
The Annals of Statistics
2015, Vol. 43, No. 4, 1682–1715
DOI: 10.1214/15-AOS1320
© Institute of Mathematical Statistics, 2015

SEMIPARAMETRIC GEE ANALYSIS IN PARTIALLY LINEAR
SINGLE-INDEX MODELS FOR LONGITUDINAL DATA

BY JIA CHEN∗, DEGUI LI∗, HUA LIANG†,1 AND SUOJIN WANG‡,2

University of York∗, George Washington University† and Texas A&M University‡

In this article, we study a partially linear single-index model for longi-
tudinal data under a general framework which includes both the sparse and
dense longitudinal data cases. A semiparametric estimation method based
on a combination of the local linear smoothing and generalized estimation
equations (GEE) is introduced to estimate the two parameter vectors as well
as the unknown link function. Under some mild conditions, we derive the
asymptotic properties of the proposed parametric and nonparametric estima-
tors in different scenarios, from which we find that the convergence rates and
asymptotic variances of the proposed estimators for sparse longitudinal data
would be substantially different from those for dense longitudinal data. We
also discuss the estimation of the covariance (or weight) matrices involved
in the semiparametric GEE method. Furthermore, we provide some numeri-
cal studies including Monte Carlo simulation and an empirical application to
illustrate our methodology and theory.

1. Introduction. Consider a semiparametric partially linear single-index
model defined by

Y(t) = Z�(t)β + η
(
X�(t)θ

) + e(t), t ∈ T ,(1.1)

where T is a bounded time interval, β and θ are two unknown vectors of param-
eters with dimensions d and p, respectively, η(·) is an unknown link function,
Y(t) is a scalar stochastic process, Z(t) and X(t) are covariates with dimensions d

and p, respectively, and e(t) is the random error process. For the case of indepen-
dent and identically distributed (i.i.d.) or weakly dependent time series data, there
has been extensive literature on statistical inference of model (1.1) since its intro-
duction by Carroll et al. (1997). Several different approaches have been proposed
to estimate the unknown parameters and link function involved; see, for example,
Xia, Tong and Li (1999), Yu and Ruppert (2002), Xia and Härdle (2006), Wang
et al. (2010) and Ma and Zhu (2013). A recent paper by Liang et al. (2010) further
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developed semiparametric techniques for the variable selection and model specifi-
cation testing issues in the context of model (1.1).

In this paper, we are interested in studying partially linear single-index model
(1.1) in the context of longitudinal data which arise frequently in many fields of re-
search, such as biology, climatology, economics and epidemiology, and thus have
attracted considerable attention in the literature in recent years. Various parametric
models and methods have been studied in depth for longitudinal data; see Diggle
et al. (2002) and the references therein. However, the parametric models may be
misspecified in practice, and the misspecification may lead to inconsistent esti-
mates and incorrect conclusions being drawn. Hence, to circumvent this issue,
in recent years, there has been a large literature on how to relax the parametric
assumptions on longitudinal data models and many nonparametric, and semipara-
metric models have thus been investigated; see, for example, Lin and Ying (2001),
He, Zhu and Fung (2002), Fan and Li (2004), Wang, Carroll and Lin (2005), Lin
and Carroll (2006), Wu and Zhang (2006), Li and Hsing (2010), Jiang and Wang
(2011) and Yao and Li (2013).

Suppose that we have a random sample with n subjects from model (1.1).
For the ith subject, i = 1, . . . , n, the response variable Yi(t) and the covariates
{Zi (t),Xi(t)} are collected at random time points tij , j = 1, . . . ,mi , which are dis-
tributed in a bounded time interval T according to the probability density function
fT (t). Here mi is the total number of observations for the ith subject. To accom-
modate such longitudinal data, model (1.1) is written in the following framework:

Yi(tij ) = Z�
i (tij )β + η

(
X�

i (tij )θ
) + ei(tij )(1.2)

for i = 1, . . . , n and j = 1, . . . ,mi . When mi varies across the subjects, the lon-
gitudinal data set under investigation is unbalanced. Several nonparametric and
semiparametric models can be viewed as special cases of model (1.2). For instance,
when β = 0, model (1.2) reduces to the single-index longitudinal data model [Jiang
and Wang (2011), Chen, Gao and Li (2013a)]; when p = 1 and θ = 1, model (1.2)
reduces to the partially linear longitudinal data model [Fan and Li (2004)]. To
avoid confusion, we let β0 and θ0 be the true values of the two parameter vec-
tors. For identifiability reasons, θ0 is assumed to be a unit vector with the first
nonzero element being positive. Furthermore, we allow that there exists certain
within-subject correlation structure for ei(tij ), which makes the model assumption
more realistic but the development of estimation methodology more challenging.

To estimate the parameters β0, θ0 as well as the link function η(·) in
model (1.2), we first apply the local linear approximation to the unknown link
function, and then introduce a profile weighted least squares approach to estimate
the two parameter vectors based on the technique of generalized estimation equa-
tions (GEE). Under some mild conditions, we derive the asymptotic properties
of the developed parametric and nonparametric estimators in different scenarios.
Our framework is flexible in that mi can either be bounded or tend to infinity.
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Thus both the dense and sparse longitudinal data cases can be included. Dense
longitudinal data means that there exists a sequence of positive numbers Mn such
that mini mi ≥ Mn, and Mn → ∞ as n → ∞ [see, e.g., Hall, Müller and Wang
(2006) and Zhang and Chen (2007)], whereas sparse longitudinal data means that
there exists a positive constant M∗ such that maxi mi ≤ M∗; see, for example,
Yao, Müller and Wang (2005), Wang, Qian and Carroll (2010). We show that the
convergence rates and asymptotic variances of our semiparametric estimators in
the sparse case are substantially different from those in the dense case. Further-
more, we show that the proposed semiparametric GEE (SGEE)-based estimators
are asymptotically more efficient than the profile unweighted least squares (PULS)
estimators, when the weights in the SGEE method are chosen as the inverse of the
covariance matrix of the errors. We also introduce a semiparametric approach to
estimate the covariance matrices (or weights) involved in the SGEE method, which
is based on a variance–correlation decomposition and consists of two steps: first,
estimate the conditional variance function using a robust nonparametric method
that accommodates heavy-tailed errors, and second, estimate the parameters in the
correlation matrix. A simulation study and a real data analysis are provided to
illustrate our methodology and theory.

The rest of the paper is organized as follows. In Section 2, we introduce the
SGEE methodology for estimating β0, θ0 and η(·). Section 3 establishes the large
sample theory for the proposed parametric and nonparametric estimators and gives
some related discussions. Section 4 discusses how to determine the weight matri-
ces in the estimation equations. Section 5 gives some numerical examples to inves-
tigate the finite sample performance of the proposed approach. Section 6 concludes
the paper. Technical assumptions are given in Appendix A. The proofs of the main
results are given in Appendix B. Some auxiliary lemmas and their proofs are pro-
vided in the supplementary material [Chen et al. (2015)].

2. Estimation methodology. Various semiparametric estimation approaches
have been proposed to estimate model (1.1) in the case of i.i.d. observations (or
weakly dependent time series data). See, for example, Carroll et al. (1997) and
Liang et al. (2010) for the profile likelihood method, Yu and Ruppert (2002) and
Wang et al. (2010) for the “remove-one-component” technique using penalized
spline and local linear smoothing, respectively, and Xia and Härdle (2006) for the
minimum average variance estimation approach. However, there is limited liter-
ature on partially linear single-index models for longitudinal data because of the
more complicated structures involved. Recently, Chen, Gao and Li (2013b) stud-
ied a partially linear single-index longitudinal data model with individual effects.
To remove the individual effects and derive consistent semiparametric estimators,
they had to limit their discussions to the dense and balanced longitudinal data
case. Ma, Liang and Tsai (2014) considered a partially linear single-index longi-
tudinal data model by using polynomial splines to approximate the unknown link
function, but their discussion was limited to the sparse and balanced longitudinal
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data case. In contrast, as mentioned in Section 1, our framework includes both the
sparse and dense longitudinal data cases. Meanwhile, observations are allowed to
be collected at irregular and subject specific time points. All this provides much
wider applicability of our framework. Furthermore, to improve the efficiency of
the semiparametric estimation, we develop a new profile weighted least squares
approach to estimate the parameters β0, θ0 as well as the link function η0(·).

To simplify the presentation, let

Yi = (
Yi(ti1), . . . , Yi(timi

)
)�

, Xi = (
Xi (ti1), . . . ,Xi(timi

)
)�

,

Zi = (
Zi (ti1), . . . ,Zi(timi

)
)�

, ei = (
ei(ti1), . . . , ei(timi

)
)�

,

η(Xi , θ) = (
η
(
X�

i (ti1)θ
)
, . . . , η

(
X�

i (timi
)θ

))�
.

With the above notation, model (1.2) can then be re-written as

Yi = Ziβ0 + η(Xi , θ0) + ei .(2.1)

We further let Y = (Y�
1 , . . . ,Y�

n )�, Z = (Z�
1 , . . . ,Z�

n )�, E = (e�
1 , . . . , e�

n )�,
η(X, θ) = (η�(X1, θ), . . . ,η�(Xn, θ))�. Then model (2.1) is equivalent to

Y= Zβ0 + η(X, θ0) +E.(2.2)

Our estimation procedure is based on the profile likelihood method, which is
commonly used in semiparametric estimation; see, for example, Carroll et al.
(1997), Fan and Huang (2005) and Fan, Huang and Li (2007). Let Yij = Yi(tij ),
Zij = Zi (tij ) and Xij = Xi (tij ). For given β and θ , we can estimate η(·) and its
derivative η̇(·) at point u by minimizing the following loss function:

Ln(a, b|β, θ)
(2.3)

=
n∑

i=1

{
wi

h

mi∑
j=1

[
Yij − Z�

ijβ − a − b
(
X�

ijθ − u
)]2

K

(X�
ijθ − u

h

)}
,

where K(·) is a kernel function, h is a bandwidth and wi , i = 1, . . . , n, are some
weights. It is well known that the local linear smoothing has advantages over the
Nadaraya–Watson kernel method, such as higher asymptotic efficiency, design
adaption and automatic boundary correction [Fan and Gijbels (1996)]. Follow-
ing the existing literature such as Wu and Zhang (2006), the weights wi can be
specified by two schemes: wi = 1/Tn (type 1) and wi = 1/(nmi) (type 2), where
Tn = ∑n

i=1 mi . The type 1 weight scheme corresponds to an equal weight for each
observation, while the type 2 scheme corresponds to an equal weight within each
subject. As discussed in Huang, Wu and Zhou (2002) and Wu and Zhang (2006),
the type 2 scheme may be appropriate if the number of observations varies across
subjects. As the longitudinal data under investigation in this paper are allowed to
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be unbalanced, we use wi = 1/(nmi), which was also used by Li and Hsing (2010)
and Kim and Zhao (2013). We denote(

η̂(u|β, θ),̂̇η(u|β, θ)
)� = arg min

a,b
Ln(a, b|β, θ).(2.4)

By some elementary calculations [see, e.g., Fan and Gijbels (1996)], we have

η̂(u|β, θ) =
n∑

i=1

si (u|θ)(Yi − Ziβ)(2.5)

for given β and θ , where

si (u|θ) = (1,0)

[
n∑

i=1

X
�
i (u|θ)Ki (u|θ)Xi (u|θ)

]−1

X
�
i (u|θ)Ki (u|θ),

Xi (u|θ) = (
Xi1(u|θ), . . . ,Ximi

(u|θ)
)�

,
(2.6)

Xij (u|θ) = (
1,X�

ijθ − u
)�

,

Ki (u|θ) = diag
(
wiK

(X�
i1θ − u

h

)
, . . . ,wiK

(X�
imi

θ − u

h

))
.

Based on the profile least squares approach with the first-stage local linear
smoothing, we can construct estimators of the parameters β0 and θ0. We start with
the PULS method which ignores the possible within-subject correlation structure.
Define the PULS loss function by

Qn0(β, θ) =
n∑

i=1

[
Yi − Ziβ − η̂(Xi |β, θ)

]�[
Yi − Ziβ − η̂(Xi |β, θ)

]
(2.7)

= [
Y−Zβ − η̂(X|β, θ)

]�[
Y−Zβ − η̂(X|β, θ)

]
,

where, for given β and θ , η̂(Xi |β, θ) and η̂(X|β, θ) are the local linear estima-
tors of the vectors η(Xi , θ) and η(X, θ), respectively; that is, each element of
η̂(Xi |β, θ) and η̂(X|β, θ) is defined as in (2.5). The PULS estimators of β0 and
θ0 are obtained by minimizing the loss function Qn0(β, θ) with respect to β and θ

and normalizing the minimizer θ . We denote the resulting estimators by β̃ and θ̃ ,
respectively.

Although it is easy to verify that both β̃ and θ̃ are consistent, they are not
efficient as the within-subject correlation structure is not taken into account.
Hence, to improve the efficiency of the parametric estimators, we next introduce
a GEE-based method to estimate the parameters β0 and θ0. Existing literature
on GEE-based method in longitudinal data analysis includes Liang and Zeger
(1986), Xie and Yang (2003) and Wang (2011). Let W = diag{W1, . . . ,Wn},
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where Wi = R−1
i and Ri is an mi × mi working covariance matrix whose esti-

mation will be discussed in Section 4. Define

ρZ(Xi , θ) = (
ρZ

(
X�

i1θ |θ)
, . . . , ρZ

(
X�

imi
θ |θ))�

, ρZ(u|θ) = E
[
Zij |X�

ijθ = u
]
,

ρX(Xi , θ) = (
ρX

(
X�

i1θ |θ)
, . . . , ρX

(
X�

imi
θ |θ))�

, ρX(u|θ) = E
[
Xij |X�

ijθ = u
]
,

�i (θ) = (
Zi − ρZ(Xi , θ),

[
η̇(Xi , θ) ⊗ 1�

p

] 
 [
Xi − ρX(Xi , θ)

])
,

where η̇(Xi , θ) is a column vector with its elements being the derivatives of η(·)
at points X�

ijθ , j = 1, . . . ,mi , 1p is a p-dimensional vector of ones, ⊗ is the Kro-
necker product and 
 denotes the componentwise product. The construction of the
parametric estimators is based on solving the following equation with respect to β

and θ :
n∑

i=1

�̂
�
i (θ)Wi

[
Yi − Ziβ − η̂(Xi |β, θ)

] = 0,(2.8)

where �̂i (θ) is an estimator of �i(θ) with ρZ(Xi , θ), ρX(Xi , θ) and η̇(Xi , θ) re-
placed by their corresponding local linear estimated values. Let β̂ and θ̂1 be the
solutions to the estimation equations in (2.8), and let the SGEE-based estimator
of θ0 be defined as θ̂ = θ̂1/‖θ̂1‖, where ‖ · ‖ is the Euclidean norm. Note that
the solutions to the equations in (2.8) generally do not have a closed form. In
the numerical studies, we use the trust-region dogleg algorithm within the Matlab
command “fsolve” to obtain the solutions to (2.8). Corollary 1 below shows that
the SGEE-based estimators β̂ and θ̂ are generally asymptotically more efficient
than the PULS estimators β̃ and θ̃ , when the weights are chosen appropriately.

Replacing β and θ in η̂(·) by β̂ and θ̂ , respectively, we obtain the local linear
estimator of the link function η(·) at u as

η̂(u) = η̂(u|β̂, θ̂) =
n∑

i=1

si(u|̂θ)(Yi − Zi β̂).(2.9)

In Section 3 below, we will give the large sample properties of the estimators
proposed above, and in Section 4, we will discuss how to choose the working
covariance matrix Ri .

3. Theoretical properties. Before establishing the large sample theory for
the proposed parametric and nonparametric estimators, we introduce some nota-
tion. Let B0 be a p × (p − 1) matrix such that M = (θ0,B0) is a p ×p orthogonal
matrix, and define

I(B0) =
( Id Od×(p−1)

Op×d B0

)
,
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where Ik is a k×k identity matrix and Ok×l is a k× l null matrix. Let �i = �i (θ0),
and assume that there exist two positive semi-definite matrices �0 and �1 as well
as a sequence of numbers ωn such that ωn → ∞,

1

ωn

n∑
i=1

��
i Wi�i

P→ �0,(3.1)

1

ωn

n∑
i=1

E
[
��

i Wieie�
i Wi�i

] → �1,(3.2)

max
1≤i≤n

E
[
��

i Wieie�
i Wi�i

] = o(ωn),(3.3)

as n → ∞, and I�(B0)�0I(B0) is positive definite. Conditions (3.2) and (3.3) en-
sure that the Lindeberg–Feller condition can be satisfied, and thus the classical
central limit theorem for independent sequence [Petrov (1995)] is applicable. It is
not difficult to verify the assumption in (3.3) for the dense and sparse longitudinal
data. In particular, (3.3) excludes the case where the term ��

i Wiei from one or a
few subjects dominates those from the others. For the latter case, it may be possi-
ble to derive the consistency of the proposed parametric estimation, but the proof
of the asymptotic normality would be difficult. Let �+

0 be the Moore–Penrose in-
verse matrix of �0, which is defined as �+

0 = I(B0)[I�(B0)�0I(B0)]−1I�(B0).
We next give the asymptotic distribution theory for the SGEE-based estimators β̂
and θ̂ .

THEOREM 1. Suppose that Assumptions 1–5 in Appendix A and (3.1)–(3.3)
are satisfied. Then we have

ω1/2
n

(
β̂ − β0

θ̂ − θ0

)
d−→ N

(
0,�+

0 �1�
+
0

)
(3.4)

as n → ∞.

REMARK 1. Theorem 1 establishes the asymptotically normal distribution
theory for β̂ and θ̂ with convergence rate ω

1/2
n . This ωn is linked to h through

n in a certain way. Specifically, the condition ωnh
6 → 0 in Assumption 5 needs

to be satisfied to ensure that the bias term of the parametric estimation is asymp-
totically negligible. The specific forms of ωn, �0 and �1 can be derived for some
particular cases, for instance, when longitudinal data are balanced, that is, mi ≡ m,
ωn = nm. Furthermore, assume that the covariates and the error are i.i.d. with
E[e2

i (tij )] ≡ σ 2
e , ei(tij ) is independent of the covariates and Wi , i = 1, . . . , n, are

m × m identity matrices. Then we can show that

�0 =
(

�0(1) �0(2)

��
0 (2) �0(3)

)
and �1 = σ 2

e

(
�0(1) �0(2)

��
0 (2) �0(3)

)
,
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where

�0(1) = E
{[

Z(t) − ρZ
(
X�(t)θ0|θ0

)][
Z(t) − ρZ

(
X�(t)θ0|θ0

)]�}
,

�0(2) = E
{
η̇
(
X�(t)θ0

)[
Z(t) − ρZ

(
X�(t)θ0|θ0

)][
X(t) − ρX

(
X�(t)θ0|θ0

)]�}
,

�0(3) = E
{[

η̇
(
X�(t)θ0

)]2[
X(t) − ρX

(
X�(t)θ0|θ0

)][
X(t) − ρX

(
X�(t)θ0|θ0

)]�}
.

Hence �+
0 �1�

+
0 reduces to σ 2

e �+
0 .

In Theorem 1 above, we only require n → ∞. As mentioned in Section 1, both
the sparse and dense longitudinal data cases can be included in a unified frame-
work. For the sparse longitudinal data case when mi is bounded by a certain
positive constant, we can take ωn = n and prove that (3.4) holds. For the dense
longitudinal data case where mini mi ≥ Mn with Mn → ∞, under some regular-
ity conditions we may prove (3.4) with wn = ∑n

i=1 mi . As more observations are
available in the dense longitudinal data case and the order for the total number
of the observations is higher than n, the convergence rate for the parametric es-
timators is faster than the well-known root-n rate in the sparse longitudinal data
case.

Using Theorem 1, we can obtain the following corollary.

COROLLARY 1. Suppose that the weights Wi in (2.8) are chosen as the in-
verse of the conditional covariance matrix of ei , and the conditions of Theorem 1
are satisfied. Then the SGEE-based estimators β̂ and θ̂ are asymptotically more
efficient than the PULS estimators β̃ and θ̃ defined in Section 2.

REMARK 2. In the proof of the above corollary, we show that the asymptotic
covariance matrix of the PULS estimators β̃ and θ̃ (after appropriate normaliza-
tion) minus that of the SGEE-based estimators β̂ and θ̂ is positive semi-definite,
although the two estimation methods have the same convergence rates. That is,
under the conditions assumed in Theorem 1, the limit matrix of ωn[Var(β̃, θ̃) −
Var(β̂, θ̂)] is positive semi-definite. For the case of independent observations, a re-
cent paper by Luo, Li and Yin (2014) discussed the efficient bound for the semi-
parametric estimation in single-index models. Following their idea, we conjecture
that modification of our estimation procedure may be needed to obtain the effi-
cient estimation in the partially linear single-index longitudinal data models. We
will study this issue in our future research.

To establish the asymptotic distribution theory for the nonparametric estimator
η̂(u) under a unified framework, we assume that there exist a sequence ϕn(h) and
a constant 0 < σ 2∗ < ∞ such that

ϕn(h) = o(ωn), ϕn(h) max
1≤i≤n

E
[
si (u|θ0)eie�

i s�
i (u|θ0)

] = o(1)(3.5)
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and

ϕn(h)

n∑
i=1

E
[
si (u|θ0)eie�

i s�
i (u|θ0)

] → σ 2∗ .(3.6)

The first restriction in (3.5) is imposed to ensure that the parametric convergence
rates are faster than the nonparametric convergence rates, and the second restric-
tion in (3.5) and the condition in (3.6) are imposed for the derivation of the
asymptotic variance of the local linear estimator η̂(u) and the satisfaction of the
Lindeberg–Feller condition. The specific forms of ϕn(h) and σ 2∗ will be discussed
in Remark 3 below. Let μj = ∫

vjK(v) dv for j = 0,1,2 and η̈0(·) be the second-
order derivative of η0(·).

THEOREM 2. Suppose that the conditions of Theorem 1, (3.5) and (3.6) are
satisfied. Then we have

ϕ1/2
n (h)

[
η̂(u) − η0(u) − bη(u)h2] d−→ N

(
0, σ 2∗

)
,(3.7)

where bη(u) = η̈0(u)μ2/2.

REMARK 3. Theorem 2 provides the asymptotically normal distribution the-
ory for the nonparametric estimator η̂(u) with a convergence rate OP (ϕ

−1/2
n (h) +

h2). The forms of ϕn(h) and σ 2∗ in Theorem 2 depend on the type of the longitu-
dinal data under study, that is, whether it is sparse or dense. We can derive their
specific forms for some particular cases. Consider, for example, the case where
ei(tij ) = vi + εij , in which εij are i.i.d. across both i and j with E[εij ] = 0 and
E[ε2

ij ] = σ 2
ε , and {vi} is an i.i.d. sequence of random variables with E[vi] = 0 and

E[v2
i ] = σ 2

v and is independent of {εij }. In this case, we note that

E

{[
mi∑

j=1

K

(X�
ijθ0 − u

h

)
eij

]2}

= E

{[
mi∑

j=1

K

(X�
ijθ0 − u

h

)
(vi + εij )

]2}

=
mi∑

j=1

E
[
K2

(X�
ijθ0 − u

h

)
(vi + εij )

2
]

+ ∑
j1 =j2

E
[
K

(X�
ij1

θ0 − u

h

)
K

(X�
ij2

θ0 − u

h

)
(vi + εij1)(vi + εij2)

]

∼ mihν0fθ0(u)
(
σ 2

v + σ 2
ε

) + mi(mi − 1)h2μ2
0f

2
θ0

(u)σ 2
v ,
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where ν0 = ∫
K2(v) dv and fθ0(·) is the probability density function of X�

ijθ0.

For the sparse longitudinal data case, mi(mi − 1)h2μ2
0f

2
θ0

(u)σ 2
v is dominated

by mihν0fθ0(u)(σ 2
v + σ 2

ε ), as mi is bounded and h → 0. Then, by Lemma 1 in the
supplementary document [Chen et al. (2015)] and some elementary calculations,
we can prove that

n∑
i=1

E
[
si (u|θ0)eie�

i s�
i (u|θ0)

] ∼ 1

(nh)2

n∑
i=1

mihν0(σ
2
v + σ 2

ε )

m2
i fθ0(u)

(3.8)

∼ ν0(σ
2
v + σ 2

ε )

n2hfθ0(u)

n∑
i=1

1

mi

.

Hence, in this case, we can take ϕn(h) = (n2h)(
∑n

i=1 1/mi)
−1 which has the same

order as nh, and σ 2∗ = ν0(σ
2
v + σ 2

ε )/fθ0(u). This result is similar to Theorem 1(i)
in Kim and Zhao (2013).

For the dense longitudinal data case, mihν0fθ0(u)(σ 2
v + σ 2

ε ) is dominated by
mi(mi − 1)h2μ2

0f
2
θ0

(u)σ 2
v if we assume that mih → ∞. Then, again by Lemma 1

in the supplementary material [Chen et al. (2015)], we can prove that

n∑
i=1

E
[
si (u|θ0)eie�

i s�
i (u|θ0)

] ∼ 1

(nh)2

n∑
i=1

mi(mi − 1)h2μ2
0σ

2
v

m2
i

∼ μ2
0σ

2
v

n
.

Hence, in this case, we can take ϕn(h) = n and σ 2∗ = μ2
0σ

2
v , which are analogous

to those in Theorem 1(ii) of Kim and Zhao (2013) and quite different from those
in the sparse longitudinal data case.

4. Estimation of covariance matrices. Estimation of the weight or working
covariance matrices, which are involved in the SGEE (2.8), is critical to improv-
ing the efficiency of the proposed semiparametric estimators. However, the unbal-
anced longitudinal data structure, which can be either sparse or dense, makes such
covariance matrix estimation very challenging, and some existing estimation meth-
ods based on balanced data [such as Wang (2011)] cannot be directly used here. In
this section, we introduce a semiparametric estimation approach that is applicable
to both sparse and dense unbalanced longitudinal data. This approach is based on a
variance–correlation decomposition, and the estimation of the working covariance
matrices then consists of two steps: first, estimate the conditional variance function
using a robust nonparametric method that accommodates heavy-tailed errors, and
second, estimate the parameters in the correlation matrix. For recent developments
on the study of the covariance structure in longitudinal data analysis, we refer to
Fan and Wu (2008), Zhang, Leng and Tang (2015) and the references therein.



1692 CHEN, LI, LIANG AND WANG

For each 1 ≤ i ≤ n, let Ri be the covariance matrix of ei and

�i = diag
{
σ 2(ti1), . . . , σ

2(timi
)
}

with σ 2(tij ) = E[e2
i (tij )|tij ] = E[e2

i (tij )|tij ,Xi(tij ),Zi(tij )] for j = 1, . . . ,mi , and
Ci be the correlation matrix of ei . Assume that there exists a q-dimensional pa-
rameter vector φ such that Ci = Ci(φ) where Ci (·), 1 ≤ i ≤ n, are pre-specified.
By the variance–correlation decomposition, we have

Ri = �
1/2
i Ci (φ)�

1/2
i .(4.1)

The above semiparametric covariance structure has been studied in some of the
existing literature [see, e.g., Fan, Huang and Li (2007) and Fan and Wu (2008)]
and provides a flexible framework to capture the error covariance structure, espe-
cially when the dimension of φ is large. For example, it is satisfied when ei(tij )

has the AR(1) or ARMA(1,1) dependence structure for each i; see, for example,
the simulated example in Section 5.1. When ei(tij ) = σ(tij )(vi + εij ) in which vi

and εij satisfy the conditions discussed in Remark 3 and σ 2
ε + σ 2

v = 1, we can
also show that the semiparametric covariance structure is satisfied with φ being
σ 2

ε or σ 2
v . Some existing papers such as Wu and Pourahmadi (2003) suggest the

use of a nonparametric smoothing method to estimate the covariance matrix. How-
ever, they usually need to assume that the longitudinal data are balanced or nearly
balanced, which would be violated when the data are collected at irregular and
possibly subject-specific time points. Yao, Müller and Wang (2005) proposed the
approach of functional data analysis to estimate the covariance structure for sparse
and irregularly-spaced longitudinal data. However, some substantial modification
may be needed to extend the method of Yao, Müller and Wang (2005) to our frame-
work, which includes both the sparse and dense longitudinal data.

In the present paper, we first estimate the conditional variance function σ 2(·) in
the diagonal matrix �i by using a nonparametric method. In recent years, there has
been a rich literature on the study of nonparametric conditional variance estima-
tion; see, for example, Fan and Yao (1998), Yu and Jones (2004), Fan, Huang and
Li (2007) and Leng and Tang (2011). However, when the errors are heavy-tailed,
which is not uncommon in economic and financial data analysis, most of these
existing methods may not perform well. This motivates us to devise an estimation
method that is robust to heavy-tailed errors. Let r(tij ) = [Yij −Z�

ijβ0 −η(X�
ijθ0)]2.

We can then find a random variable ξ(tij ) so that r(tij ) = σ 2(tij )ξ
2(tij ) and

E[ξ2(tij )|tij ] = 1 with probability one. By applying the log-transformation [see
Peng and Yao (2003) and Chen, Cheng and Peng (2009) for the application of this
transformation in time series analysis] to r(tij ), we have

log r(tij ) = log
[
τσ 2(tij )

] + log
[
τ−1ξ2(tij )

] ≡ σ 2� (tij ) + ξ�(tij ),(4.2)
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where τ is a positive constant such that E[ξ�(tij )] = E{log[τ−1ξ2(tij )]} = 0. Here,
ξ�(tij ) could be viewed as an error term in model (4.2). As rij ≡ r(tij ) are unob-
servable, we replace them with

r̂ij = [
Yij − Z�

ij β̃ − η̂
(
X�

ij θ̃ |β̃, θ̃
)]2

,

where β̃ and θ̃ are the PULS estimators of β0 and θ0, respectively. In order to
estimate σ 2� (t), we define

L̃n(a, b) =
n∑

i=1

{
wi

h1

mi∑
j=1

[
log(̂rij + ζn) − a − b(tij − t)

]2
K1

(
tij − t

h1

)}
,(4.3)

where K1(·) is a kernel function, h1 is a bandwidth satisfying Assumption 9 in
Appendix A, wi = 1/(nmi) as in Section 2 and ζn → 0 as n → ∞. Throughout
this paper, we set ζn = 1/Tn, where Tn = ∑n

i=1 mi . The ζn is added in log(̂rij +ζn)

to avoid the occurrence of invalid log 0 as ζn > 0 for any n. Such a modification
would not affect the asymptotic distribution of the conditional variance estimation
under certain mild restrictions. Then σ 2� (t) can be estimated as

σ̂ 2� (t) = â where (â, b̂)� = arg min
a,b

L̃n(a, b).(4.4)

On the other hand, noting that exp{σ 2� (tij )}
τ

ξ2(tij ) = rij and E[ξ2(tij )] = 1, the con-
stant τ can be estimated by

τ̂ =
[

1

Tn

n∑
i=1

mi∑
j=1

r̂ij exp
{−σ̂ 2� (tij )

}]−1

.(4.5)

We then estimate σ 2(t) by

σ̂ 2(t) = exp{σ̂ 2� (t)}
τ̂

.(4.6)

It is easy to see that thus defined estimator σ̂ 2(t) is always positive.
Suppose that there exists a sequence ϕn�(h1) which depends on h1, and a con-

stant 0 < σ 2� < ∞ such that

ϕn�(h1) = o(ωn),
(4.7)

ϕn�(h1)

h2
1

max
1≤i≤n

w2
i E

[
mi∑

j=1

ξ�(tij )K1

(
tij − t

h1

)]2

= o(1)

and

ϕn�(h1)

fT (t)h2
1

E

[
n∑

i=1

wi

mi∑
j=1

ξ�(tij )K1

(
tij − t

h1

)]2

→ σ 2� ,(4.8)
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which are similar to those in (3.5) and (3.6), where fT (·) is the density function of
the observation times tij . Define

bσ1(t) = exp{σ 2� (t)}
2τ

σ̈ 2� (t)

∫
v2K1(v) dv,

bσ2(t) = exp{σ 2� (t)}
2τ

E
[
σ̈ 2� (tij )

] ∫
v2K1(v) dv,

where σ̈ 2� (·) is the second-order derivative of σ 2� (·). We then establish the asymp-
totic distribution of σ̂ 2(t) in the following theorem, whose proof is given in the
supplementary material [Chen et al. (2015)].

THEOREM 3. Suppose the conditions in Theorems 1 and 2, Assumptions 6–9
in Appendix A, (4.7) and (4.8) are satisfied. Then we have

ϕ
1/2
n� (h1)

{
σ̂ 2(t) − σ 2(t) − [

bσ1(t) − bσ2(t)
]
h2

1
} d−→ N

(
0,

σ 4(t)

fT (t)
σ 2�

)
.(4.9)

REMARK 4. Theorem 3 can be seen as an extension of Theorem 1 in Chen,
Cheng and Peng (2009) from the time series case to the longitudinal data case.
The longitudinal data framework in this paper is more flexible and includes both
sparse and dense data types. If ξ�(tij ) = v�

i + ε�
ij , where ε�

ij are i.i.d. across both i

and j with E[ε�
ij ] = 0 and E[(ε�

ij )
2] < ∞, and {v�

i } is an i.i.d. sequence of random

variables with E[v�
i ] = 0 and E[(v�

i )2] < ∞ and is independent of {ε�
ij }, following

the discussion in Remark 3, we can again show that the form of ϕn�(h1) depends on
the type of the longitudinal data, and thus the nonparametric conditional variance
estimation has different convergence rates for sparse and dense data.

We next discuss how to obtain the optimal value of the parameter vector φ.
Construct the residuals ẽi = Yi − Zi β̃ − η̃(Xi , θ̃), where η̃(Xi , θ̃) is defined
in the same way as η(Xi , θ) but with η(·) and θ replaced by η̃(·) ≡ η̂(·|β̃, θ̃)

and θ̃ , respectively. Let �̃i ≡ �̂i (̃θ), �̂i = diag{σ̂ 2(ti1), . . . , σ̂
2(timi

)}, and define

R∗
i (φ) = �̂

1/2
i Ci (φ)�̂

1/2
i . Motivated by equations (3.1) and (3.2), we construct

�∗
0(φ) =

n∑
i=1

�̃
�
i

[
R∗

i (φ)
]−1

�̃i(4.10)

and

�∗
1(φ) =

n∑
i=1

�̃
�
i

[
R∗

i (φ)
]−1ẽi ẽ�

i

[
R∗

i (φ)
]−1

�̃i .(4.11)

By Theorem 1, the sandwich formula estimate [�∗
0(φ)]+�∗

1(φ)[�∗
0(φ)]+ is

asymptotically proportional to the asymptotic covariance of the proposed SGEE
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estimators when the inverse of R∗
i (φ) is chosen as the weight matrix. The op-

timal value of φ, denoted by φ̂, can be chosen to minimize the determinant
|[�∗

0(φ)]+�∗
1(φ)[�∗

0(φ)]+|. Such a method is called the minimum generalized
variance method [Fan, Huang and Li (2007)]. With the chosen φ̂, we can estimate
the covariance matrices by

Ri(φ̂) = �̂
1/2
i Ci (φ̂)�̂

1/2
i ,(4.12)

whose inverse will be used as the weight matrices in the SGEE method.

5. Numerical studies. In this section, we first study the finite sample perfor-
mance of the proposed SGEE estimators through Monte Carlo simulation, and then
give an empirical application of the proposed model and methodology.

5.1. Simulation studies. We investigate both sparse and dense longitudinal
data cases with an average time dimension m of 10 for the sparse data and 30 for
the dense data. We use two types of within-subject correlation structure, AR(1)

and ARMA(1,1), in the error terms ei(tij ). We investigate the finite sample per-
formance of the proposed estimators under both correct specification and misspec-
ification of the correlation structure in the construction of the covariance matrix
estimator proposed in Section 4. For the misspecified case, we fit an AR(1) cor-
relation structure while the true underlying structure is ARMA(1,1) and examine
the robustness of the estimators.

Simulated data are generated from model (1.2) with two-dimensional Zi (tij )

and three-dimensional Xi (tij ), and

β0 = (2,1)�, θ0 = (2,1,2)�/3 and η(u) = 0.5 exp(u).

The covariates (Z�
i (tij ),X�

i (tij ))
� are generated independently from a five-

dimensional Gaussian distribution with mean 0, variance 1 and pairwise corre-
lation 0.1. The observation times tij are generated in the same way as in Fan,
Huang and Li (2007): for each subject, {0,1,2, . . . , T } is a set of scheduled times,
and each scheduled time from 1 to T has a 0.2 probability of being skipped; each
actual observation time is a perturbation of a nonskipped scheduled time; that is, a
uniform [0,1] random number is added to the nonskipped scheduled time. Here T

is set to be 12 or 36, which corresponds to an average time dimension of m = 10
or m = 30, respectively. For each i, the error terms ei(tij ) are generated from a
Gaussian process with mean 0, variance function

var
[
e(t)

] = σ 2(t) = 0.25 exp(t/12)(5.1)

and serial correlation structure

cor
(
e(t), e(s)

) =
{ 1, t = s,

γρ|t−s|, t = s.
(5.2)
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Note that (5.2) corresponds to an ARMA(1,1) correlation structure and reduces to
an AR(1) correlation structure when γ = 1. The number of subjects, n, is taken to
be 30 or 50. The values for γ and ρ are (γ, ρ) = (0.85,0.9) in the ARMA(1,1)

correlation structure and (γ, ρ) = (1,0.9) in the AR(1) structure.
For each combination of m, n, and the correlation structure, the number of sim-

ulation replications is 200. For the selection of the bandwidth, however, due to the
running time limitation, we first run a leave-one-unit-out (i.e., leave out observa-
tions from one subject at a time) cross-validation (CV) to choose the optimal band-
widths from 20 replications. We then use the average of the optimal bandwidths
from these 20 replications as the bandwidth in the 200 replications of the simula-
tion study. For the SGEE method, we choose the weight matrix as the inverse of the
estimated within-subject covariance matrix as constructed in (4.12) of Section 4.
We first study the performance of the proposed estimators in the case where the
correlation structure in the estimation of the covariance matrix is correctly speci-
fied, and then investigate the robustness of the estimators to the misspecification of
the correlation structure. The bias, calculated as the average of the estimates from
the 200 replications minus the true parameter values, the standard deviation (SD),
calculated as the sample standard deviation of the 200 estimates and the median
absolute deviation (MAD), calculated as the median absolute deviation of the 200
estimates are reported in Tables 1 and 2. Table 1 gives the results obtained under
the correct specification of an underlying within-subject AR(1) correlation struc-
ture in ei(tij ), and Table 2 gives those obtained under the correct specification of an
underlying ARMA(1,1) structure in ei(tij ). For comparison, we also report the re-
sults from the PULS estimation. The results in Tables 1 and 2 show that the SGEE
estimates are comparable with the PULS estimates in terms of bias and are more
efficient than the PULS estimates, which supports the asymptotic theory developed
in Section 3. In Figures 1 and 2, we plot the local linear estimated link function
from a typical realization together with the real curve for each combination of n

and m.
To investigate the robustness of the SGEE and PULS estimators to correlation

structure misspecification, we also carry out a simulation study in which an AR(1)

correlation structure is used in the covariance matrix estimation detailed in Sec-
tion 4, when the true underlying correlation structure is ARMA(1,1). Table 3
reports the results under this misspecification. The table shows that in the pres-
ence of correlation structure misspecification, SGEE still produces more efficient
parameter estimates than PULS.

We also include a simulated example where the covariates in Z follow discrete
distributions. The same model as above is used except that the covariates X�

i (tij )

are drawn independently from a three-dimensional Gaussian distribution with
mean 0, variance 1 and pairwise correlation 0.1, and Z�

i (tij ) are independently
drawn from a binomial distribution with success probability 0.5. The errors ei(tij )

are generated with the AR(1) serial correlation structure of (γ, ρ) = (1,0.9). The
simulation results for this example are presented in Table 4. The same finding as
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TABLE 1
Performance of parameter estimation methods under correct specification of an underlying AR(1)

correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS 0.0048 0.0402 0.0288 −0.0030 0.0308 0.0195
SGEE −0.0026 0.0508 0.0081 −0.0016 0.0259 0.0074

β2 PULS −0.0024 0.0409 0.0243 0.0049 0.0267 0.0180
SGEE −0.0018 0.0298 0.0110 0.0033 0.0310 0.0077

θ1 PULS −0.0049 0.0299 0.0180 −0.0009 0.0197 0.0134
SGEE −0.0013 0.0164 0.0083 −0.0002 0.0118 0.0046

θ2 PULS 0.0011 0.0380 0.0229 −0.0016 0.0237 0.0161
SGEE 0.0026 0.0188 0.0100 0.0006 0.0108 0.0067

θ3 PULS 0.0018 0.0314 0.0188 0.0006 0.0203 0.0147
SGEE −0.0007 0.0182 0.0090 −0.0004 0.0088 0.0052

30 β1 PULS 0.0003 0.0408 0.0277 0.0016 0.0328 0.0222
SGEE −0.0081 0.1134 0.0106 0.0007 0.0108 0.0083

β2 PULS −0.0020 0.0425 0.0317 0.0005 0.0351 0.0202
SGEE −0.0017 0.0420 0.0096 −0.0064 0.0152 0.0079

θ1 PULS 0.0020 0.0315 0.0213 −0.0020 0.0244 0.0182

SGEE −0.0008 0.0247 0.0075 0.0001 0.0148 0.0064

θ2 PULS −0.0035 0.0340 0.0240 −0.0083 0.0278 0.0163
SGEE −0.0027 0.0242 0.0090 −0.0013 0.0104 0.0066

θ3 PULS −0.0027 0.0321 0.0185 0.0045 0.0267 0.0169
SGEE 0.0009 0.0230 0.0074 0.0001 0.0162 0.0068

above can be obtained. Some additional results, that is, those on the average angles
between the estimated and the true parameter vectors, are given in Appendix D of
the supplementary material [Chen et al. (2015)].

5.2. Real data analysis. We next illustrate the partially linear single-index
model and the proposed SGEE estimation method through an empirical example
which explores the relationship between lung function and air pollution. There is
voluminous literature studying the effects of air pollution on people’s health. For a
review of the literature, the reader is referred to Pope, Bates and Raizenne (1995).
Many studies have found association between air pollution and health problems
such as increased respiratory symptoms, decreased lung function, increased hos-
pitalizations or hospital visits for respiratory and cardiovascular diseases and in-
creased respiratory morbidity [Dockery et al. (1989), Kinney et al. (1989), Pope
(1991), Braun-Fahrländer et al. (1992), Lipfert and Hammerstrom (1992)]. While
earlier research often used time series or cross-sectional data to evaluate the health
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TABLE 2
Performance of parameter estimation methods under correct specification of an underlying

ARMA(1,1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS −0.0029 0.0400 0.0280 0.0006 0.0322 0.0221
SGEE −0.0025 0.0244 0.0155 0.0000 0.0193 0.0124

β2 PULS 0.0032 0.0386 0.0282 −0.0045 0.0299 0.0205
SGEE 0.0009 0.0249 0.0171 0.0001 0.0212 0.0126

θ1 PULS −0.0004 0.0267 0.0181 −0.0003 0.0188 0.0126
SGEE −0.0002 0.0161 0.0104 0.0006 0.0146 0.0073

θ2 PULS −0.0047 0.0343 0.0209 0.0005 0.0223 0.0156
SGEE −0.0031 0.0192 0.0113 −0.0002 0.0145 0.0087

θ3 PULS 0.0008 0.0253 0.0158 −0.0009 0.0201 0.0121
SGEE 0.0011 0.0148 0.0102 −0.0009 0.0146 0.0074

30 β1 PULS −0.0026 0.0450 0.0296 −0.0016 0.0374 0.0273
SGEE 0.0005 0.0214 0.0138 0.0015 0.0288 0.0105

β2 PULS −0.0013 0.0461 0.0291 0.0035 0.0361 0.0252
SGEE 0.0040 0.0335 0.0147 0.0014 0.0152 0.0104

θ1 PULS −0.0014 0.0296 0.0192 −0.0010 0.0207 0.0159
SGEE −0.0005 0.0166 0.0095 0.0006 0.0092 0.0063

θ2 PULS −0.0050 0.0355 0.0231 0.0011 0.0229 0.0173
SGEE −0.0037 0.0371 0.0120 −0.0003 0.0116 0.0072

θ3 PULS 0.0017 0.0279 0.0186 −0.0006 0.0215 0.0154
SGEE 0.0009 0.0181 0.0095 −0.0007 0.0100 0.0070

effects of air pollution, recent advances in longitudinal data analysis techniques of-
fer greater opportunities for studying this problem. In this paper, we will examine
whether air pollution has a significant adverse effect on lung function, and, if so,
to what extent. The use of the partially linear single-index model and the SGEE
method would provide greater modeling flexibility than linear models and allow
the within-subject correlation to be adequately taken into account. We will use a
longitudinal data set obtained from a study where a total of 971 4th-grade children
aged between 8 and 14 years (at their first visit to the hospital/clinic) were followed
over 10 years. For each yearly visit of the children to the hospital/clinic, records
on their forced expiratory volume (FEV), asthma symptom at visit (ASSPM, 1 for
those with symptoms and 0 for those without), asthmatic status (ASS, 1 for asthma
patient and 0 for nonasthma patient), gender (G, 1 for males and 0 for females),
race (R, 1 for nonwhites and 0 for whites), age (A), height (H), BMI and respi-
ratory infection at visit (RINF, 1 for those with infection and 0 for those without)
were taken. Together with the measurements from the children, the mean levels of
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(a) (b)

(c) (d)

FIG. 1. Estimated link function (dot-dashed line), together with the true link function (solid line),
from a typical realization of model (1.2) with AR(1) correlation structure for each combination of n

and m: (a) n = 30, m = 10; (b) n = 50, m = 10; (c) n = 30, m = 30; (d) n = 50, m = 30.

ozone and NO2 in the month prior to the visit were also recorded. Due to dropout
or other reasons, the majority of children had 4 to 5 years of records, and the total
number of observations in the data set is 3809.

As in many other studies, the FEV will be used as a measure of lung function,
and its log-transformed values, log(FEV), will be used as the response values in
our model. Our main interest is to determine whether higher levels of ozone and
NO2 would lead to decrements in lung function. To account for the effects of other
confounding factors, we include all other recorded variables. As age and height
exhibit strong co-linearity (with a correlation of 0.78), we will only use height
in the study. In fitting the partially linear single-index model to the data, all the
continuous variables (i.e., FEV, H, BMI, OZONE and NO2) are log-transformed,
and the log(BMI), log(OZONE) and log(NO2) are included in the single-index
part. The log(H) and all the binary variables are included in the linear part of the
model.

The scatter plots of the response variable against the continuous regressors are
shown in Figure 3, and the box plots of the response against the binary regressors
are given in Figure 4. We use an ARMA(1,1) within-subject correlation structure
in the estimation of the covariance matrix for the proposed SGEE method. The
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(a) (b)

(c) (d)

FIG. 2. Estimated link function (dot-dashed line), together with the true link function (solid line),
from a typical realization of model (1.2) with ARMA(1,1) correlation structure for each combina-
tion of n and m: (a) n = 30, m = 10; (b) n = 50, m = 10; (c) n = 30, m = 30; (d) n = 50, m = 30.

resulting estimated model is as follows:

log(FEV)

≈ 0.0325 ∗ G − 0.0111 ∗ ASS − 0.0671 ∗ R
(0.0041) (0.0080) (0.0059)

− 0.0047 ∗ ASSPM − 0.0068 ∗ RINF + 2.3206 ∗ log(H),

(0.0085) (0.0043) (0.0307)

+ η̂
[
0.9929 ∗ log(BMI) − 0.0924 ∗ log(OZONE) − 0.0753 ∗ log(NO2)

]
(0.0560) (0.0127) (0.0125),

where the numbers in the parentheses under the estimated coefficients are their re-
spective estimated standard errors. The estimated link function and its 95% point-
wise confidence intervals are plotted in Figure 5.

From Figure 5, it can be seen that the estimated link function is overall in-
creasing. The 95% point-wise confidence intervals show that a linear functional
form for the unknown link function would be rejected, and thus the partially liner
single-index model might be more appropriate than the traditional linear regression
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TABLE 3
Performance of parameter estimation methods under misspecification of an underlying

ARMA(1,1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS 0.0072 0.0410 0.0357 −0.0038 0.0299 0.0201
SGEE −0.0054 0.0261 0.0210 −0.0055 0.0211 0.0147

β2 PULS 0.0068 0.0336 0.0256 0.0037 0.0290 0.0163
SGEE 0.0025 0.0267 0.0157 0.0023 0.0190 0.0136

θ1 PULS 0.0037 0.0166 0.0114 0.0061 0.0157 0.0096
SGEE 0.0033 0.0144 0.0122 0.0016 0.0163 0.0081

θ2 PULS −0.0092 0.0303 0.0184 −0.0084 0.0224 0.0174
SGEE −0.0007 0.0198 0.0144 −0.0045 0.0203 0.0130

θ3 PULS −0.0005 0.0229 0.0158 −0.0028 0.0160 0.0111
SGEE −0.0035 0.0141 0.0094 0.0000 0.0134 0.0092

30 β1 PULS 0.0066 0.0403 0.0259 −0.0221 0.0502 0.0252
SGEE 0.0093 0.0144 0.0087 0.0001 0.0165 0.0118

β2 PULS −0.0138 0.0435 0.0353 0.0107 0.0312 0.0233
SGEE −0.0017 0.0268 0.0096 0.0035 0.0170 0.0096

θ1 PULS 0.0027 0.0252 0.0165 0.0020 0.0181 0.0067
SGEE 0.0054 0.0136 0.0078 0.0019 0.0096 0.0098

θ2 PULS −0.0063 0.0265 0.0245 0.0021 0.0315 0.0273
SGEE 0.0009 0.0198 0.0118 0.0046 0.0136 0.0094

θ3 PULS −0.0011 0.0285 0.0258 −0.0042 0.0217 0.0136
SGEE −0.0065 0.0178 0.0137 −0.0046 0.0120 0.0084

model. Meanwhile, it can be seen from the above estimated model that height and
BMI are significant positive factors in accounting for lung function. Taller children
and children with larger BMI tend to have higher FEV. Furthermore, male and
white children have, on average, higher FEV than female or nonwhite children.
Furthermore, both OZONE and NO2 in the single-index component have nega-
tive effects on children’s lung function, as the estimated coefficients for OZONE
and NO2 are negative, and the estimated link function is increasing. Although
these negative effects are relatively small in magnitude compared to the effect
of BMI, they are statistically significant. This means that higher levels of ozone
and NO2 tend to lead to reduced lung function as represented by lower values
of FEV.

6. Conclusions and discussions. In this paper, we study a partially linear
single-index modeling structure for possibly unbalanced longitudinal data in a
general framework, which includes both the sparse and dense longitudinal data
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TABLE 4
Performance of parameter estimation methods under correct specification of an underlying AR(1)

correlation structure when the covariates in Z are discrete

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS 0.0215 0.0530 0.0404 0.0018 0.0646 0.0472
SGEE 0.0228 0.0511 0.0208 0.0037 0.0298 0.0138

β2 PULS −0.0309 0.0858 0.0735 0.0193 0.0526 0.0498
SGEE 0.0024 0.0313 0.0193 0.0074 0.0339 0.0274

θ1 PULS −0.0012 0.0185 0.0090 −0.0116 0.0201 0.0175
SGEE −0.0060 0.0157 0.0082 0.0020 0.0086 0.0066

θ2 PULS −0.0020 0.0263 0.0232 0.0138 0.0229 0.0172
SGEE 0.0122 0.0241 0.0143 −0.0004 0.0087 0.0063

θ3 PULS 0.0012 0.0206 0.0075 0.0036 0.0153 0.0132
SGEE −0.0008 0.0078 0.0048 −0.0020 0.0070 0.0034

30 β1 PULS 0.0075 0.0427 0.0222 0.0108 0.0723 0.0513
SGEE 0.0061 0.0284 0.0233 0.0033 0.0226 0.0175

β2 PULS −0.0143 0.0768 0.0401 0.0023 0.0681 0.0417
SGEE 0.0116 0.0275 0.0125 −0.0039 0.0259 0.0196

θ1 PULS −0.0159 0.0310 0.0252 0.0031 0.0218 0.0168
SGEE −0.0030 0.0083 0.0045 0.0015 0.0098 0.0064

θ2 PULS −0.0026 0.0192 0.0112 0.0048 0.0252 0.0200
SGEE 0.0040 0.0200 0.0133 0.0002 0.0115 0.0084

θ3 PULS 0.0151 0.0331 0.0308 −0.0067 0.0228 0.0150
SGEE 0.0006 0.0133 0.0083 −0.0018 0.0103 0.0064

cases. An SGEE method with the first-stage local linear smoothing is introduced
to estimate the two parameter vectors as well as the unspecified link function. In
Theorems 1 and 2, we derive the asymptotic properties of the proposed paramet-
ric and nonparametric estimators in different scenarios, from which we find that
the convergence rates and asymptotic variances of the resulting estimators in the
sparse longitudinal data case could be substantially different from those in the
dense longitudinal data. In Section 4, we propose a semiparametric method to esti-
mate the error covariance matrices which are involved in the estimation equations.
The conditional variance function is estimated by using the log-transformed local
linear method, and the parameters in the correlation matrices are estimated by the
minimum generalized variance method. In particular, if the correlation matrices
are correctly specified, as is stated in Corollary 1, the SGEE-based estimators β̂
and θ̂ are generally asymptotically more efficient than the corresponding PULS
estimators β̃ and θ̃ in the sense that the asymptotic covariance matrix of the SGEE
estimators minus that of the PULS estimators is negative semi-definite. Both the
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FIG. 3. The scatter plots of the response variable log(FEV) against the continuous regressors, that
is, (clockwise from top left) log(H), log(BMI), log(NO2), log(OZONE).

FIG. 4. The box plots of the response variable log(FEV) against the binary regressors, that is,
(clockwise from top left) G, ASS, R, RINF, ASSPM.
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FIG. 5. The estimated link function and its 95% point-wise confidence intervals.

simulation study and empirical data analysis in Section 5 show that the proposed
methods work well in the finite samples.

Recently, Yao and Li (2013) developed a new nonparametric regression func-
tion estimation method for a longitudinal regression model. This method takes into
account the within-subject correlation information and thus generally improves
the asymptotic estimation efficiency. It would also be interesting to incorporate
the within-subject correlation information in the local linear estimation of the un-
known link function in this paper and to examine both theoretical and empiri-
cal performance of the resulting estimator. We will leave this issue for future re-
search. Another possible future topic is to extend the semiparametric techniques
of variable selection and specification testing proposed by Liang et al. (2010) from
the i.i.d. case to the general longitudinal data case discussed in the present pa-
per.

APPENDIX A: REGULARITY CONDITIONS

To establish the asymptotic properties of the SGEE estimators proposed in Sec-
tion 2, we introduce the following regularity conditions, although some of them
might not be the weakest possible.

ASSUMPTION 1. The kernel function K(·) is a bounded and symmetric prob-
ability density function with compact support. Furthermore, the kernel function has
a continuous first-order derivative function denoted by K̇(·).

ASSUMPTION 2. (i) The errors eij ≡ ei(tij ), 1 ≤ i ≤ n, 1 ≤ j ≤ mi , are inde-
pendent across i; that is, ei defined in Section 2, 1 ≤ i ≤ n, are mutually indepen-
dent.

(ii) The covariates Xij and Zij , 1 ≤ i ≤ n, 1 ≤ j ≤ mi , are i.i.d. random vectors.
(iii) The errors eij are independent of the covariates Zij and Xij , and for each i,

eij , 1 ≤ j ≤ mi , may be correlated with each other. Furthermore, E[eij ] = 0, 0 <
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E[e2
ij ] < ∞ and E[|eij |2+δ] < ∞ for some δ > 0. The largest eigenvalues of Wi

and WiE[eiei]Wi are bounded for any i.

ASSUMPTION 3. (i) The density function fθ (·) of X�
ijθ is positive and has

a continuous second-order derivative in U = {x�θ : x ∈ X , θ ∈ �}, where � is a
compact parameter space for θ and X is a compact support of Xij .

(ii) The function ρZ(u|θ) = E[Zij |X�
ijθ = u] has a bounded and continuous

second-order derivative (with respect to u) for any θ ∈ �, and E[‖Zij‖2+δ] < ∞,
where δ was defined in Assumption 2(iii).

ASSUMPTION 4. The link function η(·) has continuous derivatives up to the
second order.

ASSUMPTION 5. The bandwidth h satisfies

ωnh
6 → 0,

n2h2

Nn(h) logn
→ ∞,

T
2/(2+δ)
n logn

h2Nn(h)
= o(1),(A.1)

where Nn(h) = ∑n
i=1 1/(mih), Tn = ∑n

i=1 mi and δ was defined in Assump-
tion 2(iii). Furthermore, max1≤i≤n(m

4
i + m3

i h
−1) = o(wn).

REMARK 5. Assumption 1 imposes some mild restrictions on the kernel func-
tions, which have been used in the existing literature in i.i.d. and weakly dependent
time series cases; see, for example, Fan and Gijbels (1996) and Gao (2007). The
compact support restriction on the kernel functions can be removed if we impose
certain restrictions on the tail of the kernel function. In Assumption 2(i), the lon-
gitudinal data under investigation is assumed to be independent across subjects i,
which is not uncommon in longitudinal data analysis; see, for example, Wu and
Zhang (2006) and Zhang, Fan and Sun (2009). Assumption 2(ii) is imposed to
simplify the presentation of the asymptotic results. However, we may replace As-
sumption 2(ii) with the conditions that the covariates Xij and Zij are i.i.d. across
i and identically distributed across j , and in the case of dense longitudinal data, it
is further satisfied that for κ = 0,1,2, . . . ,

Var

[
1

mi

mi∑
j=1

Uij

h

(X�
ijθ − u

h

)κ

K

(X�
ijθ − u

h

)]
≤ C(mih)−1(A.2)

uniformly for u ∈ U and θ ∈ �, where Uij can be 1, ZijB1(Zij ), or XijB2(Xij ),
B1(·) and B2(·) are two bounded functions, and C is a positive constant which
is independent of i. When Xij and Zij are stationary and α-mixing dependent
across j for the case of dense longitudinal data, it is easy to validate the high-level
condition (A.2). In Assumption 2(iii), we allow the error terms to have certain
within-subject correlation, which makes the model assumptions more realistic. As-
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sumption 3 gives some commonly-used conditions in partially linear single-index
models; see Xia and Härdle (2006) and Chen, Gao and Li (2013b), for exam-
ple. Assumption 4 is a mild smoothness condition on the link function imposed
for the application of the local linear fitting. Assumption 5 gives a set of restric-
tions on the bandwidth h, which is involved in the estimation of the link function.
Note that the bandwidth conditions in Assumption 5 imply that the milder band-
width conditions in (C.1) of Lemma 1 in the supplemental material [Chen et al.
(2015)] are satisfied. Hence we can use Lemma 1 to prove our main theoretical
results.

We next give some regularity conditions, which are needed to derive the asymp-
totic property of the nonparametric conditional variance estimators in Section 4.

ASSUMPTION 6. The kernel function K1(·) is a continuous and symmetric
probability density function with compact support.

ASSUMPTION 7. The observation times, tij , are i.i.d. and have a continu-
ous and positive probability density function fT (t), which has a compact sup-
port T . The density function of ξ2(tij ) is continuous and bounded. Let δ > 2,
which strengthens the moment conditions in Assumptions 2 and 3.

ASSUMPTION 8. The conditional variance function σ 2(·) has a continuous
second-order derivative and satisfies inft∈T σ 2(t) > 0. Let σ̇ 2(·) and σ̈ 2(·) be its
first-order and second-order derivative functions, respectively.

ASSUMPTION 9. The bandwidth h1 satisfies

h1 → 0,
T

2/(2+δ/2)
n logn

h2
1Nn(h1)

= o(1),(A.3)

where Nn(h1) = ∑n
i=1 1/(mih1).

REMARK 6. Assumption 7 imposes a mild condition on the observation times
[see, e.g., Jiang and Wang (2011)] and strengthens the moment conditions on eij

and Zij . However, such moment conditions are not uncommon in the asymptotic
theory for nonparametric conditional variance estimation [Chen, Cheng and Peng
(2009)]. Since the local linear smoothing technique is applied, a certain smooth-
ness condition has to be assumed on σ 2(·), as is done in Assumption 8. Assump-
tion 9 gives some mild restrictions on the bandwidth h1, which is used in the
estimation of the conditional variance function.

APPENDIX B: PROOFS OF THE MAIN RESULTS

In this appendix, we provide the detailed proofs of the main results given in
Section 3.
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B.1. Proof of Theorem 1. By the definition of the weighted local linear esti-
mators in (2.4) and (2.5), we have

η̂(u|β, θ) − η(u) =
n∑

i=1

si(u|θ)(Yi − Ziβ) − η(u)

=
n∑

i=1

si(u|θ)ei +
n∑

i=1

si (u|θ)Zi (β0 − β)

+
n∑

i=1

si (u|θ)
[
η(Xi , θ0) − η(Xi , θ)

]
(B.1)

+
n∑

i=1

si (u|θ)η(Xi , θ) − η(u)

≡ In1 + In2 + In3 + In4.

For In1, note that by a first-order Taylor expansion of K(·), we have, for i =
1, . . . , n and j = 1, . . . ,mi ,

K

(X�
ijθ − u

h

)
= K

(X�
ijθ0 − u

h

)
+ K̇

(X�
ijθ∗ − u

h

)X�
ij (θ − θ0)

h
,

where K̇(·) is the first-order derivative of K(·) and θ∗ = θ0 + λ∗(θ − θ0),
0 < λ∗ < 1. Hence, by some standard calculations and the assumption that
n2h2/{Nn(h) logn} → ∞, we have

In1 =
n∑

i=1

si(u|θ0)ei +
n∑

i=1

[
si (u|θ) − si(u|θ0)

]
ei

=
n∑

i=1

si(u|θ0)ei + OP

(
‖θ − θ0‖ ·

√
Nn(h) logn

nh

)
(B.2)

=
n∑

i=1

si(u|θ0)ei + oP

(‖θ − θ0‖)
for any u ∈ U and θ ∈ �.

By Lemma 2 in the supplementary material [Chen et al. (2015)], we can prove
that

In2 = −ρ�
Z (u)(β − β0) + OP

(‖β − β0‖2 + ‖θ − θ0‖2)
(B.3)

for any u ∈ U , where ρZ(u) ≡ ρZ(u|θ0) = E[Zij |X�
ijθ0 = u].

Note that

η
(
X�

ijθ
) − η

(
X�

ijθ0
) = η̇

(
X�

ijθ0
)
X�

ij (θ − θ0) + OP

(‖θ − θ0‖2)
,
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which, together with Lemma 3 in the supplementary material [Chen et al. (2015)],
leads to

In3 = −η̇(u)ρ�
X (u)(θ − θ0) + OP

(‖θ − θ0‖2)
(B.4)

for any u ∈ U , where ρX(u) ≡ ρX(u|θ0) = E[Xij |X�
ijθ0 = u].

By a second-order Taylor expansion of η(·) and the first-order Taylor expansion
of K(·) used to handle In1, we can prove that, for any u ∈ U , we have

In4 = 1
2μ2η̈(u)h2[

1 + OP (h)
] + oP

(‖θ − θ0‖)
.(B.5)

Recall that β̂ and θ̂1 are the solutions to the equations in (2.8). By (B.1)–(B.5),
we can prove that, uniformly for i = 1, . . . , n and j = 1, . . . ,mi ,

η̂
(
X�

ij θ̂1|β̂, θ̂1
) − η

(
X�

ijθ0
)

= η̂
(
X�

ij θ̂1|β̂, θ̂1
) − η̂

(
X�

ijθ0|β̂, θ̂1
) + η̂

(
X�

ijθ0|β̂, θ̂1
) − η

(
X�

ijθ0
)

= ̂̇η(
X�

ijθ0|β̂, θ̂1
)
X�

ij (̂θ1 − θ0) + η̂
(
X�

ijθ0|β̂, θ̂1
) − η

(
X�

ijθ0
)

+ OP

(‖θ̂1 − θ0‖2)
(B.6)

= η̇
(
X�

ijθ0
)[

Xij − ρX
(
X�

ijθ0
)]�

(̂θ1 − θ0)
(
1 + oP (1)

)
+

n∑
k=1

sk

(
X�

ijθ0
)
ek − ρ�

Z
(
X�

ijθ0
)
(β̂ − β0)

(
1 + oP (1)

)
+ 1

2μ2η̈
(
X�

ijθ0
)
h2 + OP

(
h3) + OP

(‖θ̂1 − θ0‖2 + ‖β̂ − β0‖2)
,

where sk(X�
ijθ0) ≡ sk(X�

ijθ0|θ0).

By the definitions of β̂ and θ̂1 [see (2.8) in Section 2], we have
n∑

i=1

�̂
�
i (̂θ1)Wi

[
Yi − Zi β̂ − η̂(Xi |β̂, θ̂1)

] = 0.(B.7)

By the uniform consistency results for the local linear estimators (such as Lemmas
2 and 3 in the supplementary material [Chen et al. (2015)]), we can approximate
�̂i (̂θ1) in (B.7) by �i = �i (θ0) when deriving the asymptotic distribution theory.
Then we have

0 =
n∑

i=1

�̂
�
i (̂θ1)Wi

[
Yi − Zi β̂ − η̂(Xi |β̂, θ̂1)

]
=

n∑
i=1

��
i Wi

[
Yi − Zi β̂ − η̂(Xi |β̂, θ̂1)

]
(B.8)

+
n∑

i=1

(
�̂i (̂θ1) − �i

)�Wi

[
Yi − Zi β̂ − η̂(Xi |β̂, θ̂1)

]
P∼

n∑
i=1

��
i Wi

[
Yi − Zi β̂ − η̂(Xi |β̂, θ̂1)

][
1 + OP

(‖θ̂1 − θ0‖)]
,
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where and below an
P∼ bn denotes an = bn(1 + oP (1)). Furthermore, note that

Yi − Zi β̂ − η̂(Xi |β̂, θ̂1) = ei − Zi (β̂ − β0) − [̂
η(Xi |β̂, θ̂1) − η(Xi , θ0)

]
,

which, together with (B.6) and the bandwidth condition ωnh
6 = o(1), implies that

n∑
i=1

��
i Wi

[
Yi − Zi β̂ − η̂(Xi |β̂, θ̂1)

]

=
n∑

i=1

��
i Wiei −

n∑
i=1

��
i WiZi (β̂ − β0)

−
n∑

i=1

��
i Wi

[̂
η(Xi |β̂, θ̂1) − η(Xi , θ0)

]

= −
n∑

i=1

��
i Wi

[
Zi − ρZ(Xi , θ0)

]
(β̂ − β0)

(
1 + oP (1)

)
(B.9)

−
n∑

i=1

��
i Wi

{[
η̇(Xi , θ0) ⊗ 1�

p

] 
 [
Xi − ρX(Xi , θ0)

]}
× (̂θ1 − θ0)

(
1 + oP (1)

)
+

n∑
i=1

��
i Wi

[
ei −

n∑
k=1

sk(Xi , θ0)ek

]

+ OP

(‖β̂ − β0‖2 + ‖θ̂1 − θ0‖2)
,

where sk(Xi , θ0) = [s�
k (X�

i1θ0), . . . , s�
k (X�

imi
θ0)]�, ρZ(Xi , θ0) and ρX(Xi , θ0)

were defined in Section 2. Following the standard proof in the existing literature
[see, e.g., Ichimura (1993), Chen, Gao and Li (2013b)], we can show the weak
consistency of β̂ and θ̂1. Note that

n∑
i=1

��
i Wi�i

(
β̂ − β0

θ̂1 − θ0

)

=
n∑

i=1

��
i Wi

{[
η̇(Xi , θ0) ⊗ 1�

p

] 
 [
Xi − ρX(Xi , θ0)

]}
(̂θ1 − θ0)

+
n∑

i=1

��
i Wi

[
Zi − ρZ(Xi , θ0)

]
(β̂ − β0)

and
n∑

i=1

��
i Wi

[
n∑

k=1

sk(Xi , θ0)ek

]
= oP

(
ω1/2

n

)
,
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which, together with (B.8) and (B.9), lead to[
n∑

i=1

��
i Wi�i

](
β̂ − β0

θ̂1 − θ0

)
P∼

n∑
i=1

��
i Wiei .(B.10)

Define I(θ0,B0) = diag{Id,M},O(θ0) = (Od×d Od×1
Op×d θ0

)
, where M = (θ0,B0)

was defined in Section 3. It is easy to find that

Id+p = I(θ0,B0)I�(θ0,B0) = O(θ0)O�(θ0) + I(B0)I�(B0).(B.11)

By the identification condition on θ0, we may show that

θ̂ − θ0 = θ̂1

‖θ̂1‖ − θ0

‖θ0‖ = θ̂1

‖θ̂1‖ − θ0

‖θ̂1‖ + θ0

‖θ̂1‖ − θ0

‖θ0‖
P∼ θ̂1 − θ0

‖θ0‖ − θ0θ
�
0

θ̂1 − θ0

‖θ0‖ = (
Ip − θ0θ

�
0

)
(̂θ1 − θ0),

which implies that θ̂ − θ0 = B0B�
0 (̂θ1 − θ0) and(

β̂ − β0

θ̂ − θ0

)
= I(B0)I�(B0)

(
β̂ − β0

θ̂1 − θ0

)
.(B.12)

By (B.10), (B.11) and using the fact that �iO(θ0) = 0, we have

I�(B0)

[
n∑

i=1

��
i Wi�i

]
I(B0)I�(B0)

(
β̂ − β0

θ̂1 − θ0

)
P∼ I�(B0)

[
n∑

i=1

��
i Wiei

]
,

which, together with (B.12), implies that(
β̂ − β0

θ̂ − θ0

)
P∼ I(B0)

{
I�(B0)

[
n∑

i=1

��
i Wi�i

]
I(B0)

}−1

I�(B0)

[
n∑

i=1

��
i Wiei

]
.

Thus, by (3.1)–(3.3), the definition of the Moore–Penrose inverse and the clas-
sical central limit theorem for independent sequence, we can show that (3.4) in
Theorem 1 holds.

B.2. Proof of Corollary 1. By Theorem 1, the PULS estimators β̃ and θ̃ have
the following asymptotic normal distribution:

ω1/2
n

(
β̃ − β0

θ̃ − θ0

)
d−→ N

(
0,�+

0∗�1∗�+
0∗

)
,(B.13)

where �0∗ and �1∗ are two matrices such that

1

ωn

n∑
i=1

��
i �i

P→ �0∗,
1

ωn

n∑
i=1

E
[
��

i Vi�i

] → �1∗,

and Vi is the conditional covariance matrix of ei .
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On the other hand, when the weights Wi , i = 1, . . . , n, are chosen as the inverse
of Vi , by Theorem 1, we have

ω1/2
n

(
β̂ − β0

θ̂ − θ0

)
d−→ N

(
0,�+∗

)
,(B.14)

where �∗ is a positive semi-definite matrix such that

1

ωn

n∑
i=1

E
[
��

i V−1
i �i

] → �∗.

In order to prove Corollary 1, by (B.13) and (B.14), we need only to
show �+

0∗�1∗�+
0∗ − �+∗ is positive semi-definite. Letting 
i = �+

0∗�iV
1/2
i −

�+∗ �iV
−1/2
i , we have


i

�
i = (

�+
0∗�iV

1/2
i − �+∗ �iV

−1/2
i

)(
�+

0∗�iV
1/2
i − �+∗ �iV

−1/2
i

)�
= �+

0∗�iVi�i�
+
0∗ − �+

0∗�i�i�
+∗ − �+∗ �i�i�

+
0∗ + �+∗ �iV

−1
i �i�

+∗ ,

which indicates that

1

ωn

n∑
i=1

E
[

i


�
i

] → �+
0∗�1∗�+

0∗ − �+∗ .(B.15)

As E[
i

�
i ] is positive semi-definite, by (B.15) we know that �+

0∗�1∗�+
0∗ − �+∗

is also positive semi-definite. Hence the proof of Corollary 1 is complete.

B.3. Proof of Theorem 2. Note that

η̂(u) − η(u) =
n∑

i=1

si(u|̂θ)
(
Yi − Z�

i β̂
) − η(u)

=
n∑

i=1

si(u|̂θ)ei +
[

n∑
i=1

si (u|̂θ)η(Xi , θ0) − η(u)

]
(B.16)

+
n∑

i=1

si (u|̂θ)Z�
i (β0 − β̂)

≡ In1,∗ + In2,∗ + In3,∗.

By Assumption 1, we have

K

(X�
ij θ̂ − u

h

)
= K

(X�
ijθ0 − u

h

)
+ K̇

(X�
ijθ♦ − u

h

)X�
ij (̂θ − θ0)

h
,(B.17)

where θ♦ = θ0 + λ♦(̂θ − θ0) for some 0 < λ♦ < 1. By Theorem 1, we have

‖θ̂ − θ0‖ + ‖β̂ − β0‖ = OP

(
ω−1/2

n

)
.(B.18)
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It follows from (B.17), (B.18) and (3.5) that

In3,∗ =
n∑

i=1

si (u|θ0)Z�
i (β0 − β̂) +

n∑
i=1

[
si (u|̂θ) − si (u|θ0)

]
Z�

i (β0 − β̂)

= OP

(
ω−1/2

n

) + OP

(
ω−1

n

)
(B.19)

= oP

(
ϕ−1/2

n (h)
)
.

Similar to the proof of (B.5), we can show that

In2,∗ = 1
2 η̈(u)μ2h

2(
1 + oP (1)

)
.(B.20)

For In1,∗, note that by (B.17) and (B.18), we can show that
∑n

i=1 si (u|θ0)ei is
the leading term of In1,∗. Letting zi(θ0) = si(u|θ0)ei and by Assumption 2, it is
easy to check that {zi(θ0) : i ≥ 1} is a sequence of independent random variables.
By Assumption 2(iii), we have E[zi(θ0)] = 0. By (3.5), (3.6) and the central limit
theorem, it can be readily seen that

ϕ1/2
n (h)In1,∗

d→ N
(
0, σ 2∗

)
.(B.21)

In view of (B.16), (B.19)–(B.21), the proof of Theorem 2 is complete.
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric GEE analysis in partially linear single-
index models for longitudinal data” (DOI: 10.1214/15-AOS1320SUPP; .pdf).
The supplement gives the proof of Theorem 3 and some technical lemmas that
were used to prove the main results in Appendix B. It also includes some additional
results of our simulation studies described in Section 5.
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