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We congratulate the authors for this very interesting article focused on the
frequentist coverage of Bayesian credible sets in the context of an infinite-
dimensional signal in white noise models. In such settings the construction of
honest confidence sets is especially complicated, at least when the goal is to con-
struct confidence sets that have a size that adapts to the unknown parameters in the
model, while maintaining coverage probability.

The focus of the present paper is on constructing l2 balls as confidence sets.
There are some advantages that come with the focus on balls for confidence sets.
For bands results in Low (1997) rule out the possibility of adaptation over even a
pair of Lipschitz or Sobolev spaces at least for confidence bands that have a guaran-
teed coverage level. On the other hand, fully rate adaptive confidence balls which
do maintain coverage probability can be constructed over Sobolev smoothness lev-
els that range over an interval [α,2α]. However, this range of models where such
adaptation is possible is still quite limited and here the authors develop a theory
that applies over a broader class of models. The approach taken, following Giné
and Nickl (2010) and Bull (2012), is to focus on parameters that are in some sense
typical and removing a set of parameter values that cause difficulties at least when
constructing adaptive sets. The goal is then to construct fully adaptive confidence
sets over the remaining collection of parameter values. In the present paper the pa-
rameter values that are kept belong to a class of parameters that they call polished
tail sequences and the authors develop results that show that a particular empirical
Bayes credible ball is both honest when restricted to such sequences and adaptive
in size.

There are of course many settings where it is more natural to focus on the con-
struction of confidence bands rather than confidence balls and, typically, theory
and methodology developed for balls do not provide a way to also construct bands.
Here, however, the balls are constructed from an empirical Bayes posterior and
even though the focus of the paper is on the construction of balls, the simulation
example in Section 4 suggests that a general methodology for the construction of
confidence bands can also be developed based on this posterior. The visualization
of the credible sets is constructed by making draws from the empirical Bayes pos-
terior and plotting the 95% that are closest in l2 to the posterior mean. Each draw
gives rise to an entire function, but visually the appearance is somewhat akin to a
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FIG. 1. One realization of the observed data with n = 8192 observed points and the resulting band
for the EBayes procedure. Case 1: top left; case 2: top right; case 3: middle left; case 4: middle right;
case 5: bottom. Black solid: the true function. Gray: observed data. Orange: confidence band. Black
dashed: band center.

confidence band and claims from the picture of good coverage could perhaps also
be interpreted from that point of view.

Looking closely at the pictures in Figure 1, it appears that either the entire func-
tion is covered or there is only a very small region where the true function is not
covered by such a credible set. Although the visualizations given in Figure 1 are
not technically bands, it is quite easy to make true bands as follows. First generate
N realizations from the posterior and keep the 95% that are closest in l2 to the
mean. This gives a collection of curves, f1, f2, . . . , fm where m = 0.95N . A band
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[L(t),U(t)] can then be made by taking pointwise the max and min of these func-
tions, L(t) = min1≤i≤m fi(t) and U(t) = max1≤i≤m fi(t).

In this discussion, we explore this approach in the context of the nonparametric
regression model

yi = f (ti) + σεi, i = 1, . . . , n,(1)

where ti = i
n

and εi
i.i.d.∼ N(0,1), and make some comparisons with bands found

in Cai, Low and Ma (2014). As mentioned above, truly adaptive bands do not exist
over the most commonly considered function spaces. Cai, Low and Ma (2014)
develop a new formulation for such problems by relaxation of the requirement
that the entire function is covered by the confidence band. Two approaches are
considered. In the first the goal is to minimize the expected width of the confidence
band while maintaining coverage at most of the points in [0,1] where the expected
width adjusts to the smoothness of the underlying function. The second approach
is to limit the excess mass of the function lying outside the confidence band while
once again minimizing the expected width of the confidence bands.

We report here how the proposed confidence band based on the empirical Bayes
posterior performs in terms of this new formulation and compare the performance
with the adaptive confidence band procedure considered in Cai, Low and Ma
(2014). We consider five test functions. The first four of these were also considered
in Cai, Low and Ma (2014) and three of these were considered earlier in Wahba
(1983). The five functions are as follows:

Case 1. f (t) ∝ B10,5(t) + B7,7(t) + B5,10(t),
Case 2. f (t) ∝ 3B30,17(t) + 2B3,11(t),
Case 3. f (t) ∝ 7B15,30(t) + 2 sin(32πt − 2π

3 ) − 3 cos(16πt) − cos(64πt),

Case 4 f (t) ∝ (t − 1
3)I (1

3 ≤ t ≤ 1
2) + (2

3 − t)I (1
2 ≤ t ≤ 2

3),

Case 5 f (t) ∝ 1 + 8(t − 0.45)I (0.45 ≤ t ≤ 0.5) + 8(0.55 − t)I (0.5 ≤ t ≤
0.55),

where Ba,b(t) stands for the density function of a Beta(a, b) distribution. In all
cases, we rescale the function so that

∫ 1
0 f 2 = 1 and we take σ = 1.

In order to construct the band based on the above empirical Bayes posterior
approach, we first apply a discrete cosine transform to the regression data. This
yields the observations Xj = 1

n

∑n
i=1 yi cos((j − 1

2)πti). The observation sequence
X = (X1,X2, . . .) then satisfies equation (2.1) of the present paper with κi = 1.
It is then easy to construct the confidence bands based on the empirical Bayes
posterior as suggested above. Note that the construction is not entirely automatic,
as the number of draws N from the posterior needs to be specified. The number of
draws for the empirical Bayes (EBayes) band cannot be taken too large, or the band
will be very wide, or too small because then the band has little hope of covering the
unknown function. However, in the examples given below we found that for values
of N that ranged from 2000 to 20,000, the width of the interval grew by only
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TABLE 1
Simulation results from 500 repetitions: f1, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.326 0.002 <0.001 0.924
8192 0.446 0 0 0.990

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 1.246 0.858 0 0 0.990 1.000
8192 0.520 0.358 0 0 0.986 0.996

around 15% and, thus, from a purely methodological point of view, the method
does not appear too sensitive to the choice of this parameter. In the simulation
results given below we take N = 2000, the same value that is used in the paper to
generate the pictures from the simulations from the empirical Bayes procedure.

For the adaptive confidence band (ACB) there are two parameters that need to be
chosen. The choice of these parameters results in control of the set of noncovered
points as well as control of the excess mass over a collection of smoothness classes.
In the experiments given below we always take β0 = 2 and M0 = 1000, and in this
case the adaptation results that are given in Cai, Low and Ma (2014) are for a
range of smoothness between 2 and 4. Of course, in practice, it is not always clear
whether a function would belong to a particular smoothness class and both case 4
and case 5 fall outside the range.

In Tables 1–5 we report the mean width of the adaptive confidence band proce-
dure found in Cai, Low and Ma (2014). Figure 2 shows representative realizations

TABLE 2
Simulation results from 500 repetitions: f2, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.969 0.003 <0.001 0.918
8192 0.673 0 0 0.980

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 1.783 1.299 0 0 0.990 1.000
8192 0.792 0.536 0 0 0.978 1.000
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TABLE 3
Simulation results from 500 repetitions: f3, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.965 0.005 <0.001 0.888
8192 0.911 0.003 <0.001 0.932

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 2.083 1.442 0 0 0.974 1.000
8192 1.048 0.707 <0.001 <0.001 0.934 1.000

TABLE 4
Simulation results from 500 repetitions: f4, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.337 0.003 <0.001 0.912
8192 0.669 0 0 0.990

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 1.859 1.278 0 0 0.978 1.000
8192 0.826 0.558 0 0 0.952 1.000

TABLE 5
Simulation results from 500 repetitions: f5, each with 2000 posterior draws

ACB

#Sample Mean size NC0.95 RE0.95 L∞ coverage

1024 1.341 0.003 < 0.001 0.912
8192 0.459 0.024 0.003 0.298

EBayes

#Sample Mean max size Mean ave size NC0.95 RE0.95 L∞ coverage L2 coverage

1024 0.841 0.588 0.033 0.004 0.552 0.980
8192 0.419 0.388 0.039 0.009 0.318 0.878
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FIG. 2. One realization of the observed data with n = 8192 observed points and the resulting band
for the ACB procedure. Case 1: top left; case 2: top right; case 3: middle left; case 4: middle right;
case 5: bottom. Black solid: the true function. Gray: observed data. Orange: confidence band. Black
dashed: band center.

of the band on the five test functions. Although the width of the band is random
for a given set of data, it has fixed width over the interval. The EBayes band is of
variable width and we report both the mean maximum width and then the mean
average width. For each replication we also calculated the fraction of the interval
where the function is not covered as well as the relative excess mass, and we re-
port the 95th percentiles of these values based on 500 replications. Finally, we also
report the fraction of the time that the bands cover the whole function and also, in
the case of the EBayes procedure, the coverage of the associated L2 balls.
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For each of these test functions we find that the EBayes procedure performs
quite well from the point of view of the framework given in Cai, Low and Ma
(2014).
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