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CONTROLLING THE FALSE DISCOVERY RATE VIA KNOCKOFFS

BY RINA FOYGEL BARBER1 AND EMMANUEL J. CANDÈS2

University of Chicago and Stanford University

In many fields of science, we observe a response variable together with
a large number of potential explanatory variables, and would like to be able
to discover which variables are truly associated with the response. At the
same time, we need to know that the false discovery rate (FDR)—the ex-
pected fraction of false discoveries among all discoveries—is not too high, in
order to assure the scientist that most of the discoveries are indeed true and
replicable. This paper introduces the knockoff filter, a new variable selection
procedure controlling the FDR in the statistical linear model whenever there
are at least as many observations as variables. This method achieves exact
FDR control in finite sample settings no matter the design or covariates, the
number of variables in the model, or the amplitudes of the unknown regres-
sion coefficients, and does not require any knowledge of the noise level. As
the name suggests, the method operates by manufacturing knockoff variables
that are cheap—their construction does not require any new data—and are
designed to mimic the correlation structure found within the existing vari-
ables, in a way that allows for accurate FDR control, beyond what is possible
with permutation-based methods. The method of knockoffs is very general
and flexible, and can work with a broad class of test statistics. We test the
method in combination with statistics from the Lasso for sparse regression,
and obtain empirical results showing that the resulting method has far more
power than existing selection rules when the proportion of null variables is
high.

1. Introduction. Understanding the finite sample inferential properties of
procedures that select and fit a regression model to data is possibly one of the
most important topics of current research in theoretical statistics. This paper is
about this problem and focuses on the accuracy of variable selection in the classi-
cal linear model under arbitrary designs.

1.1. The false discovery rate in variable selection. Suppose we have recorded
a response variable of interest y and many potentially explanatory variables Xj on
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n observational units. Our observations obey the classical linear regression model

y = Xβ + z,(1.1)

where as usual, y ∈ Rn is a vector of responses, X ∈ Rn×p is a known design ma-
trix, β ∈ Rp is an unknown vector of coefficients and z ∼ N (0, σ 2I) is Gaussian
noise. Because we are interested in valid inference from finitely many samples, we
shall mostly restrict our attention to the case where n ≥ p as otherwise the model
would not even be identifiable. Now in modern settings, it is often the case that
there are typically just a few relevant variables among the many that have been
recorded. In genetics, for instance, we typically expect that only a few genes are
associated with a phenotype y of interest. In terms of the linear model (1.1), this
means that only a few components of the parameter β are expected to be nonzero.
While there certainly is no shortage of data fitting strategies, it is not always clear
whether any of these offers real guarantees on the accuracy of the selection with
a finite sample size. In this paper, we propose controlling the false discovery rate
(FDR) among all the selected variables, that is, all the variables included in the
model, and develop novel and very concrete procedures, which provably achieve
this goal.

Informally, the FDR is the expected proportion of falsely selected variables, a
false discovery being a selected variable not appearing in the true model. Formally,
the FDR of a selection procedure returning a subset Ŝ ⊂ {1, . . . , p} of variables is
defined as

FDR = E
[

#{j : βj = 0 and j ∈ Ŝ}
#{j : j ∈ Ŝ} ∨ 1

]
.(1.2)

(The definition of the denominator above sets the fraction to zero in the case that
zero features are selected, i.e., Ŝ =∅; here we use the notation a∨b = max{a, b}.)
We will say that a selection rule controls the FDR at level q if its FDR is guaranteed
to be at most q no matter the value of the coefficients β . This definition asks to
control the type I error averaged over the selected variables and is both meaningful
and operational. Imagine we have a procedure that has just made 100 discoveries.
Then roughly speaking, if our procedure is known to control the FDR at the 10%
level, this means that we can expect at most 10 of these discoveries to be false
and, therefore, at least 90 to be true. In other words, if the collected data were
the outcome of a scientific experiment, then we would expect that most of the
variables selected by the knockoff procedure correspond to real effects that could
be reproduced in follow-up experiments.

In the language of hypothesis testing, we are interested in the p hypotheses Hj :
βj = 0 and wish to find a multiple comparison procedure able to reject individual
hypotheses while controlling the FDR. This is the reason why we will at times
use terminology from this literature, and we may say that Hj has been rejected to
mean that feature j has been selected, or we may say that the data provide evidence
against Hj to mean that the j th variable likely belongs to the model.
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1.2. The knockoff filter. This paper introduces a general FDR controlling pro-
cedure that is guaranteed to work under any fixed design X ∈ Rn×p, as long as
n > p, and the response y follows a linear Gaussian model as in (1.1). An impor-
tant feature of this procedure is that it does not require any knowledge of the noise
level σ . Also, it does not assume any knowledge about the number of variables in
the model, which can be arbitrary. We now outline the steps of this new method.

Step 1: Construct knockoffs. For each feature Xj in the model (i.e., the j th
column of X), we construct a “knockoff” feature X̃j . The goal of the knockoff
variables is to imitate the correlation structure of the original features in a very
specific way that will allow for FDR control.

Specifically, to construct the knockoffs, we first calculate the Gram matrix � =
X�X of the original features,3 after normalizing each feature such that �jj =
‖Xj‖2

2 = 1 for all j . We will ensure that these knockoff features obey

X̃�X̃ = �, X�X̃ = � − diag{s},(1.3)

where s is a p-dimensional nonnegative vector. In words, X̃ exhibits the same
covariance structure as the original design X, but in addition, the correlations be-
tween distinct original and knockoff variables are the same as those between the
originals (because � and � − diag{s} are equal on off-diagonal entries),

X�
j X̃k = X�

j Xk for all j 	= k.

However, comparing a feature Xj to its knockoff X̃j , we see that

X�
j X̃j = �jj − sj = 1 − sj ,

while X�
j Xj = X̃�

j X̃j = 1. To ensure that our method has good statistical power
to detect signals, we will see that we should choose the entries of s as large as
possible so that a variable Xj is not too similar to its knockoff X̃j .

A strategy for constructing X̃ is to choose s ∈ Rp
+ satisfying diag{s} 
 2�, and

construct the n × p matrix X̃ of knockoff features as

X̃ = X
(
I − �−1 diag{s}) + ŨC;(1.4)

here, Ũ is an n × p orthonormal matrix that is orthogonal4 to the span of the fea-
tures X, and C�C = 2 diag{s} − diag{s}�−1 diag{s} is a Cholesky decomposition
(whose existence is guaranteed by the condition diag{s} 
 2�; see Section 2.1.1
for details).

Step 2: Calculate statistics for each pair of original and knockoff variables. We
now wish to introduce the statistics Wj for each βj ∈ {1, . . . , p}, which will help

3We assume throughout that � is invertible as the model would otherwise not be identifiable.
4In this version of the construction, we are implicitly assuming n ≥ 2p. Section 2.1.2 explains how

to extend this method to the regime p < n < 2p.
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us tease apart those variables that are in the model from those that are not. These
Wj ’s are constructed so that large positive values are evidence against the null
hypothesis βj = 0.

In this instance, we consider the Lasso model [26], an �1-norm penalized re-
gression that promotes sparse estimates of the coefficients β , given by

β̂(λ) = argmin
b

{
1

2
‖y − Xb‖2

2 + λ‖b‖1

}
.(1.5)

For sparse linear models, the Lasso is known to be asymptotically accurate for both
variable selection and for coefficient or signal estimation (see, e.g., [5, 7, 30, 32]),
and so even in a nonasymptotic setting, we will typically see β̂(λ) including many
signal variables and few null variables at some value of the penalty parameter λ.
Consider the point λ on the Lasso path at which feature Xj first enters the model,

Test statistic for feature j = sup
{
λ : β̂j (λ) 	= 0

}
,(1.6)

which is likely to be large for most of the signals, and small for most of the null
variables. However, to be able to quantify this and choose an appropriate threshold
for variable selection, we need to use the knockoff variables to calibrate our thresh-
old. With this in mind, we instead compute the statistics in (1.6) on the augmented
n× 2p design matrix [X X̃] (this is the columnwise concatenation of X and X̃), so
that [X X̃] replaces X in (1.5). This yields a 2p-dimensional vector (Z1, . . . ,Zp ,
Z̃1, . . . , Z̃p). Finally, for each j ∈ {1, . . . , p}, we set

Wj = Zj ∨ Z̃j ·
{+1, Zj > Z̃j ,

−1, Zj < Z̃j

(1.7)

(we can set Wj to zero in case of equality Zj = Z̃j ). A large positive value of Wj

indicates that variable Xj enters the Lasso model early (at some large value of λ)
and that it does so before its knockoff copy X̃j . Hence this is an indication that
this variable is a genuine signal and belongs in the model. We may also consider
other alternatives for constructing the Wj ’s: for instance, instead of recording the
variables’ entry into the Lasso model, we can consider forward selection methods
and record the order in which the variables are added to the model; see Section 2.2
for this and other alternatives.

In Section 2, we discuss a broader methodology, where the statistics Wj may be
defined in any manner that satisfies the sufficiency property and the antisymmetry
property, which we will define later on; the construction above is a specific instance
that we find to perform well empirically.

Step 3: Calculate a data-dependent threshold for the statistics. We wish to select
variables such that Wj is large and positive, that is, such that Wj ≥ t for some
t > 0. Letting q be the target FDR, define a data-dependent threshold T as

T = min
{
t ∈W : #{j : Wj ≤ −t}

#{j : Wj ≥ t} ∨ 1
≤ q

}
(1.8)
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FIG. 1. Representation of the knockoff procedure plotting pairs (Zj , Z̃j ). Black dots correspond
to the null hypotheses (βj = 0) while red squares are nonnulls (βj 	= 0). Setting t = 1.5, the number
of points in the shaded region below the diagonal is equal to #{j : Wj ≥ t}, the number of selected
variables at this threshold, while the number of points in the shaded region above the diagonal is
equal to #{j : Wj ≤ −t}. Observe that the true signals (red squares) are primarily below the diag-
onal, indicating Wj > 0, while the null features (black dots) are roughly symmetrically distributed
across the diagonal.

or T = +∞ if this set is empty, where W = {|Wj | : j = 1, . . . , p} \ {0} is the set
of unique nonzero5 values attained by the |Wj |’s. We shall see that the fraction
appearing above is an estimate of the proportion of false discoveries if we are
to select all features j ’s with Wj ≥ t . For this reason, we will often refer to this
fraction as the knockoff estimate of FDP.

For a visual representation of this step, see Figure 1, where we plot the point
(Zj , Z̃j ) for each feature j , with black dots denoting null features and red squares
denoting true signals. Recall that Wj is positive if the original variable is selected
before its knockoff (i.e., Zj > Z̃j ) and is negative otherwise (i.e., Zj < Z̃j ). There-
fore a feature j whose point lies below the dashed diagonal line in Figure 1 then
has a positive value of Wj , while points above the diagonal are assigned negative
Wj ’s. For a given value of t , the numerator and denominator of the fraction ap-
pearing in (1.8) above are given by the numbers of points in the two gray shaded
regions of the figure (with nulls and nonnulls both counted, since in practice we
do not know which features are null).

With these steps in place, we are ready to define our procedure:

DEFINITION 1 (Knockoff). Construct X̃ as in (1.4), and calculate statistics
Wj satisfying the sufficiency and antisymmetry properties [defined in Section 2;
(1.7) above gives an example of a statistic satisfying these properties]. Then select

5If Wj = 0 for some feature Xj , then this gives no evidence for rejecting the hypothesis βj = 0,
and so our method will never select such variables.
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the model

Ŝ = {j : Wj ≥ T },
where T is the data-dependent threshold (1.8). (Note that Ŝ and T both implicitly
depend on the choice of the target FDR level q .)

A main result of this paper is that this procedure controls a quantity nearly equal
to the FDR:

THEOREM 1. For any q ∈ [0,1], the knockoff method satisfies

E
[

#{j : βj = 0 and j ∈ Ŝ}
#{j : j ∈ Ŝ} + q−1

]
≤ q,

where the expectation is taken over the Gaussian noise z in the model (1.1), while
treating X and X̃ as fixed.

The “modified FDR” bounded by this theorem is very close to the FDR in set-
tings where a large number of features are selected (as adding q−1 in the denomi-
nator then has little effect), but it sometimes may be preferable to control the FDR
exactly. For this, we propose a slightly more conservative procedure:

DEFINITION 2 (Knockoff+). Select a model as in Definition 1 but with a data-
dependent threshold T defined as

T = min
{
t ∈ W : 1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t} ∨ 1
≤ q

}
.(1.9)

Note that the threshold T chosen by knockoff+ is always higher (or equal to)
than that chosen in (1.8) by the knockoff filter, meaning that knockoff+ is (slightly)
more conservative.

Our second main result shows that knockoff+ controls the FDR.

THEOREM 2. For any q ∈ [0,1], the knockoff+ method satisfies

FDR = E
[

#{j : βj = 0 and j ∈ Ŝ}
#{j : j ∈ Ŝ} ∨ 1

]
≤ q,

where the expectation is taken over the Gaussian noise z in model (1.1), while
treating X and X̃ as fixed.

We have explained why a large positive value of Wj bears some evidence
against the null hypothesis βj = 0, and now give a brief intuition for how our
specific choice of threshold allows control of FDR (or of the modified FDR). The
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way in which W is constructed implies that the signs of the Wj ’s are i.i.d. random
for the “null hypotheses,” that is, for those j ’s such that βj = 0. Therefore, for any
threshold t ,

#{j : βj = 0 and Wj ≥ t} d=#{j : βj = 0 and Wj ≤ −t},(1.10)

where d= means equality in distribution. In Figure 1, for instance, #{j : βj =
0 and Wj ≥ t} is the number of null points (black dots) in the shaded region be-
low the diagonal, while #{j : βj = 0 and Wj ≤ −t} is the number of null points
in the shaded region above the diagonal. Note that the null points are distributed
approximately symmetrically across the diagonal, as described by (1.10).

Hence we can estimate the false discovery proportion (FDP) at the threshold t

as
#{j : βj = 0 and Wj ≥ t}

#{j : Wj ≥ t} ∨ 1
≈ #{j : βj = 0 and Wj ≤ −t}

#{j : Wj ≥ t} ∨ 1
(1.11)

≤ #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

=: F̂DP(t),

where F̂DR(t) is the knockoff estimate of FDP. The knockoff procedure can be
interpreted as finding a threshold via T = min{t ∈W : F̂DP(t) ≤ q}, with the con-
vention that T = +∞ if no such t exists; this is the most liberal threshold with
the property that the estimated FDP is under control. In fact, the inequality in
(1.11) will usually be tight because most strong signals will be selected before
their knockoff copies (in Figure 1, we see that most of the red squares lie below
the diagonal, i.e., Wj ≥ 0); this means that our estimate of FDP will probably be
fairly tight unless the signal strength is weak. (We will see later that the additional
“+1” appearing in the knockoff+ method, yielding a slightly more conservative
procedure, is necessary both theoretically and empirically to control FDR in sce-
narios where extremely few discoveries are made.)

1.3. Outline of the paper. The rest of this paper is organized as follows:

• In Section 2, we introduce the more general form of our variable selection pro-
cedure and give some theoretical properties of the procedure that will allow for
FDR control.

• In Section 3 we discuss some related methods and strategies for FDR control for
variable selection. We compare our proposal to permutation-based methods, to
the Benjamini–Hochberg (BHq) procedure and some of its variants and to other
methods. In particular, in Section 3.3, we present simulations to demonstrate
that the method is effective in practice and performs well compared to the BHq
and related procedures.

• In Section 4, we present an application of the knockoff method to real data
where the task is to find mutations in the HIV-1 protease or reverse transcriptase
that are associated with drug resistance.
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• In Section 5, we move to a more general problem of sequential hypothesis test-
ing, and we show that our approach is an example of a procedure for controlling
FDR in a sequential hypothesis testing problem. Some proofs are deferred to the
supplementary materials [1].

• In Section 6 we close the paper with a discussion outlining possible extensions
of this work.

2. Knockoffs and FDR control.

2.1. The knockoff features. We begin with the construction of the knockoff
features X̃j and set � = X�X as before. We first present the method in the nat-
ural setting where n ≥ 2p before presenting ways of extending the construction
to the range p < n < 2p. To ease readability, vectors and matrices are boldfaced
throughout the paper whereas scalars are not.

2.1.1. The natural setting n ≥ 2p. As introduced earlier, the matrix X̃ obeys

[ X X̃ ]� [ X X̃ ] =
[

� � − diag{s}
� − diag{s} �

]
:= G,(2.1)

where s ∈ Rp is some vector. A necessary and sufficient condition for X̃ to exist
is that G is positive semidefinite. Indeed, by standard Schur complement calcula-
tions, G � 0 if and only if diag{s} � 0 and 2� � diag{s}, as claimed earlier. Now
let Ũ ∈ Rn×p be an orthonormal matrix whose column space is orthogonal to that
of X so that Ũ�X = 0: such a matrix exists because n ≥ 2p. A simple calculation
then shows that setting

X̃ = X
(
I − �−1 diag{s}) + ŨC(2.2)

gives the correlation structure specified in (2.1), where C�C = 2 diag{s} −
diag{s}�−1 diag{s} � 0.

Now that we understand the condition on s necessary for knockoff features with
the desired correlation structure to exist, it remains to discuss which one we should
construct, that is, to specify a choice of s. Returning to the example of the statistic
from Section 1.2, we will have a useful methodology only if those variables that
truly belong to the model tend to be selected before their knockoffs as we would
otherwise have no power. Imagine that variable Xj is in the true model. Then we
wish to have Xj enter before X̃j . To make this happen, we need the correlation
between X̃j and the true signal to be small, so that X̃j does not enter the Lasso
model early. In other words, we would like Xj and X̃j to be as orthogonal to each
other as possible. In a setting where the features are normalized, that is, �jj = 1
for all j , we would like to have X̃�

j Xj = 1− sj as close to zero as possible. Below,
we consider two particular types of knockoffs:
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• Equi-correlated knockoffs: Here, sj = 2λmin(�) ∧ 1 for all j , so that all the
correlations take on the identical value

〈Xj , X̃j 〉 = 1 − 2λmin(�) ∧ 1.(2.3)

Among all knockoffs with this equi-variant property, this choice minimizes the
value of |〈Xj , X̃j 〉|.

• SDP knockoffs: Another possibility is to select knockoffs so that the average
correlation between an original variable and its knockoff is minimum. This is
done by solving the convex problem

minimize
∑
j

(1 − sj ) subject to 0 ≤ sj ≤ 1,diag{s} 
 2�.(2.4)

This optimization problem is a highly structured, semidefinite program (SDP),
which can be solved very efficiently [6].

If the original design matrix X allows us to construct a knockoff matrix X̃ such
that the sj ’s are high (near 1), the knockoff procedure will have high power; if this
is not the case, then the power is likely to be lower.

2.1.2. Extensions to p < n < 2p. When n < 2p, we can no longer find a sub-
space of dimension p which is orthogonal to X, and so we cannot construct Ũ as
above. We can still use the knockoff filter, however, as long as the noise level σ is
known or can be estimated. For instance, under the Gaussian noise model (1.1), we
can use the fact that the residual sum of squares from the full model is distributed as
‖y−Xβ̂LS‖2

2 ∼ σ 2 ·χ2
n−p , where β̂LS is the vector of coefficients in a least-squares

regression. Now letting σ̂ be our estimate of σ , draw a (2p − n)-dimensional vec-
tor y′ with i.i.d. N (0, σ̂ 2) entries. If n − p is large, then σ̂ will be an extremely
accurate estimate of σ , and we can proceed as though σ and σ̂ were equal. We
then augment the response vector y with the new (2p − n)-length vector y′, and
augment the design matrix X with 2p − n rows of zeros. Then approximately,[

y
y′

]
∼N

([
X
0

]
β, σ 2I

)
.

We now have a linear model with p variables and 2p observations, and so we can
apply the knockoff filter to this row-augmented data using the method described for
the n ≥ 2p setting. We emphasize that since the knockoff matrix X̃ is constructed
based only on the augmented original design matrix, that is, on

[X
0

]
, it does not

depend on the observed response y.
In Section 4, we analyze real HIV data with one case of the form p < n < 2p

and, thereby, show that the basic knockoff method can be adapted to situations in
which n > p even if n � 2p, so that it applies all the way to the limit of model
identifiability.
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2.2. Symmetric statistics. We next consider a statistic W([X X̃],y) ∈ Rp with
large positive values of Wj , giving evidence that βj 	= 0, and introduce two simple
properties.

DEFINITION 3. The statistic W is said to obey the sufficiency property if W
depends only on the Gram matrix and on feature-response inner products; that is,
we can write

W = f
([X X̃]�[X X̃], [X X̃]�y

)
for some f : S+

2p ×R2p →Rp , where S+
2p is the cone of 2p×2p positive semidef-

inite matrices. (We call this the sufficiency property since under Gaussian noise,
X�y is a sufficient statistic for β .)

DEFINITION 4. The statistic W is said to obey the antisymmetry property if
swapping Xj and X̃j has the effect of switching the sign of Wj ; that is, for any
S ⊆ {1, . . . , p},

Wj

([X X̃]swap(S),y
) = Wj

([X X̃],y
) ·

{+1, j /∈ S,
−1, j ∈ S.

Here, we write [X X̃]swap(S) to mean that the columns Xj and X̃j have been
swapped in the matrix [X X̃], for each j ∈ S. Formally, if V ∈Rn×2p with columns
Vj , then for each j = 1, . . . , p,

(Vswap(S))j =
{ Vj , j /∈ S,

Vj+p, j ∈ S,
(Vswap(S))j+p =

{ Vj+p, j /∈ S,
Vj , j ∈ S.

The statistic W we examined in Section 1.2, given in equation (1.7), obeys
these two properties. The reason why the sufficiency property holds is that the
Lasso (1.5) is equivalent to

minimize 1
2b�X�Xb − b�X�y + λ‖b‖1,

and thus depends upon the problem data (X,y) through X�X and X�y only.6 Note
that the antisymmetry property in (1.7) is explicit. This is only one example of a
statistic of this type; other examples include the following:

(1) Wj = |X�
j y| − |X̃�

j y|, which simply compares marginal correlations with
the response.

6If we would like to include an intercept term in our model, that is, y = β01 + Xβ + z, then the

Lasso also depends on X�1 and y�1. In this case, we can apply our method as long as the knockoffs
additionally satisfy X̃�1 = X�1.
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(2) Wj = |β̂LS
j | − |β̂LS

j+p| or Wj = |β̂LS
j |2 − |β̂LS

j+p|2, where β̂LS is the least-

squares solution obtained by regressing y on the augmented design, β̂LS =
([X X̃]�[X X̃])−1[X X̃]�y.

(3) Define Zj as in Section 1.2, Zj = sup{λ : β̂j (λ) 	= 0} for j = 1, . . . ,2p

where β̂(λ) is the solution to the augmented Lasso model regressing y on [X X̃].
We may then take Wj = (Zj ∨ Zj+p) · sign(Zj − Zj+p), but may also consider
other options such as Wj = Zj −Zj+p , or alternately we can take Wj = |β̂j (λ)|−
|β̂j+p(λ)| for some fixed value of λ. (To maintain consistency with the rest of
this section, the notation here is slightly different than in Section 1.2, with Zj+p

instead of Z̃j giving the λ value when X̃j entered the Lasso model.)
(4) The example above, of course, extends to all penalized likelihood estima-

tion procedures of the form

minimize 1
2‖y − Xb‖2

2 + λP (b),

where P(·) is a penalty function, the Lasso being only one such example. We can
again define W by finding the λ values at which each feature enters the model,
or by fixing λ and comparing coefficients in β̂ . In particular, we may consider
methods that use a nonconvex penalty, such as SCAD [13], where the nonconvexity
of the penalty P(b) reduces bias in estimating the vector of coefficients.

(5) We can also consider a forward selection procedure [10]: initializing the
residual as r0 = y, we iteratively choose variables via

jt = arg max
j

∣∣〈Xj , rt−1〉
∣∣

and then update the residual rt by either regressing the previous residual rt−1
on Xjt and taking the remainder, or alternately using orthogonal matching pur-
suit [21], where after selecting jt we define rt to be the residual of the least square
regression of y onto {Xj1, . . . ,Xjt }. As before, however, we apply this procedure
to the augmented design matrix [X X̃]. Next let Z1, . . . ,Z2p give the reverse or-
der in which the 2p variables (the originals and the knockoffs) entered the model;
that is, Zj = 2p if Xj entered first; Zj = 2p − 1 if Xj entered second, etc. The
statistics Wj = (Zj ∨ Zj+p) · sign(Zj − Zj+p) then reflect the time at which the
original variable Xj and the knockoff variable X̃j entered the model.

(6) Generalizing the forward selection procedure, we can consider algorithms

producing solution “paths” β̂
λ
, where the path depends on the data only through

X�X and X�y. Examples of such methods include LARS [12], the least angle
regression method (closely related to the LASSO) and MC+ [29], a nonconvex
method aimed at reducing bias in the estimated coefficients. Applying any such
method to the augmented design matrix [X X̃], we would then extract the order in
which features enter the path, to determine the values Zj and Zj+p .

Clearly, the possibilities are endless.
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2.3. Exchangeability results. Despite the fact that the statistics Wj , j ∈
{1, . . . , p}, are dependent and have marginal distributions that are complicated
functions of the unknown parameter vector β , our selection procedure provably
controls the false discovery rate, as stated in Theorems 1 and 2 from Section 1.2.
In this section, we establish a property of the statistics Wj that we will use to prove
our main results on FDR control.

In fact, the construction of the knockoff features and the symmetry of the test
statistic are in place to achieve a crucial property, namely, that the signs of the Wj ’s
are i.i.d. random for the “null hypotheses” and furthermore are independent from
the magnitudes |Wj | for all j , and from sign(Wj ) for the “nonnull hypotheses” j .

LEMMA 1 (i.i.d. signs for the nulls). Let ε ∈ {±1}p be a sign sequence inde-

pendent of W, with εj = +1 for all nonnull j and εj
i.i.d.∼ {±1} for null j . Then

(W1, . . . ,Wp)
d= (W1 · ε1, . . . ,Wp · εp).

This property fully justifies our earlier statement (1.10) that #{j : βj = 0,Wj ≤
−t} has the same distribution as #{j : βj = 0,Wj ≥ t}. Indeed, conditional on
|W| = (|W1|, . . . , |Wp|), both these random variables follow the same binomial
distribution, which implies that their marginal distributions are identical. In turn,
this gives that F̂DP(t) from Section 1.2 is an estimate of the true false discovery
proportion FDP(t).

The i.i.d. sign property for the nulls is a consequence of the two following ex-
changeability properties for X and X̃:

LEMMA 2 (Pairwise exchangeability for the features). For any subset S ⊂
{1, . . . , p},

[X X̃]�swap(S)[X X̃]swap(S) = [X X̃]�[X X̃].
That is, the Gram matrix of [X X̃] is unchanged when we swap Xj and X̃j for each
j ∈ S.

PROOF. This follows trivially from the definition of G = [X X̃]�[X X̃]
in (2.1). �

LEMMA 3 (Pairwise exchangeability for the response). For any subset S of
nulls,

[X X̃]�swap(S)y
d=[X X̃]�y.

That is, the distribution of the product [X X̃]�y is unchanged when we swap Xj

and X̃j for each j ∈ S, as long as none of the swapped features appear in the true
model.
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PROOF. Since y ∼ N (Xβ, σ 2I), for any S′, we have

[X X̃]�swap(S′)y ∼ N
([X X̃]�swap(S′)Xβ, σ 2[X X̃]�swap(S′)[X X̃]swap(S′)

)
.

Next we check that the mean and variance calculated here are the same for S′ = S

and for S′ = ∅. Lemma 2 proves that the variances are equal. For the means, since
X�

j Xi = X̃�
j Xi for all i 	= j , and support(β)∩S = ∅, we see that X�

j Xβ = X̃�
j Xβ

for all j ∈ S, which is sufficient. �

PROOF OF LEMMA 1. For any set S ⊂ {1, . . . , p}, let Wswap(S) be the statistic
we would get if we had replaced [X X̃] with [X X̃]swap(S) when calculating W.
The anti-symmetry property gives

Wswap(S) = (W1 · ε1, . . . ,Wp · εp), εj =
{+1, j /∈ S,

−1, j ∈ S.

Now let ε be as in the statement of the lemma, and let S = {j : εj = −1}. Since S

contains only nulls, Lemmas 2 and 3 give

Wswap(S) = f
([X X̃]�swap(S)(X X̃)swap(S), [X X̃]�swap(S)y

)
d= f

([X X̃]�[X X̃], [X X̃]�y
) = W.

This proves the claim. �

2.4. Proof sketch for main results. With the exchangeability property of the
Wj ’s in place, we sketch the main ideas behind the proof of our main results, The-
orems 1 and 2. The full details will be presented later, in Sections 5 and in the
supplementary materials [1], where we will see that our methods can be framed as
special cases of a sequential hypothesis testing procedure. Such sequential proce-
dures are not specifically about the regression problem we consider here, and this
is the reason why we prefer postponing their description as not to distract from the
problem at hand.

We restrict our attention to the knockoff+ method for simplicity. To understand
how knockoff+ controls FDR, we consider step 3 of the method, where after calcu-
lating the statistics Wj , we choose the data-dependent threshold T given by (1.9).
By definition, the FDP is equal to

FDP = #{j : βj = 0 and Wj ≥ T }
#{j : Wj ≥ T } ∨ 1

≤ 1 + #{j : Wj ≤ −T }
#{j : Wj ≥ T } ∨ 1

· #{j : βj = 0 and Wj ≥ T }
1 + #{j : βj = 0 and Wj ≤ −T }(2.5)

≤ q · #{j : βj = 0 and Wj ≥ T }
1 + #{j : βj = 0 and Wj ≤ −T } ;
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the first inequality follows from the fact that #{j : βj = 0 and Wj ≤ −T } ≤ #{j :
Wj ≤ −T } and the second from the definition of T . Since T is the first time a
ratio falls below q , it turns out that we may view T as a stopping time. In fact, the
main step of our proof is to show that T is a stopping time for the supermartingale
V +(T )/(1 + V −(T )), where V ±(t) = #{j null : |Wj | ≥ t and sign(Wj ) = ±1};
the details are deferred to the supplementary materials [1]. By the optional stop-
ping time theorem,

E
[

V +(T )

1 + V −(T )

]
≤ E

[
V +(0)

1 + V −(0)

]
= E

[
V +(0)

1 + p0 − V +(0)

]
≤ 1,

where the last step comes from a property of the binomial distribution proved in

the supplementary materials [1]; note that since sign(Wj )
i.i.d.∼ {±1} for the null

features j , then V +(0) is distributed as a Binomial(p0,1/2) random variable. (For
the purposes of this proof sketch, we assume here that Wj 	= 0 for all j for sim-
plicity.) This, together with (2.5), proves FDR control. The proof for the knockoff
method is similar, and we refer the reader to Section 5 and to the supplementary
materials [1] for details.

3. Comparison with other variable selection techniques. There are of
course many other variable selection techniques, based on ideas from Benjamini
and Hochberg or perhaps based on permuted designs rather than knockoffs, which
may be designed with the goal of keeping FDR under control. In this section, we
review some of these procedures and compare some of them empirically.

3.1. Comparing to a permutation method. To better understand the ideas be-
hind our method, we next ask whether we could have constructed the matrix of
knockoff features X̃ with a simple permutation. Specifically, would the above re-
sults hold if instead of constructing X̃ as above, we use a matrix Xπ , with entries
given by

Xπ
i,j = Xπ(i),j

for some randomly chosen permutation π of the sample indices {1, . . . , n}? In
particular, the matrix Xπ will always satisfy Xπ�Xπ = X�X, and so the permuted
covariates display the same correlation structure as the original covariates, while
breaking association with the response y due to the permutation.

Permutation methods are widely used in applied research. While they may be
quite effective under a global null, they may fail to yield correct answers in cases
other than the global null; see also [8, 9] for other sources of problems associated
with permutation methods. Consequently, inference in practical settings, where
some signals do exist, can be quite distorted. In the linear regression problem con-
sidered here, a permutation-based construction can dramatically underestimate the
FDP in cases where X displays nonvanishing correlations. To understand why, sup-
pose that the features Xj are centered. Then X�X = Xπ�Xπ = �, but X�Xπ ≈ 0.
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FIG. 2. Results of the Lasso path, with simulated data specified in (3.1). Many of the null features
Xj for j = 31, . . . ,100 enter the Lasso model earlier (i.e., at higher values of λ) than most of the
permuted features, leading to loss of FDR control.

In particular, the exchangeability results (Lemmas 2 and 3) will not hold for the
augmented matrix [X Xπ ], and this can lead to extremely poor control of FDR.

To see this empirically, consider a setting with positive correlation between fea-
tures. We generate each row of X ∈ R300×100 i.i.d. from a N (0,�) distribution,
where 
ii = 1 for all i and 
ij = 0.3 for all i 	= j . We then center and normalize
the columns of X and define

y = 3.5 · (X1 + · · · + X30) + z where z ∼ N (0, In).(3.1)

Next we fit the Lasso path (1.5) for the response y and the augmented design
matrix [X Xπ ]. Figure 2 shows that while many of the original null features enter
the model at moderate values of λ, the permuted features do not enter the Lasso
path until λ is extremely small; the difference arises from the fact that only the
original null features are correlated with the signals X1, . . . ,X30. In other words,
the Xπ

j ’s are not good knockoffs of the Xj ’s for the nulls j = 31, . . . ,100—they
behave very differently in the Lasso regression.

Next we test the effect of these issues on FDR control. Using the permuted
features Xπ in place of X̃, we proceed exactly as for the knockoff method [see
(1.7) and Definition 1] to select a model. We compare to the knockoff method and
obtain the following FDR, when the target FDR is set at q = 20%:

FDR over 1000 trials
(nominal level q = 20%)

Knockoff method 12.29%
Permutation method 45.61%

We note that there are many ways in which the permuted features Xπ may be used
to try to estimate or control FDR, but in general such methods will suffer from
similar issues arising from the lack of correlation between the permuted and the
original features.
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3.2. The Benjamini–Hochberg procedure and variants. The Benjamini–
Hochberg (BHq) procedure [2] is a hypothesis testing method known to control
FDR under independence. Given z-scores Z1, . . . ,Zp corresponding to p hypothe-
ses being tested so that Zj ∼ N (0,1) if the j th hypothesis is null, the procedure7

rejects a hypothesis whenever |Zj | ≥ T , where T is a data-dependent threshold
given by

T = min
{
t : p · P{|N (0,1)| ≥ t}

#{j : |Zj | ≥ t} ≤ q

}
(3.2)

(or T = +∞ if this set is empty),

for a desired FDR level q . Note that for any t , the number of null hypotheses
with |Zj | ≥ t can be estimated by π0p · P{|N (0,1)| ≥ t}, where π0p is the total
number of null hypotheses. For π0 < 1, then the fraction in the definition of (3.2) is
an overestimate of the FDP by a factor of (π0)

−1; see [11] and references therein.
Turning to the problem of variable selection in regression, the BHq procedure

may be applied by calculating the least-squares estimate,

β̂LS = (
X�X

)−1X�y.

For Gaussian noise as in (1.1), these fitted coefficients follow a N (β, σ 2�−1) dis-

tribution, where we recall that � = X�X. Therefore, setting Zj = β̂LS
j /σ

√
(�−1)jj

yields z-scores, that is, marginally Zj ∼ N (0,1) whenever βj = 0. Variables are
then selected using the data-dependent threshold given in (3.2).

Under orthogonal designs in which X�X is a diagonal matrix, the Zj ’s are in-
dependent; in this setting, Benjamini and Hochberg [2] prove that the BHq proce-
dure controls FDR at the level π0 · q; see Section 3.4 for a comparison of knockoff
methods with BHq in the orthogonal design setting. Without the assumption of in-
dependence, however, there is no such guarantee. In fact, it is not hard to construct
designs with only two variables such that the BHq procedure does not control
the FDR at level q . FDR control has been established for test statistics obeying the
positive regression dependence on a subset property (PRDS) introduced in [3]. The
problem is that the PRDS property does not hold in our setting, for two reasons.
First, for one-sided tests where the alternative is βj > 0, say, one would reject for
large values of Zj . Now for the PRDS property to hold we would need to have
(�−1)ij ≥ 0 for all nulls i and all j , which rarely is in effect. Second, since the
signs of the coefficients βj are in general unknown, we are performing two-sided
tests where we reject for large values of |Zj | rather than Zj ; these absolute-value
statistics are not known to be PRDS either, even under positive values of (�−1)ij .

7We present BHq in the notation from [24] and use z-scores rather than p-values to facilitate
comparison with our methods. Section 4 of [24] proves that this procedure is equivalent to BHq.
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Against this background, Benjamini and Yekutieli [3] show that the BHq pro-
cedure yields FDR bounded by π0q · S(p) regardless of the dependence among
the z-scores, where S(p) = 1 + 1/2 + · · · + 1/p ≈ logp + 0.577. Therefore, if we
define T as in (3.2) but with q/S(p) in place of q , then we are again guaranteed a
bound on FDR.

Finally, as another option, we can “whiten the noise” in β̂ before applying BHq.
Specifically, let Z′ ∼ N (0, σ 2 · (λ−1

0 I − �−1)) be drawn independently from the
data, where λ0 = λmin(�). Then

β̂ + Z′ ∼ N
(
β, σ 2λ−1

0 I
)
,(3.3)

and we can then apply BHq to the z-scores given by Zj = (β̂j +Z′
j )/σ

√
λ0. Since

these z-scores are now independent, applying BHq yields an FDR of at most π0q .
For all of the variants of BHq considered here, FDR control is estimated or

guaranteed to be at a level of π0q , which is lower than the nominal level q; that
is, the method is more conservative than desired. However, here we are primarily
interested in a sparse setting where π0 ≈ 1, and so this will not have a strong effect.

3.3. Empirical comparisons with the Benjamini–Hochberg method and vari-
ants. We now test our method8 in a range of settings, comparing it to BHq and
its variants, and examining the effects of sparsity level, signal magnitude and fea-
ture correlation.

3.3.1. Comparing methods. We begin with a comparison of seven methods:
the equi-variant and the SDP constructions for the knockoff and knockoff+ filters,
the BHq procedure, the BHq procedure with the log-factor correction [3] to guar-
antee FDR control with dependent z-scores [i.e., this applies BHq with q/S(p)

replacing q] and the BHq procedure with whitened noise, as in (3.3). To summa-
rize our earlier discussions, the equi-variant and SDP constructions for knockoff+,
the BHq method with the log-factor correction, and the BHq method with whitened
noise are all guaranteed to control FDR at the nominal level q; the other methods
do not offer this exact guarantee.

In this simulation, we use the problem size n = 3000, p = 1000 and a number
k = 30 of variables in the model. We first draw X ∈ Rn×p with i.i.d. N (0,1) en-
tries, then normalize its columns. Next, to define β , we choose k = 30 coefficients
at random and choose βj randomly from {±A} for each of the k selected coef-
ficients, where A = 3.5 is the signal amplitude. Finally, we draw y ∼ N (Xβ, I).
The signal amplitude A = 3.5 is selected because 3.5 is approximately the ex-
pected value of max1≤j≤p |X�

j z| where z ∼ N (0, I) (each X�
j y is approximately

8Code for the knockoff method is available via the R package KNOCKOFF, at http://
cran.r-project.org/web/packages/knockoff/, and the MATLAB package KNOCKOFF_MATLAB, at
http://web.stanford.edu/~candes/Knockoffs/package_matlab.html.

http://cran.r-project.org/web/packages/knockoff/
http://web.stanford.edu/~candes/Knockoffs/package_matlab.html
http://cran.r-project.org/web/packages/knockoff/
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TABLE 1
FDR and power in the setting of Section 3.3.1 with n = 3000 observations, p = 1000 variables and

k = 30 variables in the model with regression coefficients of magnitude 3.5. Bold face font
highlights those methods that are known theoretically to control FDR at the nominal level q = 20%

FDR (%) Theoretical
(nominal level guarantee

Method q = 20%) Power (%) of FDR control?

Knockoff+ (equivariant construction) 14.40 60.99 Yes
Knockoff (equivariant construction) 17.82 66.73 No
Knockoff+ (SDP construction) 15.05 61.54 Yes
Knockoff (SDP construction) 18.72 67.50 No

Benjamini–Hochberg (BHq) [2] 18.70 48.88 No
BHq + log-factor correction [3] 2.20 19.09 Yes
BHq with whitened noise 18.79 2.33 Yes

a standard normal variable if βj = 0). Setting the signal amplitude to be near this
maximal noise level ensures a setting where it is possible, but not trivial, to distin-
guish signal from noise.

Table 1 displays the resulting FDR and power obtained by each method, av-
eraged over 600 trials. Empirically, all of the methods result in an FDR that is
near or below the nominal level q = 20%. Comparing their power, knockoff and
knockoff+ (power > 60%) significantly outperform BHq (power ≈ 49%).

Comparing the equi-variant and SDP constructions for the knockoff and
knockoff+ methods, the SDP construction achieves slightly higher power for both
knockoff and knockoff+. Finally, the two variants of BHq considered do offer
theoretical control of FDR, but empirically achieve very poor power in this sim-
ulation. From this point on, we thus restrict our attention to three methods: the
knockoff method using the SDP construction given in (2.4), the knockoff+ method
with the same SDP construction and BHq.

3.3.2. Effect of sparsity level, signal amplitude and feature correlation. Next,
we consider the effect of varying the sparsity level k, the signal amplitude A or
the feature correlation level, when comparing the performance for the knockoff,
knockoff+, and BHq methods. We test each of these questions separately as fol-
lows:

• Effect of the sparsity level k: we test values k = 10,20,30, . . . ,200 while fixing
signal amplitude A = 3.5 (all other settings are identical to Section 3.3.1).

• Effect of signal amplitude A: we test values A = 2.8,2.9, . . . ,4.2 while fixing
sparsity level k = 30 (all other settings are identical to Section 3.3.1).

• Effect of feature correlation: we generate the rows of X from a N (0,�ρ) dis-
tribution, where (�ρ)jk = ρ|j−k|, for correlation level ρ = 0,0.1, . . . ,0.9. (In
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FIG. 3. Testing the knockoff, knockoff+, and BHq methods at nominal level q = 20% with varying
sparsity level k. Here n = 3000, p = 1000 and A = 3.5, and the figures show mean FDR and mean
power averaged over 600 trials.

the case that ρ = 0, we simply set � = I, as before.) We then normalize the
columns of X and generate β and y in the same manner as in Section 3.3.1 with
sparsity level k = 30 and signal amplitude A = 3.5.

The mean FDR and mean power over 200 trials are displayed in Figures 3, 4 and 5,
respectively.

Examining these results, we see that across the three experiments, all three
methods successfully control FDR at the nominal level q = 20%, with one no-
table exception: for the correlated design, the knockoff method controls FDR for
ρ ≤ 0.8, but shows a higher FDR level of 26.67% when ρ = 0.9. This is consistent

FIG. 4. Testing the knockoff, knockoff+ and BHq methods at nominal level q = 20% with varying
signal amplitudes A. Here n = 3000, p = 1000 and k = 30, and the figures show mean FDR and
mean power averaged over 200 trials.
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FIG. 5. Testing the knockoff, knockoff+ and BHq methods at nominal level q = 20% with varying
feature correlation levels. The correlation parameter ρ controls the tapered correlation structure
of the design matrix, where columns Xj and Xk are generated from a distribution with correlation

ρ|j−k|. Here n = 3000, p = 1000, k = 30, A = 3.5 and the figures show mean FDR and mean power
averaged over 200 trials.

with our theoretical result, Theorem 1, which guarantees that the knockoff method
controls a modified form of the FDR that is very similar to the FDR when a high
number of variables are selected, but may be quite different when a small number
of variables is selected. At the higher values of ρ, we make so few discoveries
(typically less than 5 for both knockoff and knockoff+) that the additional “+1”
appearing in the knockoff+ method makes a substantial difference.

Turning to the power of the three methods, we see that both knockoff and
knockoff+ offer as much or more power than BHq across all settings, with a
strong advantage over BHq at low and moderate values of k across the range of
signal amplitude levels and correlation levels—these methods successfully lever-
age the sparse structure of the model in this high-dimensional setting. In the study
of sparsity level (Figure 3), for higher values of k, when the problem is no longer
extremely sparse, the power of BHq catches up with the knockoff and knockoff+
methods. As expected, each method shows lower power with high correlations,
reflecting the difficulty of telling apart neighboring features that are strongly cor-
related, and at low signal amplitude levels.

In summary, we see that the knockoff and knockoff+ methods have higher
power than BHq while having a lower type I error. In the language of multiple
testing, this says that these methods detect more true effects while keeping the
fraction of false discoveries at a lower level, which makes findings somehow more
reproducible.

3.4. Relationship with the Benjamini–Hochberg procedure under orthogonal
designs. The Benjamini–Hochberg (BHq) procedure is known to control FDR in
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(a) FDR (b) Power

FIG. 6. FDR and power of the BHq and knockoff+ methods, plotted against the size A of the
regression coefficients (signal magnitude), averaged over 1000 trials. The nominal FDR level q is set
to 20%. The 2000 × 1000 design X is orthogonal, and the number of true signals is 200 so that the
fraction of nulls is π0 = 0.8.

the setting where the statistics for the null hypotheses are mutually independent. In
the regression setting where our statistics arise from the least-squares coefficients
β̂ ∼ N (β, σ 2(X�X)−1) (as in Section 3.2), the coefficients of β̂ are mutually in-
dependent if and only if X�X is a diagonal matrix—the orthogonal design setting.
In this section, we consider an orthogonal design and compare the knockoff filter
and BHq side-by-side to understand the similarities and differences in how these
methods work. Figure 6 demonstrates this comparison empirically over a range of
signal amplitude levels. Note the contrasting FDR behavior between the two meth-
ods, even though the power is essentially identical in each setting. In particular, we
see the following:

(1) The two methods both control FDR (as guaranteed by the theory) and
achieve nearly identical power over a range of signal amplitudes.

(2) Theoretically and empirically, regardless of signal amplitude, the FDR of
BHq is given by π0q , where q = 20% is the nominal FDR level and π0 is the
proportion of null hypotheses, π0 = p−k

p
, as is shown in [2].

(3) In contrast, the FDR of the knockoff method varies over the range of signal
amplitudes. When the signal amplitude is high enough for the power to be substan-
tial, the FDR of the knockoff method approaches q , rather than π0q; that is, the
knockoff method is implicitly correcting for the proportion of nulls, and achiev-
ing the target FDR level. When the signal amplitude is so low that power is near
zero, the knockoff method has an extremely low FDR (far lower than the nominal
level q), which is desirable in a regime where we have little chance of finding the
true signals.

A theoretical explanation of these observations is given in the supplementary ma-
terials [1].



2076 R. F. BARBER AND E. J. CANDÈS

3.5. Other methods. Finally, we briefly mention several other approaches that
are related to the goal of this work. First, we discuss two methods presented Miller
[19, 20] to control false positives in forward selection procedures for linear regres-
sion. The first method creates “dummy” variables whose entries are drawn i.i.d. at
random. The forward selection procedure is then applied to the augmented list of
variables and is run until the first time it selects a dummy variable. This approach is
similar in flavor to our method, but the construction of the dummy variables does
not account for correlation among the existing features and therefore may lose
FDR control in a correlated setting. Miller [20] also proposes a second method,
which makes use of a key observation that we also use extensively in our work:
after selecting m variables, if all of the true features have already been selected,
then the remaining residual is simply Gaussian noise and is therefore rotationally
invariant. To test whether the next feature should be included, [20] thus compares
to the null distribution obtained by applying random rotations. In practice, true
features and null features are nearly always interspersed in the forward selection
steps, and so this type of method will not achieve exact control of the FDR for this
reason.

We next turn to recent work by G’Sell et al. [14], which also gives an FDR-
controlling procedure for the Lasso, without constructing additional variables. This
work uses the results from [17, 25] that study the distribution of the sequence of λ

values where new null variables enter the model after all of the true signals have
already been included in the model. Consequently, the sequential testing procedure
of [14] controls FDR under an important assumption: the true features must all
enter the model before any of the null features. Therefore, this method faces the
same difficulty as the second method of Miller [20] discussed above; when signals
and null features are interspersed along the Lasso path (as is generally the case
in practice, even when the nonzero regression coefficients are quite large), this
assumption is no longer satisfied, leading to some increase of the FDR.

Next, the stability selection approach [16, 18] controls false variable selection
in the Lasso by refitting the Lasso model repeatedly for subsamples of the data,
and then keeps only those variables that appear consistently in the resulting Lasso
models. These methods control false discoveries effectively in practice and give
theoretical guarantees of asymptotically consistent model selection. For a finite-
sample setting, however, there is no known concrete theoretical guarantee for con-
trolling false discoveries (with the exception of a special case treated in Theorem 1
in [18], which for a linear model, reduces to the equi-variant setting, �ij = ρ for
all i 	= j ). Furthermore, these methods require computing the path of Lasso models
for many subsampled regressions containing p candidate variables each; in con-
trast, our method requires only a single computation of the Lasso path, although
for a model with 2p variables.

Finally, recent work [4, 15, 27, 28, 31] extends the classical notions of confi-
dence intervals and p-values into the high-dimensional setting (p � n); although
the coefficients of the linear model are no longer identifiable in the classical sense,
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these works perform inference under various assumptions about the design and
sparsity in the model.

4. Experiment on real data: HIV drug resistance. We apply the knockoff
filter to the task of detecting mutations in the Human Immunodeficiency Virus
Type 1 (HIV-1) that are associated with drug resistance.9 The data set, described
and analyzed in [23], consists of drug resistance measurements and genotype in-
formation from samples of HIV-1, with separate data sets for resistance to protease
inhibitors (PIs), to nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and to
nonnucleoside RT inhibitors (NNRTIs). The data set sizes are as follows:

# protease or RT # mutations appearing
Drug type # drugs Sample size positions genotyped ≥3 times in sample

PI 7 846 99 209
NRTI 6 634 240 287
NNRTI 3 745 240 319

In each drug class, some samples are missing resistance measurements for some of
the drugs, so for each drug’s analysis, the sample size and the number of mutations
present are slightly smaller than given in the table; we report the final n and p for
each drug in Figures 7, 8 and 9 on a case-by-case basis.

We analyze each drug separately. The response yi is given by the log-fold-
increase of lab-tested drug resistance in the ith sample, while the design matrix
X has entries Xij ∈ {0,1}, indicating presence or absence of mutation #j in the
ith sample. (For each drug, we keep only those mutations appearing ≥3 times in
the sample for that drug, and we remove duplicated columns from X to allow for
identifiability.) Different mutations at the same position are treated as distinct fea-
tures, and we assume an additive linear model with no interactions. We then apply
knockoff and BHq, each with q = 20%, to the resulting data set. One of the drugs
has a sample size n with p < n < 2p, in which case we use the method described in
Section 2.1.2 which extends the knockoff method beyond the original construction
for the n ≥ 2p regime; see Figures 7, 8 and 9 for the values of n and p.

To evaluate the results, we compare the selected mutations with existing
treatment-selected mutation (TSM) panels [22]; since this is a real data experi-
ment, the ground truth is unknown, but these panels provide a good approximation
that we can use to assess the methods. For each drug class (PIs, NRTIs, NNRTIs),
Rhee et al. [22] create panels of mutations that are present at significantly higher

9Data available online at http://hivdb.stanford.edu/pages/published_analysis/
genophenoPNAS2006/. Code for reproducing the analysis and figures in this sec-
tion is provided with the KNOCKOFF_MATLAB package for MATLAB, available at
http://web.stanford.edu/~candes/Knockoffs/package_matlab.html.

http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
http://web.stanford.edu/~candes/Knockoffs/package_matlab.html
http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/
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FIG. 7. Results of applying the knockoff filter and BHq with q = 20% to model PI-type drug resis-
tance of HIV-1 based on genetic mutations using data from [23]. For each PI-type treatment and for
each of the three methods, the bar plots show the number of positions on the HIV-1 protease where
mutations were selected. To validate the selections of the methods, dark blue indicates protease posi-
tions that appear in the treatment-selected mutation (TSM) panel for the PI class of treatments, given
in Table 1 of [22], while orange indicates positions selected by the method that do not appear in the
TSM list. The horizontal line indicates the total number of HIV-1 protease positions appearing in the
TSM list. Note that the TSM list consists of mutations that are associated with the PI class of drugs
in general, and is not specialized to the individual drugs in the class.

frequency (after correcting for multiple comparisons) in virus samples from indi-
viduals who have been treated with that class of drug, as compared to individuals
that have never received that class of drug. Therefore the data we use for model
selection (based on lab-tested drug resistance) and the mutation panels used to val-
idate our results (based on association with patient treatment history) come from
different types of studies, and we aim to see replicability; that is, we will evaluate
our model selection results based on how many of the mutations identified by our
analysis appear also in the TSM lists. It is known that multiple mutations at the
same protease or RT position can often be associated with related drug-resistance
outcomes. Since the TSM lists are an approximation of the ground truth, we will
compare only the positions of the mutations selected, with the positions of muta-
tions on the TSM lists.
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FIG. 8. Same as Figure 7, but for the NRTI-type drugs, validating results against the treatment-se-
lected mutation (TSM) panel for NRTIs given in Table 2 of [22].

Results for the PI, NRTI and NNRTI type drugs are displayed in Figures 7,
8 and 9, respectively. We see that both methods perform similarly for most of
the drugs in the three classes, with good agreement in most cases between the
positions of the selected mutations based on the lab-tested drug resistance data,
and the TSM lists which are based on patient history data. Overall, the knockoff
filter shows slightly better agreement with the TSM lists as compared to BHq,
but there is variability in the outcomes across the different drugs. In summary we
see that the FDR-controlling knockoff methods indeed select variables that mostly
correspond to real (replicable) effects, as verified by the independently created
TSM lists.

4.1. Simulation under non-Gaussian noise with a sparse real design matrix.
To verify that the knockoff method is robust to non-Gaussian noise, we test the
method (and compare to BHq) using partially-simulated data. First, we take the
design matrix X ∈ R747×319 from the NNRTI-drug data set discussed above. We

FIG. 9. Same as Figure 7, but for the NNRTI-type drugs, validating results against the treatment-
selected mutation (TSM) panel for NNRTIs given in Table 3 of [22].
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generate a coefficient vector β ∈ R319 by randomly choosing a support S of size
k = 20 and drawing βj ∼ 3.5 · N(0,1) for each j ∈ S (and βj = 0 for j /∈ S).

To obtain a realistic non-Gaussian distribution on the noise, we consider the em-
pirical distribution given by P⊥

X (y(l)) where y(l) is the response for the lth NNRTI-
type drug for l = 1,2,3 (discarding rows of X if entries of y(l) are missing). This
empirical noise distribution is heavy tailed. (Its sample excess kurtosis is equal to
9.24, which is the population excess kurtosis for a t distribution with 4.65 degrees
of freedom.) To generate the data, we set y = Xβ + z where the entries zi of z are
sampled with replacement from the empirical noise distribution after rescaling to
ensure that E[z2

i ] = 1. The following results show that the knockoff, knockoff+
and BHq procedures each exhibit good FDR control and power:

FDR over 1000 trials Power over 1000 trials
(nominal level q = 20%)

Knockoff 25.72% 63.50%
Knockoff+ 20.31% 60.67%
BHq 25.47% 69.42%

We note that this setting, where the columns of X are sparse and the noise is heavy
tailed, is an extremely challenging scenario for the knockoff procedure to main-
tain FDR control. For instance, even with no signals present (β = 0), the marginal
statistic X�

j y = X�
j z = ∑

i Xij zi follows a highly non-Gaussian distribution; the
central limit theorem cannot be applied to this sum because Xj is highly sparse,
and the zi ’s come from a heavy-tailed distribution. Nonetheless, we see approxi-
mate FDR control in the results of this simulation.

5. Sequential hypothesis testing.

5.1. Two sequential testing procedures. In this section, we describe several
related sequential hypothesis testing procedures, along with theoretical results for
FDR control. We then relate these procedures to the knockoff and knockoff+ meth-
ods, in order to prove our main results, Theorems 1 and 2.

Imagine that p1, . . . , pm are p-values giving information about hypotheses

H1, . . . ,Hm. These p-values obey pj

d≥Unif[0,1] for all null j ; that is, for all null
j and all u ∈ [0,1], P{pj ≤ u} ≤ u. We introduce two sequential strategies, which
control the FDR at any fixed level q under a usual independence property.

Sequential step-up procedure (SeqStep). Fix any threshold c ∈ (0,1) and any
subset10 K , and define

k̂0 = max
{
k ∈ K : #{j ≤ k : pj > c}

k ∨ 1
≤ (1 − c) · q

}
10In many applications we would typically choose K = [m], but we allow for K � [m] to help with

the proof of the regression method.
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and

k̂1 = max
{
k ∈ K : 1 + #{j ≤ k : pj > c}

1 + k
≤ (1 − c) · q

}
,

with the convention that we set k̂0/1 = 0 if the set is empty: here k̂0/1 should be
read as “k̂0 or k̂1” since we can choose which of the two definitions above to use.
We then reject Hj for all j ≤ k̂0/1, and thus get two distinct procedures named
SeqStep (using k̂0) and SeqStep+ (using k̂1) hereafter.

To understand why such a sequential procedure makes sense, consider SeqStep,
and assume that the null p-values are i.i.d. Unif[0,1]. Then

#{null j ≤ k}
k ∨ 1

≈ 1

1 − c
· #{null j ≤ k : pj > c}

k ∨ 1
≤ 1

1 − c
· #{j ≤ k : pj > c}

k ∨ 1

so that again, the procedure maximizes the number of rejections under the con-
straint that an estimate of FDR is controlled at level q . SeqStep+ corrects SeqStep
to guarantee FDR control.

Selective sequential step-up procedure (Selective SeqStep). Alternatively, define

k̂0/1 = max
{
k ∈ K : 0/1 + #{j ≤ k : pj > c}

#{j ≤ k : pj ≤ c} ∨ 1
≤ 1 − c

c
· q

}
,

with the convention that we set k̂0/1 = 0 if this set is empty. (We get two distinct
procedures named Selective SeqStep and Selective SeqStep+ by letting the term in
the numerator be 0 or 1.) Then reject Hj for all j ≤ k̂0/1 such that pj ≤ c. Strictly
speaking, these are not sequential testing procedures (because among the first k̂0,1
hypotheses in the list, we reject only those satisfying the selective threshold pj ≤
c), and we are thus abusing terminology.

Again, to understand this procedure intuitively when the null p-values are i.i.d.
Unif[0,1], we see that

#{null j ≤ k : pj ≤ c}
#{j ≤ k : pj ≤ c} ∨ 1

≈ c

1 − c
· #{null j ≤ k : pj > c}

#{j ≤ k : pj ≤ c} ∨ 1

≤ c

1 − c
· #{j ≤ k : pj > c}

#{j ≤ k : pj ≤ c} ∨ 1

so that again, the procedure maximizes the number of rejections under the con-
straint that an estimate of FDR is controlled at level q .

THEOREM 3. Suppose that the null p-values are i.i.d. with pj ≥ Unif[0,1],
and are independent from the nonnulls. For each procedure considered, let V be
the number of false discoveries and R the total number of discoveries:

• Both SeqStep+ and Selective SeqStep+ control the FDR, that is, E[ V
R∨1 ] ≤ q .

• Selective SeqStep controls a modified FDR, E[ V
R+(c/(1−c))q−1 ] ≤ q .
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• SeqStep also controls a modified FDR, E[ V
R+(1/(1−c))q−1 ] ≤ q .

As is clear from the assumption, the order of the p-values cannot be dependent
on the p-values themselves—for instance, we cannot reorder the p-values from
smallest to largest, apply this procedure and expect FDR control.

5.2. Connection with knockoffs. Interestingly, the knockoff method can be
cast as a special case of the second sequential hypothesis testing procedure, and the
FDR controlling properties are then just a consequence of Theorem 3. We explain
this connection, thereby proving Theorems 1 and 2.

Let m = #{j : Wj 	= 0}; since our method never selects variable j when Wj =
0, we can ignore such variables. Assume without loss of generality that |W1| ≥
|W2| ≥ · · · ≥ |Wm| > 0, and set

pj =
{ 1/2, Wj > 0,

1, Wj < 0,

which can be thought of as 1-bit p-values. It then follows from Lemma 1 that the
null p-values are i.i.d. with P{pj = 1/2} = 1/2 = P{pj = 1} and are independent
from the others, thereby obeying the assumptions of Theorem 3. Setting K to be
the indices of the strict inequalities,

K = {
k ∈ [m] : |Wk| > |Wk+1|} ∪ {m},

one sees that the knockoff method is now equivalent to the second sequential test-
ing procedure on these p-values. To see why this true, set c = 1/2, and observe
that for any k ∈ K ,

0/1 + #{j ≤ k : pj > 1/2}
#{j ≤ k : pj ≤ 1/2} ∨ 1

= 0/1 + #{j : Wj ≤ −|Wk|}
#{j : Wj ≥ |Wk|} ∨ 1

.

Hence, finding the largest k such that the ratio in the left-hand side is below q is the
same as finding the smallest |Wk| such that the right-hand side is below q , which
is equivalent to calculating the knockoff or knockoff+ threshold T given in (1.8)
or (1.9), respectively. Finally, rejecting the p-values obeying pj ≤ 1/2 is the same
as rejecting the positive Wj ’s. FDR control follows by applying Theorem 3.

6. Discussion. In this paper, we have proposed two variable selection proce-
dures, knockoff and knockoff+, that control FDR in the linear regression setting
and offer high power to discover true signals. We give theoretical results show-
ing that these methods maintain FDR control under arbitrary feature correlations,
even when variable selection methods such as the Lasso may select null variables
far earlier than some of the weaker signals. The empirical performance of knockoff
and knockoff+ demonstrates effective FDR control and excellent power in com-
parison to other methods such as the Benjamini–Hochberg procedure (BHq) or
permutation-based methods.
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A key ingredient in the knockoff and knockoff+ methods is the “one-bit p-
values” obtained by comparing feature Xj with its knockoff feature X̃j , and
recording which of the two was first to enter the Lasso path. This extreme dis-
cretization may be part of the reason that the methods are conservative under low
signal amplitude, and could potentially be addressed by creating multiple knock-
offs X̃(1)

j , . . . , X̃(m)
j for each feature Xj . We will investigate the potential benefits

of a multiple-knockoff approach in future work.
In the theoretical portions of this paper, we have entirely focused on control-

ling a Type-I error, namely, the FDR; this paper did not study the false negative
rate (FNR), defined as the expected fraction of nondetected hypotheses among the
true nonnulls. This is a question of statistical power, which we have demonstrated
empirically, and we leave a theoretical analysis to future work.

Finally, the analysis and methods presented here rely on the assumption that
� = X�X is invertible, which is necessary so that Xj does not lie in the span of
the remaining (p − 1) features, and its effect on the response is, therefore, identifi-
able.11 In many modern applications, however, we are interested in a regime where
p > n and � is defacto noninvertible. Here, there are many types of common addi-
tional assumptions that may allow us to overcome the identifiability problem—for
instance, sparse dependence structure among the features themselves and between
the mean response and the features. One possible approach is to split the observa-
tions in two disjoint sets, using the first to screen for a smaller set of potential fea-
tures, and the second to run the (low-dimensional) knockoff filter over this smaller
set of features only. Our ongoing research develops knockoff methodology for high
dimensions with higher power, and we certainly hope to report on our findings in
a future publication.
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SUPPLEMENTARY MATERIAL

Supplement to “Controlling the false discovery rate via knockoffs” (DOI:
10.1214/15-AOS1337SUPP; .pdf). We provide details for the proofs of several
theoretical results in the paper.

11When this is not the case, we cannot distinguish between a mean function that depends on Xj

versus a mean function that depends on the linear combination of the other variables.

http://dx.doi.org/10.1214/15-AOS1337SUPP
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