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UNIVERSALLY OPTIMAL DESIGNS FOR TWO
INTERFERENCE MODELS
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A systematic study is carried out regarding universally optimal designs
under the interference model, previously investigated by Kunert and Martin
[Ann. Statist. 28 (2000) 1728–1742] and Kunert and Mersmann [J. Statist.
Plann. Inference 141 (2011) 1623–1632]. Parallel results are also provided
for the undirectional interference model, where the left and right neighbor
effects are equal. It is further shown that the efficiency of any design under
the latter model is at least its efficiency under the former model. Designs
universally optimal for both models are also identified. Most importantly, this
paper provides Kushner’s type linear equations system as a necessary and
sufficient condition for a design to be universally optimal. This result is novel
for models with at least two sets of treatment-related nuisance parameters,
which are left and right neighbor effects here. It sheds light on other models
in deriving asymmetric optimal or efficient designs.

1. Introduction. One issue with the application of block designs in agri-
cultural field trials is that a treatment assigned to a particular plot typically has
effects on the neighboring plots besides the effect on its own plot. See Rees
(1967), Draper and Guttman (1980), Kempton (1982), Besag and Kempton (1986),
Langton (1990), Gill (1993), Goldringer, Brabant and Kempton (1994), Clarke,
Baker and DePauw (2000), David et al. (2001) and Connolly et al. (2008) for ex-
amples in various backgrounds. Interference models have been suggested for the
analysis of data in order to avoid systematic bias caused by these neighbor effects.
Various designs have been proposed by Gill (1993), Druilhet (1999), Filipiak and
Markiewicz (2003, 2005, 2007), Bailey and Druilhet (2004), Ai, Ge and Chan
(2007), Ai, Yu and He (2009), Druilhet and Tinssonb (2012) and Filipiak (2012)
among others. All of them considered circular designs, where each block has a
guard plot at each end so that each plot within the block has two neighbors.

To study noncircular designs, Kunert and Martin (2000) investigated the case
when the block size, say k, is 3 or 4, which is extended by Kunert and Mers-
mann (2011) to t ≥ k ≥ 5, where t is the number of treatments. Both of them
restricted to the subclass of pseudo symmetric designs and the assumption that the
within-block covariance matrix is proportional to the identity matrix. This paper
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provides a unified framework for deriving optimal pseudo symmetric designs for
an arbitrary covariance matrix as well as the general setup of k ≥ 3 and t ≥ 2.
Most importantly, the Kushner’s type linear equations system is developed as a
necessary and sufficient condition for any design to be universally optimal, which
is a powerful device for deriving asymmetric designs. Moreover, a new approach
of finding the optimal sequences are proposed. These results are novel for models
with at least two sets of treatment-related nuisance parameters, which are left and
right neighbor effects here. They shed light on other similar or more complicated
models such as the one in Afsarinejad and Hedayat (2002) and Kunert and Stufken
(2002) for the study of crossover designs. Here, parallel results are also provided
for the undirectional interference model where the left and right neighbor effects
are equal. It is further established that the efficiency of any given design under the
latter model is not less than the one under the former model, for the purpose of
estimating the direct treatment effects.

Throughout the paper, we consider designs in �n,k,t , the set of all possible block
designs with n blocks of size k and t treatments. The response, denoted as ydij ,
observed from the j th plot of block i is modeled as

Ydij = μ + βi + τd(i,j) + λd(i,j−1) + ρd(i,j+1) + εij ,(1)

where Eεij = 0. The subscript d(i, j) denotes the treatment assigned in the j th
plot of block i by the design d : {1,2, . . . , n} × {1,2, . . . , k} → {1,2, . . . , t}. Fur-
thermore, μ is the general mean, βi is the ith block effect, τd(i,j) is the direct
treatment effect of treatment d(i, j), λd(i,j−1) is the neighbor effect of treatment
d(i, j − 1) from the left neighbor, and ρd(i,j+1) is the neighbor effect of treatment
d(i, j + 1) from the right neighbor. One major objective of design theorists is to
find optimal or efficient designs for estimating the direct treatment effects in the
model.

If Yd is the vector of responses organized block by block, model (1) is written
in a matrix form of

Yd = 1nkμ + Uβ + Tdτ + Ldλ + Rdρ + ε,(2)

where β = (β1, . . . , βn)
′, τ = (τ1, . . . , τt )

′, λ = (λ1, . . . , λt )
′ and ρ = (ρ1, . . . , ρt )

′.
The notation ′ means the transpose of a vector or a matrix. Here, we have
U = In ⊗ 1k with ⊗ as the Kronecker product, and 1k represents a vector of
ones with length k. Also, Td , Ld and Rd represent the design matrices for the di-
rect, left neighbor and right neighbor effects, respectively. We assume there is no
guard plots, that is, λd(i,0) = ρd(i,k+1) = 0. Then we have Ld = (In ⊗ H)Td and
Rd = (In ⊗ H ′)Td , where H(i, j) = Ii=j+1 with the indicator function I.

Here, we merely assume Var(ε) = In ⊗ �, with � being an arbitrary k × k

positive definite symmetric matrix. Given a matrix, say G, we define the projection
pr⊥G = I −G(G′G)−G′. The information matrix for the direct treatment effect τ

is

Cd = T ′
dV ′pr⊥(V U |V Ld |V Rd)V Td,(3)
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where V is the matrix such that V 2 = In ⊗ �−1. By direct calculations, we have

Cd = Ed00 − Ed01E
−
d11Ed10,

Ed00 = Cd00,

E′
d10 = Ed01 = (Cd01 Cd02 ) ,

Ed11 =
(

Cd11 Cd12
Cd21 Cd22

)
,

where Cdij = G′
i (In ⊗ B̃)Gj ,0 ≤ i, j ≤ 2 with G0 = Td , G1 = Ld , G2 = Rd and

B̃ = �−1 − �−1Jk�
−1/1′

k�
−11k with Jk = 1k1′

k . It is obvious that Cdij = C′
dji .

For the special case of � = Ik , we have the simplification of B̃ = Ik − k−1Jk =
pr⊥(1k), and the latter is denoted by Bk . Kushner (1997) pointed out that when �

is of type-H , that is, aIk + b1′
k + 1kb

′ with a ∈R and b ∈ R
k , we have

B̃ = Bk/a.(4)

Hence, the choices of designs agree with that for � = Ik . This special case will
be particularly dealt with in Section 5. We allow � to be an arbitrary covariance
matrix throughout the rest of the paper.

Note that a design in �n,k,t could be considered as a result of selecting n el-
ements from the set, S , of all possible tk block sequences with replacement. For
sequence s ∈ S , define the sequence proportion ps = ns/n, where ns is the number
of replications of s in the design. A design is determined by ns, s ∈ S , which is in
turn determined by the measure ξ = (ps, s ∈ S) for any fixed n.

For 0 ≤ i, j ≤ 2, define Csij to be Cdij when the design consists of the single
sequence s, and let Cξij = ∑

s∈S psCsij . Then we have Cdij = nCξij ,0 ≤ i, j ≤ 2.
Similarly, Edij = n

∑
s∈S psEsij = nEξij ,0 ≤ i, j ≤ 1. Note that Cd is a Schur’s

complement of Ad = (Edij )0≤i,j≤1, for which we also have Ad = n
∑

s∈S psAs =
nAξ . It is obvious that Cd = nCξ , where Cξ = Eξ00 − Eξ01E

−
ξ11Eξ10. In ap-

proximate design theory, we try to find the optimal measure ξ among the set
P = {(ps, s ∈ S)|∑s∈S ps = 1,ps ≥ 0} to maximize 
(Cξ ) for a given function

 satisfying the following three conditions [Kiefer (1975)]:

(C.1) 
 is concave.
(C.2) 
(S′CS) = 
(C) for any permutation matrix S.
(C.3) 
(bC) is nondecreasing in the scalar b > 0.

A measure ξ which achieves the maximum of 
(Cξ ) among P for any 
 satisfy-
ing (C.1)–(C.3) is said to be universally optimal. Such measure is optimal under
criteria of A, D, E, T , etc.

The rest of the paper is organized as follows. Section 2 provides some prelimi-
nary results as well as a necessary and sufficient condition for a pseudo symmetric
measure to be universally optimal among P . The latter is critical for deriving the
optimal sequence proportions through an algorithm. Section 3 provides a linear



504 W. ZHENG

equations system of ps, s ∈ S , as a necessary and sufficient condition for a mea-
sure to be universally optimal. Section 4 provides similar results for the model with
λ = ρ. Further, it is shown that the efficiency of any design under the latter model
would be at least its efficiency under model (2). Also, an alternative approach is
given to derive the optimal sequence proportions. Section 5 derives theoretical re-
sults regarding feasible sequences when � is of type-H . Section 6 provides some
examples of optimal or efficient designs for various combinations of k, t, n and �.

2. Pseudo symmetric measure. Let G be the set of all t ! permutations on
symbols {1,2, . . . , t}. For permutation σ ∈ G and sequence s = (t1 · · · tk) with
1 ≤ ti ≤ t and 1 ≤ i ≤ k, we define σs = (σ (t1) · · ·σ(tk)). For measure ξ =
(ps, s ∈ S), we define σξ = (pσ−1s, s ∈ S). A measure is said to be symmetric
if σξ = ξ for all σ ∈ G. For sequence s, denote by 〈s〉 = {σs :σ ∈ G} the symmet-
ric block generated by s. Such symmetric blocks are also called equivalent classes
by Kushner (1997), due to the fact that symmetric blocks generated by two dif-
ferent sequences are either identical or mutually disjoint. Now let m be the total
number of distinct symmetric blocks which partition S . Without loss of generality,
suppose these m symmetric blocks are generated by sequences si , 1 ≤ i ≤ m. Then
we have S = ⋃m

i=1〈si〉. For a symmetric measure, we have

ps = p〈si〉/
∣∣〈si〉∣∣ for s ∈ 〈si〉,1 ≤ i ≤ m,(5)

where p〈si〉 = ∑
s∈〈si〉 ps and |〈si〉| is the cardinality of 〈si〉. The linearity of Ad ,

conditions (C.1)–(C.3) and properties of Schur’s complement together yield the
following lemma.

LEMMA 1. For any measure, say ξ , there exists a symmetric measure, say ξ∗,
such that 
(Cξ ) ≤ 
(Cξ∗) for any 
 satisfying (C.1)–(C.3).

Define a measure to be pseudo symmetric if Cξij ,0 ≤ i, j ≤ 2 are all completely
symmetric. It is easy to verify that a symmetric measure is also pseudo symmetric.
The difference is that (5) does not has to hold for a general pseudo symmetric
measure. Lemma 1 indicates that an optimal measure in the subclass of (pseudo)
symmetric measures is automatically optimal among P . For a pseudo symmetric
measure, we have Cξij = cξijBt/(t − 1) + (1′

tCξij 1t )Jt/t2, 0 ≤ i, j ≤ 2, where
cξij = tr(BtCξijBt ). Hence Eξ11 = Qξ ⊗ Bt/(t − 1) + Q̃ξ ⊗ Jt/t2, where Qξ =
(cξij )1≤i,j≤2 and Q̃ξ = (1′

tCξij 1t )1≤i,j≤2. Now we show that both Qξ and Q̃ξ

are positive definite for any measure, and hence Eξ11 is positive definite for any
pseudo symmetric measure. The latter is the key to prove Theorem 3.

LEMMA 2. Qξ is positive definite for any measure ξ .
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PROOF. It is sufficient to show the nonsingularity of Qs for all s ∈ S . Suppose
Qs is singular, there exists a nonzero vector x = (x1, x2)

′ such that

0 = x′Qsx =
2∑

i=1

2∑
j=1

xixj csij

= tr

( 2∑
i=1

2∑
j=1

xixjBtCsijBt

)
.

Since
∑2

i=1
∑2

j=1 xixjBtCsijBt is a nonnegative definite matrix, we have

0 =
2∑

i=1

2∑
j=1

xixjBtCsijBt

= Bt(x1Ls + x2Rs)
′B̃(x1Ls + x2Rs)Bt ,

which in turn yields

0 = B̃(x1Ls + x2Rs)Bt .(6)

Equation (6) is only possible when each column of M = (x1Ls +x2Rs)Bt consists
of identical entries, that is, the rows of M are identical. In the sequel, we investigate
the possibility of (6) for sequence s = (t1 · · · tk). Define ei to be a zero–one vector
of length t with only its ith entry as one, then the first, second and last rows of M

are given by x2(et2 − 1t /t)′, x1(et1 − 1t /t)′ + x2(et3 − 1t /t)′ and x1(etk−1 − 1t /t)′,
respectively. Now we continue the discussion in the following four cases. (i) If
x1 = x2, the equality of the first two rows of M indicates et1 + et3 − et2 = 1t /t ,
which is impossible since the left-hand side is a vector of integers and the right-
hand side is a vector of fractional numbers. (ii) If x1 �= x2 and t2 = tk−1, the first
and the last rows of M cannot be the same. (iii) If x1 �= x2, t2 �= tk−1 and t = 2, the
equality of the first and the last rows of M necessities x1 + x2 = 0, which together
with the equality of the first two rows of M indicates et1 + et2 − et3 = 1t /t , which
is again impossible. (iv) If x1 �= x2, t2 �= tk−1 and t ≥ 3, by looking at the t2th and
tk−1th entries of the first and last rows of M , (6) necessities x2(1 − 1/t) = −x1/t

and x1(1 − 1/t) = −x2/t which is impossible by simple algebra. �

LEMMA 3. Q̃ξ is positive definite for any measure ξ .

PROOF. Since B̃ has column and row sums as zero. We have

Q̃ξ =
(

B̃(1,1) B̃(1, k)

B̃(k,1) B̃(k, k)

)
,(7)

where B̃(i, j) means the (i, j)th entry in B̃ . For vector x = (x1, x2)
′ ∈ R

2, define
w = (x1,0, . . . ,0, x2)

′ ∈ R
k . For any nonzero x, we have

x′Q̃ξx = w′B̃w > 0,(8)
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in view of the fact that B̃1k = 0, B̃ ≥ 0 and the rank of B̃ is k − 1. Hence, the
lemma is concluded. �

LEMMA 4. For a pseudo symmetric measure, say ξ , we have Cξ = q∗
ξ Bt/(t −

1), where

q∗
ξ = cξ00 − �′

ξQ
−1
ξ �ξ ,(9)

with �ξ = (cξ01, cξ02)
′.

REMARK 1. In proving Lemma 4, we used the equations 1′
tCξ0j = 0, 0 ≤

j ≤ 2. Note that nq∗
ξ is the q∗

d as defined in Kunert and Martin (2000). Lemma 2
shows that only case (i) of the four cases proposed by them is possible. Hence
the generalized inverse Q−

ξ in Kunert and Martin (2000) is now replaced by Q−1
ξ

in (9).

By applying Lemmas 1 and 4, we derive the following proposition.

PROPOSITION 1. Let y∗ = maxξ∈P q∗
ξ . A measure ξ ∈ P is universally op-

timal (i) if it is a pseudo symmetric measure with q∗
ξ = y∗, (ii) if and only if

Cξ = y∗Bt/(t − 1).

Let Rs = (csij )0≤i,j≤2 and Rξ = ∑
s∈S psRs . By Lemma 2 we have q∗

ξ =
det(Rξ )/det(Qξ ), where det(·) means the determinant of a square matrix. For
measure ξ = (ps, s ∈ S), we call the set Vξ = {s :ps > 0, s ∈ S} the support of ξ .
One can identify universally optimal pseudo symmetric measures based on the fol-
lowing theorem. See Zheng (2013b) for an algorithm based on a similar theorem.

THEOREM 1. A pseudo symmetric measure, say ξ , is universally optimal if
and only if det(Rξ ) > 0 and

max
s∈S

[
tr

(
RsR

−1
ξ

) − tr
(
QsQ

−1
ξ

)] = 1.(10)

Moreover, each sequence in Vξ reaches the maximum in (10).

PROOF. If det(Rξ ) = 0, we have q∗
ξ = 0, which means that such design has

no information regarding τ , and hence can be readily excluded from the consider-
ation. In the sequel, we restrict the discussion to the case of det(Rξ ) > 0.

By Lemmas 1, 2 and 4, a pseudo symmetric measure, say ξ , is universally op-
timal if and only if it achieves the maximum of ϕ(ξ) = log(det(Rξ )/det(Qξ )),
which is equivalent to

lim
δ→0

ϕ[(1 − δ)ξ + δξ0] − ϕ(ξ)

δ
≤ 0,(11)
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for any measure ξ0 ∈ P . It is well known that

lim
δ→0

log(det(R(1−δ)ξ+δξ0)) − log(det(Rξ ))

δ
= tr

(
Rξ0R

−1
ξ

) − 3.(12)

The same result holds for Q(ξ) except that 3 should be replaced by 2. By apply-
ing (12) to (11), we have

tr
(
Rξ0R

−1
ξ

) − tr
(
Qξ0Q

−1
ξ

) ≤ 1.(13)

In (13), by setting ξ0 to be a degenerated measure which puts all its mass on a
single sequence, we derive

max
s∈S

(
tr

(
RsR

−1
ξ

) − tr
(
QsQ

−1
ξ

)) ≤ 1.

By taking ξ0 = ξ , we have the equal sign for (13). Also observe that conditioning
on fixed ξ , the left-hand side of (13) is a linear function of the proportions in ξ0.
Thus, we have

max
s∈S

(
tr

(
RsR

−1
ξ

) − tr
(
QsQ

−1
ξ

)) ≥ 1.

Hence, the theorem follows. �

3. The linear equations system: A necessary and sufficient condition for
universal optimality. For sequence s and vector x ∈ R

2, define the quadratic
function qs(x) = cs00 + 2�′

sx + x′Qsx. For measure ξ = (ps, s ∈ S), define
qξ (x) = ∑

s∈S psqs(x) = cξ00 + 2�′
ξ x + x′Qξx. One can verify that q∗

ξ =
minx∈R2 qξ (x). Since qs(x) is strictly convex for all s ∈ S in view of Lemma 2,
thus r(x) := maxs∈S qs(x) is also strictly convex. Let x∗ be the unique point in
R

2 which achieves minimum of r(x) and define T = {s :qs(x
∗) = r(x∗), s ∈ S}.

Recall y∗ = maxξ∈P q∗
ξ and Vξ = {s :ps > 0, s ∈ S}, now we derive Theorem 2

below which is important for proving Theorem 3 and results in Section 4.

THEOREM 2. (i) y∗ = r(x∗). (ii) q∗
ξ = y∗ implies x∗ = −Q−1

ξ �ξ . (iii) q∗
ξ = y∗

implies Vξ ⊂ T .

PROOF. First, we have

y∗ = max
ξ∈P min

x∈R2
qξ (x) ≤ min

x∈R2
max
ξ∈P qξ (x) = min

x∈R2
max
s∈S qs(x) = r(x∗).

Then (i) is proved if we can show y∗ ≥ r(x∗). To see the latter, define T0 =
{s :qs(x

∗) = r(x∗), s ∈ {s1 · · · sm}}. (1) If T0 contains a single sequence, say s1,
let ξ0 be the measure with p〈s1〉 = 1, then we have minx∈R2 qξ0(x) = r(x∗). Hence,
y∗ ≥ r(x∗). (2) If T0 contains more than one sequences, let ∇qs(x

∗) be the gra-
dient of qs(x) evaluated at point x = x∗ and define � to be the convex hull of
{∇qs(x

∗) : s ∈ T0}. We claim 0 ∈ �, since otherwise we could find a vector z ∈ R
2

so that z′∇qs(x
∗) < 0 for all s ∈ {∇qs(x

∗) : s ∈ T0}, which would indicate that x∗
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is not the minimum point of r(x), and hence the contradiction is reached. Note
that 0 ∈ � indicates there exists a measure, say ξ0, such that qξ0(x

∗) = r(x∗) and
∇qξ0(x

∗) = 0, which yields minx∈R2 qξ0(x) = r(x∗) and hence y∗ ≥ r(x∗). (i) is
thus proved.

Observe that the minimum of qξ (x) is achieved at the unique point x =
−Q−1

ξ �ξ := x̃. If x̃ �= x∗, we have y∗ = r(x∗) ≥ qξ (x
∗) > qξ (x̃) = q∗

ξ and hence
the contradiction is reached. (ii) is thus concluded.

For (iii), if there is a sequence, say s, with s ∈ Vξ and s /∈ T , we have y∗ >

qξ (x
∗) ≥ q∗

ξ , and hence the contradiction is reached. �

THEOREM 3. A measure ξ = (ps, s ∈ S) is universally optimal among P if
and only if ∑

s∈T
ps

[
Es00 + Es01

(
x∗ ⊗ Bt

)] = y∗Bt/(t − 1),(14)

∑
s∈T

ps

[
Es10 + Es11

(
x∗ ⊗ Bt

)] = 0,(15)

∑
s /∈T

ps = 0.(16)

PROOF. Note that (14)–(16) is equivalent to

Eξ00 + Eξ01
(
x∗ ⊗ Bt

) = y∗Bt/(t − 1),(17)

Eξ10 + Eξ11
(
x∗ ⊗ Bt

) = 0,(18) ∑
s∈T

ps = 1.(19)

Necessity. By Proposition 1, there exists a symmetric measure, say ξ1, which is
universally optimal. Further, we have Cξ = Cξ1 = y∗Bt/(t − 1). Define ξ2 = (ξ +
ξ1)/2. Then we have Aξ2 = (Aξ + Aξ1)/2, which indicates Cξ2 ≥ (Cξ + Cξ1)/2 =
y∗Bt/(t − 1). The latter combined with Proposition 1 yields Cξ2 = y∗Bt/(t − 1).
Hence, by similar arguments as in Kushner (1997), we have

Eξ11
(
E+

ξ11Eξ10 − E+
ξ211Eξ210

) = 0,(20)

Eξ111
(
E+

ξ111Eξ110 − E+
ξ211Eξ210

) = 0,(21)

where + means the Moore–Penrose generalized inverse. Since ξ1 is a sym-
metric measure, we have Eξ111 = Qξ1 ⊗ Bt/(t − 1) + Q̃ξ1 ⊗ Jt/t2. By Lem-
mas 2, 3 and the orthogonality between Bt and Jt , we obtain det(Eξ111) =
det(Qξ )

t−1 det(Q̃ξ )/[(t − 1)2t−2t3] > 0. Applying the latter to (21) yields

E+
ξ211Eξ210 = E+

ξ111Eξ110

= Q−1
ξ1

�ξ1 ⊗ Bt(22)

= −x∗ ⊗ Bt,
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in view of Theorem 2(ii). Now (18) is derived from (20) and (22). By (18), we
have

y∗Bt/(t − 1) = Cξ = Eξ00 − Eξ01E
−
ξ11Eξ10(23)

= Eξ00 + Eξ01E
−
ξ11Eξ11

(
x∗ ⊗ Bt

)
(24)

= Eξ00 + Eξ01
(
x∗ ⊗ Bt

)
,(25)

which is essentially (17).
By (5.2) of Kushner (1997), we have Cξ ≤ H ′AξH for any 3t × t matrix H .

Set H = (x0, x1, x3)
′ ⊗ Bt with x0 ≡ 1, we have

Cξ ≤
2∑

i=0

2∑
j=0

xixjBtCξijBt .(26)

By taking the trace of both sides of (26), we have

tr(Cξ ) ≤
2∑

i=0

2∑
j=0

xixj cξij

= qξ (x),

for x = (x1, x2)
′. Now set x = −Q−1

ξ �ξ , we have tr(Cξ ) ≤ q∗
ξ ≤ y∗. Note that

tr(Cξ ) = y∗ in view of Proposition 1(ii). As a result, we have q∗
ξ = y∗ and thus (19)

in view of Theorem 2(iii).
Sufficiency of (17)–(19) is trivial in view of (23)–(25). �

4. Undirectional interference model. In many occasions, it is reasonable to
believe that the neighbor effects of each treatment from the left and the right should
be the same, that is, λ = ρ. With this condition, model (2) reduces to

Yd = 1nkμ + Uβ + Tdτ + (Ld + Rd)λ + ε.(27)

The information matrix, C̃d , for τ under model (27) is given by

C̃d = Cd00 − C̃d01C̃
−
d11C̃d10,

C̃′
d10 = C̃d01 = T ′

d(In ⊗ B̃)(Ld + Rd),

C̃d11 = (Ld + Rd)′(In ⊗ B̃)(Ld + Rd).

It is obvious that C̃d/n only depends on the measure ξ = (ps, s ∈ S), and we
denote such matrix by C̃ξ . Let q̃s(z) = qs((z, z)

′) and r̃(z) = maxs∈S q̃s(z) for
z ∈ R. Note that r̃(z) is strictly convex due to the strict convexity of r(x), hence
there is an unique minimizer of r̃(z) which is denoted by z∗ here. By following
similar arguments as in Sections 2 and 3, one can derive the following theorem for
universally optimal measures under model (27) in view of Lemma 5(ii).
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THEOREM 4. Let y0 = r̃(z∗) and T0 = {s ∈ S : q̃s(z
∗) = y0}. For measure ξ =

(ps, s ∈ S), the following three sets of conditions are equivalent. (i) ξ is universally
optimal. (ii) C̃ξ = y0Bt/(t − 1). (iii)∑

s∈T0

ps

[
Cs00 + z∗C̃s01Bt

] = y0Bt/(t − 1),(28)

∑
s∈T0

ps

[
C̃s10 + z∗C̃s11Bt

] = 0,(29)

∑
s∈T0

ps = 1.(30)

The following lemma is the key to build up the connections between the two
models as given by Theorem 5.

LEMMA 5. If � is persymmetric, we have the following. (i) x∗ = (z∗, z∗)′.
(ii) y∗ = y0. (iii) T = T0.

PROOF. For sequence s = (t1t2 · · · tp), define its dual sequence as s′ =
(tp, tp−1 · · · t1). First we claim that

�s = �2�s′,(31)

Qs = �2Qs′�2,(32)

where �h = (Ii+j=h+1)1≤i,j≤h. Then the function r(x) is symmetric about the
line x1 = x2, where x = (x1, x2)

′. This indicates that the two components of x∗ ∈
R

2 are identical. From this, (i) and (ii) follows immediately. (iii) follows directly
from (i) and (ii) by definitions of T and T0.

To prove (31) and (32), it is sufficient to show Ls = �kRs′ , Rs = �kLs′ and
�kB̃�k = B̃ . The first two equations are trivial. To see the latter, note that the
persymmetry (and hence the bisymmetry) of � indicates the bisymmetry of �−1

in view of Laplace’s formula for calculating the matrix inverse. Hence, the sum of
the ith column (or row) of �−1 is equal to the sum of its (k + 1 − i)th column,
which indicates the bisymmetry of �−1Jk�

−1, and hence the bisymmetry of B̃ .
�

REMARK 2. There is a wide range of covariance matrices which are persym-
metric. Examples include the identity matrix, the completely symmetric matrix,
the AR(1) type covariance matrix and the one used in Section 6. By Corollary 2.2
of Kushner (1997), Lemma 5 still holds if � = �0 +γ 1′

k +1kγ
′ with �0 being per-

symmetric. In fact, the lemma holds as long as B̃ is persymmetric. When B̃ is not
persymmetric, empirical evidence indicates that we typically have x∗ �= (z∗, z∗)′
and y∗ < y0. Even though we observe T = T0 very often, however, the optimal
proportions for sequences in the support would be different for the two models.



DESIGN FOR INTERFERENCE MODEL 511

A measure ξ = (ps, s ∈ S) is said to be dual if p〈s〉 = p〈s′〉, s ∈ S , where s′ is
the dual sequence of s as defined in the proof of Lemma 5.

THEOREM 5. If � is persymmetric, we have the following. (i) For any mea-
sure, its universal optimality under model (2) implies its universal optimality under
model (27). (ii) For a pseudo symmetric dual measure, its universal optimality un-
der model (27) implies its universal optimality under model (2). (iii) Given any
criterion function satisfying conditions (C.1)–(C.3), the efficiency of any measure
under model (27) is at least its efficiency under model (2).

PROOF. (i) is readily proved by the direct comparison between equations
(14)–(16) and equations (28)–(30).

For a pseudo symmetric measure, say ξ , it is universally optimal for the two
models as long as it maximizes the traces of the information matrices, that is,
tr(Cξ ) = minx∈R2 qξ (x) and tr(C̃ξ ) = minz∈R q̃ξ (z), respectively. If ξ is also dual,
qξ (x) is a function symmetric about the line of x1 = x2 in view of (31) and (32).
This indicates that minx∈R2 qξ (x) = minz∈R q̃ξ (z). Hence, the universal optimality
under the two models will be equivalent for such measure, and thus (ii) follows.

Since the information matrices of universally optimal designs are the same for
the two models in view of Proposition 1 and Theorem 4, hence (iii) is verified as
long as we can show

Cd ≤ C̃d,(33)

for any design d . To see (33), note that the column space of Ld + Rd is a
subset of the column space of [Ld |Rd ], hence we have pr⊥(V U |V Ld |V Rd) ≤
pr⊥(V U |V (Ld + Rd)). Now (33) follows in view of (3) and C̃d = T ′

dV ′pr⊥(V U |
V (Ld + Rd))V Td . �

COROLLARY 1. (i) A measure with Cdξ00, C̃ξ01 and C̃ξ11 being completely
symmetric is universally optimal under model (27) if and only if

∑
s∈T

ps

∂q̃s(z)

∂z

∣∣∣∣
z=z∗

= 0,(34)

∑
s∈T

ps = 1.(35)

(ii) When � is persymmetric, a pseudo symmetric dual measure is universally
optimal under model (2) if and only if (34) and (35) holds.

REMARK 3. Since q̃s(z) is a univariate function, one can use the Kushner’s
(1997) method to find z∗ and T with the computational complexity of O(m2),
where m is the total number of symmetric blocks. If we have to deal with mul-
tivariate functions such as qs(x) (e.g., when � is not persymmetric and the side
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effects are directional), the computation of x∗ and T is more involved but man-
ageable. See Bailey and Druilhet (2014) for an example where x is 5-dimensional.
Alternatively, one can build an efficient algorithm (see the Appendix) based on (10)
to derive the optimal measure, which further induces x∗ and T .

5. The set T for type-H covariance matrix. By restricting to the type-H
covariance matrix �, we derive theoretical results regarding T for 2 ≤ t < k. Note
that the cases of 3 ≤ k ≤ 4 and 5 ≤ k ≤ t have been studied by Kunert and Martin
(2000) and Kunert and Mersmann (2011). Two special cases of type-H covariance
matrix are the identity matrix and a completely symmetric matrix.

THEOREM 6. Assume � to be of type-H . (i) If 2 ≤ t ≤ k − 2, we have

z∗ = 0,

y∗ = k(t − 1)/t − v(t − v)/kt,

T = {s :fs,m = u or u + 1,1 ≤ m ≤ t},
where u and v are the integers satisfying k = ut + v and 0 ≤ v < t .

(ii) If 2 ≤ t = k − 1, we have

z∗ = 1

2[k(k − 3) + 1/t] ,(36)

y∗ = k − 1 − 2

k
− 1

2k[k(k − 3) + 1/t] ,(37)

T = 〈s0〉 ∪ 〈
s′

0
〉
,(38)

where s0 = (1 1 2 · · · t) and s′
0 is its dual sequence. Moreover, a measure maximizes

q∗
ξ if and only if p〈s0〉 = p〈s′

0〉 = 1/2.

PROOF. Due to (4), here we assume � = Ik throughout the proof without loss
of generality. For sequence s = (t1 · · · tk), define the quantities φs = ∑k−1

i=1 Iti=ti+1 ,
ϕs = ∑k−1

i=2 Iti−1=ti+1 , fs,m = ∑k
i=1 Iti=m, χs = ∑t

m=1 f 2
s,m. By direct calculations,

we have

q̃s(z) = qs,0 + qs,1z + qs,2z
2,(39)

qs,0 = cs00 = k − χs/k,(40)

qs,1 = cs01 + cs02 = 2(2kφs + fs,t1 + fs,tk − 2χs)/k,(41)

qs,2 = cs11 + 2cs12 + cs22

= 2
[
ϕs + k − 1 − (k + t − 2)/kt

]
(42)

− 2(2χs − 2fs,t1 − 2fs,tk + It1=tk )/k.
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(i) follows by the same approach as in Theorem 1.a of Kushner (1998) with only
more tedious arguments based on (39)–(42).

Now we focus on t = k − 1. First, we have φs0 = 1, ϕs0 = 0 and χs0 = k + 2,
and hence qs0,0 = k − 1 − 2/k, qs0,1 = −2/k and qs0,2 = 2(k − 3) + 2/kt . It can
be verified that q̃s0(z) reaches its minimum at z = z∗. Since q̃s0(z) = q̃s′

0
(z), it is

sufficient to show q̃s0(z
∗) = maxs∈S q̃s(z

∗) for the purpose of proving (ii).
We first restrict the consideration to the subset S1 = {s : t1 �= tk, s ∈ S}. If we

only exchange the treatments in locations {2, . . . , k −1}, the values of χs , fs,t1 and
fs,tk remain invariant. Note that q̃s(z

∗) is increasing in the quantity φs + 2−1z∗ϕs .
If for a certain location, say i, we have ti−1 = ti+1 �= ti . At least one of i−1 and i+
1 would be in the set {2, . . . , k−1}. After switching this location with location i, φs

will be increased by 1, and at the same time the amount of decrease for ϕs will be at
most 2. Note that z∗/2 ≤ 1/2 for all p ≥ 3 and t ≥ 2, and hence a sequence, say s,
which maximizes q̃s(z

∗) should be of the format s = (1′
fs,1

1| · · · |1′
fs,h

h), without
loss of generality. Here, h := h(s) is the number of distinct treatments in sequence
s and

∑h
i=1 fs,i = p. Among sequences of this particular format, the sequence

which maximizes q̃s(z
∗) should satisfy min(fs,1, fs,h) ≥ max2≤i≤h−1 fs,i , where

we take the maximization over the empty set to be 0. Without loss of generality, we
assume t1 = max1≤i≤t fs,i . Now we shall show fs,1 ≤ 2 for maximizing sequences
as follows. Suppose fs,1 ≥ 3, this indicates h < t . By decreasing fs,1 by one and
changing fs,h+1 from 0 to 1, the quantity q̃s(z

∗) is increased by the amount of

�s = 2

k

[
fs,1 − 1 + (4fs,1 − 5 − 2k)z∗ + (4fs,1 − 8 − k)

(
z∗)2]

.

If k = 3, we have �s > 0 in view of z∗ > 0 and fs,1 ≥ 3. Suppose k ≥ 4, we have
0 < z∗ ≤ (2k)−1, hence we have

k�s/2 = fs,1 − 1 − 2kz∗ − p
(
z∗)2 + (4fs,1 − 5)z∗ + (4fs,1 − 8)

(
z∗)2

> fs,1 − 2 − (4k)−1 > 0.

At this point, we have shown q̃s0(z
∗) = maxs∈S1 q̃s(z

∗). By similar arguments, one
can show that the sequence s1 = (1 2 · · · t1) maximizes q̃s(z

∗) among s /∈ S1. By
direct calculations, we have

q̃s0

(
z∗) − q̃s1

(
z∗) = (4 − 2/k)z∗ − 4

(
z∗)2

/k

≥ z∗(
10/3 − 2/k2)

> 0.

Hence, (36)–(38) are proved. For the rest of (ii), the sufficiency of p〈s0〉 = p〈s′
0〉 =

1/2 is indicated by the proof of Theorem 5. For the necessity, it is enough to note
that the two components of ∇qξ (x

∗) = 2(�ξ + Qξx
∗) = 2

∑
s∈S ps(�s + Qsx

∗)
will not be identical if p〈s0〉 �= p〈s′

0〉. Hence, the lemma is concluded. �
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6. Examples. This section tries to illustrate the theorems of this paper through
several examples for various combinations of k, t, n and �. By Theorem 5(iii), the
efficiency of a design is higher under model (27) than under model (2) for any
criterion function 
 satisfying (C.1)–(C.3) under a mild condition, that is, � is
persymmetric. Hence, it is sufficient to propose optimal or efficient designs under
model (2). The existence of the universally optimal measure in P is obvious in
view of Lemmas 1 and 4. However, to derive an exact design, one has to restrict
the consideration to the subset Pn = {ξ ∈ P :nξ is a vector of integers}. Univer-
sally, optimal measure does not necessarily exist in Pn except for certain combi-
nations of k, t, n. In this case, one can convert ps in the equations of Theorem 3
into ns by multiplying both sides of the equations by n. Then one can define a
distance between two sides of the equations and find the solution, say {ns, s ∈ T },
to minimize this distance. If there is universally optimal measure in Pn, such ap-
proach automatically locates the universally optimal exact design; otherwise, the
exact designs thus found are typically highly efficient under the different criteria.
See Zheng (2013a) and Figure 1 for evidence.

Let 0 ≤ a1 ≤ a2 ≤ at−1 be the t eigenvalues of Cd for an exact design d . If d is
universally optimal, we have ai = ny∗/(t − 1),1 ≤ i ≤ t − 1. Here, we define A-,
D-, E- and T -efficiencies of design d as follows:

EA(d) = t − 1

ny∗
t − 1

(
∑t−1

i=1 a−1
i )

= (t − 1)2

ny∗(∑t−1
i=1 a−1

i )
,

ED(d) = t − 1

ny∗

(
t−1∏
i=1

ai

)1/(t−1)

,

EE(d) = (t − 1)a1

ny∗ ,

ET (d) = t − 1

ny∗

(
1

t − 1

t−1∑
i=1

ai

)
=

∑t−1
i=1 ai

ny∗ .

It is well known that a universally optimal measure has unity efficiency under these
four criteria.

We begin with the discussion on the case when � is of type-H . For the latter,
Kunert and Martin (2000) studied the conditions on p〈s〉 for a pseudo symmetric
design to be universally optimal for k = 3 and 4, which was further extended by
Kunert and Mersmann (2011) to t ≥ k ≥ 5. We would comment on these cases
and then explore the case of k ≥ 5 and t < k. Finally, irregular form of � will be
briefly discussed.

For (k, t) = (4,2), Corollary 1 indicates that the necessary and sufficient con-
dition for a pseudo symmetric design to be universally optimal is p〈(1 1 2 2)〉 =
3p〈(1 2 1 2)〉 + p〈(1 2 2 1)〉. Theorem 2 of Kunert and Martin (2000) proposed
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p〈(1 1 2 2)〉 = p〈(1 2 2 1)〉 = 1/2, which is sufficient but not necessary for univer-
sal optimality. For k = 3 and (k, t) = (4,3), Corollary 1 indicates that sufficient
conditions regarding p〈s〉 given by Theorems 1 and 3 of Kunert and Martin (2000)
are also necessary.

For t ≥ k = 4, Kunert and Martin (2000) showed that the optimal values of p〈s〉
are given by irrational numbers, and hence an exact universally optimal design
does not exist. In fact, based on Theorem 3 here, one can derive efficient exact
designs for the majority values of t and n. For example, d1 below with t = 4 and
n = 10 yields the efficiencies of EA(d1) = 0.9943, ED(d1) = 0.9946, EE(d1) =
0.9682 and ET (d1) = 0.9949. Note that the E-efficiency is relatively lower than
other efficiencies due to the asymmetry of the design.

d1 =

⎡
⎢⎢⎣

2 1 4 3 1 1 3 2 4 3
2 1 4 3 2 4 4 3 2 2
1 3 3 1 4 3 2 1 1 4
1 4 2 2 4 3 2 4 3 1

⎤
⎥⎥⎦ .

For t ≥ k ≥ 5, Kunert and Mersmann (2011) showed that the set T should in-
clude sequences (1 2 · · · k), (1 1 2 · · ·k − 3 k − 2 k − 2), s0 and its dual sequence
s′

0 as defined in Theorem 6. The optimal proportion for them are again irrational
numbers. Further, they proposed the use of type I orthogonal array (OAI ), that
is, p〈(1 2···k)〉 = 1, and proved that the T -efficiencies of such designs are at least
0.94. Note that OAI is pseudo symmetric, hence its efficiencies are identical under
criteria A, D, E and T .

When t = k − 1, Theorem 6(ii) indicates that a pseudo symmetric design with
p〈s0〉 = p〈s′

0〉 = 1/2 will be universally optimal. For example, when t = 4 and k =
5, d2 below with n = 24 is universally optimal. Here, the first 12 sequences are
equivalent to (1 1 2 3 4) while the rest are equivalent to (1 2 3 4 4).

d2 =

⎡
⎢⎢⎢⎢⎣

1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4
4 2 3 1 4 3 1 4 2 1 2 3
2 3 4 4 3 1 2 1 4 3 1 2
3 4 2 3 1 4 4 2 1 2 3 1

3 4 2 3 1 4 4 2 1 2 3 1
2 3 4 4 3 1 2 1 4 3 1 2
4 2 3 1 4 3 1 4 2 1 2 3
1 1 1 2 2 2 3 3 3 4 4 4
1 1 1 2 2 2 3 3 3 4 4 4

⎤
⎥⎥⎥⎥⎦ .

When 2 ≤ t < k − 1, there is a large variety of symmetric blocks in T and there
will be infinity many solutions for optimal sequence proportions. Even for t = 2
and k = 5, we shall have T = 〈(1 1 1 2 2)〉 ∪ 〈(1 1 2 2 2)〉 ∪ 〈(1 1 2 1 2)〉 ∪
〈(1 2 1 2 2)〉 ∪ 〈(1 1 2 2 1)〉 ∪ 〈(1 2 2 1 1)〉 ∪ 〈(1 2 1 1 2)〉 ∪ 〈(1 2 2 1 2)〉 ∪
〈(1 2 1 2 1)〉∪ 〈(1 2 2 2 1)〉. Let p1, . . . , p10 be the proportions of these symmetric
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FIG. 1. The efficiencies of exact designs for 5 ≤ n ≤ 50 when k = 4, t = 3 and η = 0.5. The
E-efficiency is plotted by the dashed line, while A-, D- and T -efficiencies are all plotted by the same
solid line.

blocks. A pseudo symmetric design with p1 = p2, p3 = p4, p5 = p6, p7 = p8,
1.8(p1 + p2) = 2.2(p3 + p4 + p7 + p8) + 4p9 + 0.4p10,

∑10
i=1 pi = 1 and pi ≥ 0

will be universally optimal. One simple solution is p5 = p6 = 1/2. Hence a design
which assigns 1/4 of its blocks to sequences (1 1 2 2 1), (2 2 1 1 2), (1 2 2 1 1)

and (2 1 1 2 2) is universally optimal.
At last, we would like to convey the message that the deviation of � from type-

H has large impact on the choice of designs. For simplicity of illustration, we
consider the form � = (Ii=j +ηI|i−j |=1)1≤i,j≤k . When k = t = 5 and η = 0.5, the
efficiency of OAI reduces to 0.8232. In fact, Corollary 1 indicates that 〈(1 1 2 3 3)〉,
instead of 〈(1 2 3 4 5)〉 for η = 0, becomes the dominating symmetric block among
the four. To be more specific, a pseudo symmetric design with sequences solely
from 〈(1 1 2 3 3)〉 yields the efficiency of 0.9999 for all four criteria. When we
tune η to 0.9, the efficiency of OAI further reduces to 0.3395, while the symmetric
design based on 〈(1 1 2 3 3)〉 becomes even more efficient. One the other hand,
when η takes negative values, the efficiency of OAI becomes even higher than
0.94. Similar phenomena are observed for other cases of t ≥ k.

For t < k, we also observe that the value of η influences the choice of design
substantially. The details are omitted due to the limit of space. We end this section
by Figure 1. It shows that the linear equations system in Theorem 3 is powerful in
deriving efficient exact designs for arbitrary values of n.

APPENDIX: THE ALGORITHM BASED ON THEOREM 1

Recall that m is be total number of distinct symmetric blocks and s1, s2, . . . , sm
are the m representatives for each of the symmetric blocks. Note that two pseudo
symmetric measures with the same vector of Pξ = (p〈s1〉,p〈s2〉, . . . , p〈sm〉) have
the same information matrix and hence the same performance under all optimality
criteria. For a measure ξ and a sequence s, we define

θ(Pξ , s) = tr
(
RsR

−1
ξ

) − tr
(
QsQ

−1
ξ

)
.(43)
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We also define θ∗(Pξ ) = max1≤i≤m θ(P〈d〉, si) and ei to be vector of length m with
the ith entry as 1 and other entries as 0.

Step 0: Choose tuning parameters ε > 0 and ω such that ε is in a small neigh-
borhood of zero and ω is in a neighborhood of one.

Step 1: Choose initial measure P (0) = Pξ0 . Put i0 = argmin1≤j≤m θ∗(ei) and
n = 0, then let P (0) = ei0 .

Step 2: Check optimality. If θn := θ∗(P (n)) > 1 + ε, go to step 3. Otherwise,
output the optimal measure as P (n).

Step 3: Update the measure. Let in+1 = argmax1≤i≤m θ(P (n), si) and the up-
dated measure is P (n+1) = (θn − 1)ωein+1 + (1 − (θn − 1)ω)P (n). Increase n by 1
and go back to step 2.

REMARK 4. There is a possibility of tie in choosing i0 in step 1 and in+1
in step 3. The strategy in such case is quite arbitrary. Let �n = {i : θ(P (n), si) =
θ∗(P (n))}. If |�n| > 1, one can either choose an arbitrary jn ∈ �n and let in+1 = jn

or replace ein+1 in step 3 by |�n|−1 ∑
i∈�n

ei . The same strategy applies to the
choice of i0.

REMARK 5. Note that the update algorithm in step 3 is essentially a steep-
est descent algorithm. The parameter ω is to adjust for the length of step for the
best direction. By the concavity of the optimality criteria, the global optimum is
guaranteed to be found. In the examples of this paper, ω = 1 works well enough.
The parameter ε is used to adjust for time of convergence. When the sequential
algorithm converges very slow, one can increase ε to save time. In most examples
of this paper, setting ε = 10−7 enable us to obtain the optimal design within 10
seconds.
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