . For the same

reason, Tv has at most
(m
kv
q

)
different possible configurations. Therefore, the subset

T has at most N = (p
ku
q

)(m
kv
q

)
different possible configurations, which can be listed

as T1, T2, . . . , TN . Let

KTj =
�

1/2
TjTj

WTjTj
�

1/2
TjTj

‖�1/2
TjTj

WTjTj
�

1/2
TjTj

‖F

for all j ∈ [N ]. Since each WTjTj
is of rank at most 2r , so are the KTj ’s. Therefore,∣∣(64)

∣∣ ≤ max
1≤j≤N

∣∣〈I|Tj | − �
−1/2
TjTj

�̂Tj Tj
�

−1/2
TjTj

,KTj
〉∣∣

≤ max
1≤j≤N

sup
‖K‖F≤1,rank(K)≤2r

∣∣〈I|Tj | − �
−1/2
TjTj

�̂Tj Tj
�

−1/2
TjTj

,K
〉∣∣.

Then the union bound leads to

P�

(∣∣(64)
∣∣ > t

)
≤

N∑
j=1

P
(

sup
‖K‖F≤1,rank(K)≤2r

∣∣〈I|Tj | − �
−1/2
TjTj

�̂Tj Tj
�

−1/2
TjTj

,K
〉∣∣ > t

)
(65)
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≤
N∑

j=1

exp
(
C′r|Tj | − Cn

(
t ∧ t2))

≤
(

p

ku
q

)(
m

kv
q

)
exp

(
C1r

(
ku
q + kv

q

) − Cn
(
t ∧ t2))

≤ exp
(
C1r

(
ku
q + kv

q

) + ku
q log

ep

ku
q

+ kv
q log

em

kv
q

− Cn
(
t ∧ t2))

,

where inequality (65) is due to Lemma 7. We complete the proof by choosing
t2 = C2λ

2ε2
n in the last display for some sufficiently large constant C2 > 0, which,

by condition (16), is bounded.

5.6. Proof of Lemma 6. First, we apply a telescoping expansion to the quantity
of interest as〈

�̂xÛ
∗
1 �1V̂

∗′
1 �̂y − �xU1�1V

′
1�y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

= 〈
�xÛ

∗
1 �1V̂

∗′
1 �y − �xU

∗
1 �1V

∗′
1 �y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

(66)

+ 〈
�xU

∗
1 �1V

∗′
1 �y − �xU1�1V

′
1�y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉

(67)

+ 〈
�̂xÛ

∗
1 �1V̂

∗′
1 �̂y − �xÛ

∗
1 �1V̂

∗′
1 �y, Û

∗
1 V̂ ∗′

1 − Û1V̂
′
1
〉
.(68)

In what follows, we bound each of the terms in (66)–(68) in order.
1◦ Bound for (66). Applying (35) in Lemma 3, we obtain that with probability

at least 1 − exp(−C ′(ku
q + log(ep/ku

q ))) − exp(−C′(kv
q + log(em/kv

q))),∣∣(66)
∣∣ ≤ C

∥∥Û∗
1 �1V̂

∗′
1 − U∗

1 �1V
∗′
1

∥∥
F

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂
′
1
∥∥

F

≤ C

√
q

2 − q
λεn

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂
′
1
∥∥

F.

2◦ Bound for (67). Applying (33) in Lemma 2, we obtain∣∣(67)
∣∣ ≤ C

∥∥U∗
1 �1V

∗′
1 − U1�1V

′
1
∥∥

F

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂
′
1
∥∥

F

≤ C

√
q

2 − q
λεn

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂
′
1
∥∥

F.

3◦ Bound for (68). We turn to bound (68) based on a strategy similar to that
used in proving Lemma 5. First, we write it in a form for which we could apply
Lemma 7. Recall the random sets Tu and Tv defined in (41). Then for

HTu
x = (�xTuTu)

1/2(
Û∗

1Tu∗
(
V̂ ∗

1Tv∗
)′ − Û1Tu∗(V̂1Tv∗)′

)
× �̂yTvTv V̂

∗
1Tv∗�1

(
Û∗

1Tu∗
)′
(�xTuTu)

1/2,

HTv
y = (�yTvTv )

1/2V̂ ∗
1Tv∗�1

(
Û∗

1Tu∗
)′

× �xTuTu

(
Û∗

1Tu∗
(
V̂ ∗

1Tv∗
)′ − Û1Tu∗(V̂1Tv∗)′

)
(�yTvTv )

1/2,
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and H
Tu

x = H
Tu
x /‖HTu

x ‖F, H
Tv

y = HTv
y /‖HTv

y ‖F, we have∣∣(68)
∣∣
= ∣∣〈�̂x − �x,

(
Û∗

1 V̂ ∗′
1 − Û1V̂1

′)�̂yV̂
∗
1 �1Û

∗
1

′〉
+ 〈

�̂y − �y, V̂
∗
1 �1Û

∗
1

′�x

(
Û∗

1 V̂ ∗′
1 − Û1V̂1

′)〉∣∣
≤ ∣∣〈�̂xTuTu − �xTuTu,

(
Û∗

1Tu∗
(
V̂ ∗

1Tv∗
)′

− Û1Tu∗(V̂1Tv∗)′
)
�̂yTvTv V̂

∗
1Tv∗�1

(
Û∗

1Tu∗
)′〉∣∣

+ ∣∣〈�̂yTvTv

− �yTvTv , V̂
∗
1Tv∗�1

(
Û∗

1Tu∗
)′
�xTuTu

(
Û∗

1Tu∗
(
V̂ ∗

1Tv∗
)′ − Û1Tu∗(V̂1Tv∗)′

)〉∣∣
= ∥∥HTu

x

∥∥
F

∣∣〈(�xTuTu)
−1/2�̂xTuTu(�xTuTu)

−1/2 − I|Tu|,H
Tu

x

〉∣∣
+ ∥∥HTv

y

∥∥
F

∣∣〈(�yTvTv )
−1/2�̂yTvTv (�yTvTv )

−1/2 − I|Tv |,H
Tv

y

〉∣∣.
We now bound each term on the rightmost side. Applying Lemma 7 with union

bound and then following a similar analysis to that leading to (64) but with T

replaced by Tu and Tv , we obtain that∣∣〈(�xTuTu)
−1/2�̂xTuTu(�xTuTu)

−1/2 − I|Tu|,H
Tu

x

〉∣∣
≤ C

√√√√ku
q

n

(
r + log

ep

ku
q

)
,

(69) ∣∣〈(�yTvTv )
−1/2�̂yTvTv (�yTvTv )

−1/2 − I|Tv |,H
Tv

y

〉∣∣
≤ C

√√√√kv
q

n

(
r + log

em

kv
q

)
with probability at least 1− exp(−C′ku

q (r + log(ep/ku
q ))) and 1− exp(−C′kv

q(r +
log(em/kv

q))), respectively.

To bound ‖HTu
x ‖F and ‖HTv

y ‖F, we note that it follows from Lemma 12 that
all eigenvalues of �̂xTuTu and �̂yTvTv are bounded from below and above by some
universal positive constants with probability at least 1−exp(−C′ku

q log(ep/ku
q ))−

exp(−C′kv
q log(em/kv

q)) under assumption (16). Thus, with the same probability
we have ∥∥HTu

x

∥∥
F ≤ Cλ

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂1
′∥∥

F

∥∥�̂1/2
yTvTv

V̂ ∗
1Tv∗

∥∥
op

× ∥∥�̂1/2
yTvTv

∥∥
op

∥∥�̂1/2
xTuTu

Û∗
1Tu∗

∥∥
op

∥∥�̂−1/2
xTuTu

∥∥
op(70)

≤ C1λ
∥∥Û∗

1 V̂ ∗′
1 − Û1V̂1

′∥∥
F
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and ∥∥HTv
y

∥∥
F ≤ Cλ

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂1
′∥∥

F

∥∥�̂1/2
yTvTv

V̂ ∗
1Tv∗

∥∥
op

× ∥∥�̂−1/2
yTvTv

∥∥
op

∥∥�̂1/2
xTuTu

Û∗
1Tu∗

∥∥
op

∥∥�̂−1/2
xTuTu

∥∥
op(71)

≤ C1λ
∥∥Û∗

1 V̂ ∗′
1 − Û1V̂1

′∥∥
F.

Combining (69), (70) and (71), we obtain∣∣(68)
∣∣ ≤ Cλ2εn

∥∥Û∗
1 V̂ ∗′

1 − Û1V̂1
′∥∥

F,

with probability at least 1 − exp(−C′ku
q log(ep/ku

q )) − exp(−C′kv
q log(em/kv

q)).
Noting that λ < 1, this completes the proof.

SUPPLEMENTARY MATERIAL

Supplement to “Minimax estimation in sparse canonical correlation anal-
ysis” (DOI: 10.1214/15-AOS1332SUPP; .pdf). The supplement [15] contains an
Appendix to the current paper in which we prove Theorems 3–5 and Lemmas 3
and 7–11.
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