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A GENERALIZED BACK-DOOR CRITERION1

BY MARLOES H. MAATHUIS AND DIEGO COLOMBO

ETH Zurich

We generalize Pearl’s back-door criterion for directed acyclic graphs
(DAGs) to more general types of graphs that describe Markov equivalence
classes of DAGs and/or allow for arbitrarily many hidden variables. We also
give easily checkable necessary and sufficient graphical criteria for the exis-
tence of a set of variables that satisfies our generalized back-door criterion,
when considering a single intervention and a single outcome variable. More-
over, if such a set exists, we provide an explicit set that fulfills the crite-
rion. We illustrate the results in several examples. R-code is available in the
R-package pcalg.

1. Introduction. Causal Bayesian networks are widely used for causal rea-
soning [e.g., Glymour et al. (1987), Koller and Friedman (2009), Pearl (1995,
2000, 2009), Spirtes, Glymour and Scheines (1993, 2000)]. In particular, if the
causal structure is known and represented by a directed acyclic graph (DAG), this
framework allows one to deduce post-intervention distributions and causal effects
from the pre-intervention (or observational) distribution. Hence, if the causal DAG
is known, one can estimate causal effects from observational data. Covariate ad-
justment is often used for this purpose. The back-door criterion [Pearl (1993)] is a
graphical criterion that is sufficient for adjustment, in the sense that a set of vari-
ables can be used for covariate adjustment if it satisfies the back-door criterion for
the given graph.

In practice, there are two important complications. First, the underlying DAG
may be unknown. In this case one can try to estimate the DAG, but in general
one cannot identify the underlying DAG uniquely. Instead, one can identify its
Markov equivalence class, which consists of all DAGs that encode the same con-
ditional independence relationships as the underlying DAG. Such a Markov equiv-
alence class can be represented uniquely by a different type of graph, called a
completed partially directed acyclic graph (CPDAG) [Andersson, Madigan and
Perlman (1997), Meek (1995), Spirtes, Glymour and Scheines (1993)]. Second, it
is often the case that some important variables were not measured, meaning that we
do not have causal sufficiency. In this case, one can work with maximal ancestral
graphs (MAGs) instead of DAGs [Richardson and Spirtes (2002, 2003)]. Finally,
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the underlying MAG may be unknown, so that it must be estimated from data.
Again, there is an identifiability problem here, as we can generally only identify
the Markov equivalence class of the underlying MAG, which can be represented
uniquely by a partial ancestral graph (PAG) [Ali, Richardson and Spirtes (2009),
Richardson and Spirtes (2002)].

In this paper, we therefore consider generalizations of the back-door criterion to
the following three scenarios:

(1) we assume causal sufficiency, and we only know the CPDAG, that is, the
Markov equivalence class of the underlying DAG;

(2) we do not assume causal sufficiency, and we know the MAG on the ob-
served variables;

(3) we do not assume causal sufficiency, and we only know the PAG, that is,
the Markov equivalence class of the underlying MAG on the observed variables.

In scenarios 2 and 3, we allow for arbitrarily many hidden (or unmeasured) vari-
ables. We do not, however, allow for selection variables, that is, for unmeasured
variables that determine whether a unit is included in the sample.

Since the back-door criterion is a simple criterion that is widely used for DAGs,
it seems useful to have similar criteria for CPDAGs, MAGs and PAGs. We also
hope that our generalized back-door criterion will make working with MAGs and
PAGs less daunting, and more accessible to people in practice.

Our generalized back-door criterion for DAGs, CPDAGs, MAGs and PAGs is
given in Section 3; see especially Definition 3.7 and Theorem 3.1. Corresponding
R-code is available in the function backdoor in the R-package pcalg [Kalisch
et al. (2012)]. Our results are derived by first formulating invariance conditions that
are sufficient for adjustment, and then using the graphical criteria for invariance de-
rived by Zhang (2008a). We also show that the generalized back-door criterion is
equivalent to Pearl’s back-door criterion for single interventions in DAGs, and is
slightly more general for multiple interventions in DAGs (Lemma 3.1 and Exam-
ple 1). In Section 4, we give necessary and sufficient criteria for the existence of a
set that satisfies the generalized back-door criterion relative to a pair of variables
(X,Y ) and a DAG, MAG, CPDAG or PAG. Moreover, if a generalized back-door
set exists, we provide an explicit such set. These results are summarized in Theo-
rem 4.1, using a general framework that covers DAGs, CPDAGs, MAGs and PAGs.
Corollaries 4.1–4.3 specialize the results for DAGs, CPDAGs and MAGs, respec-
tively. We illustrate our results with several examples in Section 5. All proofs are
given in Section 7.

We close this introduction by discussing related work. For a given causal DAG,
identifiability of causal effects in general or via covariate adjustment has been
studied by various authors. In particular, there are complete graphical criteria for
the identification of causal effects if a causal DAG with unmeasured variables is
given [e.g., Huang and Valtorta (2006), Shpitser and Pearl (2006a, 2006b, 2008),
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Tian and Pearl (2002)]. Shpitser, Van der Weele and Robins (2010a, 2010b) stud-
ied effects that are identifiable via covariate adjustment, and provided necessary
and sufficient graphical criteria for this purpose, again if the causal DAG is given.
Their results can be viewed as an improvement on the back-door criterion, which
is only sufficient for adjustment. Textor and Liśkiewicz (2011) studied covariate
adjustment for a given DAG from an algorithmic perspective. Among other things,
they showed that the back-door criterion and the adjustment criterion of Shpitser,
Van der Weele and Robins (2010a) are equivalent if one is interested in minimal
adjustment sets for a certain subclass of graphs. Van der Zander, Liśkiewicz and
Textor (2014) extended these necessary and sufficient graphical criteria for covari-
ate adjustment to MAGs.

There are also existing approaches that do not make the assumption that the
causal DAG or MAG is given. The prediction algorithm [Spirtes, Glymour and
Scheines (2000), Chapter 7] roughly starts from a PAG and uses invariance re-
sults. In this sense it is probably closest to our work. The main difference between
this method and our results is that the prediction algorithm is more complex. In
particular, it searches over all possible orderings of the variables, which quickly
becomes infeasible for large graphs. The prediction algorithm may, however, be
more informative, in the sense that certain distributions may be identifiable by the
prediction algorithm but not by the generalized back-door criterion. Studying the
exact relationship between these two approaches would be an interesting topic for
future work.

Other work on data driven methods for selection of adjustment variables for the
estimation of causal effects does not assume that the causal structure is known, but
does make some assumptions about causal relationships between the variables of
interest and/or about the existence of a set of variables that can be used for co-
variate adjustment [de Luna, Waernbaum and Richardson (2011), Entner, Hoyer
and Spirtes (2013), VanderWeele and Shpitser (2011)]. In the current paper, we do
not make any such assumptions. On the other hand, we start from a given DAG,
CPDAG, MAG or PAG. We do not see this as a genuine restriction of our ap-
proach, however, since there are algorithms to estimate CPDAGs and PAGs from
data (e.g., the PC algorithm [Spirtes, Glymour and Scheines (2000)], greedy equiv-
alence search [Chickering (2002)] and versions of the FCI algorithm [Claassen,
Mooij and Heskes (2013), Colombo et al. (2012), Spirtes, Glymour and Scheines
(2000)]). These algorithms have been shown to be consistent, even in certain sparse
high-dimensional settings [Colombo et al. (2012), Kalisch and Bühlmann (2007)].
In practice, one could therefore first employ such an algorithm, and then apply the
results in the current paper.

2. Preliminaries. Throughout this paper, we denote sets in a bold font (e.g.,
X) and graphs in a calligraphic font (e.g., D or M).
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2.1. Basic graphical definitions. A graph G = (V,E) consists of a set of ver-
tices V = {X1, . . . ,Xp} and a set of edges E. The vertices represent random vari-
ables, and the edges describe conditional independence and causal (ancestral) re-
lationships. There is at most one edge between every pair of vertices, and the edge
set E can contain (a subset of) the following four edge types: → (directed), ↔
(bi-directed), � � (nondirected) and �→ (partially directed). A directed graph
contains only directed edges, a mixed graph can contain directed and bi-directed
edges and a partial mixed graph can contain all four edge types. The endpoints of
an edge are called marks, and they can be tails, arrowheads or circles. We use the
symbol “∗” to denote an arbitrary edge mark. If we are only interested in the pres-
ence or absence of edges, and not in the edge marks, then we refer to the skeleton
of a graph.

Two vertices are adjacent if there is an edge between them. The adjacency set
of a vertex X in G, denoted by adj(X,G), consists of all vertices adjacent to X

in G. A path is a sequence of distinct adjacent vertices. The length of a path p =
〈Xi,Xi+1, . . . ,Xi+�〉 equals the corresponding number of edges, in this case �.
The path p is said to be out of (into) Xi if the edge between Xi and Xi+1 has a tail
(arrowhead) at Xi . A sub-path of p from Xj to Xj ′ is denoted by p(Xj ,Xj ′). We
denote the concatenation of paths by ⊕, so that, for example, p = p(Xi,Xi+k) ⊕
p(Xi+k,Xi+�) for k ∈ {1, . . . , � − 1}. We use the convention that we remove any
loops that may occur due to the concatenation, so that the result does not contain
duplicate vertices and is again a path. The path p is a directed path from Xi to
Xi+� if for all k ∈ {1, . . . , �}, the edge Xi+k−1 → Xi+k occurs, and it is a possibly
directed path if for all k ∈ {1, . . . , �}, the edge between Xi+k−1 and Xi+k is not into
Xi+k−1. A cycle occurs if there is a path between Xi and Xj of length greater than
one, and Xi and Xj are adjacent. A directed path from Xi to Xj forms a directed
cycle together with the edge Xj → Xi , and an almost directed cycle together with
the edge Xj ↔ Xi . A directed acyclic graph (DAG) is a directed graph without
directed cycles. An ancestral graph is a mixed graph without directed and almost
directed cycles.

If Xj → Xi , we say that Xi is a child of Xj , and Xj is a parent of Xi . The cor-
responding sets of parents and children are denoted by pa(Xi,G) and ch(Xi,G). If
there is a (possibly) directed path from Xi to Xj or if Xi = Xj , then Xi is a (pos-
sible) ancestor of Xj and Xj a (possible) descendant of Xi . The sets of ancestors,
descendants, possible ancestors, and possible descendants of a vertex Xi in G are
denoted by an(Xi,G), de(Xi,G), possibleAn(Xi,G), and possibleDe(Xi,G), re-
spectively. These definitions are applied disjunctively to a set Y ⊆ V, for example,
an(Y,G) = {Xi |Xi ∈ an(Xj ,G) for some Xj ∈ Y}.

A path 〈Xi,Xj ,Xk〉 is an unshielded triple if Xi and Xk are not adjacent.
A nonendpoint vertex Xj on a path is a collider on the path if the path con-
tains *→Xj ←*. A nonendpoint vertex on a path which is not a collider is a non-
collider on the path. A collider path is a path on which every nonendpoint vertex
is a collider. A path of length one is a trivial collider path.
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2.2. Causal Bayesian networks. A Bayesian network for a set of variables
V = {X1, . . . ,Xp} is a pair (D, f ), where D = (V,E) is a DAG, and f is a joint
probability density for V (with respect to some dominating measure) that factor-
izes according to D: f (V) = ∏p

i=1 f (Xi |pa(Xi,D)). If the DAG is interpreted
causally, in the sense that Xi → Xj means that Xi has a (potential) direct causal
effect on Xj , then we talk about a causal DAG and a causal Bayesian network.

One can easily derive post-intervention densities if the causal Bayesian network
is given and all variables are observed. In particular, we consider interventions
do(X = x) for X ⊆ V [Pearl (2000)], which represent outside interventions that set
the variables in X to their respective values in x. We assume that such interventions
are effective, meaning that X = x after the intervention. Moreover, we assume
that the interventions are local, meaning that the generating mechanisms of the
other variables, and hence their conditional distributions given their parents, do
not change. We then have

f
(
V|do(X = x)

)

=
⎧⎨
⎩

∏
Xi∈V\X

f
(
Xi |pa(Xi,D)

)
, for values of V consistent with x,

0, otherwise.

This is known as the g-formula or the truncated factorization formula [Pearl
(2000), Robins (1986), Spirtes, Glymour and Scheines (1993)].

In a Bayesian network (D, f ), the DAG D encodes conditional independence
relationships in the density f via d-separation [Pearl (2000); see also Defini-
tion 3.5]. Several DAGs can encode the same conditional independence relation-
ships. Such DAGs form a Markov equivalence class which can be uniquely repre-
sented by a CPDAG. A CPDAG is a graph with the same skeleton as each DAG in
its equivalence class, and its edges are either directed (→) or nondirected ( � �). An
edge Xi → Xj in such a CPDAG means that Xi → Xj is present in every DAG
in the Markov equivalence class, while an edge Xi

� �Xj represents uncertainty
about the edge marks, in the sense that the Markov equivalence class contains at
least one DAG with Xi → Xj and at least one DAG with Xi ← Xj . (Note that
many authors use Xi Xj instead of Xi

� �Xj ; we use � � to ensure that the
CPDAG satisfies the syntactic properties of a PAG; see below.)

If some of the variables in a DAG are unobserved, one can transform the DAG
into a unique maximal ancestral graph (MAG) on the observed variables; see
Richardson and Spirtes [(2002), page 981] for an algorithm. In particular, two ver-
tices Xi and Xj are adjacent in a MAG if and only if no subset of the remaining
observed variables makes them conditionally independent. Moreover, a tail mark
Xi * Xj in a MAG M means that Xi is an ancestor of Xj in all DAGs repre-
sented by M, while an arrowhead Xi ←* Xj means that Xi is not an ancestor of
Xj in all DAGs represented by M. Thus an edge Xi → Xj in M means that there
is a directed path from Xi to Xj in all DAGs represented by M, but we emphasize
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that it does not represent a direct effect with respect to the observed variables, in
the sense that there may be other observed variables on the directed path. Several
different DAGs can lead to the same MAG, and a MAG represents a class of (in-
finitely many) DAGs that have the same d-separation and ancestral relationships
among the observed variables. The MAG of a causal DAG is called a causal MAG.

A MAG encodes conditional independence relationships via the concept of m-
separation (Definition 3.5). Again, several MAGs can encode the same conditional
independence relationships. Such MAGs are called Markov equivalent, and can be
uniquely represented by a partial ancestral graph (PAG). This is a partial mixed
graph with the same skeleton as each MAG in its Markov equivalence class. A tail
mark (arrowhead) at an edge Xi * Xj (Xi ←* Xj) in such a PAG means that
Xi * Xj (Xi ←* Xj ) in every MAG in the Markov equivalence class, while a cir-
cle mark at an edge Xi

� * Xj represents uncertainty about the edge mark, in the
sense that the Markov equivalence class contains at least one MAG with Xi * Xj ,
and at least one MAG with Xi ←* Xj .

We say that a density f is compatible with a DAG D if the pair (D, f ) forms a
causal Bayesian network. A density f is compatible with a CPDAG C if it is com-
patible with a DAG in the Markov equivalence class described by C. A density f

is compatible with a MAG M if there exists a causal Bayesian network (D∗, f ∗)
(including hidden variables), such that M is the MAG of D∗ and f is the corre-
sponding marginal of f ∗. Finally, f is compatible with a PAG P if it is compatible
with a MAG in the Markov equivalence class described by P .

3. Generalized back-door criterion. We now present our generalized back-
door criterion in Definition 3.7 and Theorem 3.1, where the name “generalized
back-door criterion” is motivated by Lemma 3.1. We first introduce some more
specialized definitions.

Zhang (2008a) introduced the concept of (definitely) visible edges in MAGs
and PAGs. The reason for this is as follows. A directed edge X → Y in a DAG,
CPDAG, MAG or PAG always means that X is a cause (or ancestor) of Y , because
of the tail mark at X. However, if we allow for hidden variables (i.e., in MAGs
and PAGs), there may be a hidden confounding variable between X and Y . Visible
edges refer to situations where there cannot be such a hidden confounder between
X and Y . Invisible edges, on the other hand, are possibly confounded in the sense
that there is a DAG represented by the MAG or PAG with X ← L → Y , where L

is not measured (in addition to X → ·· · → Y ).

DEFINITION 3.1 [Visible and invisible edges; cf. Zhang (2008a)]. All di-
rected edges in DAGs and CPDAGs are said to be visible. Given a MAGM/

PAGP , a directed edge A → B in M/P is visible if there is a vertex C not adja-
cent to B , such that there is an edge between C and A that is into A, or there is a
collider path between C and A that is into A and every nonendpoint vertex on the
path is a parent of B . Otherwise A → B is said to be invisible.
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FIG. 1. Edge configurations in MAGs and PAGs for a visible edge A → B; cf. Zhang (2008a),
Figure 6. Instead of the tail mark at C, one can also have an arrowhead or circle mark.

Figure 1 illustrates the different graphical configurations that can lead to a visi-
ble edge. We note that Zhang (2008a) used slightly different terminology, referring
to definitely visible edges in a PAG, while we simply say visible for both MAGs
and PAGs. Borboudakis, Triantafillou and Tsamardinos (2012) used the term pure-
causal edges instead of visible edges in MAGs.

We can now generalize the concept of a back-door path in Definition 3.2.

DEFINITION 3.2 (Back-door path). Let (X,Y ) be an ordered pair of vertices
in G, where G is a DAG, CPDAG, MAG or PAG. We say that a path between X

and Y is a back-door path from X to Y if it does not have a visible edge out of X.

In a DAG, this definition reduces to a path between X and Y that starts with
X ←, which is the usual back-door path as defined by Pearl (1993). In a CPDAG,
a back-door path from X to Y is a path between X and Y that starts with X ←
or X � �. In a MAG, it is a path between X and Y that starts with X ↔, X ← or
an invisible edge X →. Finally, in a PAG, it is a path between X and Y that starts
with X←*, X � * or an invisible edge X →.

We also need generalizations of the concept of d-separation in DAGs [Defi-
nition 1.2.3 of Pearl (2000)]. In MAGs, one can use m-separation [Section 3.4
of Richardson and Spirtes (2002)]. In CPDAGs and PAGs, there is the additional
complication that it may be unclear whether a vertex is a collider or a noncollider
on the path. We therefore need the following definitions:

DEFINITION 3.3 [Definite noncollider; Zhang (2008a)]. A nonendpoint ver-
tex Xj on a path 〈. . . ,Xi,Xj ,Xk, . . .〉 in a partial mixed graph G is a definite non-
collider on the path if (i) there is a tail mark at Xj , that is, Xi * Xj or Xj * Xk , or
(ii) 〈Xi,Xj ,Xk〉 is unshielded and has circle marks at Xj , that is, Xi * �Xj

� * Xk

and Xi and Xk are not adjacent in G.

The motivation for conditions (i) and (ii) is straightforward. A tail mark out
of Xj on the path ensures that Xj is a noncollider on the path in any graph obtained
by orienting any possible circle marks. Condition (ii) comes from the fact that the
collider status of unshielded triples is known in CPDAGs and PAGs. Hence, if the
graph contains an unshielded triple that was not oriented as a collider, then it must
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be a noncollider in all underlying DAGs or MAGs. If G is a DAG or a MAG, then
only condition (i) applies and reduces to the usual definition of a noncollider.

DEFINITION 3.4 (Definite status path). A nonendpoint vertex Xj on a path p

in a partial mixed graph is said to be of a definite status if it is either a collider
or a definite noncollider on p. The path p is said to be of a definite status if all
nonendpoint vertices on the path are of a definite status.

A path of length one is a trivial definite status path. Moreover, in DAGs and
MAGs, all paths are of a definite status.

We now define m-connection for definite status paths.

DEFINITION 3.5 (m-connection). A definite status path p between vertices X

and Y in a partial mixed graph is m-connecting given a (possibly empty) set of
variables Z (X,Y /∈ Z) if the following two conditions hold:

(a) every definite noncollider on the path is not in Z;
(b) every collider on the path is an ancestor of some member of Z.

If a definite status path p is not m-connecting given Z, then we say that Z blocks p.

If Z = ∅, we usually omit the phrase “given the empty set.” Definition 3.5 re-
duces to m-connection for MAGs and d-connection for DAGs. We note that Zhang
(2008a) used the notions of possible m-connection and definite m-connection in
PAGs, where his notion of definite m-connection is the same as our notion of m-
connection for definite status paths.

We now define an adjustment criterion for DAGs, CPDAGs, MAGs and PAGs.
Throughout, we think of X and Y as nonempty sets.

DEFINITION 3.6 (Adjustment criterion). Let X, Y and W be pairwise disjoint
sets of vertices in G, where G represents a DAG, CPDAG, MAG or PAG. Then
we say that W satisfies the adjustment criterion relative to (X,Y) and G if for any
density f compatible with G, we have

f
(
y|do(x)

) =
⎧⎨
⎩

f (y|x), if W =∅,∫
w

f (y|w,x)f (w) dw = EW
{
f (y|w,x)

}
, otherwise.

If X = {X} and Y = {Y }, we simply say that a set satisfies the criterion relative
to (X,Y ) [rather than ({X}, {Y })] and the given graph.

We now propose our generalized back-door criterion for DAGs, CPDAGs,
MAGs and PAGs. We will show in Theorem 3.1 that this criterion is sufficient
for adjustment.
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DEFINITION 3.7 (Generalized back-door criterion and generalized back-door
set). Let X, Y and W be pairwise disjoint sets of vertices in G, where G repre-
sents a DAG, CPDAG, MAG or PAG. Then W satisfies the generalized back-door
criterion relative to (X,Y) and G if the following two conditions hold:

(B-i) W does not contain possible descendants of X in G;
(B-ii) for every X ∈ X, the set W ∪ X \ {X} blocks every definite status back-

door path from X to any member of Y, if any, in G.

A set W that satisfies the generalized back-door criterion relative to (X,Y) and G
is called a generalized back-door set relative to (X,Y) and G.

REMARK 3.1. Condition (B-i) in Definition 3.7 is equivalent to the follow-
ing:

(B-i)′ W does not contain possible descendants of X along a definite status
path in G.

Condition (B-i)′ may be easier to check computationally than (B-i). The equiva-
lence of (B-i) and (B-i)′ is shown in the proof of Theorem 3.1, using Lemma 7.2.

THEOREM 3.1. Let X, Y and W be pairwise disjoint sets of vertices in G,
where G represents a DAG, MAG, CPDAG or PAG. If W satisfies the generalized
back-door criterion relative to (X,Y) and G (Definition 3.7), then it satisfies the
adjustment criterion relative to (X,Y) and G (Definition 3.6).

The proof of Theorem 3.1 consists of two steps. First, we formulate invariance
criteria that are sufficient for adjustment (Theorem 7.1). Next, we translate the
invariance criteria into the graphical criteria given in Definition 3.7, using results
of Zhang (2008a) (Theorem 7.3).

We refer to Definition 3.7 as generalized back-door criterion because its con-
ditions are closely related to Pearl’s original back-door criterion [Pearl (1993,
2000)].

DEFINITION 3.8 [Pearl’s back-door criterion; Definition 3.3.1 of Pearl (2000)].
A set of variables W satisfies the back-door criterion relative to an ordered pair of
variables (X,Y ) in a DAG D if the following two conditions hold:

(P-i) no vertex in W is a descendant of X in D;
(P-ii) W blocks every path between X and Y in D that is into X.

Similarly, if X and Y are two disjoint subsets of vertices in D, then W is said to
satisfy the back-door criterion relative to (X,Y) in D if it satisfies the criterion
relative to any pair (X,Y ) such that X ∈ X and Y ∈ Y.
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In particular, the conditions in Definition 3.7 are equivalent to Pearl’s back-door
criterion for a DAG with a single intervention (|X| = 1). For a DAG with multiple
interventions, any set that satisfies Pearl’s back-door criterion also satisfies the
generalized back-door criterion, but not necessarily the other way around. In this
sense, our criterion is slightly better; see Lemma 3.1 and Example 1.

LEMMA 3.1. Let X, Y and W be pairwise disjoint sets of vertices in a DAG D.
If W satisfies Pearl’s back-door criterion (Definition 3.8) relative to (X,Y) and D,
then W satisfies the generalized back-door criterion (Definition 3.7) relative to
(X,Y) and D.

4. Finding a set that satisfies the generalized back-door criterion. An im-
portant reason for the popularity of Pearl’s back-door criterion is the following.
Consider two distinct vertices X and Y in a DAG D. Then pa(X,D) satisfies the
back-door criterion relative to (X,Y ) and D, unless Y ∈ pa(X,D). In the latter
case, there is no set that satisfies the back-door criterion relative to (X,Y ) and D,
but it is easy to see that f (y|do(x)) = f (y) for any density f compatible with D,
since there cannot be a directed path from X to Y in D.

In this section, we formulate similar results for the generalized back-door crite-
rion. In particular, we consider the following problem. Given two distinct vertices
X and Y in a DAG, CPDAG, MAG or PAG, can we easily determine if there ex-
ists a generalized back-door set relative to (X,Y ) and the given graph? Moreover,
if this question is answered positively, can we give an explicit set that satisfies
the criterion? Theorem 4.1 addresses these questions in general, while Corollaries
4.1–4.3 give specific results for DAGs, CPDAGs and MAGs.

We emphasize that throughout this section, we focus on the setting with a sin-
gle intervention variable X and a single variable of interest Y . The setting with
multiple interventions (i.e., a set X) is considerably more difficult, even for DAGs
[Shpitser, Van der Weele and Robins (2010a)]. It therefore seems challenging to
generalize the results in this section to sets X. Handling sets Y seems less difficult,
and we plan to study this in future work.

In a DAG, the following result is well known. If X and Y are not adjacent in a
DAG D and X /∈ an(Y,D), then pa(X,D) blocks all paths between X and Y . In
MAGs, we have a similar result, but we need to use D-SEP(X,Y,M) instead of
the parent set; see Definition 4.1 and Lemma 4.1.

DEFINITION 4.1 [D-SEP(X,Y,G); cf. page 136 of Spirtes, Glymour and
Scheines (2000)]. Let X and Y be two distinct vertices in a mixed graph G. We
say that V ∈ D-SEP(X,Y,G) if V 
= X, and there is a collider path between X and
V in G, such that every vertex on this path (including V ) is an ancestor of X or Y

in G.
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LEMMA 4.1. Let X and Y be two distinct vertices in an ancestral graph G.
Then the following statements are equivalent: (i) X and Y are m-separated in G
by some subset of the remaining variables, (ii) Y /∈ D-SEP(X,Y,G), and (iii) X

and Y are m-separated in G by D-SEP(X,Y,G). Moreover, if G is a MAG, a fourth
equivalent statement is (iv) X and Y are not adjacent in G.

We now introduce important definitions that are needed to formulate our gener-
alized back-door criterion in Theorem 4.1.

DEFINITION 4.2 (R∗ and RX). Let X be a vertex in G, where G is a DAG,
CPDAG, MAG or PAG.

Let R∗ = R∗(G,X) be a class of DAGs or MAGs, defined as follows. If G is
a DAG or a MAG, we simply let R∗ = {G}. If G is a CPDAG/PAG, we let R∗ be
the subclass of DAGs/MAGs in the Markov equivalence class described by G that
have the same number of edges into X as G.

For any R ∈ R∗, let RX = RX(R,G,X) be the graph obtained from R by
removing all directed edges out of X that are visible in G; see Definition 3.1.

For any given G and X, we say that a graph RX satisfies Definition 4.2 if there
exists an R ∈R∗(G,X) such that RX = RX(R,G,X).

Lemma 7.6 shows that the class R∗ is always nonempty. The definition of RX

is related to the X-lower manipulated MAGs that were used by Zhang (2008a). It
is important to note, however, that RX is obtained from R by removing the edges
out of X that are visible in G (rather than R). Moreover, Zhang replaced invisible
edges by bi-directed edges, but that is not needed for our purposes (although it
would not hurt to do so). Finally, we note that RX is ancestral, since any R ∈ R∗
is ancestral.

We can now present the main result of this section.

THEOREM 4.1 (Generalized back-door set). Let X and Y be two distinct ver-
tices in G, where G is a DAG, CPDAG, MAG or PAG. Let RX be any graph satisfy-
ing Definition 4.2. Then there exists a generalized back-door set relative to (X,Y )

and G if and only if Y /∈ adj(X,RX) and D-SEP(X,Y,RX) ∩ possibleDe(X,G) =
∅. Moreover, if such a generalized back-door set exists, then D-SEP(X,Y,RX) is
such a set.

The definitions of R∗ and RX in Definition 4.2 are needed in Theorem 4.1 to
ensure that D-SEP(X,Y,RX) ∩ possibleDe(X,G) 
= ∅ implies that there does not
exist a generalized back-door set relative to (X,Y ) and G; see also Example 8.

For DAGs, CPDAGs and MAGs we can simplify Theorem 4.1 somewhat; see
Corollaries 4.1–4.3. Corollary 4.1 is the well-known result for DAGs that we dis-
cussed earlier. Corollary 4.3 is given without proof, since it follows straightfor-
wardly from Theorem 4.1.
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COROLLARY 4.1 (Generalized back-door set for a DAG). Let X and Y be two
distinct vertices in a DAG D. Then there exists a generalized back-door set relative
to (X,Y ) and D if and only if Y /∈ pa(X,D). Moreover, if such a generalized back-
door set exists, then pa(X,D) is such a set.

COROLLARY 4.2 (Generalized back-door set for a CPDAG). Let X and Y

be two distinct vertices in a CPDAG C. Let CX be the graph obtained from C by
removing all directed edges out of X. Then there exists a generalized back-door set
relative to (X,Y ) and C if and only if Y /∈ pa(X,C) and Y /∈ possibleDe(X,CX).
Moreover, if such a generalized back-door set exists, then pa(X,C) is such a set.

COROLLARY 4.3 (Generalized back-door set for a MAG). Let X and Y be
two distinct vertices in a MAG M. Then there exists generalized backdoor set rel-
ative to (X,Y ) and M if and only if Y /∈ adj(X,MX) and D-SEP(X,Y,MX) ∩
de(X,M) = ∅. Moreover, if such a generalized back-door set exists, then
D-SEP(X,Y,MX) is such a set.

5. Examples. We now give several examples to illustrate the theory for
DAGs, CPDAGs, MAGs and PAGs.

5.1. DAG examples. We start with an example that shows that the generalized
back-door criterion for DAGs is weaker than Pearl’s back-door criterion for DAGs,
in the sense that it can happen that there is no set that satisfies Pearl’s back-door
criterion, while there is a set that satisfies the generalized back-door criterion.

EXAMPLE 1. Consider the DAG D in Figure 2(a) with X = {X1,X3,X4} and
Y = {Y }. We first show that W = ∅ is a generalized back-door set relative to
(X,Y) and D. Note that we cannot use Theorem 4.1 since X is a set. We there-
fore work with Definition 3.7 directly. We only need to check that the back-door
path from X4 to Y is blocked by W ∪ X \ {X4} = {X1,X3}, which is the case
since X3 is a noncollider on the path. Indeed, we have that f (y|do(x1, x3, x4)) =
f (y|x1, x3, x4) in Figure 2(a), which can be further simplified to f (y|x3).

On the other hand, there is no set that satisfies Pearl’s back-door criterion (Defi-
nition 3.8) with respect to (X,Y). To see this, note that {X2,X3,X4} ⊆ de(X1,D).

(a) (b)

FIG. 2. DAG examples. (a) The DAG D for Example 1. (b) The DAG D for Example 3.
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Hence, the only possible candidate set is W = ∅. But this set does not block the
back-door path from X4 to Y , since there is no collider on this path.

Next, we note that the generalized back-door criterion is not necessary for iden-
tifying post-intervention distributions. Two simple examples are given below.

EXAMPLE 2. Let X and Y be two distinct vertices in G, where G represents
a DAG, CPDAG, MAG or PAG. If X←* Y in G, then Y ∈ adj(X,RX) for any RX

satisfying Definition 4.2. Hence Theorem 4.1 implies that there does not exist a
generalized back-door set relative to (X,Y ) and G.

On the other hand, it is clear that f (y|do(x)) = f (y) for any density f compat-
ible with G, since the edge X←* Y implies that there cannot be a possibly directed
path from X to Y in G; see Lemma 7.5 below.

EXAMPLE 3. Let D be the DAG in Figure 2(b), and let X = {X1,X2} and
Y = {Y }. Then there does not exist a generalized back-door set relative to (X,Y)

and D. To see this, note that the only candidate variable Z cannot be used, since
it is a descendant of X1. Moreover, W = ∅ violates condition (B-ii) in Defini-
tion 3.7 for X2, since W ∪ X \ {X2} = {X1} does not block the back-door path
X2 ← Z → Y .

On the other hand, f (y|do(x1, x2)) = ∫
f (z|x1)f (y|x2, z) dz for any density f

compatible with D, by the g-formula.

5.2. CPDAG examples. We now illustrate the theory for CPDAGs. In Exam-
ple 5, there is a set that satisfies the generalized back-door criterion, while in Ex-
ample 4 there is none.

EXAMPLE 4. In the CPDAG C in Figure 3(a), f (y|do(x)) is not identifiable.
To see this, note that the Markov equivalence class represented by this CPDAG
contains three DAGs. Without loss of generality, we denote these by D1,D2

(a) (b)

FIG. 3. CPDAG examples. (a) The CPDAG C for Example 4. (b) The CPDAG C′ for Example 5.
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and D3, where we assume that D1 contains the sub-graph X ← V2 → Y , D2 con-
tains the sub-graph X ← V2 ← Y , and D3 contains the sub-graph X → V2 → Y .
In D1 and D2 there is no directed path from X to Y , so that f (y|do(x)) = f (y) for
any density f compatible with D1 or D2. In D3, however, there is a directed path
from X to Y . Hence, one can easily construct a density f that is compatible with
D3 such that f (y|do(x)) 
= f (y). This implies that f (y|do(x)) is not identifiable.
This implies that there cannot be a generalized back-door set relative to (X,Y )

and C.
We now apply Theorem 4.1 to the CPDAG C to check if this leads to the

same conclusion. Note that G = C and R∗ = {D3}. Hence, we take R = D3
and the corresponding RX = D3. We then have D-SEP(X,Y,RX) = {V1,V2,V3}
and possibleDe(X,G) = {V2, Y }. Hence, D-SEP(X,Y,RX)∩ possibleDe(X,G) =
{V2}, and Theorem 4.1 correctly says that it is impossible to satisfy the generalized
back-door criterion relative to (X,Y ) and C.

Finally, we check if Corollary 4.2 also yields the same result. Note that CX = C
and Y ∈ possibleDe(X,CX) = {V2, Y }. Hence, we again find that it is impossible
to satisfy the generalized back-door criterion relative to (X,Y ) and C.

EXAMPLE 5. In the CPDAG C′ in Figure 3(b), f (y|do(x)) is identifiable and
equals f (y), since there is no possibly directed path from X to Y in C′.

We now check if we also arrive at this conclusion by applying Theorem 4.1.
Note that there are two DAGs in the Markov equivalence class described by C′,
namely D′

1 with the edge X → V2 and D′
2 with the edge X ← V2. Thus in

Theorem 4.1, we have G = C′ and R∗ = {D′
1}. Hence we take R = D′

1 and
the corresponding RX = D′

1. Note that Y /∈ adj(X,RX) = {V1,V2,V3} and
D-SEP(X,Y,RX) = {V1,V3} and possibleDe(X,G) = {V2,V4}. Hence,
D-SEP(X,Y,RX)∩possibleDe(X,G) = ∅, and D-SEP(X,Y,RX) = {V1,V3} sat-
isfies the generalized back-door criterion relative to (X,Y ) and C′. We can indeed
check that the set {V1,V3} satisfies the conditions in Definition 3.7.

Finally, we also apply Corollary 4.2. Note that C′
X = C′. Moreover, Y /∈

pa(X,C′) and Y /∈ possibleDe(X,C′
X). Hence, pa(X,C′) = {V1,V3} satisfies the

generalized back-door criterion relative to (X,Y ) and C′.

5.3. MAG examples. Next, we illustrate the theory for MAGs. In Examples 6
and 7, there does not exist a generalized back-door set relative to (X,Y ) and the
given MAGs. In Example 6, this is due to Y ∈ adj(X,MX), while in Example 7,
it is due to D-SEP(X,Y,MX) ∩ de(X,M) 
= ∅.

EXAMPLE 6. Consider the MAG M consisting of the invisible edge X → Y ,
and suppose we are interested in f (y|do(x)). Then underlying DAG could be
as in Figure 4(a), where L is unobserved. This is a well-known example where
f (y|do(x)) is not identifiable.
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(a) (b)

FIG. 4. MAG examples. (a) A possible DAG described by the MAG in Example 6, where L is latent.
(b) The MAG M for Example 7.

We now apply Corollary 4.3 to check if we indeed find that it is impossible
to satisfy the generalized back-door criterion relative to (X,Y ) and M. We have
that M = MX is the graph X → Y . Hence, Y ∈ adj(X,MX), which leads to the
correct conclusion.

EXAMPLE 7. Consider the MAG M in Figure 4(b) and apply Corollary 4.3
with X = {X} and Y = {Y }. Since the edge X → V3 is visible, MX is con-
structed from M by removing this edge. We then have D-SEP(X,Y,MX) =
{V1,V2,V3} and de(X,M) = {V3,V5, Y }. Hence the intersection of de(X,M) and
D-SEP(X,Y,MX) is nonempty, and it follows that there is no generalized back-
door set relative to (X,Y ) and M.

Indeed, we see that it is impossible to satisfy conditions (B-i) and (B-ii) in Def-
inition 3.7. In order to block the back-door path 〈X,V2,V4, Y 〉, we must include
V2 or V4 in our set W, but doing so opens the collider V2 on the back-door path
〈X,V2,V3,V5, Y 〉. Hence, the latter path must be blocked by V3 or V5. But both
these vertices are descendants of X in M, and are therefore not allowed by condi-
tion (B-i).

5.4. PAG example. Finally, Example 8 is an example where there exists a gen-
eralized back-door set relative to some (X,Y ) and a PAG. This example also illus-
trates that there may be subsets of D-SEP(X,Y,RX) in Theorem 4.1 that satisfy
the generalized back-door criterion. In other words, Theorem 4.1 may yield a non-
minimal set. Hence, if one is interested in a minimal generalized back-door set,
one could consider all subsets of D-SEP(X,Y,RX). Example 8 also illustrates
why RX is required to satisfy Definition 4.2.

EXAMPLE 8. Consider the PAG P in Figure 5(a), and suppose we are inter-
ested in f (y|do(x)). Note that the MAG R =M as given in Figure 5(b) is in R∗;
see Definition 4.2. We will apply Theorem 4.1 using the corresponding graph RX ,
which is as M but without the edge X → Y . We then have Y /∈ adj(X,RX) and
D-SEP(X,Y,RX) ∩ possibleDe(X,G) = {V1,V2} ∩ {V3,V4, Y } = ∅. Hence The-
orem 4.1 implies that {V1,V2} is a generalized back-door set relative to (X,Y )
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(a) (b)

FIG. 5. PAG example. (a) The PAG P for Example 8. (b) A possible MAG M for Example 8.

and P . One can easily verify that all subsets of {V1,V2} are also generalized back-
door sets relative to (X,Y ) and P , since all back-door paths from X to Y are
blocked by the collider V4 on these paths. This shows that D-SEP(X,Y,RX) is
not minimal.

This example also shows the importance of Definition 4.2. To see this, let
R′ be as R, but with the edge X ← V3 instead of X → V3, so that there is
an additional edge into X. Then D-SEP(X,Y,R′

X) = {V1,V2,V3}, and we get
D-SEP(X,Y,R′

X)∩possibleDe(X,G) = {V3} 
= ∅. This shows that applying The-

orem 4.1 with R′
X instead of RX leads to incorrect results.

6. Discussion. In this paper, we generalize Pearl’s back-door criterion [Pearl
(1993)] to a generalized back-door criterion for DAGs, CPDAGs, MAGs and
PAGs. We also provide easily checkable necessary and sufficient criteria for the
existence of a generalized back-door set, when considering a single intervention
variable and a single outcome variable. Moreover, if such a set exists, we provide
an explicit set that satisfies the generalized back-door criterion. This set is not nec-
essarily minimal, so if one is interested in a minimal set, one could consider all
subsets.

Although effects that can be computed via the generalized back-door criterion
are only a subset of all identifiable causal effects, we hope that the generalized
back-door criterion will be useful in practice, and will make it easier to work
with CPDAGs, MAGs and PAGs. Moreover, combining our results for CPDAGs
and PAGs with fast causal structure learning algorithms such as the PC algorithm
[Spirtes, Glymour and Scheines (2000)] or the FCI algorithm [Claassen, Mooij
and Heskes (2013), Colombo et al. (2012), Spirtes, Glymour and Scheines (2000)]
yields a computationally efficient way to obtain information on causal effects when
assuming that the observational distribution is faithful to the true unknown causal
DAG with or without hidden variables. To our knowledge, the prediction algorithm
of Spirtes, Glymour and Scheines (2000) is the only alternative approach under
the same assumptions, but the prediction algorithm is computationally much more
complex.

The IDA algorithm [Maathuis et al. (2010), Maathuis, Kalisch and Bühlmann
(2009)] has been designed to obtain bounds on causal effects when assuming that
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the observational distribution is faithful to the true underlying causal DAG without
hidden variables. IDA roughly combines the PC algorithm with Pearl’s back-door
criterion. We could now apply a similar approach in the setting with hidden vari-
ables, by combining the FCI algorithm with the generalized back-door criterion
for MAGs.

Possible directions for future work include studying the exact relationship be-
tween the prediction algorithm and our generalized back-door criterion, general-
izing the results in Section 4 to allow for sets X and Y and extending the recent
results of Van der Zander, Liśkiewicz and Textor (2014) to CPDAGs and PAGs.

7. Proofs.

7.1. Proofs for Section 3. In order to prove Theorem 3.1, we formulate so-
called invariance conditions that will turn out to be sufficient for adjustment; see
Definition 7.1 and Theorem 7.1 below. First, we briefly define what is meant by
invariance. We refer to Zhang (2008a) for full details.

Let Y, Z and X be three subsets of vertices in a causal DAG D, where
X ∩ Y = Y ∩ Z = ∅. Then a density f (y|z) is said to be entailed to be invariant
under interventions on X given D if fX:=x(y|z) = f (y|z) for all causal Bayesian
networks (D, f ), where the subscript X := x denotes do(X = x). (This notation
is used since X and Z are allowed to overlap.) The density f (y|z) is said to be
entailed to be invariant under interventions on X given a CPDAG C, a MAG M or
a PAG P if it is entailed to be invariant under interventions on X given all DAGs
represented by C, M or P , respectively.

DEFINITION 7.1 (Invariance criterion). Let X, Y and W be pairwise disjoint
sets of vertices in G, where G is a DAG, CPDAG, MAG or PAG. Then W satisfies
the invariance criterion relative to (X,Y) and G if the following two conditions
hold for any density f compatible with G:

(I-i) f (w|do(x)) = f (w);
(I-ii) f (y|do(x),w) = f (y|x,w).

In other words, conditions (I-i) and (I-ii) state that f (w) and f (y|x,w) are en-
tailed to be invariant under interventions on X given G. The conditions are also
closely related to the conditions in equation (9) of Pearl (1993). We note that con-
dition (I-i) is trivially satisfied if W = ∅.

THEOREM 7.1. Let X, Y and W be pairwise disjoint sets of vertices in G,
where G is a DAG, CPDAG, MAG or PAG. If W satisfies the invariance criterion
relative to (X,Y) and G, then it satisfies the adjustment criterion relative to (X,Y)

and G.



A GENERALIZED BACK-DOOR CRITERION 1077

PROOF. If W = ∅, condition (I-ii) immediately gives f (y|do(x)) = f (y|x).
Otherwise, we have

f
(
y|do(x)

) =
∫

w
f

(
y,w|do(x)

)
dw =

∫
w

f
(
y|w,do(x)

)
f

(
w|do(x)

)
dw.(1)

Under conditions (I-i) and (I-ii), the right-hand side of (1) simplifies to
∫

w f (y|w,

x)f (w) dw. �

Spirtes, Glymour and Scheines (1993, 2000), Zhang (2008a) formulated invari-
ance results for DAGs, MAGs and PAGs. We derive a similar result for CPDAGs
and then summarize the results for all these types of graphs in Theorem 7.2.

THEOREM 7.2 (Graphical criteria for invariance). Let X,Y,Z be three subsets
of observed vertices in G, where G represents a DAG, CPDAG, MAG or PAG.
Moreover, let X ∩ Y = Y ∩ Z = ∅. Then f (y|z) is entailed to be invariant under
interventions on X given G if and only if:

(1) for every X ∈ X∩Z, every m-connecting definite status path, if any, between
X and any member of Y given Z \ {X} is out of X with a visible edge;

(2) for every X ∈ X ∩ (possibleAn(Z,G) \ Z), there is no m-connecting definite
status path between X and any member of Y given Z;

(3) for every X ∈ X \ possibleAn(Z,G), every m-connecting definite status
path, if any, between X and any member of Y given Z is into X.

PROOF. One can easily check that the conditions reduce to the appropriate
conditions for DAGs, MAGs and PAGs [Zhang (2008a), Proposition 18, Theo-
rem 24 and Theorem 30]. The result for CPDAGs can be proved analogously. �

Note that X ∩ Z, X ∩ (possibleAn(Z,G) \ Z) and X \ possibleAn(Z,G) form a
partition of X. Hence, only one of the conditions in Theorem 7.2 is relevant for a
given X ∈ X.

We also need the following basic property of PAGs and CPDAGs:

LEMMA 7.1 [Basic property of CPDAGs and PAGs; Lemma 1 of Meek (1995)
for CPDAGs, and Lemma 3.3.1 of Zhang (2006) for PAGs]. For any three ver-
tices A, B and C in a CPDAG C or PAG P , the following holds: if A*→B � * C,
then there is an edge between A and C with an arrowhead at C, namely A*→C.
Furthermore, if the edge between A and B is A → B , then the edge between A

and C is either A �→C or A → C (i.e., not A ↔ C).

We now show that the invariance conditions in Definition 7.1 are equivalent to
the graphical conditions of Definition 3.7.
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THEOREM 7.3. The generalized back-door criterion (Definition 3.7) is equiv-
alent to the invariance criterion (Definition 7.1).

PROOF. We first show that condition (B-ii) of Definition 3.7 is equivalent to
condition (I-ii) of Definition 7.1. We use Theorem 7.2 with (X′,Y′,Z′), where
X′ = X, Y′ = Y and Z′ = X ∪ W. Then X′ ⊆ Z′, and clause (1) of the theo-
rem yields that (I-ii) is equivalent to the following: for every X ∈ X, every m-
connecting definite status path, if any, between X and any member of Y given
(X ∪ W) \ {X} is out of X with a visible edge. This is equivalent to condition (B-
ii) by our definition of a back-door path; see Definition 3.2.

By Lemma 7.2 (below), condition (B-i) of Definition 3.7 is equivalent to condi-
tion (B-i)′ of Remark 3.1.

We now show that condition (B-i)′ is equivalent to condition (I-i) in Defini-
tion 7.1. We use Theorem 7.2 with (X′,Y′,Z′), where X′ = X, Y′ = W and
Z′ = ∅. Then Z′ = possibleAn(Z′,G) = ∅ and clause (3) of the theorem yields
that (I-i) is equivalent to the following condition (I-i)′: for every X ∈ X, every m-
connecting definite status path, if any, between X and any member of W is into X.
We now show that (I-i)′ is equivalent to (B-i)′.

First suppose that W violates (B-i)′. Then there are W ∈ W and X ∈ X such
that there is a possibly directed definite status path p from X to W . Since p is
possibly directed, it is not into X and it cannot contain colliders. Hence, it is an m-
connecting definite status path between X and W that is not into X. This violates
(I-i)′.

Now suppose that W violates (I-i)′. Then there are W ∈ W and X ∈ X such
that there is an m-connecting definite status path between X and W that is not
into X. Let p = 〈X = U1, . . . ,Uk = W 〉 be such a path. Then every nonendpoint
vertex on p must be a definite noncollider. Suppose that p is not a possibly directed
path from X to W , meaning that there exists an i ∈ {2, . . . , k} such that the edge
between Ui−1 and Ui is into Ui−1. If i = 2, this means that the path is into X,
which is a contradiction. If i > 2, then the edge between Ui−2 and Ui−1 must be
out of Ui−1, since Ui−1 is a definite noncollider. But this means that the edge must
be into Ui−2, since edges of the form � or are not allowed. Continuing this
argument, we find that for all j ∈ {2, . . . , i}, the edge between Uj−1 and Uj is into
Uj−1. But this means that the path is into U1 = X, which is a contradiction. Hence,
p is a possibly directed path from X to W . Together with the fact that p is of a
definite status, this violates (B-i)′. �

LEMMA 7.2. Let X and Y be two distinct vertices in G, where G is a DAG,
CPDAG, MAG or PAG. If Y ∈ possibleDe(X,G), then there is a possibly di-
rected definite status path p = 〈X = U1, . . . ,Uk = Y 〉 from X to Y . Moreover,
if Ui−1*→Ui for some i ∈ {2, . . . , k}, then Uj−1 → Uj for all j ∈ {i + 1, . . . , k}.
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PROOF. If G is a DAG or a MAG, the lemma is trivially true. So let G be a
CPDAG or a PAG, and assume that Y ∈ possibleDe(X,G). This implies that there
is a possibly directed path from X to Y in G. Let p = 〈X = U1, . . . ,Uk = Y 〉 be
a shortest such path. If p is of length one, then the Lemma is trivially true. So
assume that the length of p is at least two, that is, k ≥ 3.

We first show that p is a definite status path. Note that p can contain the follow-
ing edges Ui−1 � �Ui , Ui−1 �→Ui and Ui−1 → Ui (i = 2, . . . , k). We now consider
a sub-path p(Ui−1,Ui+1) = 〈Ui−1,Ui,Ui+1〉 of p, for some i ∈ {2, . . . , k − 1}.

This sub-path cannot be of the form Ui−1 �→Ui
� �Ui+1 or Ui−1 �→Ui

�→Ui+1.
To see this, suppose that the sub-path takes such a form. Then Lemma 7.1 im-
plies the edge Ui−1*→Ui+1. Suppose that this edge is into Ui−1; that is, it is
Ui−1 ↔ Ui+1. Then Lemma 7.1 applied to Ui+1 ↔ Ui−1 �→Ui implies the edge
Ui+1*→Ui , which is a contradiction. If the edge Ui−1*→Ui+1 is not into Ui−1,
then p is not a shortest possibly directed path.

Similarly, the sub-path cannot be of the form Ui−1 → Ui
� �Ui+1 or Ui−1 →

Ui
�→Ui+1. To see this, suppose that the sub-path takes such a form. Then

Lemma 7.1 implies the edge Ui−1 �→Ui+1 or Ui−1 → Ui+1. In either case, p is
not a shortest possibly directed path.

Moreover, if the sub-path is of the form Ui−1 � �Ui
� �Ui+1, Ui−1 � �Ui

�→
Ui+1 or Ui−1 � �Ui → Ui+1, then it must be unshielded. To see this, suppose that
the sub-path takes such a form and is not unshielded. If the edge between Ui−1
and Ui+1 is into Ui−1, then Lemma 7.1 applied to Ui+1*→Ui−1 � �Ui implies the
edge Ui+1*→Ui , which is a contradiction. If the edge between Ui−1 and Ui+1 is
not into Ui−1, then p is not a shortest possibly directed path.

Hence, p can only contain triples of the form Ui−1 �→Ui → Ui+1 or Ui−1 →
Ui → Ui+1, or of the form Ui−1 � �Ui

� �Ui+1, Ui−1 � �Ui
�→Ui+1 or Ui−1 � �

Ui → Ui+1 where Ui−1 and Ui+1 are not adjacent. In all these cases, the middle
vertex Ui is a definite noncollider, so that p is a definite status path. Finally, if
Ui−1*→Ui for some i ∈ {2, . . . , k}, it follows that Uj−1 → Uj for all j ∈ {i +
1, . . . , k}. �

PROOF OF THEOREM 3.1. This follows directly from Theorems 7.1 and 7.3.
�

PROOF OF LEMMA 3.1. Conditions (P-i) and (B-i) are trivially equivalent for
DAGs. We therefore only show that (P-ii) implies (B-ii), by contradiction. Thus,
suppose that W blocks all back-door paths between X ∈ X and Y ∈ Y in D, but
there exist X ∈ X and Y ∈ Y such that there is a back-door path p from X to Y

that is not blocked by W ∪ X \ {X}. This means that: (i) no noncollider on p is in
W ∪ X \ {X}, (ii) all colliders on p have a descendant in W ∪ X \ {X}, (iii) there
is at least one collider on p that has a descendant in X \ {X} but not in W. Among
all colliders satisfying (iii), let Q be the one that is closest to Y on p, and let X′
denote a descendant of Q in X \ {X}. Then the directed path q(Q,X′) from Q to
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X′ is m-connecting given W, since it is a path consisting of noncolliders and none
of its vertices are in W. Moreover, the sub-path p(Q,Y ) of p is m-connecting
given W by construction. But this means that q(X′,Q) ⊕ p(Q,Y ) is a back-door
path from X′ to Y that is m-connecting given W. This contradicts (P-ii). �

7.2. Proofs for Section 4. We first give several lemmas, starting with a result
about m-connection in MAGs. This result basically says that replacing condition
(b) in Definition 3.5 by “every collider on the path is an ancestor of some member
of Z ∪ {X,Y }” does not change the m-separation relations in a MAG.

LEMMA 7.3 [Richardson (2003), Corollary 1]. Let X and Y be two distinct
vertices and Z be a subset of vertices in a mixed graph M, with Z∩{X,Y } = ∅. If
there is a path between X and Y in M on which no noncollider is in Z and every
collider is in an(Z ∪ {X,Y },M), then there is a path (not necessarily the same
path) m-connecting X and Y given Z in M.

PROOF OF LEMMA 4.1. Let G be an ancestral graph. First, we note that (iii)
trivially implies (i). Next, we show that (i) implies (ii), or equivalently, that not (ii)
implies not (i). Thus, suppose that Y ∈ D-SEP(X,Y,G). Then there is a collider
path between X and Y such that every vertex on the path is an ancestor of {X,Y }
in G. This path is m-connecting given any subset of the remaining vertices, by
Lemma 7.3.

Next, we show that (ii) implies (iii). Suppose that Y /∈ D-SEP(X,Y,G). If
there is no path between X and Y in G, then X and Y are trivially m-separated
by any subset of the remaining vertices. Thus, assume that there is at least one
path between X and Y . Consider an arbitrary such path, and call it p. Since
Y /∈ D-SEP(X,Y,G), we have Y /∈ adj(X,G). Hence the length of p must be at
least two. We will show that p is blocked by D-SEP(X,Y,G).

Suppose p starts with X ← V . Then V ∈ D-SEP(X,Y,G), since V ∈ an(X,G).
Since V is a noncollider on p, this implies that p is blocked by D-SEP(X,Y,G).

Suppose p is of the form X*→V → ·· · → Y . Then V ∈ an(Y,G), so that V ∈
D-SEP(X,Y,G). Since V is a noncollider on p, this implies that p is blocked by
D-SEP(X,Y,G).

Suppose p starts with X*→V → ·· · and the sub-path p(V,Y ) of p contains
at least one collider. Let C be the collider closest to V on p. Then V ∈ an(C,G).
If C /∈ an(D-SEP(X,Y,G),G), then p is blocked by D-SEP(X,Y,G). Hence, sup-
pose C ∈ an(D-SEP(X,Y,G),G). Since any vertex in D-SEP(X,Y,G) is an ances-
tor of {X,Y } in G, this implies C ∈ an({X,Y },G) and hence V ∈ an({X,Y },G)

and V ∈ D-SEP(X,Y,G). Since V is a noncollider on p, p is blocked by
D-SEP(X,Y,G).

Suppose p is a collider path of the form X*→ ↔ ·· · ←* Y . Then at least one
of the colliders is not in an({X,Y },G), since otherwise Y ∈ D-SEP(X,Y,G).
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Let C be the collider closest to X on p that is not in an({X,Y },G). Then
C /∈ an(D-SEP(X,Y,G),G). Hence, p is blocked by D-SEP(X,Y,G).

Suppose p is of the form X*→ ↔ ·· · ↔ V ← W · · ·Y , with W 
= Y (W = Y

was treated in the previous case) and the sub-path p(X,V ) is allowed to be
of length one (i.e., X*→V ). If W ∈ D-SEP(X,Y,G), then p is blocked by
D-SEP(X,Y,G). So suppose that W /∈ D-SEP(X,Y,G). Then there does not ex-
ist a collider path between X and W such that each vertex on the path is in
an({X,Y },G). This implies that there is a collider on the sub-path p(X,W) of
p that is not in an({X,Y },G). Among such vertices, let Z be the one that is clos-
est to X on p(X,W). Then Z /∈ an(D-SEP(X,Y,G),G). Hence, p is blocked by
D-SEP(X,Y,G).

Finally, if G is a MAG, two vertices are adjacent if and only if no subset of the
remaining variables can m-separate them. Hence, (i) and (iv) are equivalent for
MAGs. �

The following lemma says that we can check the existence of m-connecting
definite status back-door paths in G by checking the existence of m-connecting
paths in RX , where RX is any graph satisfying Definition 4.2. This lemma is
closely related to Lemma 5.1.7 of Zhang (2006) and Lemmas 26 and 27 of Zhang
(2008a).

LEMMA 7.4. Let X and Y be two distinct vertices and Z be a subset of vertices
in G, where G is a DAG, CPDAG, MAG or PAG. Let RX be any graph satisfying
Definition 4.2. Then there is a definite status m-connecting back-door path from X

to Y given Z in G if and only if there is an m-connecting path between X and Y

given Z in RX .

PROOF. Let R ∈ R∗ and RX satisfy Definition 4.2. We first prove the “only
if” statement. Suppose there is a definite status m-connecting back-door path p

from X to Y given Z in G. Let p′ and p′′ be the corresponding paths in R and RX ,
consisting of the same sequence of vertices. (Note that p′′ exists by the definition of
RX and the fact that p is a back-door path in G.) Then the path p′ is m-connecting
given Z in R. The path p′′, however, is not necessarily m-connecting in RX , since
it may happen that there is a collider Q on the path such that Q ∈ an(Z,R) but
Q /∈ an(Z,RX). But this can only occur if Q ∈ an(X,RX). Hence, p′′ satisfies the
following properties: no noncollider on p′′ is in Z and every collider on p′′ is in
an(Z ∪ {X},RX). It then follows from Lemma 7.3 that there is an m-connecting
path between X and Y given Z in RX .

We now prove the “if” statement. Suppose that there is an m-connecting path
p′′ between X and Y given Z in RX . Let p′ be the corresponding path in R,
consisting of the same sequence of vertices. Then p′ is also m-connecting given
Z in R. Moreover, p does not start with a visible edge out of X in G, because p′′
exists in RX . By Lemma 2′ in the proof of Lemma 5.1.7 of Zhang (2006), it then
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follows that there exists an m-connecting definite status back-door path between
X and Y given Z in G. �

The next lemma is used several times to derive a contradiction.

LEMMA 7.5. Let U and V be two distinct vertices in G, where G denotes a
DAG, CPDAG, MAG or PAG. Then G cannot have both a possibly directed path
from U to V and an edge of the form V *→U .

PROOF. This lemma is trivial for DAGs and MAGs, since they cannot contain
(almost) directed cycles. So we only show the result for CPDAGs and PAGs. Let
G denote the CPDAG or PAG, and suppose that G contains an edge of the form
V *→U as well as a possibly directed path from U to V in G. Then there is also
a possibly directed definite status path p = 〈U = U1, . . . ,Uk = V 〉 from U to V

in G, by Lemma 7.2. The path p has the following properties: if Ui−1*→Ui for
some i ∈ {2, . . . , k}, then Uj−1 → Uj for all j ∈ {i + 1, . . . , k}, and the length of
p must be at least two, because of the edge V *→U .

If p is fully directed, there is an (almost) directed cycle in any DAG or MAG in
the Markov equivalence class described by G, which violates the ancestral prop-
erty.

Otherwise, if p contains a directed sub-path, let p(Ud,V ) be the longest di-
rected sub-path. Then the sub-path p(U,Ud) must be of the form U � � · · · � �Ud

or U � � · · · � � �→Ud . In either case, the edge V *→U and repeated applications of
Lemma 7.1 imply the edge V *→Ud . This gives an (almost) directed cycle together
with the directed path p(Ud,V ) in any DAG or MAG in the Markov equivalence
class described by G. This again contradicts the ancestral property.

Otherwise, p does not contain a directed sub-path. Let T be the vertex pre-
ceding V on the path. Then the path has one of the following two forms:
U � � · · · � �T � �V or U � � · · · � �T �→V . The edge V *→U and repeated appli-
cations of Lemma 7.1 yield the edge V *→T , which contradicts T � �V or T �→V .

�

Theorem 4.1 requires a DAG or MAG in R∗; see Definition 4.2. The following
lemma establishes such a DAG or MAG exists, since R∗ is always nonempty. This
result is closely related to constructions in Ali et al. (2005), Theorem 2 of Zhang
(2008b) and Lemma 27 of Zhang (2008a).

LEMMA 7.6. Let G be a PAG (CPDAG) with k edges into X, k ∈ {0,1, . . .}.
Then there exists at least one MAG (DAG) R in the Markov equivalence class
represented by G that has k edges into X.

PROOF. Building on the work of Meek (1995), Theorem 2 of Zhang (2008b)
gives a procedure to create a MAG (DAG) in the Markov equivalence class repre-
sented by a PAG (CPDAG) G. One first replaces all partially directed ( �→) edges
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in G by directed (→) edges. Next, one considers the circle component GC of G,
that is, the sub-graph of G consisting of nondirected ( � �) edges and orients this
into a directed graph without directed cycles and unshielded colliders. The first
step of this procedure only creates tail marks, and hence cannot yield an additional
edge into X. For the second step, we will argue that we can construct such a graph
that does not have any edges into X.

First, we note that GC is chordal; that is, any cycle of length four or more has a
chord, which is an edge joining two vertices that are not adjacent in the cycle; see
the proof of Lemma 4.1 of Zhang (2008b). Any chordal graph with more than one
vertex has two simplicial vertices, that is, vertices V such that all vertices adjacent
to V are also adjacent to each other [e.g., Golumbic (1980)]. Hence, GC must have
at least one simplicial vertex that is different from X. We choose such a vertex V1
and orient any edges incident to V1 into V1. Since V1 is simplicial, this does not
create unshielded colliders. We then remove V1 and these edges from the graph.
The resulting graph is again chordal [e.g., Golumbic (1980)] and therefore again
has at least one simplicial vertex that is different from X. Choose such a vertex V2,
and orient any edges incident to V2 into V2. We continue this procedure until all
edges are oriented. The resulting ordering is called a perfect elimination scheme
for GC . By construction, this procedure yields an acyclic directed graph without
unshielded colliders. Moreover, since X is chosen as the last vertex in the perfect
elimination scheme, we do not orient any edges into X. �

LEMMA 7.7. Let X and Y be two distinct vertices in G, where G is a DAG,
CPDAG, MAG or PAG. Let RX be any graph satisfying Definition 4.2. If V ∈
D-SEP(X,Y,RX) ∩ possibleDe(X,G), then V ∈ an(Y,RX).

PROOF. Let RX satisfy Definition 4.2, and let V ∈ D-SEP(X,Y,RX) ∩
possibleDe(X,G). This means that there is a collider path p1 between X and V

in RX such that every vertex on the path is an ancestor of X or Y in RX . In par-
ticular, V ∈ an({X,Y },RX).

We first show that V ∈ pa(X,RX) leads to a contradiction. Thus, suppose there
is an edge X ← V in RX . By construction of RX , G then contains an edge of
the form X←�V or X ← V , but this forms a contradiction together with V ∈
possibleDe(X,G), by Lemma 7.5.

We now show that V ∈ an(X,RX) \ pa(X,RX) leads to a contradiction. Thus
suppose there is a directed path from V to X in RX of the form 〈V, . . . ,W,X〉,
where V 
= W and W 
= X. By construction of RX , the edge W → X must also be
into X in G, so that G contains W �→X or W → X. Since V ∈ possibleDe(X,G),
there is a possibly directed path pxv from X to V in G. Since RX contains a
directed path from V to W , G must also contain a possibly directed path pvw

from V to W . This implies that pxv ⊕pvw is a possibly directed path from X to W

in G, so that W ∈ possibleDe(X,G). But this forms a contradiction with W �→X

or W → X in G, by Lemma 7.5.
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Hence, we must have V ∈ an(Y,RX). �

We can now prove the main result in Section 4.

PROOF OF THEOREM 4.1. Let RX satisfy Definition 4.2. We first show that
Y ∈ adj(X,RX) or D-SEP(X,Y,RX) ∩ possibleDe(X,G) 
= ∅ implies that there
does not exist a generalized back-door set relative to (X,Y ) and G, since no
set W can satisfy conditions (B-i) and (B-ii) in Definition 3.7. Thus suppose
that Y ∈ adj(X,RX). Then there is a definite status back-door path of length
one in G that cannot be blocked. Hence condition (B-ii) cannot be satisfied by
any set W. Next, suppose that there exists some vertex V ∈ D-SEP(X,Y,RX) ∩
possibleDe(X,G) 
= ∅. Then there is a collider path p1 between X and V in RX

such that every vertex on the path is in an({X,Y },RX). Moreover, by Lemma 7.7,
there is a directed path p2 from V to Y in RX . Now consider p = p1 ⊕ p2.
All nonendpoint vertices on p that are not on p2 are colliders on p and in
an({X,Y },RX). The remaining nonendpoint vertices on p are noncolliders and
in possibleDe(X,G) [since V ∈ possibleDe(X,G)], so that including them in W
violates condition (B-i). It then follows by Lemma 7.3 that for any subset W sat-
isfying condition (B-i), there exists an m-connecting path between X and Y given
W in RX . By Lemma 7.4, this means that we cannot block all definite status back-
door paths from X to Y in G without violating condition (B-i).

We now prove the other direction. Thus suppose that Y /∈ adj(X,RX) and
D-SEP(X,Y,RX)∩possibleDe(X,G) =∅. Then we need to show that D-SEP(X,

Y,RX) satisfies conditions (B-i) and (B-ii) of Definition 3.7. Condition (B-i)
is satisfied trivially, since D-SEP(X,Y,RX) ∩ possibleDe(X,G) = ∅. To prove
that condition (B-ii) is satisfied as well, we first show Y /∈ D-SEP(X,Y,RX),
by contradiction. Thus, suppose Y ∈ D-SEP(X,Y,RX) ⊆ D-SEP(X,Y,R). By
Lemma 4.1, this implies Y ∈ adj(X,R). Since Y /∈ adj(X,RX), this implies that
X → Y in G with a visible edge. But this means that Y ∈ possibleDe(X,G), so that
D-SEP(X,Y,RX)∩ possibleDe(X,G) 
= ∅. This is a contradiction, which implies
Y /∈ D-SEP(X,Y,RX). Hence D-SEP(X,Y,RX) m-separates X and Y in RX by
Lemma 4.1 (we use here that RX is ancestral). By Lemma 7.4, this implies that
D-SEP(X,Y,RX) blocks all definite status back-door paths from X to Y in G, so
that condition (B-ii) is satisfied. �

PROOF OF COROLLARY 4.1. Although this result for DAGs is well known,
we show how one can derive this from Theorem 4.1. Note that DX is the
graph obtained by removing all directed edges out of X from D. Moreover,
D-SEP(X,Y,DX) = pa(X,D) and possibleDe(X,D) = de(X,D). Now the con-
dition Y /∈ adj(X,DX) is equivalent to Y /∈ pa(X,D). The other condition
D-SEP(X,Y,DX) ∩ possibleDe(X,D) = ∅ reduces to pa(X,D) ∩ de(X,D) = ∅,
and this is fulfilled automatically by the acyclicity of D. Hence Theorem 4.1 re-
duces to the given statement. �



A GENERALIZED BACK-DOOR CRITERION 1085

PROOF OF COROLLARY 4.2. Let D be a DAG in the Markov equivalence
class represented by C, constructed without orienting additional edges into X. Let
DX be obtained from D by removing all directed edges out of X that were directed
out of X in C. Let CX be obtained from C by removing all directed edges out of X.

We first show that Y ∈ pa(X,C) or Y ∈ possibleDe(X,CX) imply Y ∈ adj(X,

DX) or D-SEP(X,Y,DX) ∩ possibleDe(X,C) 
= ∅. Thus suppose Y ∈ pa(X,C).
Then Y ∈ adj(X,DX). Next, suppose Y ∈ possibleDe(X,CX). It can be easily
shown that CX satisfies the basic property of Lemma 7.1, that A → B � �C im-
plies A → C (since all edges that are removed are directed edges out of X). Hence,
Lemma 7.2 applies to CX , and it follows that there is a possibly directed definite
status path from X to Y in CX . All nonendpoint vertices on this path must be
definite noncolliders. By construction of CX , the first edge on this path must be
nondirected in CX , and by construction of DX , this edge must be oriented out of X

in DX . This implies that the entire path must be directed from X to Y in DX , since
all nonendpoint vertices are noncolliders. Let V be the vertex adjacent to X on
the path. Then V ∈ D-SEP(X,Y,DX). Moreover, V ∈ possibleDe(X,C). Hence
D-SEP(X,Y,DX) ∩ possibleDe(X,C) 
=∅.

We now show that D-SEP(X,Y,DX) ∩ possibleDe(X,C) 
= ∅ or Y ∈ adj(X,

DX) imply Y ∈ pa(X,C) or Y ∈ possibleDe(X,CX). Thus suppose that Y ∈
pa(X,C) imply Y ∈ pa(X,C) or Y ∈ possibleDe(X,CX). Thus suppose Y ∈
adj(X,DX). Then either X ← Y or X � �Y in C. This implies that Y ∈ pa(X,C) or
Y ∈ possibleDe(X,CX). Next, suppose that there exists a vertex V ∈ D-SEP(X,Y,

DX) ∩ possibleDe(X,C). Note that V ∈ D-SEP(X,Y,DX) implies: (i) V ∈
pa(X,DX) or (ii) V ∈ ch(X,DX) ∩ an(Y,DX) or (iii) V ∈ pa(ch(X,DX) ∩
an(Y,DX)). By construction of DX , case (i) implies V ∈ pa(X,C). But this is
in contradiction with V ∈ possibleDe(X,C), by Lemma 7.5. In case (ii), we have
X → V and a directed path from V to Y in DX , so that Y ∈ de(X,DX). Similarly,
we can obtain Y ∈ de(X,DX) in case (iii). This implies Y ∈ possibleDe(X,CX) in
cases (ii) and (iii).

The above shows the following: if Y ∈ pa(X,C) or Y ∈ possibleDe(X,CX), then
it is impossible to satisfy the generalized back-door criterion relative to (X,Y )

and C. On the other hand, if Y /∈ pa(X,C) and Y /∈ possibleDe(X,CX), then
D-SEP(X,Y,DX) satisfies the generalized back-door criterion relative to (X,Y )

and C. It is left to show that in the latter case, we can replace D-SEP(X,Y,DX)

by pa(X,C). Since pa(X,C) ⊆ D-SEP(X,Y,DX), it is clear that pa(X,C) satisfies
condition (B-i) of Definition 3.7. We will now show that it also satisfies condition
(B-ii).

Thus, suppose that Y /∈ pa(X,C) and Y /∈ possibleDe(X,CX). Consider a defi-
nite status back-door path p = 〈X = U1, . . . ,Uk = Y 〉 from X to Y in C. Since p

is a back-door path, it must start with X ← U2 or X � �U2. Moreover, the length
of p is at least two. If X ← U2, then it is clear that pa(X,C) blocks p. If X � �U2,
then p cannot have a sub-path of the form Ui−1 � �Ui ← Ui+1, i ∈ {2, . . . , k − 1},
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because Ui is of a definite status. Moreover, p cannot be possibly directed, because
then Y ∈ possibleDe(X,CX). Hence, there must be at least one collider on p. Let
Q be the collider on p that is closest to X. Then the sub-path p(X,Q) is a possi-
bly directed path from X to Q in C. Suppose that Q is an ancestor of some vertex
W ∈ pa(X,C) in C. Then there is a possibly directed path from X to W in C, as
well as an edge W → X. But this is impossible by Lemma 7.5. Hence, Q cannot
be an ancestor of any member of pa(X,C) in C. This implies that p is blocked by
pa(X,C). �
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