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HIGHER CRITICISM: p-VALUES AND CRITICISM

BY JIAN LI AND DAVID SIEGMUND

Stanford University

This paper compares the higher criticism statistic (Donoho and Jin [Ann.
Statist. 32 (2004) 962–994]), a modification of the higher criticism statis-
tic also suggested by Donoho and Jin, and two statistics of the Berk–Jones
[Z. Wahrsch. Verw. Gebiete 47 (1979) 47–59] type. New approximations to
the significance levels of the statistics are derived, and their accuracy is stud-
ied by simulations. By numerical examples it is shown that over a broad range
of sample sizes the Berk–Jones statistics have a better power function than
the higher criticism statistics to detect sparse mixtures. The applications sug-
gested by Meinshausen and Rice [Ann. Statist. 34 (2006) 373–393], to find
lower confidence bounds for the number of false hypotheses, and by Jeng, Cai
and Li [Biometrika 100 (2013) 157–172], to detect copy number variants, are
also studied.

1. Introduction. Donoho and Jin (2004) consider the problem of deciding
whether a large number, n, of independently tested null hypotheses are all true, or
whether some of them are not true. They discuss in detail a suggestion of Tukey,
called “higher criticism,” and they prove a number of asymptotic consistency re-
sults. Suppose that p(1), . . . , p(n) are ordered p-values for each of the individual
hypotheses, which under the global null hypotheses that all the individual null hy-
potheses are true, would be distributed as the order statistics of a uniform sample
on [0,1]. The test statistics of Donoho and Jin are the higher criticism (HC) statis-
tic

THC = n1/2 max
k0≤k≤k1

(k/n − p(k))/
[
p(k)(1 − p(k))

]1/2
,(1)

or a modified higher criticism statistic, which we will denote by TMHC. This statis-
tic is (1) modified by the constraint that the kth term is included in the statistic only
if p(k) ≥ 1/n. The recommended values for the ki are k0 = 1 and k1 = n/2. These
statistics reject the global null hypothesis if there is an excess of small p-values.

Donoho and Jin find values tn such that P0{THC ≥ tn} → 0, where P0 denotes
probability under the global null hypothesis, while under certain “borderline” al-
ternative configurations involving the true number of nonnull hypotheses and a
measure of their departures from null, P{THC ≥ tn} → 1. Thus the test of the global
null is consistent, provided that there is a certain minimal amount of separation be-
tween the global null hypothesis and its negation. This is a pure hypothesis testing
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problem, in the sense that the minimal amount of separation is inadequate to allow
one to identify with confidence which null hypotheses are false, although one can
be confident that they exist.

In studying this and related goodness-of-fit statistics based on deviations of the
empirical distribution function, an approximate p-value based on a classical result
of Darling and Erdős (1956) and adapted by Jaeschke (1979) is often cited. How-
ever, since this approximation is often very poor (see below), in practice p-values
are often obtained by simulation.

An alternative for relatively small sample sizes is the numerical recursion of
Noé (1972), which Owen (1995) admirably exploited in finding confidence bands
for a distribution function. Eiger, Nadler and Spiegelman (2013) give a substan-
tially more efficient algorithm, which requires O(n2) operations rather than the
O(n3) required by Noé’s.

The goals of this paper are: (i) to give approximations for the p-value of the
higher criticism type statistics that are reasonably accurate, even in the situation
of small p-values and large samples, where numerical methods become oner-
ous; (ii) to compare the power of a small number of different statistics that have
the same basic properties of consistency outlined above, but may perform differ-
ently in practice; (iii) to illustrate application of our results by a discussion of
two papers that have developed related ideas for specific scientific problems [viz.
Meinshausen and Rice (2006); Jeng, Cai and Li (2013)].

The higher criticism statistic is suggested by standardizing p(k) as if it were
asymptotically normally distributed even for small k. As we shall see, this can
exact a considerable price on the power of the higher criticism statistic, except
when the number of false null hypotheses is very small; this problem becomes
very severe when the significance level is small.

We have found particularly appealing an alternative class of statistics suggested
by Berk and Jones (1979) as goodness of fit statistics, defined by

TBJ = max
k0≤k≤k1

(2n)1/2{(k/n) log(k/np(k))

(2)
+ (1 − k/n) log

[
(1 − k/n)/(1 − p(k))

]}1/2
.

For use in the context of higher criticism, we are interested in a one-sided version
of (2) where each term is modified by the condition that p(k) < k/n, which we
henceforth assume. As explained below, a slightly modified version designed to
focus on the small order statistics is

TMBJ = max
k0≤k≤k1

(2n)1/2I {p(k) < k/n}
(3)

× [
(k/n) log(k/np(k)) − (k/n − p(k))

]1/2
,

where the indicator function insures focus on an excess of small p-values.
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While Berk and Jones (1979) suggest their statistic on the basis of consideration
of Bahadur efficiency, our preferred motivation is in terms of Poisson variation. For
example, suppose we observe a Poisson process on [0,1] and use the log likelihood
ratio statistic to test the hypothesis that the intensity is equal to one throughout the
interval against the alternative that there is a change-point at t , and the intensity on
[0, t] is greater than one. Given that there are n events in the Poisson process, the
generalized likelihood ratio statistic observed at the (ordered) times of the events
is (2), where now p(k) denotes the time of the kth event. Alternatively, consider the
empirical distribution function Fn(x) for a sample of size n from the distribution
F(x). For small x, Fn(x) behaves for large n like a nonhomogeneous Poisson
process, having log likelihood Fn(x) log[F(x)] − F(x), which is maximized with
respect to F(x) at Fn(x) log[Fn(x)] − Fn(x). To compare the lower tail of the
empirical distribution with the uniform distribution, we consider the likelihood
ratio statistic maxx{Fn(x) log[Fn(x)/x] − [Fn(x) − x]}. At the order statistics this
becomes (3). When symmetrized by consideration of both upper and lower tails,
we get back to (2).

Walther (2013) gives a similar argument in favor of the Berk–Jones statistics.
(He then compares the Berk–Jones statistics with a completely different class of
statistics, the “average likelihood ratio” statistics, which seem to have excellent
power, but do not appear to be useful when estimation of the number of nonnull
distributions [Meinshausen and Rice (2006)] or identification of them is also desir-
able.) In the context of goodness of fit, Jager and Wellner (2007) provide asymp-
totic theory for a large class of statistics, including those considered here, but they
do not consider the behavior of these statistics for finite sample sizes. Our methods
apply to many of these statistics, and in Section 5 we discuss briefly the one that
Jager and Wellner single out as perhaps a good compromise between statistics that
behave well in the tails and those focusing on the center of the distribution.

The organization of the paper is as follows. In Section 2, we give expressions
for approximate p-values, a heuristic argument in support of the approximations
and some Monte Carlo results demonstrating their accuracy. In Section 3 we dis-
cuss comparative power. In Section 4, we revisit within our broader framework the
research of Meinshausen and Rice (2006), who discuss lower confidence bounds
on the number of false null hypotheses, also in a borderline case where one cannot
say exactly which null hypotheses are false. We also re-examine briefly the inter-
esting potential application suggested by Jeng, Cai and Li (2013). Proofs are given
in the Appendix.

2. Approximations.

2.1. Analytic approximations. We begin with the specific case of (1), for
which the calculations are more explicit, and then suggest the minor modifica-
tions required for the other statistics. The Appendix contains rigorous and detailed
proofs for the case of THC and TMBJ. The same argument with some technical
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augmentation works for TBJ. The modified higher criticism statistic requires still
slightly different arguments, which lead to slightly different approximations, given
below and in the Appendix.

Let U(k), k = 1, . . . , n denote the order statistics for a sample of size n from a
uniform [0,1] distribution. For 1 ≤ k0 < k1 < n, let

Zn = max
k0≤k≤k1

n1/2[k/n − U(k)]/[U(k)(1 − U(k))
]1/2

.

Let C(x) = C(x, ξ) = {x +[ξ2 − ξ(ξ2 + 4(1 − x)x)1/2]/2}/(1 + ξ2), and observe
that Zn ≥ b if and only if U(k) ≤ C(k/n, b/n1/2) for some k0 ≤ k ≤ k1. Hence the
problem of approximating P{Zn ≥ b} reduces to computing the sum over k0 ≤ k ≤
k1 of the probabilities of the disjoint events

P
{
U(k) ≤ C(k/n),U(k+j) > C

(
(k + j)/n

)
for all 1 ≤ j ≤ k1 − k

}
.(4)

The distribution of U(k) is Beta with parameters k and n − k + 1.
For our approximation we assume that n → ∞. From the joint distribution of

U(i), i = k, . . . , k1, it is easy to show by calculation that the joint conditional dis-
tribution of n[U(k+j) − U(k)] given that U(k) ∼ C(k/n) converges to the joint
distribution of �j , j = 1, . . . , k1 − k, where �j is the j th partial sum of in-
dependent, identically distributed exponential random variables scale parameter
λ = (1 − k/n)/(1 − C(k/n)).

Let C′(x) = 1/(1 + ξ2) − ξ(1 − 2x)/{(1 + ξ2)[ξ2 + 4x(1 − x)]1/2} denote the
derivative of C(x) = C(x, ξ) with respect to x. Given U(k) = C(k/n, b/n1/2) −
y/n, the conditional probability that U(i) > C(i/n, b/n1/2) for all k < i ≤ k1 con-
verges to

P
{
�j > jC′(k/n, b/n1/2)+ y for all 1 ≤ j ≤ k1 − k

}
(5)

∼ [
1 − λC′(k/n)

]
exp(−λy),

provided λC′(k/n) < 1, which will be the case if C is convex, as we assume
throughout.

Let c = C(k/n). Direct analysis of the probability density function of U(k)

shows that

P{U(k) ∈ c − dy/n} ∼ f (c;k,n − k + 1) exp
[−(k/n − c)y/c(1 − c)

]
dy/n,

where f denotes the Beta probability density function with the indicated parame-
ters. Integrating asymptotically over [0,C(k/n, b/n1/2)] leads to the approxima-
tion for the term indexed by k,

f (c;k,n + 1 − k)(c/k)
[
1 − (1 − k/n)c′/(1 − c)

]
,(6)

where c = C(k/n, b/n1/2), c′ = C′(k/n, b/n1/2) and f (x;α,β) denotes the Beta
density with parameters α,β . Our final approximation results from summing (6)
over k.
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Approximations for the other statistics involve obvious modifications. For the
Berk–Jones and modified Berk–Jones statistics, the curve C(x) = C(x, ξ) must be
found numerically, while implicit differentiation shows that C′(x) is an explicit
function of C and x. For example, for the modified Berk–Jones statistic, for which
c = C(x) < x is the solution of x log(x/c)− (x −c) = ξ , by differentiation, we ob-
tain C′(x) = log[x/C(x)]/[1−x/C(x)]. For the modified higher criticism statistic
we neglect terms where 1/n ≥ C(k/n, b/n1/2), and for other terms we modify the
asymptotic value of the integral over [0,C(k/n, b/n1/2)] by subtracting from it
the asymptotic value of the integral over [0,1/n].

REMARK. The preceding argument is patterned after that of Woodroofe
(1976), although the decomposition of a union of events uses the last event that oc-
curs rather than the first. (Woodroofe’s proof would be simplified by this change;
here it appears to be necessary.) The Appendix gives a more detailed argument,
which seems to be unavoidably complex due to the fact that the events indexed by
small values of the subscript usually dominate the overall probability, especially in
the case of the higher criticism statistic. Other techniques have been used to solve
superficially similar problems, but we were unable to use these. In particular, we
were unable to adapt the technique developed recently by Yakir and colleagues to
solve a variety of difficult problems. See Yakir (2013) and references cited there
for many examples.

2.2. Comparison with simulations. Table 1 contains approximate p-values
evaluated by summing the terms of (6) and comparison with simulations for four
different statistics: (i) the original higher criticism statistic (HC), (ii) the modifica-
tion (MHC) obtained by requiring that p(k) ≥ 1/n, (iii) the (one-sided) Berk–Jones
(BJ) statistic (2) and (iv) the modification suggested in (3) (MBJ).

In all cases k0 = 1 and k1 = n/2. The number of repetitions of the Monte Carlo
experiment is 100,000, except in the rows where n = 30,000, where it is 10,000.

Our approximations appear to be very good, although slightly conservative, as
one might conjecture from the derivations, which involve approximating a convex
curve by a sequence of successive tangents.

As might be anticipated, the significance thresholds for the higher criticism
statistic increase very rapidly for decreasing significance levels. As we will see
below, this is the price that the statistic pays to be able to detect very rare false
null hypotheses. But at very small significance levels, which are appropriate for
the application in Section 4.2, the threshold becomes prohibitively large, unless
one takes k0 > 1, which calls into question the advantage of HC for rare false null
hypotheses.

2.3. Other approximations. Diverse scientists writing about various aspects
of the problems considered in this paper and other related (often goodness of fit)
problems mention approximations based on the double exponential extreme value
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TABLE 1
p-values

Statistic Threshold n Approximate p-value Simulation

HC 4.83 400 0.05 0.048
HC 10.0 400 0.01 0.01
HC 10.0 1000 0.01 0.010
HC 10.0 5000 0.01 0.010
HC 10.0 30,000 0.01 0.010
HC 31.0 1000 0.001 0.0009
MHC 3.13 400 0.05 0.053
MHC 3.91 400 0.01 0.010
MHC 3.94 1000 0.01 0.0101
MHC 3.98 5000 0.01 0.0098
MHC 4.00 30,000 0.01 0.010
MHC 4.97 1000 0.001 0.0010
BJ 2.90 400 0.05 0.048
BJ 3.45 400 0.01 0.010
BJ 3.50 1000 0.01 0.0095
BJ 3.57 5000 0.01 0.0098
BJ 3.63 30,000 0.01 0.0096
BJ 4.14 1000 0.001 0.0009
MBJ 2.80 400 0.05 0.046
MBJ 3.35 400 0.01 0.0094
MBJ 3.40 1000 0.01 0.0094
MBJ 3.48 5000 0.01 0.0098
MBJ 3.56 30,000 0.01 0.0090
MBJ 4.04 1000 0.001 0.0009

distribution and attributed to Jaeschke (1979), who adapted the original result of
Darling and Erdős (1956). An intermediate step in deriving this particular approxi-
mation involves the relation of the uniform empirical process to a Brownian bridge,
a step that makes the approximation suspect, since the standard empirical distri-
bution at small (or large) values of its argument exhibits Poisson, not Gaussian,
variability.

Let U(t) denote a stationary Ornstein–Uhlenbeck process with covariance func-
tion exp(−|t |). Let B0(t) denote a Brownian bridge process on [0,1] and W(t)

a standard Brownian motion process on [0,∞). Let 0 < τ0 < τ1 < 1 and put
T0 = 0.5 log[τ1(1 − τ0)/τ0(1 − τ1)]. A Gaussian approximation that plays a role
in the derivation of the Darling–Erdős result is given by

P

{
max

τ0≤t≤τ1
B0(t)/

[
t (1 − t)

]1/2 ≥ b
}

= P

{
max

0≤t≤T0
U(t) ≥ b

}
∼ T0bϕ(b),(7)

as b → ∞, provided T0 is bounded or diverges slowly enough that the RHS of
(7) tends to 0. Here ϕ is the standard normal probability density function. For
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maxima over longer intervals, say [0, T ], where T is so large that T bϕ(b) tends
to a positive limit, which we find it convenient to specify as exp(−x), it is eas-
ily shown by consideration of T/T0 approximately independent excursions of
length T0 that (7) implies P{max0≤t≤T U(t) < b} → exp(− exp(−x)). If we put
T = log(N)/2, use the relationship between the stationary Ornstein–Uhlenbeck
process and the Wiener process that U [log(t)/2] = W(t)/t1/2,1 ≤ t < ∞, and
choose one particular asymptotic inversion of the limiting relationship defined by
0.5 log(N)bϕ(b) → exp(−x) to obtain b as a function of N , we obtain the clas-
sical Darling–Erdős approximation. Most authors concede that the approximation
is very slow to converge. Meinshausen and Rice (2006) suggest that the approx-
imation only be applied in the case of the modified higher criticism statistic, and
in this case it is not unreasonable. For example, for the thresholds in rows 7–12
of Table 1, this approximation would give 0.036, 0.008, 0.008, 0.008, 0.008 and
0.001.

For the same reasons that the Darling–Erdős approximation seems to be reason-
able only in special cases, in particular for the modified higher criticism statistic,
the approximation (7) is roughly correct for the Berk–Jones statistic and slightly
less so for the modified Berk–Jones statistic, but not otherwise. For example, for
the thresholds in rows 13–18 of Table 1, this approximation gives the p-values of
0.054, 0.01, 0.01, 0.01, 0.01, 0.001. In fact, a different inversion of b as a function
of N gives the approximation suggested by Wellner and Koltchinskii (2003) and
studied numerically by Walther (2013), which, as he shows, performs reasonably
well for the Berk–Jones statistic, although not quite as well as direct application
of (7) in the cases we have tested.

It seems fair to say that there is enough latitude in performing this inversion that
one can frequently choose an approximation that seems to apply to a particular
problem. It also seems clear from the results in Table 1 that no single approxi-
mation of this type can be applied successfully to all four statistics, which while
asymptotically equivalent in the sense of Donoho and Jin (2004), require quite
different thresholds to control their false positive probabilities.

3. Power. In this section we consider the power under the commonly used
alternative model that the data arise from a mixture of a null (often normal) distri-
bution and a shifted version of the null distribution.

3.1. Analytic approximations. By a straightforward transformation the evalu-
ation of the power, that is, the probability under a mixture model of rejecting the
global null, can be reduced to a problem of the same structure as calculation of the
global significance level, with one important difference. Suppose that Xi are inde-
pendent samples with the distribution function F(x) = (1−p)F0(x)+pF0(x−δ),
where we consider in detail the case F0(x) = 
(x), the distribution function of
the standard normal distribution and δ > 0. The p-values are pj = 1 −
(Xj). We
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obtain independent random samples from the uniform [0,1] distribution by the
following transformation:

Ui = 1 − F(Xi)

= 1 − F
[

−1(1 − pi)

]
(8)

= (1 − p)pi + p
{
1 − 


[

−1(1 − pi) − δ

]}
.

Notice that Ui is an increasing function of pi , so the order statistics of Ui corre-
spond directly to those of pi via equation (8). Let d(i/n) denote the transformed
boundary (1 − p)C(i/n) + p{1 − 
[
−1(1 − C(i/n)) − δ]}. The global null is
rejected if and only if U(k) ≤ d(k/n) for some k0 ≤ k ≤ k1.

This new curve d is not globally convex, so the argument of Section 2.1 fails
here. However, the curve is concave near 0, and becomes convex after some
point j0. Besides, {U(i)}i<j0 and {U(i)}i>j0 are conditionally independent given
U(j0). Therefore we have

P
{
Uk ≤ d(k/n) for some k0 ≤ k ≤ k1

}
= P

{
Uj0 ≤ d(j0/n)

}+
∫ 1

d(j0/n)
fU(j0)

(x)
[
g1(x) + g2(x) − g1(x)g2(x)

]
dx,

where g1(x) = P{U(k) ≤ d(k/n) for some k0 ≤ k < j0|U(j0) = x} and g2(x) =
P{U(k) ≤ d(k/n) for some j0 < k ≤ k1|U(j0) = x}. Then we approximate g2 with
the results in Section 2.1, and compute g1 by Noé’s recursion [Noé (1972)]. We ob-
serve fairly small j0 for (p, δ) that gives moderate values of power, leading to fast
and accurate implementation of Noé’s method, which encounters computational
difficulties for large n if used by itself.

To illustrate the approximation above, we consider the higher criticism and
modified Berk–Jones statistics for n = 1000, δ = 2.5 and p = 0.02, also for δ = 4
and p = 0.005. The significance level is 0.01. The values for the power we ob-
tained are 0.68 and 0.89 for higher criticism, and, respectively, 0.90 and 0.87 for
the modified Berk–Jones statistic. Simulations with 10,000 repetitions gave ex-
actly the same values to two significant figures. It may be interesting to note that
the terms contributing substantially to the power have indices considerably smaller
than np, the expected number of nonnull distributions. For the higher criticism
statistic, most of its power concentrates on the first-order statistic, which is the
reason why it often performs poorly when the number of nonnull distributions is
not very small.

We have used Noé’s method because it is easy to understand and apply. In a
recent manuscript Eiger, Nadler and Spiegelman (2013) describe an alternative,
which after a number of numerical refinements to improve its accuracy appears to
be substantially faster [O(n2) instead of O(n3) operations] and hence suitable for
larger sample sizes.
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3.2. Power comparison. Now we compare by simulation the power of the four
statistics discussed above under the mixture model. While the analytic method
may offer computational advantages for very large n, simulation has a number of
compensating advantages for estimating power, when the probabilities of interest
are not small and a general idea of their magnitude usually suffices, so very large
sample sizes are rarely required. One particular advantage in the case of interest
here is that statistical tests can be one-sided or two-sided, and not only the number
of nonnull distributions, but also their noncentrality parameters can be variable at
essentially no increase in computational effort.

In Table 2 we compare by simulation the power of the four statistics. The listed
thresholds correspond to examples in Table 1. The alternative model is a mixture of
N(0,1) and N(δ,1) distributions. The mixing parameter is p; the δ’s are indepen-
dent and have a N(μ,0.1) distribution. The p-values are two-sided. The number
of repetitions of the simulation experiment was 10,000, except for the last four
scenarios, where it was reduced to 1000. If instead of simulating a binomial(p)
number of nonnull distributions, we take a deterministic k = np number of non-
null distributions, the power typically increases by roughly 10%, except in some
cases when p is very small. The general picture that emerges is that at conventional
levels of significance, for very small p the HC statistic can have about 5–8% more
power than the two Berk–Jones statistics, which in turn have considerably more
power than the modified higher criticism statistic. For larger p, the two Berk–
Jones statistics and the modified higher criticism statistic can have about equal
power and substantially more power than the original higher criticism statistic. At
very small levels of significance, for example, the level used in Section 4.2 where
the higher criticism statistic enters into a multiple comparisons analysis, the HC
statistic with the recommended k0 = 1 can have very little power, even for very
small p.

4. Applications.

4.1. Example: Confidence bounds for the proportion of false null hypotheses.
Consider a mixture model where Nλ of the hypotheses are false. Meinshausen and
Rice (2006) give a lower confidence bound for λ, which is based on a functional of
the process [Fn(t) − t]/δ(t), where Fn(t) is the empirical distribution function of
the p-values, and δ(t) is a suitable function chosen by the user. They suggest the
choice δ(t) = [t (1− t)]1/2, which is closely related to the higher criticism statistic,
and they observe that the choice δ(t) = t is similarly related to the Benjamini and
Hochberg (1995) false discovery rate criterion. A similar lower confidence bound
can be obtained from the (modified) Berk–Jones statistic, which in view of the
power calculations of the preceding section, one might expect to behave compara-
bly or perhaps even better than the higher criticism statistic. This subsection will
compare lower confidence bounds for the Gaussian mixture model.
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TABLE 2
Power

Statistic n Threshold μ p Power

HC 400 4.83 4.0 0.01 0.91
BJ 2.90 0.87
MHC 3.13 0.51
MBJ 2.80 0.88
HC 400 4.83 1.5 0.1 0.54
BJ 2.90 0.76
MHC 3.13 0.73
MBJ 2.80 0.79
HC 1000 10.0 1.5 0.08 0.19
BJ 3.50 0.82
MHC 3.94 0.81
MBJ 3.40 0.81
HC 1000 10.0 4.0 0.005 0.85
BJ 3.50 0.81
MHC 3.94 0.43
MBJ 3.40 0.83
HC 1000 31.0 5.0 0.002 0.67
BJ 4.14 0.60
MHC 4.97 0.04
MBJ 4.04 0.62
HC 1000 31.0 2.0 0.05 0.11
BJ 4.14 0.79
MHC 4.97 0.78
MBJ 4.04 0.80
HC 5000 10.0 4.0 0.001 0.71
BJ 3.57 0.65
MHC 3.98 0.32
MBJ 3.48 0.66
HC 5000 10.0 3.0 0.003 0.53
BJ 3.57 0.62
MHC 3.98 0.55
MBJ 3.48 0.63
HC 5000 10.0 1.0 0.08 0.05
BJ 3.57 0.81
MHC 3.98 0.74
MBJ 3.48 0.78
HC 30,000 10.0 3.0 0.001 0.51
BJ 3.63 0.66
MHC 4.00 0.65
MBJ 3.56 0.68
HC 30,000 10.0 2.0 0.005 0.17
BJ 3.63 0.68
MHC 4.00 0.68
MBJ 3.56 0.69
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We only consider the modified version, as described in Section 1, so in this
section we suppress the word modified in the description.

Assume that (a) nγn,α is increasing in n, and that (b) under the global null hy-
pothesis P0(supt∈{s∈(0,1)|Fn(s)≥s}[Fn(t)(logFn(t)− log t)− (Fn(t)− t)] > γn,α) ≤
α for all n.

Define

IBJ =
{
λ
∣∣∣ sup
t :Fn(t)−λ≥(1−λ)t

(Fn − λ) log
Fn − λ

(1 − λ)t
− [

Fn − λ − (1 − λ)t
]
> γn,α

}

and λ̂BJ = sup IBJ. Then λ̂BJ can be shown to be a lower confidence bound for λ at
confidence level 1 − α.

The proof of this result is similar to the argument given by Meinshausen and
Rice (2006) and hence is omitted. To compute the required probability, we suggest
using the approximation obtained above. If γn,α is the (approximate) (1 − α) level
quantile of the quantity in condition (b), the required monotonicity condition (a) is
satisfied numerically.

The simulation study reported below compares these two lower confidence
bounds. The underlying observations, Xi, i = 1,2, . . . ,N , are independently and
normally distributed. A fraction λN have a mean of μ while the others have a
mean of 0. The lower confidence bounds, λ̂MHC is calculated according to the pre-
scription of Meinshausen and Rice (2006), and that for λ̂MBJ is calculated accord-
ing to the prescription in the preceding paragraph. The confidence level is 95%.
The “bounding sequence” of Rice and Meinshausen, βn,α and our corresponding
γn,α are determined by the approximations given above. Multiple configurations
of model parameters, N,λ and μ, are considered, and the simulations are repeated
105 times for each configuration.

Numerical results for a sample size of N = 400 are provided in Tables 3 and 4.
When the signal is weak, both methods can give a lower bound of 0, and hence the
sum of columns three and four can be less than one. Two criteria are considered:
(a) the larger of the two lower confidence bounds, and (b) the relative squared dis-
tances of the bounds from the true parameter. According to the table, λ̂HC has an
advantage over λ̂BJ when the values of μ are small. As μ increases, λ̂BJ first be-
comes more precise in probability, and then it lies closer to λ than λ̂HC does in (rel-
ative) l2 distance. It should be noted that even when P(λ̂BJ > λ̂HC) is quite large,
λ̂BJ may not be as precise as λ̂HC in l2 (e.g., λ = 0.1,μ = 2 and λ = 0.2,μ = 1.5).
Therefore when λ is small λ̂HC is better (in probability and/or in l2), while as λ

exceeds some critical value λ∗, λ̂BJ becomes a tighter lower bound. As can be seen
in Table 3, the borderline value of λ∗ for the probability comparison seems to be
rather stable for different values of λ, whereas the analogous λ∗ for l2 distance
decreases slowly from above 2.0 to below 1.5 as λ varies from 0.1 to 0.5. More-
over, when the individual signal strength is weak (μ = 1,1.5), neither λ̂HC nor
λ̂BJ works well unless λ is about 0.3 or even larger; and in this case the difference
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TABLE 3
Comparison between λ̂HC and λ̂BJ, N = 400

λ μ P(λ̂HC > λ̂BJ) P (λ̂HC < λ̂BJ) ‖λ − λ̂HC‖2/λ ‖λ − λ̂BJ‖2/λ

0.1 1.0 0.36 0.28 0.93 0.94
0.1 1.5 0.43 0.55 0.79 0.89
0.1 2.0 0.29 0.71 0.61 0.61
0.1 2.5 0.26 0.74 0.46 0.45
0.1 3.0 0.37 0.63 0.33 0.32
0.2 1.0 0.59 0.40 0.80 0.83
0.2 1.5 0.40 0.60 0.60 0.62
0.2 2.0 0.17 0.83 0.44 0.44
0.2 2.5 0.06 0.94 0.32 0.31
0.2 3.0 0.03 0.97 0.23 0.21
0.3 1.0 0.74 0.26 0.69 0.73
0.3 1.5 0.45 0.55 0.50 0.51
0.3 2.0 0.14 0.86 0.36 0.35
0.3 2.5 0.03 0.97 0.26 0.24
0.3 3.0 0.001 0.99 0.18 0.16
0.4 1.0 0.82 0.18 0.62 0.66
0.4 1.5 0.42 0.58 0.43 0.44
0.4 2.0 0.09 0.91 0.31 0.29
0.4 2.5 0.02 0.99 0.22 0.19
0.4 3.0 0.003 0.99 0.15 0.13
0.5 1.0 0.84 0.16 0.57 0.61
0.5 1.5 0.34 0.66 0.39 0.39
0.5 2.0 0.04 0.96 0.27 0.25
0.5 2.5 0.003 1.0 0.19 0.16
0.5 3.0 0.0003 1.0 0.14 0.11

between the two lower bounds does not seem important compared to the gap be-
tween the confidence bounds and the true λ. This numerical behavior suggests λ̂BJ
is preferable unless either prior information indicates a weak individual signal in
the data or the worst case scenario is of primary concern.

4.2. A more complex example. Motivated by the problem of detecting inter-
vals of copy number variation (CNV) occurring at the same location in a (usually
small) fraction of aligned DNA sequences, Jeng, Cai and Li (2013) suggest use
of a higher criticism based analysis as an alternative to the method suggested by
Zhang et al. (2010) and Siegmund, Yakir and Zhang (2011). In brief, for each
n = 1, . . . ,N , observations yn,t , t = 1, . . . , T are independently and normally dis-
tributed with constant known variances σ 2

n and means that under the null hypoth-
esis are unknown constants μn, but are different by an increment δn,I in aligned
short subintervals I ⊂ {1, . . . , T }. The subset of 1, . . . ,N that exhibit changes in
mean value in any particular interval I is usually relatively small. Jeng, Cai and
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TABLE 4
Comparison between λ̂HC and λ̂BJ, λ = 0.2

λ μ P(λ̂HC > λ̂BJ) P (λ̂HC < λ̂BJ) ‖λ − λ̂HC‖2/λ ‖λ − λ̂BJ‖2/λ

400 1.0 0.59 0.40 0.80 0.83
400 1.5 0.40 0.60 0.60 0.62
400 2.0 0.17 0.83 0.44 0.44
400 2.5 0.06 0.94 0.32 0.31
400 3.0 0.03 0.97 0.23 0.21
800 1.0 0.70 0.30 0.71 0.75
800 1.5 0.49 0.51 0.51 0.53
800 2.0 0.20 0.80 0.37 0.37
800 2.5 0.06 0.94 0.27 0.25
800 3.0 0.02 0.98 0.19 0.17

1200 1.0 0.81 0.19 0.66 0.71
1200 1.5 0.60 0.40 0.47 0.49
1200 2.0 0.25 0.75 0.33 0.33
1200 2.5 0.07 0.93 0.24 0.22
1200 3.0 0.03 0.97 0.17 0.15

Li’s method is, roughly speaking, to consider an interval I ⊂ {1, . . . , T } having
length at most L. They then apply a higher criticism based analysis across the N

sequences to a statistic (in this case the sample mean) defined on the interval I .
Large values of the higher criticism on various intervals is interpreted as evidence
that those intervals contain CNV.

To control the false positive error rate, they suggest using the approximation of
Jaeschke referenced above for each candidate interval in conjunction with a Bon-
ferroni bound (multiplication by T L) to account for multiple comparisons involv-
ing overlapping candidate intervals of different lengths. For their actual analysis
they use simulations. The number of repetitions of their simulation experiments is
100 for a small set of data set and 50 for a larger set of data.

For this problem, N is often in the hundreds, L is usually relatively small while
T can be in the tens or hundreds of thousands.

Here we present a different simulation to compare a higher criticism based pro-
cedure, along the lines suggested by Jeng, Cai and Li (2013), a modified higher
criticism based procedure, and its modified Berk–Jones counterpart. The type I er-
ror is set to be approximately 0.05. The other parameters are N = 674, L = 20 and
T = 40,929. Since the higher criticism statistic is extremely sensitive to the value
of k0 in (1), we follow the suggestion of Jeng, Cai and Li (2013) and set k0 = 4.

Although Jeng, Cai and Li (2013) use this example to illustrate their methods
on real data, for our comparative numerical experiment, the data are similar in
structure, but are artificially generated. The number of intervals I = [τ1, τ2] that
contain signals is 155, of which 75 have a length of 3, 50 have a length of 4, 25 have
a length of 7 and 5 have a length of 10. The model has two variable parameters:
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TABLE 5
Power comparison

μ p Power using HC (k0 = 4) Power using MHC Power using MBJ

1 0.05 0.11 0.16 0.17
1 0.06 0.14 0.21 0.22
1 0.07 0.17 0.25 0.27
1 0.08 0.19 0.29 0.34
1 0.09 0.21 0.35 0.42
1.5 0.01 0.12 0.03 0.12
1.5 0.02 0.26 0.19 0.28
1.5 0.03 0.39 0.39 0.47
1.5 0.04 0.53 0.60 0.67
2 0.01 0.41 0.10 0.42
2 0.02 0.79 0.55 0.81

given that a particular interval contains at least one signal, p is the fraction of
the N intervals that contain the signal, and μ is the change in mean values of the
observed Gaussian random variables in the interval and sequence that contain the
signal. The thresholds of the (modified) higher criticism based procedure and the
(modified) Berk–Jones statistic are determined by simulations repeated 900 times,
and are compared with our approximations. The number of repetitions in the power
computation is 625.

The significance thresholds obtained by simulation are as follows (with theoret-
ically calculated thresholds in parentheses): (a) for a global false positive error rate
of 0.05, HC 20.0(21.5), MHC 9.3(9.1), MBJ 5.98(5.98); (b) for a global false pos-
itive error rate of 0.01, HC 24.1(26.0), MHC 9.84(9.79), MBJ 6.29(6.24). Even
though our theoretically determined thresholds are in principle conservative be-
cause of an inclusion of a Bonferroni bound in the argument, the approximations
in these examples appear to be very good. This may not continue to be the case for
larger values of L.

Table 5 shows the power of the three procedures under different data configu-
rations. Here power is taken to be the fraction of intervals containing signals that
are detected. Generally speaking the two higher criticism statistics have poor per-
formance for certain parameter combinations, small p for MHC and not so small
p but small μ for HC, while the MBJ statistic maintains good power througout the
table.

As a final example, we compare the method of Jeng, Cai and Li (2013), based on
the modified Berk–Jones statistic, and a method suggested without further study
by Siegmund, Yakir and Zhang (2011), here denoted SYZ. Their method contains
a free parameter p0, which can be loosely interpreted as a prior expectation of the
fraction of the N intervals that contain a signal whenever one is present. Jeng, Cai
and Li claim that their method is better at detecting both rare and common signals
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TABLE 6
Power comparison

ξ p Power using SYZ Power using MBJ

5.0 0.005 0.62 0.52
4.0 0.01 0.62 0.47
2.5 0.05 0.77 0.53
2.0 0.10 0.75 0.56
1.5 0.2 0.95 0.75
1.0 0.4 0.75 0.56
0.9 0.5 0.79 0.62

than a fixed value of p0. SYZ’s suggestion for making their method more robust
against an incorrect choice of p0 was to use two different values, at say significance
level 0.025, so that by Bonferroni the overall significance level is 2×0.025 = 0.05.
See also Xie and Siegmund (2013), who tested this suggestion in a somewhat
different context. Here we consider the case where there is only a single interval
I containing a signal, which has various expected frequencies p and noncentrality
parameters ξ = |I |μ chosen so that the power is intermediate between 0 and 1. The
parameters p0 of the SYZ procedure are chosen to equal 0.005 and 0.2, for which
0.025 significance thresholds are 25.3 and 179.2, respectively. Table 6 gives Monte
Carlo estimates of the marginal power, that is, the probability that the statistic
computed from observations from the correct interval I exceed the appropriate
significance threshold.

5. Discussion. We have derived an approximation to the significance level of
higher criticism like statistics that appears to be sufficiently accurate for use in
practice and for theoretical comparisons of the power of different statistics. As
an alternative to the two higher criticism statistics suggested by Donoho and Jin
(2004), we have also studied two statistics motivated by the goodness-of-fit proce-
dure suggested by Berk and Jones (1979). In a normal mixture model, the Berk–
Jones statistics have more power than the higher criticism statistic, except when the
mixing fraction is very small, and more power than the modified higher criticism
statistic when the mixing fraction is small. Even in cases where the Berk–Jones
statistics have less power than one of the higher criticism statistics, the differences
are only a few percent. The advantages of the Berk–Jones statistics are larger at
smaller significance levels. Since the significance threshold of the original higher
criticism statistic is extremely sensitive to the significance level, when the test is
an intermediate part of a large multiple comparison problem (cf. Section 4.2) and
hence involves a very small significance level, its power can be much less than that
of the other statistics. This problem can be mitigated by taking a value k0 > 1 in
definition (1), but this deletes the capacity of the higher criticism statistic to detect
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very rare mixtures. For the range of parameter values we have studied, the two
Berk–Jones statistics seem to be unequivocally better.

The statistics we have studied are related to goodness-of-fit tests based on the
empirical distribution function; but for the higher criticism problem, as suggested
by Donoho and Jin (2004) (and the applications discussed in Section 4), we have
focused on one-sided statistics designed to detect an excess of small p-values.
Jager and Wellner (2007) develop an elegant large sample theory for a large class of
statistics, but they do not show how well their asymptotic theory predicts behavior
for sample sizes of interest in practice.

One statistic that receives particular mention by Jager and Wellner as a perhaps
reasonable compromise between statistics focusing on the center of the distribu-
tion and statistics focusing on the tails is (after modification to focus on an excess
of small p-values) maxk0≤j≤k1 n1/2{[(j/n)1/2 − p(j)]+}1/2. This statistic has the
appealing feature that C and C′ are given explicitly by C(x, ξ) = [(x1/2 − ξ)+]2

and C′(x, ξ) = (1 − ξ/x1/2)+. Our methods apply and give good approximations
(compared to simulations) for the significance threshold. For the examples in Ta-
ble 2, we find that the statistic behaves well for values of p that are not too small.
It is usually more powerful than the modified higher criticism statistic, but it has
considerably less power than the original higher criticism statistic and both Berk–
Jones statistics for small p. For example, for the third to fifth examples in Table 2,
we find by summation of (6) that the threshold b = 1.54 gives the same level, 0.01
for n = 1000, as the examples given there, and we obtain as estimates of the power
0.84, 0.57 and 0.27, respectively. For the seventh to ninth examples, the appropri-
ate threshold is 1.62, and the power is 0.34, 0.47 and 0.82.

It might be interesting to see more systematically whether our methods can be
usefully applied in a goodness-of-fit context, for example, as they might be applied
to give confidence bands for a distribution function, as in Owen (1995).

APPENDIX: PROOFS

The heuristic argument given above for our suggested approximations is based
on the approach of Woodroofe (1976) and uses results obtained in a similar prob-
lem by Loader (1992). Although the heuristic is relatively simple, complete proofs
are quite technical, and alternative approaches that have been proved successful in
apparently similar problems do not seem to work here. The source of the difficul-
ties is the requirement that we not impose a lower bound on k0 and want k1 to be
of order n. In addition, different statistics require somewhat different techniques.
Here we consider in detail the original higher criticism statistic and the modified
Berk–Jones statistic.

We can obtain the analogous approximations for the original Berk–Jones statis-
tic by similar methods (after some additional technical arguments to verify the
general conditions stated below in Remark A.1) and for the Jager–Wellner statis-
tic mentioned briefly in Section 5. For the modified higher criticism statistic, we
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obtain by similar calculations a slightly different approximation given explicitly at
the end of this appendix.

Consider the following two functions:

f1(x, y) = x − y

[y(1 − y)]1/2 ,

f2(x, y) = 2
[
x log

x

y
− (x − y)

]
.

For each x, ξ let Ci(x, ξ) denote the root y ∈ (0, x) of fi(x, y) = ξ i . Then C1 and
C2 correspond to the original higher criticism statistic and modified Berk–Jones
statistic, respectively.

Although Ci is a function of two arguments, in most cases the second argument
will be b/n1/2. When this is the case we will simplify the notation by writing
Ci(k/n).

REMARK A.1. We will see the proofs below hold in general for a piecewise
differentiable function C(x), x ∈ [0,1] satisfying the following conditions:

(i) C(x) is convex and C(x) < x in the region of interest, x = 0 excluded;
(ii) for some α ∈ (0,1), C(k/n) ≤ (k − 1)/(n − 1) for all k ∈ [2, αn] when n

is large enough;
(iii) for some α ∈ (0,1), sup0≤x≤α(1 − x)C′(x)/[1 − C(x)] < 1;
(iv) limx→0+ C(x)/x = 0.

The probabilities of rejecting the global null hypothesis with higher criticism or
Berk–Jones statistic have a similar expression.

P

(
max

k0≤k≤βn
n1/2f1(k/n,p(k)) ≥ b

)
= P

( βn⋃
k=1

{
p(k) ≤ C1(k/n)

})

and

P

(
max

k0≤k≤βn,p(k)≤k/n
nf2(k/n,p(k)) ≥ b2

)
= P

( βn⋃
k=1

{
p(k) ≤ C2(k/n)

})
.

If k0 is proportional to n, the following division of the rejection region is unnec-
essary, and Proposition A.1 can be directly applied; otherwise the rejection region
should be divided into two parts [equation (9)], and their probabilities are com-
puted by different means.

There is an additional difficulty involving the value of k1. For our purposes
k1 = n/2 is the primary case of interest, and in the following we take k1 = βn for
a value β < 1. In some cases, it is possible to take k1 = n − 1, and in others, this
imposes additional constraints on k0; for instance, a sufficient condition for higher
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criticism statistic is to have a constant k0, and in still others the constraints are
unclear.

P

( βn⋃
k=k0

{
p(k) ≤ C(k/n)

})

= P

(
αn−1⋃
k=k0

{
p(k) ≤ C(k/n)

}∖( βn⋃
k=αn

{
p(k) ≤ C(k/n)

}))
(9)

+ P

( βn⋃
k=αn

{
p(k) ≤ C(k/n)

})
.

The rejection regions of a large class of statistics, including the higher criticism and
Berk–Jones statistics, correspond to a collection of curves {C(x)}, each of which
satisfies C(β) < β as well as C(0) = 0. Consequently there exists α ∈ (0,1/2)

such that C(β) − C(α) < β − α, and the α in (9) satisfies these conditions.
Let PBin(n, k,p) = (n

k

)
pk(1 − p)n−k denote the binomial probability distribu-

tion, C′(x) = ∂C(x, ξ)/∂x. Proposition A.1 below handles the second term of
equation (9).

PROPOSITION A.1. Suppose that for every ξ > 0, C(x, ξ) is a convex and
continuously differentiable function of x, C(x, ξ) is increasing in x and C(x, ξ) <

x for all x ∈ [α,β]. Then

P

( βn⋃
k=αn

{
p(k) ≤ C(k/n)

})

= (
1 + o(1)

) βn∑
k=αn

[
1 − (n − k + 1)C′(k/n)

n − nC(k/n)

]
PBin

(
n, k,C(k/n)

)
.

PROOF. Let Fn(x) be the empirical distribution function associated with the
independent p-values p1,p2, . . . , pn, and let D(x) be the inverse of C(x, ξ) with
respect to x, that is, D(C(x, ξ)) = x. Then

P

( βn⋃
k=αn

{
p(k) ≤ C(k/n)

})

= P
(
Fn(x) ≥ D(x) for some x ∈ {p(αn),p(αn+1), . . . , p(βn)})

= P
(
Fn(x) ≥ D(x) for some x ∈ [

C(α, ξ),C(β, ξ)
])

= P
(
Fn(x) ≤ 1 − D(1 − x) for some x ∈ [

1 − C(β, ξ),1 − C(α, ξ)
])

.

The last equation results from the symmetry of Fn(x), that is, ({Fn(x)}x∈[0,1] d=
{1 − Fn(1 − x)}x∈[0,1]). The desired result now follows from the proof of Theo-
rem 2.1 of Loader (1992). �
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REMARK A.2. The summand in the formula in Theorem 2.1 of Loader (1992)
converges uniformly, so when αn is not an integer, it could be replaced by �αn� or

αn�, and the same goes for βn.

The rest of the proofs show the first term on the RHS of (9) has the identical
expression. The event in this term decomposes into disjoint sub-events. Let Bn,k =
{p(k) ≤ C(k/n),p(k+j) > C[(k + j)/n] ∀j = 1,2, . . . , βn − k}. Then this term
equals

∑αn−1
k=1 P(Bn,k).

Let fnp(k)
(x) denote the density of np(k), fn,k(y) be fnp(k)

(nC(k/n) − y) and
pn,k(y) be P{np(k+j) > nC[(k + j)/n] ∀j = 1,2, . . . , βn− k|np(k) = nC(k/n) −
y}.

CLAIM A.1. If {ε1, ε2, . . . , εn+1} is a sequence of i.i.d. exponentially dis-
tributed random variables with mean value of 1, and �k = ∑k

i=1 εi , then pn,k(y) =
P(�j/�n+1−k >

y+nC[(k+j)/n]−nC(k/n)
n+y−nC(k/n)

∀j = 1, . . . , βn − k).

PROOF. The joint distribution of (p(1), . . . , p(n)) is the same as that of
(�1/�n+1, . . . ,�n/�n+1). Conditional on �k/�n+1 = nC(k/n) − y,
{�k+j /�n+1 > nC[(k + j)/n]} is identical to {(�k+j − �k)/(�n+1 − �k) >
y+nC[(k+j)/n]−nC(k/n)

n+y−nC(k/n)
}.

To complete the proof, we need to check the independence between �k/�n+1
and {(�k+j − �k)/(�n+1 − �k)}n+1−k

j=1 . Basu’s theorem indicates (�n+1 − �k) ⊥⊥
{(�k+j −�k)/(�n+1 −�k)}n−k

j=1. Besides, �k is independent of {�k+j −�k}n+1−k
j=1 .

Thus (�k,�n+1 − �k) ⊥⊥ {(�k+j − �k)/(�n+1 − �k)}n−k
j=1, which implies the de-

sired independence. �

We know pn,k(y) is decreasing in y for every pair of (n, k). The following claim
shows fn,k(y) is also decreasing in y when n is large enough.

CLAIM A.2. For all n large enough and all k = 2, . . . , αn − 1, fn,k(y) is
decreasing in y when C(x) is C1 or C2 [i.e., to check condition (ii) in Remark A.1].

PROOF. Since fnp(k)
is increasing on [0, n(k − 1)/(n − 1)], it suffices to show

Cj(k/n) < (k − 1)/(n − 1) for j = 1,2 when n is large enough. For any fixed x,
f1(x, y) and f2(x, y) are decreasing in y when y ≤ x. Therefore the inequalities
are equivalent to fj (k/n, (k − 1)/(n − 1)) < (b/n1/2)j for j = 1,2, which results
from the following limit, which converges uniformly in k:

f1

(
k

n
,
k − 1

n − 1

)
= 1

n

√
n − k

k − 1
→ 0 (n → ∞),

f2

(
k

n
,
k − 1

n − 1

)
= k

n
log

k(n − 1)

n(k − 1)
− n − k

n(n − 1)
→ 0 (n → ∞). �
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CLAIM A.3. Assume that b/n1/2 = ξ for some ξ ∈ R
+, C is either C1 or C2

and let δ = logn. Then there exists M = M(ξ) > 1 such that

P(Bn,k)∫ nC(k/n)∧Mδ
0 fn,k(y)pn,k(y) dy

→ 1

as n → ∞ uniformly in k.

PROOF. Consider g(x) = [x − C(x)]/{C(x)[1 − C(x)]}, g is continuous on
(0, α]; limx→0+ g(x) = +∞ if limx→0+ C(x)/x = 0, a condition that C1 and C2
satisfy. Hence g achieves its minimum, denoted by m, on (0, α]. Let M = 1.1/m+
1.1 > 1, and In,k = ∫ nC(k/n)∧Mδ

0 fn,k(y)pn,k(y) dy. The claim reduces to∫ nC(k/n)

nC(k/n)∧Mδ
fn,k(y)pn,k(y) dy

= o(1)

∫ nC(k/n)∧Mδ

0
fn,k(y)pn,k(y) dy.

Claim A.2 indicates that when 2 ≤ k ≤ αn − 1,

P(Bn,k) − In,k

In,k

≤
⎧⎪⎨
⎪⎩

0, if nC(k/n) ≤ Mδ,
[nC(k/n) − Mδ]+fn,k(Mδ)pn,k(Mδ)

δfn,k(δ)pn,k(δ)
, otherwise.

When n ≥ 3 and nC(k/n) > Mδ, we have δ = logn > 1, and hence

[nC(k/n) − Mδ]+fn,k(Mδ)pn,k(Mδ)

δfn,k(δ)pn,k(δ)
(10)

= [nC(k/n) − Mδ]+[C(k/n) − Mδ/n]k−1[1 − C(k/n) + Mδ/n]n−k

δ[C(k/n) − δ/n]k−1[1 − C(k/n) + δ/n]n−k
.

Now consider the continuous version of the RHS of (10); that is, let k = nx, x ∈
(0, α], y = C(x). Recall that α is less than 1/2 in (9), so y ≤ x < 1/2. When x

satisfies C(x) > Mδ/n > δ/n, we have

RHS of (10)

= (ny − Mδ)+

δ
exp

{
(nx − 1) log

(
1 − (M − 1)δ

ny − δ

)

+ n(1 − x) log
(

1 + (M − 1)δ

(1 − y)n + δ

)}

≤ (ny − Mδ)+

δ
exp

{
−(nx − 1)

(M − 1)δ

ny − δ
+ n(1 − x)

(M − 1)δ

(1 − y)n + δ

}
(11)
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= (ny − Mδ)+

δ
exp

{
−(M − 1)δ

(x − y) + δ/n − δ/n2 − (1 − y)/n

(y − δ/n)(1 − y + δ/n)

}

≤ (ny − Mδ)+

δ
exp

{
−(M − 1)δ

(x − y)

y(1 − y)

}
for n large enough.

The last inequality holds because (y −δ/n)(1−y +δ/n) ≤ y(1−y), and δ/n−
δ/n2 − (1 − y)/n is positive provided logn > 1 + logn/n. Then the RHS of (11)
≤ny/(δn1.1) → 0 (n → ∞). Hence the claim holds for all k = 2,3, . . . , αn − 1.
For k = 1 the claim follows from nC(1/n) → 0. �

LEMMA A.1. If �̂n = ∑n
i=1(ξi − a) where ξi are independent and expo-

nentially distributed with mean value of 1, then lim sup[logP(�̂n/n ∈ F)]/n =
− infx∈F �∗

a(x) for any interval F with positive length, where �∗
a(x) = a + x −

1 − log(a + x) when (a + x) > 0 and = +∞ otherwise.

PROOF. This lemma follows from the continuity of �∗
a(x) and, for example,

Theorem 2.2.3 in Dembo and Zeitouni (2010), page 27. �

In what follows we continue to use the notation introduced above: δ = logn,
as in the condition of Claim A.3, �∗

a is as described in Lemma A.1 and �k =∑k
i=1 εi , where the εi are independent exponential random variables with mean

value 1.

PROPOSITION A.2. If the boundary function C is C1 or C2, for all k =
1,2, . . . , αn − 1, then for any ε > 0 we have pn,k(y) ≤ (1 + Rn,k(ε)){1 −

(n−k+1)C′(k/n)
(1+ε)[n−nC(k/n)+Mδ] } exp{− (n−k+1)y

(1+ε)[n−nC(k/n)+Mδ] }, where Rn,k(ε) → 0 as n → ∞
uniformly in k and y ∈ [0, nC(k/n) ∧ Mδ]. As a result In,k ≤ (1 + RRn,k(ε)) ×∫ nC(k/n)∧Mδ

0 fn,k(y){1 − (n−k+1)C′(k/n)
(1+ε)[n−nC(k/n)+Mδ] } × exp{− (n−k+1)y

(1+ε)[n−nC(k/n)+Mδ] }dy

with RRn,k(ε) → 0 uniformly in k.

PROOF. Since C1 and C2 are convex functions in x for every ξ , C′
j is bounded

above by 1 and bounded away from 1 when x ≤ α < 1/2. Hence

pn,k(y)

= P

(
�j

�n+1−k

≥ y + nC((k + j)/n) − nC(k/n)

n + y − nC(k/n)
∀j ∈ [1, βn − k]

)

≤ P

(
�j

�n+1−k

≥ y + jC′(k/n)

n + Mδ − nC(k/n)
∀j ∈ [1, βn − k]

)

≤ P

(
�j ≥ (n + 1 − k)(y + jC′(k/n))

(1 + ε)[n + Mδ − nC(k/n)] ∀j ∈ [1, βn − k]
)

(12)
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+ P

(∣∣∣∣ �n+1−k

n + 1 − k

∣∣∣∣ ∈ [
(1 + ε)−1,1 + ε

]c)

= P

(
�j ≥ (n + 1 − k)(y + jC′(k/n))

(1 + ε)[n + Mδ − nC(k/n)] ∀j ≥ 1
)

+ Resup

+ P

(∣∣∣∣ �n+1−k

n + 1 − k

∣∣∣∣ ∈ [
(1 + ε)−1,1 + ε

]c)

=
{

1 − (n − k + 1)C′(k/n)

(1 + ε)[n − nC(k/n) + Mδ]
}

× exp
{
− (n − k + 1)y

(1 + ε)[n − nC(k/n) + Mδ]
}

+ Resup

+ P

(∣∣∣∣ �n+1−k

n + 1 − k

∣∣∣∣ ∈ [
(1 + ε)−1,1 + ε

]c)
.

The first term on the RHS of (12) is due to 8.13 of Siegmund (1985), page 186.
Lemma A.1 indicates P(|�n+1−k/(n + 1 − k)| ∈ [(1 + ε)−1,1 + ε]c) ≤

A exp{−(1 − ε)Cup(ε)(n + 1 − k)}, where Cup(ε) = min{�∗
0(1 + ε),�∗

0((1 +
ε)−1)} > 0. The union bound of Resup is

Resup ≤
+∞∑

j=βn−k

P

{
�j <

(n + 1 − k)(y + jC′(k/n))

(1 + ε)[n + Mδ − nC(k/n)]
}

=
+∞∑

j=βn−k

P

{
�j/j <

[1 − (k − 1)/n]
(1 + ε)[1 + Mδ/n − C(k/n)]

[
y/j + C′(k/n)

]}
.

When n is large enough [1− (k−1)/n]C ′(k/n)/{(1+ε)[1+Mδ/n−C(k/n)]} <

a∗ where a∗ = maxx∈(0,α](1 − x)C′(x)/[1 −C(x)] < 1. Since j ≥ βn− k ≥ (β −
α)n and y ≤ Mδ = M logn, [1− (k −1)/n]/{(1+ε)[1+Mδ/n−C(k/n)]}y/j ≤
ε′ < 1 − a∗ for all n large enough. Let C∗

up(ε
′) denote �∗

a∗(ε′), and hence
Lemma A.1 provides the upper bound of the summand,

Resup ≤ A

+∞∑
j=βn−k

exp
{−j (1 − ε)C∗

up
(
ε′)}

= A
exp{−(β − α)n(1 − ε)C∗

up(ε
′)}

1 − exp{−(1 − ε)C∗
up(ε

′)} .

The second and third terms on the RHS of (12) decay uniformly faster than the
first term, which tends to 0 more slowly than O(1/n). �

PROPOSITION A.3. With the same assumption of Proposition A.2, we have
pn,k(y) ≥ (1 + Ln,k(ε))[1 − (1+ε)(n−k+1)C′(k/n)

n−nC(k/n)
] exp{− (1+ε)(n−k+1)y

n−nC(k/n)
}, where
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Ln,k(ε) → 0 as n → ∞ uniformly in k and y ∈ [0,Cn(k/n) ∧ Mδ]. As a

result, In,k ≥ (1 + LLn,k(ε))
∫ nC(k/n)∧Mδ

0 fn,k(y){1 − (1+ε)(n−k+1)C′(k/n)
n−nC(k/n)

} ×
exp{− (1+ε)(n−k+1)y

n−nC(k/n)
}dy with LLn,k(ε) → 0 uniformly in k.

PROOF. Due to the convexity of C, we have

pn,k(y)

= P

(
�j

�n+1−k

≥ y + nC((k + j)/n) − nC(k/n)

n + y − nC(k/n)
∀j ∈ [1, βn − k]

)

≥ P

(
�j ≥ (1 + ε)(n + 1 − k)

n − nC(k/n)

[
y + nC

(
(k + j)/n

)− nC(k/n)
]

∀j ∈ [1, βn − k]
)

− P

(∣∣∣∣ �n+1−k

n + 1 − k

∣∣∣∣ ∈ [
(1 + ε)−1,1 + ε

]c)
(13)

≥ P

(
�j ≥ (1 + ε)(n + 1 − k)

n − nC(k/n)

[
y + jC′((k + ⌈

n1/2⌉)/n
)]

∀j ∈ [
1,

⌈
n1/2⌉])

− Resdown − P

(∣∣∣∣ �n+1−k

n + 1 − k

∣∣∣∣ ∈ [
(1 + ε)−1,1 + ε

]c)

≥ P

(
�j ≥ (1 + ε)(n + 1 − k)

n − nC(k/n)

[
y + jC′((k + ⌈

n1/2⌉)/n
)] ∀j ≥ 1

)

− Resdown − P

(∣∣∣∣ �n+1−k

n + 1 − k

∣∣∣∣ ∈ [
(1 + ε)−1,1 + ε

]c)
.

By using the same argument as in Proposition A.2 and the uniform continuity
of C′,

The first term on the RHS of (13)

=
[
1 − (1 + ε)(n + 1 − k)

n − nC(k/n)
C′((k + ⌈

n1/2⌉)/n
)]

× exp
{
−(1 + ε)(n + 1 − k)

n − nC(k/n)
y

}

= (
1 + o(1)

)[
1 − (1 + ε)(n + 1 − k)

n − nC(k/n)
C′(k/n)

]

× exp
{
−(1 + ε)(n + 1 − k)

n − nC(k/n)
y

}
.
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Let C′
max = [C(β) − C(α)]/(β − α) < 1 [see (9)], we obtain C((k + j)/n) −

C(k/n) ≤ jC ′
max/n for all k < αn and k + j < βn. Hence the union bound of

Resdown becomes

Resdown

≤
βn−k∑

j=�n1/2�
P

(
�j ≤ (1 + ε)(n + 1 − k)

n − nC(k/n)

[
y + nC

(
(k + j)/n

)− nC(k/n)
])

≤
∞∑

j=�n1/2�
P

(
�j ≤ (1 + ε)(n + 1 − k)

n − nC(k/n)

(
y + jC′

max
))

≤ A

∞∑
j=�n1/2�

exp
{−j (1 − ε)C∗

down(ε)
}

≤ A
exp{−�n1/2�(1 − ε)C∗

down(ε)}
1 − exp{−(1 − ε)C∗

down(ε)}
,

where C∗
down(ε) = �∗

(1+ε)a∗∗(ε + ε2) > 0 with a∗∗ = maxx∈(0,α](1 − x)C′
max/[1 −

C(x)] (so a∗∗ < 1). By using an argument similar to that in Proposition A.2,
it can be concluded that pn,k(y) ≥ (1 + Ln,k(ε))[1 − (1+ε)(n−k+1)C′(k/n)

n−nC(k/n)
] ×

exp{− (1+ε)(n−k+1)y
n−nC(k/n)

} with Ln,k(ε) → 0 uniformly in k. �

CLAIM A.4. Suppose that f (y) is a nonnegative, nonincreasing function de-
fined on [0,+∞) with f (a) > 0 for some a > 0. Then for any fixed B > 0 and
any β1, β2 ≥ B , there exists a continuous and increasing function, denoted by
ρB(x), defined on R

+ ∪ {0} with ρB(0) = 0, such that | ln
∫
R+ f (y)e−β1y dy −

ln
∫
R+ f (y)e−β2y dy| ≤ ρB(|β1 − β2|) and that ρB does not depend on f .

PROOF. Since∫ +∞
M1

f (y)e−β1y dy ≤ f (M1)e
−β1M1/β1

= e−β1M1/
(
1 − e−β1M1

) ∫ M1

0
f (M1)e

−β1y dy

≤ e−BM1/
(
1 − e−BM1

) ∫ M1

0
f (y)e−β1y dy,

we have ∫
R+ f (y)e−β1y dy∫
R+ f (y)e−β2y dy

≤ 1

1 − e−BM1

∫M1
0 f (y)e−β1y dy∫M1
0 f (y)e−β2y dy

≤ eM1|β1−β2|

1 − e−BM1
,

(
M1 = |β1 − β2|−1/2) ≤ e|β1−β2|0.5

1 − e−B|β1−β2|−0.5 .
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Hence ρB(x) = |x|0.5 − log(1 − e−B|x|−0.5
) for x �= 0, and = 0 otherwise is the

desired function. �

Let Pn,k denote the integral
∫ nC(k/n)∧Mδ

0 {1 − (n − k + 1)C′(k/n)/[n −
nC(k/n)]}fn,k(y) exp{− n+1−k

n−nC(k/n)
y}dy.

PROPOSITION A.4. As n → ∞, In,k/Pn,k → 1 uniformly in k, so conse-
quently

∑αn−1
k=1 P(Bn,k) ∼ ∑αn−1

k=1 In,k ∼ ∑αn−1
k=1 Pn,k .

PROOF. It is clear 1 − α ≤ (n + 1 − k)/[n − nC(k/n)] ≤ 1. Since C′(x) is
bounded away from 1 when 0 < x < α, 1 − (n−k+1)C′(k/n)

(1+ε)[n−nC(k/n)+Mδ] = (1 + O(ε) +
O(Mδ/n)){1 − (n−k+1)

n−nC(k/n)
C′(k/n)}. For the same reason 1 − (1+ε)(n−k+1)

n−nC(k/n)
×

C′(k/n) = (1 + O(ε))[1 − (n−k+1)
n−nC(k/n)

C′(k/n)]. So Claim A.4 indicates

∫ nC(k/n)∧Mδ

0
fn,k(y) exp

{
− (n − k + 1)y

(1 + ε)[n − nC(k/n) + Mδ]
}

dy

≤ eρ(O(ε)+O(Mδ/n))
∫ nC(k/n)∧Mδ

0
fn,k(y) exp

{
− (n − k + 1)y

n − nC(k/n)

}
dy

×
∫ nC(k/n)∧Mδ

0
fn,k(y) exp

{
−(1 + ε)(n − k + 1)y

n − nC(k/n)

}
dy

≥ eρ(O(ε))
∫ nC(k/n)∧Mδ

0
fn,k(y) exp

{
− (n − k + 1)y

n − nC(k/n)

}
dy.

According to Propositions A.2, A.3, the previous two inequalities suggest In,k/

Pn,k → 1 uniformly in k if we send ε to 0 arbitrarily slowly. �

PROPOSITION A.5. The following convergence is uniform in k:
[1 − n+1−k

n−nC(k/n)
C′(k/n)]PBin(n, k,C(k/n))/Pn,k → 1. As a result,

∑αn−1
k=k0

Pn,k ∼∑αn−1
k=k0

[1 − n+1−k
n−nC(k/n)

C′(k/n)]PBin(n, k,C(k/n)).

PROOF. (i) When y ≤ Mδ and k ≤ αn, y
n−nC(k/n)

≤ Mδ/[n(1 − α)] → 0, so
consequentially[

1 − C(k/n) + y

n

]n−k

exp
{
− (n + 1 − k)y

n − nC(k/n)

}

= [
1 − C(k/n)

]n−k exp
{
(n − k) log

(
1 + y

n − nC(k/n)

)
− (n + 1 − k)y

n − nC(k/n)

}

= [
1 − C(k/n)

]n−k exp
{
− y

n − nC(k/n)
− O

(
(n − k)y2

n2[1 − C(k/n)]2

)}
.
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The remainder on the RHS of the last equation tends to 0 uniformly in k and
0 ≤ y ≤ Mδ. So

Pn,k ∼
[
1 − (n + 1 − k)C′(k/n)

n − nC(k/n)

]
k

(
n

k

)[
1 − C(k/n)

]n−k

(14)

×
∫ nC(k/n)∧Mδ

0

[
C(k/n) − y

n

]k−1 1

n
dy.

(ii) The integral that appears on the RHS of (14) equals

1

k

{
C

(
k

n

)k

−
[
C

(
k

n

)
− nC(k/n) ∧ Mδ

n

]k}
,(15)

(15)
/[

C(k/n)k

k

]
= 1 −

[
1 − nC(k/n) ∧ Mδ

nC(k/n)

]k

≥
⎧⎨
⎩

1, if nC(k/n) < Mδ,

1 − exp
{
− kMδ

nC(k/n)

}
, otherwise.

Since k/[nC(k/n)] ≥ 1, (15) = (1 + o(1))C(k/n)k/k where the infinitesimal
tends to 0 uniformly in k. �

Propositions A.1, A.5 together lead to the main result of this part.

THEOREM A.1 (Approximate formula for p-values of higher criticism and
Berk–Jones statistics). If the curve C is Ci (i = 1,2) and β ∈ (0,1), then un-
der the overall null hypothesis

P

( βn⋃
k=k0

{
p(k) ≤ C(k/n)

})

= (
1 + o(1)

) βn∑
k=k0

{
1 − (n − k + 1)C′(k/n)

n[1 − C(k/n)]
}
PBin

(
n, k,C(k/n)

)
.

REMARK. For the modified higher criticism statistic, the approximation takes
a slightly different form. The binomial probability is replaced by PBin{n, k,

max[1/n,C(k/n)]} − PBin(n, k,1/n) × max(nC(k/n),1).
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