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ON NONNEGATIVE UNBIASED ESTIMATORS

BY PIERRE E. JACOB1,2 AND ALEXANDRE H. THIERY2

University of Oxford and National University of Singapore

We study the existence of algorithms generating almost surely nonnega-
tive unbiased estimators. We show that given a nonconstant real-valued func-
tion f and a sequence of unbiased estimators of λ ∈ R, there is no algo-
rithm yielding almost surely nonnegative unbiased estimators of f (λ) ∈ R+.
The study is motivated by pseudo-marginal Monte Carlo algorithms that rely
on such nonnegative unbiased estimators. These methods allow “exact infer-
ence” in intractable models, in the sense that integrals with respect to a tar-
get distribution can be estimated without any systematic error, even though
the associated probability density function cannot be evaluated pointwise.
We discuss the consequences of our results on the applicability of pseudo-
marginal algorithms and thus on the possibility of exact inference in in-
tractable models. We illustrate our study with particular choices of functions
f corresponding to known challenges in statistics, such as exact simulation
of diffusions, inference in large datasets and doubly intractable distributions.

1. Introduction.

1.1. Exact inference through unbiased estimators. Consider the problem of
estimating the integral of a function ϕ with respect to a probability distribution
with density π . A successful Markov chain Monte Carlo or sequential Monte Carlo
method allows us to estimate integrals with respect to π in such a way that the error
can be reduced down to zero by producing more samples. We call these methods
“exact” since there is no systematic error in the estimation, even though the sam-
pling error can be large for a given computational budget. Using the Metropolis–
Hastings algorithm, exact inference is possible when the target probability density
function π can be evaluated pointwise up to a multiplicative constant.

The possibility of performing exact inference without relying on evaluations of
the target probability density function is an important open question. A class of
exact methods, called pseudo-marginal Metropolis–Hastings, has been proposed
in Andrieu and Roberts (2009), generalizing and validating methods developed
in population genetics [Beaumont (2003)] and lattice quantum chromodynamics
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[Kennedy and Kuti (1985)]. Pseudo-marginal methods rely on nonnegative un-
biased estimators of density evaluations π(x) instead of the evaluations them-
selves. In a related manner, Del Moral, Doucet and Jasra (2007), Fearnhead, Pa-
paspiliopoulos and Roberts (2008), Fearnhead et al. (2010), Liu and Chen (1998),
Tran et al. (2013) show that sequential Monte Carlo methods remain exact when
the importance weights are replaced by nonnegative unbiased estimators thereof.

The applicability of exact methods has thus been considerably extended since
estimating π(x) is generally easier than evaluating it. For instance, in the com-
mon case where the cost of evaluating the likelihood function grows at least lin-
early with the size of the dataset, pointwise posterior density evaluations become
prohibitive for large datasets but can potentially be estimated using subsampling
[Kleiner et al. (2014), Welling and Teh (2011)]. In state space models, the like-
lihood involves an intractable integral over a latent stochastic process but can be
estimated using particle filters [Andrieu, Doucet and Holenstein (2010)]. In other
settings, the likelihood cannot be evaluated because it involves an intractable nor-
malizing constant, such as in “doubly intractable” models commonly found in spa-
tial statistics and graphical models [Everitt (2012), Girolami et al. (2013), Møller
et al. (2006)]. Even for simple models and small datasets, the use of reference
priors for an objective Bayesian analysis leads to posterior probability density
functions that cannot be evaluated pointwise [Berger, Bernardo and Sun (2009)]
for they involve limits or infinite sums. In each case, exact inference can still be
achieved through a pseudo-marginal approach, provided that an appropriate non-
negative unbiased estimator π̂ (x) is available.

Generic techniques to obtain unbiased estimators from biased ones, referred to
as “debiasing techniques,” have been developed independently in various fields
and recently reviewed and generalized in McLeish (2011), Rhee and Glynn
(2012, 2013). The combination of debiasing techniques and pseudo-marginal
methods provides a promising roadmap to perform exact inference in a very gen-
eral setting. Unfortunately unbiased estimators π̂(x), as produced by current de-
biasing techniques, can take negative values with positive probability, even if their
expectations π(x) are known to be nonnegative. These negative values prevent
the direct use of unbiased estimators within a pseudo-marginal Markov chain al-
gorithm. Likewise, standard sequential Monte Carlo methods cannot be directly
implemented when negative values can be encountered.

One might want to avoid the sign problem completely by using unbiased esti-
mators that only take nonnegative values. In other words, one might hope to find
a debiasing technique which satisfies a sign constraint. We propose to study the
design of such algorithms. In Section 1.2 we recall the main ideas behind debias-
ing techniques and highlight the connection with the Bernoulli factory [Keane and
O’Brien (1994)]. In Section 1.3 we describe applications in statistics. In Section 2
we present a result stating the nonexistence of generic schemes to obtain nonneg-
ative unbiased estimators. In Section 3 we discuss their existence under additional
conditions, which in practice require additional model-specific information. The
results and further research venues are discussed in Section 4.



ON NONNEGATIVE UNBIASED ESTIMATORS 771

1.2. Designing unbiased estimators. Our results are connected to the litera-
ture on debiasing techniques and Bernoulli factories. In computational physics,
Kuti (1982) uses a method to unbiasedly estimate some elements of the inverse of
a matrix without fully inverting it, while Wagner (1987) proposes unbiased estima-
tors of functional integrals; both methods are inspired by an unpublished scheme
of J. von Neumann and S. M. Ulam. A similar idea has been proposed by Rychlik
(1990) for estimating the derivative of a regression function and by Rychlik (1995)
for kernel density estimation. More recently McLeish (2011) and then Rhee and
Glynn (2012, 2013) have proposed a general scheme to remove the bias of a se-
quence of consistent estimators (Sn)n≥0 of a quantity λ ∈ R, satisfying

lim
n→∞E(Sn) = E(S) = λ.(1.1)

In equation (1.1), the quantity S can either be thought of as a random variable
that is impossible to generate in finite time and Sn as an approximation of S, or
simply as the desired, and generally unknown value S = λ. Suppose that one can
sample from Sn for each n ≥ 0. Let N be an integer-valued random variable that
is independent of the sequence (Sn)n≥0 and that can take arbitrary large values.
Under mild assumptions, with the convention S−1 = 0, the weights wn = 1/P(N ≥
n) are such that the random sum

Y =
N∑

n=0

wn × (Sn − Sn−1)(1.2)

is an unbiased estimator of λ. The following result gives a condition for its second
moment to be finite.

THEOREM 1.1 [Theorem 1 of Rhee and Glynn (2013)]. Introduce a random
variable S with E(S) = λ ∈ R. Let (Sn)n≥0 be a sequence of random variables, let
N be an integer valued random variable that can take arbitrarily large values and
set wn = 1/P(N ≥ n). Under the condition

∞∑
n=1

wn ×E
(|S − Sn−1|2)

< ∞,(1.3)

the random variable Y = ∑N
n=0 wn × (Sn − Sn−1), with the convention S−1 = 0, is

well defined, has expectation E(Y ) = E(S) = λ and a finite second moment

E
(
Y 2) =

∞∑
n=0

wn × (
E

(|S − Sn−1|2) −E
(|S − Sn|2))

< ∞.

The “debiased” estimator Y also generalizes the random truncation approach
discussed in Girolami et al. (2013), Papaspiliopoulos (2011) and references
therein. The random variable N could be replaced by a stopping time. Since the
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random sum in equation (1.2) only involves an almost surely finite number of
terms, the estimator Y is straightforward to simulate.

In the case where the quantity of interest λ is nonnegative, the random sum in
equation (1.2) can still take negative values, even if the original estimators (Sn)n≥0
were all almost surely nonnegative; this is because each increment (Sn − Sn−1)

can potentially be negative. An important exception occurs when the estimators
(Sn)n≥0 are ordered, that is, Sn ≥ Sn−1 almost surely. With exact inference in mind,
one can wonder about the existence of other debiasing techniques which, unlike Y

of equation (1.2), would only yield nonnegative values. Section 2 will introduce a
framework to study that question.

Our framework will also be related to Bernoulli factories, which have been
introduced in the seminal article of Keane and O’Brien (1994). Given a subset
P ⊂ [0,1] and a function f :P → [0,1], a Bernoulli factory generates Bernoulli
random variables with success probability f (p) given as input an independent se-
quence of Bernoulli random variables with success probability p ∈ P ; of course
the algorithm does not have access to the value p. The existence of such an
algorithm depends on the subset P and on the function f considered. For in-
stance, there does not exist an algorithm for f :p �→ 2p and P = [0,1/2]; maybe
surprisingly, there does exist an algorithm for the same function f and the set
P = [0,1/2 − ε] for any ε > 0. It will become apparent in Section 3.2 that the
construction of nonnegative unbiased estimators shares many similarities with the
Bernoulli factory.

To summarize, debiasing techniques allow us to construct unbiased estimators
of generic quantities but do not ensure that the resulting estimates are nonnegative.
On the other hand Bernoulli factories always produce nonnegative variables, but
require Bernoulli variables as input. In general we are interested in the existence
of algorithms producing nonnegative unbiased estimators of f (E[X]) for some
function f :R→R+ and real-valued random variables X.

1.3. Applications. Some specific choices of function f are of special interest
in applied probability and statistics, especially the exponential f :x �→ exp(x) and
the inverse f :x �→ 1/x.

The exponential case appears whenever log-likelihood evaluations can be
unbiasedly estimated. An algorithm generating unbiased estimates of exp(λ)

from a stream of unbiased estimates of λ is referred to as a Poisson estima-
tor in the literature on perfect simulation and inference for diffusion processes
[Beskos, Papaspiliopoulos and Roberts (2006), Beskos and Roberts (2005), Beskos
et al. (2006), Fearnhead, Papaspiliopoulos and Roberts (2008), Jourdain and Sbai
(2007), Olsson and Ströjby (2011), Sermaidis et al. (2015)], and the first oc-
currence might be in Bhanot and Kennedy (1985). On a finite interval [0, T ],
the probability distribution Q on the space of continuous functions C([0, T ],R)

generated by a scalar diffusion processes with unit volatility coefficient dXt =
μ(Xt) dt + dWt has, under mild regularity assumptions on the drift function
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μ :R→R, a Radon–Nikodym derivative with respect to the standard Wiener mea-
sure W that can be expressed as

dQ

dW

(
(xt )

T
t=0

) = exp
(∫ T

t=0
�(xt ) dt

)
for an explicit function � :R → R given by Girsanov’s theorem. As described
in Beskos et al. (2006), unbiased estimates of the integral

∫ T
t=0 �(xt ) dt can

be obtained by standard importance sampling. The existence of a Poisson es-
timator allows us to transform these samples into an unbiased estimate of
(dQ/dW)((xt )

T
t=0), which can then be used for exact inference.

The exponential case also appears in the context of inference for large datasets,
where the posterior probability density function π is expensive to evaluate point-
wise. Indeed the log-likelihood �(θ) = ∑n

i=1 logf (yi | θ) of n � 1 independent
observations (yi)

n
i=1 can be unbiasedly estimated at reduced cost by using a ran-

dom subsample of only m 	 n observations. For instance, given any m ≥ 1, the
quantity �̂(θ) = (n/m)

∑m
i=1 logf (yσi

| θ), where (σi)
m
i=1 are drawn uniformly in

{1, . . . , n}, is an unbiased estimator of �(θ).
The choice f :x �→ 1/x appears in the context of doubly intractable models

[Girolami et al. (2013), Walker (2011)] where the observations are assumed to
follow a distribution with density

f (y | θ) = g(y, θ)∫
g(s, θ) ds

for a function (y, θ) �→ g(y, θ) that can be evaluated pointwise. The denominator
Z(θ) = ∫

g(s, θ) ds is generally intractable, which prevents the use of the stan-
dard Metropolis–Hastings algorithm to obtain posterior estimates. Nevertheless
Z(θ) can be unbiasedly estimated by standard importance sampling. Would a non-
negative estimator of 1/Z(θ) be available, a pseudo-marginal approach could be
implemented.

2. Existence of nonnegative unbiased estimation schemes.

2.1. Algorithms and factories. For any nonempty measurable space X ⊂ R,
let M1(X ) be the set of probability distributions on X with finite first moment and
conv(X ) the smallest interval containing X . For μ ∈ M1(X ) we use the notation
m1(μ) = ∫

X xμ(dx) for the mean of μ; indeed, m1(μ) ∈ conv(X ) for any μ ∈
M1(X ). The distribution of the random variable X is denoted by D(X). Let L2(X )

be the space of square integrable random variables on X . The indicator function of
a set A is denoted by 1A, and 1x for some x ∈ R denotes the Dirac delta function
centered at x. An unbiased estimator of a quantity λ ∈ R is called a U -estimator
of λ, or a U+-estimator in the case where it is almost surely nonnegative.

For a function f : conv(X ) → R+, we propose to study the existence of
f -factories, defined as devices taking as input U -estimators of λ ∈ conv(X ) with
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support on X , and producing U+-estimators of f (λ). Borrowing ideas from Keane
and O’Brien (1994), we first define rigorously a class of algorithms that we will
consider practical.

DEFINITION 2.1. Let X be a subset of R. An X -algorithm A is a pair (T ,ϕ)

where T = (Tn)n≥1 is a sequence of functions Tn : (0,1) ×X n → {0,1}, and ϕ =
(ϕn)n≥1 is a sequence of functions ϕn : (0,1) ×X n →R+.

An X -algorithm A ≡ (T ,ϕ) takes an infinite sequence x = (xn)n≥1 ∈ X∞ and
an auxiliary variable u ∈ (0,1) as input and produces as output

A(u, x) = ϕτ (u, x1, . . . , xτ )

with τ = τ(u, x) = inf{n ≥ 1 :Tn(u, x1, . . . , xn) = 1}. We adopt the convention
A(u, x) = ∞ when {n ≥ 1 :Tn(u, x1, . . . , xn) = 1} = ∅ and say in this case that
the algorithm does not terminate. In the applications that we have in mind, the in-
finite sequence x = (xn)n≥1 ∈ X∞ is the realization of an independent sequence
of random variables X = (Xn)n≥1, and the variable u ∈ (0,1) is the realization
of a random variable U ∼ Uniform(0,1) independent of X. In this case, we say
that the algorithm almost surely terminates if P(τ < ∞) = 1. Definition 2.1 trans-
lates the fact that a valid algorithm uses a possibly random amount of inputs and
that the decision to stop acquiring more inputs only relies on the information con-
tained in the already acquired inputs.

The variable U allows the algorithm to be randomized: on top of the sequence
(Xn)n≥1 it can sample additional random variables. Specifying a single auxil-
iary variable U ∼ Uniform(0,1) or an infinite independent sequence (Un)n≥1
of uniforms is equivalent. Indeed, one can construct an infinite sequence of in-
dependent Bernoulli random variables by considering the binary expansion of
U ∼ Uniform(0,1), and then partition the expansion into disjoint infinite sub-
sequences to obtain an infinite number of binary representations of independent
uniform random variables.

DEFINITION 2.2. Let X be a subset of R and f : conv(X ) → R+ a func-
tion. An f -factory A ≡ (ϕ,T ) is an X -algorithm such that for any distribution
π ∈ M1(X ), an independent sequence X = (Xn)n≥1 marginally distributed as π

and an auxiliary random variable U ∼ Uniform(0,1) independent of (Xn)n≥1, the
random variable Y =A(U,X) is a nonnegative unbiased estimator of f (m1(π)).

The condition E(A(U,X)) = f (m1(π)) implies that the algorithm terminates
with probability one when fed with the independent sequence X = (Xn)n≥1 and
U ∼ Uniform(0,1). Importantly the definition implies that an f -factory should
work for any distribution π ∈ M1(X ).
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2.2. Nonexistence of general f -factories. We first consider the general case
X = R, where the unbiased estimators used as input can take any real value.

THEOREM 2.1. For any nonconstant function f :R → R+, no f -factory ex-
ists.

PROOF. For the sake of contradiction, suppose that there exists a nonconstant
function f :R → R+ and an R-algorithm (ϕ,T ) as in Definition 2.2; because f

is not constant, there exist two real numbers λX,λY ∈ R with f (λX) > f (λY ).
Choose any distribution μX ∈ M1(R) with m1(μX) = λX , and consider a se-
quence X = (Xn)n≥1 marginally distributed according to μX . For ε > 0 and an
independent sequence of Bernoulli random variables (Bn)n≥1 with success proba-
bility P(Bn = 1) = 1 − P(Bn = 0) = 1 − ε, independent from any other source of
randomness, the sequence Y = (Yn)n≥1 defined by

Yn = BnXn + λY − λX(1 − ε)

ε
(1 − Bn)(2.1)

is such that E(Yn) = λY . For any integer n we have Yn = Xn with arbitrarily large
probability 1 − ε, where ε can be chosen arbitrarily small, while λY and λX are
distinct and fixed; this construction is pivotal in all the proofs of this article.

Let us first give an informal description of the proof. We will compare the out-
puts of the algorithm for the two input sequences (Xn)n≥1 and (Yn)n≥1 and a
common auxiliary variable U . Suppose first that the algorithm terminates after
n steps when fed with the sequence (Xn)n≥1. By tuning the value of ε we can
make the events {(Y1, . . . , Yn) �= (X1, . . . ,Xn)} arbitrarily rare. On the other hand
the expected outputs are set to f (λX) for (Xn)n≥1 and f (λY ) for (Yn)n≥1, with
f (λY ) < f (λX). Hence, when the rare events {(Y1, . . . , Yn) �= (X1, . . . ,Xn)} do
occur, the algorithm using (Y1, . . . , Yn) needs to output a value sufficiently smaller
than the value produced by the algorithm using (X1, . . . ,Xn), so that the expected
output can shift from f (λX) to f (λY ). However, the algorithm is not allowed to
produce negative values so that the minimum output is zero. This would lead to a
contradiction when the events {(Y1, . . . , Yn) �= (X1, . . . ,Xn)} are rare enough.

More formally denote by μY the marginal law of each Yn, namely

μY (dy) = (1 − ε)μX(dy) + ε1ε−1(λY −λX(1−ε))(dy).

The joint law on ([0,1],RN,RN) of the random variables (U, (Xn)n≥1, (Yn)n≥1) is
denoted by μ̌; the marginal of μ̌ on its first two arguments is (Uniform(0,1),μ⊗N

X ),
and the marginal on its first and third arguments is (Uniform(0,1),μ⊗N

Y ). We de-
note by Ě the expectation with respect to μ̌ and by EU,X and EU,Y the expectations
with respect to those two marginals, respectively.

Recall that the stopping times

τX = inf
{
n :Tn(U,X1, . . . ,Xn) = 1

}
, τY = inf

{
n :Tn(U,Y1, . . . , Yn) = 1

}
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are by assumption almost surely finite and

EU,X

(
ϕτX

(U,X1, . . . ,XτX
)
) = f (λX), EU,Y

(
ϕτY

(U,Y1, . . . , YτY
)
) = f (λY ).

Notice further that

τX1Ln∩Mn = τY 1Ln∩Mn,

where we have defined the sets Ln = {ω : τX ≤ n} and Mn = {ω :B1 = · · · = Bn =
1} ⊆ {ω :X1 = Y1, . . . ,Xn = Yn}. Since ϕτY

is almost surely nonnegative, we have
for all n ≥ 1,

EU,Y

(
ϕτY

(U,Y1, . . . , YτY
)
) = Ě

(
ϕτY

(U,Y1, . . . , YτY
)
)

≥ Ě
(
ϕτY

(U,Y1, . . . , YτY
)1Ln∩Mn

)
(2.2)

= Ě
(
ϕτX

(U,X1, . . . ,XτX
)1Ln∩Mn

)
.

The random variables (Bn)n≥1 are independent of any other source of randomness
so that for all n ≥ 1, we have

Ě
(
ϕτX

(U,X1, . . . ,XτX
)1Ln∩Mn

)
= (1 − ε)nĚ

(
ϕτX

(U,X1, . . . ,XτX
)1Ln

)
(2.3)

= (1 − ε)nEU,X

(
ϕτX

(U,X1, . . . ,XτX
)1Ln

)
.

The dominated convergence theorem yields

lim
n→∞EU,X

(
ϕτX

(U,X1, . . . ,XτX
)1Ln

) = EU,X

(
ϕτX

(U,X1, . . . ,XτX
)
)

= f (λX)

so that for any δ > 0, there exists n0 = n0(δ) ∈N such that for all n ≥ n0,

f (λX) − δ ≤ EU,X

(
ϕτX

(U,X1, . . . ,XτX
)1Ln

) ≤ f (λX).(2.4)

One can choose δ > 0 and η > 0 such that f (λY ) + η < f (λX) − δ. Equations
(2.2), (2.3) and (2.4) yield that for some integer n0 = n0(δ) and any ε > 0, we
have

f (λY ) = EU,Y

(
ϕτY

(U,Y1, . . . , YτY
)
) ≥ Ě

(
ϕτX

(U,X1, . . . ,XτX
)1Ln0∩Mn0

)
= (1 − ε)n0EU,X

(
ϕτX

(U,X1, . . . ,XτX
)1Ln0

)
≥ (1 − ε)n0

(
f (λX) − δ

)
> (1 − ε)n0

(
f (λY ) + η

)
.

We obtain a contradiction for ε > 0 small enough. �

Theorem 2.1 indicates in particular that given U -estimators (Xn)n≥1 of a quan-
tity λ and without additional knowledge on these estimators, we cannot obtain
U+-estimators of neither exp(λ) nor 1/λ.
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Another question of interest arises in the case where X = R, we are given
U -estimators of a quantity λ > 0 and we want to construct a U+-estimator Y of
the same quantity λ. This is not exactly equivalent to asking whether there exists
an f -factory for f :x �→ x, first because we have only defined f -factories for f

taking values in R+, and second because in Definition 2.2 the algorithm should
work for any variable distributed as π ∈ M1(R), whereas here we only consider
distributions with expectation in R+.

LEMMA 2.1. Let η ≥ 0 be a known constant. There does not exist an
R-algorithm A ≡ (ϕ,T ) such that for any independent sequence X = (Xn)n≥1

marginally distributed as π ∈ M1(R) with m1(π) > η and an auxiliary ran-
dom variable U ∼ Uniform(0,1) independent from (Xn)n≥1, the random variable
Y = A(U,X) is a nonnegative unbiased estimator of m1(π).

PROOF. We follow the same arguments as in the proof of Theorem 2.1. Con-
sider λX,λY ∈ R+ with λX > λY > η, and an algorithm A ≡ (ϕ,T ) as in the
statement of Lemma 2.1. Let μX ∈ M1(R) with m1(μX) = λX , and consider an
sequence X = (Xn)n≥1 marginally distributed according to μX . One can define Y

as in equation (2.1). Since E(Y ) = λY ≥ 0, one can construct the same contradic-
tion as in the proof of Theorem 2.1. �

The presence of η ≥ 0 in the statement might seem cumbersome but emphasizes
that the contradiction does not stem from distributions with expectation arbitrarily
close to zero. According to the Lemma 2.1, even if one knows that a sequence of
estimators has expectation larger than one, say, it is still impossible to design an
algorithm transforming that sequence into a nonnegative random variable with the
same expectation.

In the light of the nonexistence of f -factories when X = R, as stated in Theo-
rem 2.1, we propose to study their existence when X is a subset of R in the next
section.

3. Existence under stronger assumptions.

3.1. Case where X = [a,+∞) or X = (−∞, b].

LEMMA 3.1. Let a, b ∈R be two real numbers:

• For an f -factory to exist with X = [a,∞) and f :X →R+, f must be increas-
ing.

• For a g-factory to exist with X = (−∞, b] and g :X →R+, g must be decreas-
ing.



778 P. E. JACOB AND A. H. THIERY

PROOF. By symmetry we prove only the first assertion. For the sake of con-
tradiction assume that there exist a ≤ λX < λY with f (λX) > f (λY ) and an algo-
rithm A ≡ (ϕ,T ) as in Definition 2.2. Choose any distribution μX ∈ M1([a,∞))

with m1(μX) = λX and an independent sequence X = (Xn)n≥1 marginally dis-
tributed according to μX . For ε ∈ (0,1), consider the sequence Y = (Yn)n≥1 as
defined in equation (2.1). For ε > 0 small enough we have D(Y ) ∈ M1([a,∞))

since λY > λX . One can then construct exactly the same contradiction as in the
proof of Theorem 2.1. �

Lemma 3.1 indicates in particular that it is impossible to obtain U+-estimators
of 1/λ given U+-estimators of a quantity λ > 0 without exploiting any other addi-
tional information on the distribution of these U+-estimators. For X = [a,∞) and
some increasing functions f , there can be explicit constructions of f -factories.
For example, there exists an f -factory for any function f : [a,∞) → R+ that can
be expressed as a power series of the type

f (x) =
∞∑

n=0

cn(x − a)n with cn ≥ 0 for all n ≥ 0.(3.1)

Indeed, introduce an independent sequence of random variables (Xn)n≥1 margi-
nally distributed as μX ∈ M1([a,∞)) and an integer-valued random variable N ;
setting the weights wn = 1/P(N ≥ n) as in Section 1.2, Tonelli’s theorem yields
that the estimator

Y =
N∑

n=0

wncn

n∏
k=1

(Xk − a),

where the product is equal to 1 when n = 0, is well defined, is almost surely non-
negative and has expectation f (m1(μX)).

The above discussion gives a construction of a Poisson estimator, that is, a
U+-estimator of λ = exp(E[X]) given a stream (Xn)n≥1 of i.i.d. [a,+∞)-valued
random variables distributed as X. Indeed the exponential function can be ex-
pressed as in equation (3.1) with cn = exp(a)/n!. One can readily check that if
X has a finite variance and if the random variable N does not decay too rapidly to
zero, for instance, P(N ≥ n) ≥ C/(1 + ε)n for some constants C,ε > 0 as is the
case for a geometric random variable, then equation (1.3) holds with

Sn = exp(a) +
n∑

k=1

exp(a)

k!
k∏

j=1

(Xj − a)

and S = S∞. The resulting Poisson estimator is unbiased and has a finite variance.
For increasing functions in general, the existence of f -factories remains an

open question. Denoting by F the class of functions of the form described by
equation (3.1), and by C the class of functions f : [a,+∞) → R+ for which an
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f -factory exists, the previous discussion shows that F ⊂ C, and we conjecture
F = C. For f and g in C, then f + g and f × g are in C. In the special case
a = 0, then f ◦ g is also in C. A random truncation argument also shows that if
h : [a,+∞) → R+ can be expressed as the infinite sum h = ∑

k≥0 fk for func-
tions fk ∈ C, then h ∈ C. The set of functions F is the smallest class of func-
tions that contains positive constants and the function x �→ (x − a) and that is
stable by the above-described operations. Those operations leave C stable be-
cause of simple properties of the expectation, such as linearity and the identity
E[X × Y ] = E[X] × E[Y ] for X independent from Y . Our conjecture is based on
our inability to exploit other properties of the expectation to find functions that
would be in C but not in F .

3.2. Case where X = [a, b]. The case of a bounded interval X = [a, b] is the
most related to the Bernoulli factory described in Section 1.2. We highlight in this
section the similarities and differences between the construction of nonnegative
estimators and Bernoulli factories. We then give a complete characterization of
functions f :X = [a, b] → R+ for which f -factories exist.

Arguments similar to the proof of Theorem 2.1 show that for an f -factory to ex-
ist, the function f :X →R+ has to be continuous. Such a function f :X →R+ is
thus necessarily bounded, and we consider a nontrivial interval [0, γ ] containing its
range. If a Bernoulli factory exists for the function g : [0,1] → [0,1] with g(x) =
f (a(1 − x) + bx)/γ , then there exists an f -factory. Indeed, consider an i.i.d. se-
quence X = (Xn)n≥1 marginally distributed according to μX ∈M1(X ). Introduce
random variables (Bn)n≥1, with Bn := 1Un≤(Xn−a)/(b−a) where (Un)n≥1 is an i.i.d.
sequence of random variables uniformly distributed on (0,1). Then (Bn)n≥1 forms
an i.i.d. sequence of Bernoulli random variables with mean (m1(μX)−a)/(b−a).
Therefore the Bernoulli factory for g takes the sequence (Bn)n≥1 as input and
produces a Bernoulli random variable B̃ with mean g((m1(μX) − a)/(b − a)) =
f (m1(μX))/γ . The random variable γ B̃ is thus a nonnegative unbiased estimator
of m1(μX). As proved in Keane and O’Brien (1994), a necessary and sufficient
condition on g : [0,1] → [0,1] for the existence of a Bernoulli factory is

∃ε > 0,∃n ∈ N,∀x ∈ [0,1] min
(
g(x),1 − g(x)

) ≥ ε min
(
xn, (1 − x)n

)
.

It follows that an f -factory exists as soon as the condition min(f (x), γ −f (x)) ≥
ε min((x − a)n, (b − x)n) is satisfied for some ε > 0, n ∈ N and all x ∈ [a, b].
Theorem 3.1 shows in fact that

∃ε > 0,∃n ∈ N,∀x ∈ [a, b] f (x) ≥ ε min
(
(x − a)n, (b − x)n

)
(3.2)

is a necessary and sufficient condition for an f -factory to exist. The necessary
condition 1 − g(x) ≥ ε min(xn, (1 − x)n) for the Bernoulli factory problem to
have a solution comes from the fact that the Bernoulli factory has to produce a
{0,1}-valued estimator; we only need to construct a [0,∞)-valued estimator and
can thus get away with the weaker condition (3.2).
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THEOREM 3.1. Let X = [a, b] be a real interval and f :X → R+ a contin-
uous function that is not identically zero. There exists an f -factory if and only if
condition (3.2) holds.

PROOF. The sufficiency is proved as a consequence of the results proved in
Keane and O’Brien (1994). The proof of the necessity requires different argu-
ments.

Sufficiency. Let f :X → R+ be a continuous function that satisfies condi-
tion (3.2). Since f is bounded on X , one can find γ ≥ maxx∈X f (x) large enough
such that γ − f (x) > ε min((x − a)n, (b − x)n) for all x ∈ X . The discussion be-
fore the statement of Theorem 3.1 thus shows that an f -factory can be constructed.

Necessity. For notational convenience, we present the proof in the case X =
[0,1]. The general case X = [a, b] is identical. Let A ≡ (T ,ϕ) be an f -factory
for some function f : [0,1] → R+. For x1 : n = (x1, . . . , xn) ∈ {0,1}n and a random
variable U uniformly distributed on (0,1), we denote by Fn(x1 : n) the set of events
such that the algorithm terminates after having processed x1 : n, that is,

Fn(x1 : n) = {
ω : inf

{
1 ≤ k ≤ n :Tk(U,x1, . . . , xk) = 1

} = n
}

with the convention inf{∅} = ∞. We define the expected output given x1 : n by

�n(x1 : n) = E
(
1Fn(x1 : n)ϕn(U,x1, . . . , xn)

)
.

For any index n ≥ 1 and x1 : n ∈ {0,1}n, �n(x1 : n) is a nonnegative real number.
By Definition 2.2 for any z ∈ [0,1] and an i.i.d. sequence (Xn)n≥1 of Bernoulli
random variables with mean z ∈ [0,1], we have

f (z) = E

( ∞∑
n=1

�n(X1 : n)

)
=

∞∑
n=1

∑
x1 : n∈{0,1}n

P(X1 : n = x1 : n)�n(x1 : n).

For any index n ≥ 1 and x1 : n ∈ {0,1}n, defining r = r(x1 : n) = Card{1 ≤ i ≤
n :xi = 1}, we have P(X1 : n = x1 : n) = zr(1 − z)n−r , and the above double sum
can be written as

f (z) =
∞∑

n=1

∑
x1 : n∈{0,1}n

zr(1 − z)n−r�n(x1 : n) = ∑
p,q∈N2

cp,qzp(1 − z)q

for some nonnegative coefficient cp,q ≥ 0. Condition (3.2) follows. �

By Theorem 3.1 it is possible to obtain U+-estimators of exp(λ) or 1/λ given
U -estimators of λ with support in some known interval [a, b]. Indeed, for the ex-
ponential case, one can use either a Bernoulli factory or the Poisson estimator de-
scribed at the end of Section 3.1. For the inverse case on a segment [a, b] ⊂ (0,∞),
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one can use either a Bernoulli factory or a random truncation argument to the series
expansion

1

x
= 1

b

∞∑
k=0

(
b − x

b

)k

to construct an unbiased estimate of λ = 1/E[X] given a stream (Xn)n≥1 of i.i.d.
[a, b]-valued random variables distributed as X.

4. Discussion.

4.1. Summary of the analysis. The results of Section 2.2 show that, for a non-
constant function f :R → R+, the ability to sample an unbiased estimator X of
a quantity λ is not enough to obtain a nonnegative unbiased estimator of f (λ).
However, as described in Section 3, when additional information such as almost
sure lower or upper bounds on X is available, an f -factory might exist. The case
where f is increasing and the support of X is [a,∞) remains partly unsettled.

We have prescribed as input of f -factories unbiased estimators of arbitrary
quantities λ ∈R; other types of input could be envisioned, such as estimators con-
sistent in L2. However, in this case we could first apply a debiasing technique
recalled in Section 1.2 and then feed the output to an f -factory, and hence the con-
clusion would be similar. Finally we have not considered the multi-dimensional
case f :Rd → R+ for d > 1 since, in the context of exact inference, quantities of
interest are posterior density evaluations.

4.2. Exact or inexact inference. An advantage of exact methods, where no
systematic bias remains, is that the error is entirely due to the variation in the
Monte Carlo algorithm and thus is straightforward to quantify and to interpret
[Wagner (1987)]. The trade-off between computational feasibility and exactness is
ubiquitous in statistics, for instance, between Ensemble Kalman filters and particle
filters [Frei and Künsch (2013)] or between approximate Bayesian computation
and Markov chain Monte Carlo [Marin et al. (2012)]. In some contexts such as state
space models, a nonnegative unbiased estimator of the likelihood can be directly
obtained, and the pseudo-marginal approach is proven efficient [Andrieu, Doucet
and Holenstein (2010)]. Our study indicates that in some contexts nonnegative
unbiased estimators cannot be obtained, and thus the pseudo-marginal approach
cannot be applied. Exact inference could still be performed using signed unbiased
estimators, as in the computational physics literature [Girolami et al. (2013), Lin,
Liu and Sloan (2000), Troyer and Wiese (2005)].

In Section 3 the existence of f -factories has been studied under additional as-
sumptions on the support of the input sequence. These assumptions are consistent
with recent Monte Carlo methods for large datasets that take advantage of almost
sure bounds to bypass the evaluation of the full likelihood [Bardenet, Doucet and
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Holmes (2014), Maclaurin and Adams (2014)], leading to exact methods or inex-
act methods with a controlled error. There exist inexact methods with no control of
the bias, which do not require almost sure bounds, such as some approximations
of Metropolis–Hastings algorithms [Ceperley and Dewing (1999), Nicholls, Fox
and Watt (2012)] or of Langevin diffusions [Ahn, Korattikara and Welling (2012),
Chen, Fox and Guestrin (2014), Welling and Teh (2011)].

When f -factories exist as in Section 3, we have discussed implementable
schemes based on the Bernoulli factory or on random truncations of infinite se-
ries. The algorithms considered in Definition 2.2 terminate with probability one,
but the expected computational time is not necessarily finite. Hence even if the
method could be applied in principle, its computational cost might prevent any
practical implementation. The recent literature on Bernoulli factories has focused
on characterizing algorithms that generate the desired output using as few input
variables as possible [Flegal and Herbei (2012), Łatuszyński et al. (2011), Nacu
and Peres (2005), Thomas and Blanchet (2011)], whereas Rhee and Glynn (2012),
Rhee and Glynn (2013) carefully study the expected computational cost of debias-
ing techniques. The minimum computational cost of f -factories could be studied
as well.
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ŁATUSZYŃSKI, K., KOSMIDIS, I., PAPASPILIOPOULOS, O. and ROBERTS, G. O. (2011). Simulat-
ing events of unknown probabilities via reverse time martingales. Random Structures Algorithms
38 441–452. MR2829311

LIN, L., LIU, K. F. and SLOAN, J. (2000). A noisy Monte Carlo algorithm. Phys. Rev. D 61 074505.
LIU, J. S. and CHEN, R. (1998). Sequential Monte Carlo methods for dynamic systems. J. Amer.

Statist. Assoc. 93 1032–1044. MR1649198
MACLAURIN, D. and ADAMS, R. P. (2014). Firefly Monte Carlo: Exact MCMC with subsets of

data. Preprint. Available at arXiv:1403.5693.
MARIN, J.-M., PUDLO, P., ROBERT, C. P. and RYDER, R. J. (2012). Approximate Bayesian com-

putational methods. Stat. Comput. 22 1167–1180. MR2992292
MCLEISH, D. (2011). A general method for debiasing a Monte Carlo estimator. Monte Carlo Meth-

ods Appl. 17 301–315. MR2890424
MØLLER, J., PETTITT, A. N., REEVES, R. and BERTHELSEN, K. K. (2006). An efficient Markov

chain Monte Carlo method for distributions with intractable normalising constants. Biometrika
93 451–458. MR2278096

http://www.ams.org/mathscinet-getitem?mr=2278331
http://www.ams.org/mathscinet-getitem?mr=2433191
http://www.ams.org/mathscinet-getitem?mr=3005805
http://www.ams.org/mathscinet-getitem?mr=2523903
http://www.ams.org/mathscinet-getitem?mr=2758525
http://www.ams.org/mathscinet-getitem?mr=2879671
http://www.ams.org/mathscinet-getitem?mr=3142332
http://arxiv.org/abs/arXiv:1306.4032
http://www.ams.org/mathscinet-getitem?mr=2338086
http://www.ams.org/mathscinet-getitem?mr=2829311
http://www.ams.org/mathscinet-getitem?mr=1649198
http://arxiv.org/abs/arXiv:1403.5693
http://www.ams.org/mathscinet-getitem?mr=2992292
http://www.ams.org/mathscinet-getitem?mr=2890424
http://www.ams.org/mathscinet-getitem?mr=2278096


784 P. E. JACOB AND A. H. THIERY
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