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Mixtures of r independent distributions for two discrete random vari-
ables can be represented by matrices of nonnegative rank r . Likelihood in-
ference for the model of such joint distributions leads to problems in real
algebraic geometry that are addressed here for the first time. We characterize
the set of fixed points of the Expectation–Maximization algorithm, and we
study the boundary of the space of matrices with nonnegative rank at most 3.
Both of these sets correspond to algebraic varieties with many irreducible
components.

1. Introduction. The r th mixture model M of two discrete random variables
X and Y expresses the conditional independence statement X ⊥⊥ Y |Z, where Z is
a hidden (or latent) variable with r states. Assuming that X and Y have m and n

states, respectively, their joint distribution is written as an m × n-matrix of non-
negative rank ≤ r whose entries sum to 1. This mixture model is also known as the
naive Bayes model. Its graphical representation is shown in Figure 1.

A collection of i.i.d. samples from a joint distribution is recorded in a nonnega-
tive matrix

U =

⎡⎢⎢⎢⎣
u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

um1 um2 · · · umn

⎤⎥⎥⎥⎦ .

Here, uij is the number of observations in the sample with X = i and Y = j .
The sample size is u++ = ∑

i,j uij . It is standard practice to fit the model to the
data U using the Expectation–Maximization (EM) algorithm. However, it has been
pointed out in the literature that EM has several issues (see the next paragraph for
details) and one has to be careful when using it. Our goal is to better understand
this algorithm by studying its mathematical properties in some detail.

One of the main issues of Expectation–Maximization is that it does not provide a
certificate for having found the global optimum. The geometry of the algorithm has
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FIG. 1. Graphical model on two observed variables and one hidden variable.

been a topic for debate among statisticians since the seminal paper of Dempster,
Laird and Rubin [13]. Murray [30] responded with a warning for practitioners to be
aware of the existence of multiple stationary points. Beale [6] also brought this up,
and Fienberg [18] referred to the possibility that the MLE lies on the boundary of
the parameter space. A recent discussion of this issue was presented by Zwiernik
and Smith [36], Section 3, in their analysis of inferential problems arising from the
semialgebraic geometry of a latent class model. The fact that our model fails to be
identifiable was highlighted by Fienberg et al. in [19], Section 4.2.3. This poses
additional difficulties, and it forces us to distinguish between the boundary of the
parameter space and the boundary of the model. The image of the former contains
the latter.

The EM algorithm aims to maximize the log-likelihood function of the
model M. In doing so, it approximates the data matrix U with a product of non-
negative matrices A · B where A has r columns and B has r rows. In Section 3,
we review the EM algorithm in our context. Here, it is essentially equivalent to the
widely used method of Lee and Seung [26] for nonnegative matrix factorization.
The nonnegative rank of matrices has been studied from a broad range of perspec-
tives, including computational geometry [1, 10], topology [29], contingency tables
[7, 19], complexity theory [28, 33] and convex optimization [17]. We here present
the approach from algebraic statistics [14, 31].

Maximum likelihood estimation for the model M is a nonconvex optimization
problem. Any algorithm that promises to compute the MLE P̂ will face the fol-
lowing fundamental dichotomy. The optimal matrix P̂ either lies in the relative
interior of M or it lies in the model boundary ∂M.

If P̂ lies in the relative interior of M, then the situation is nice. In this case, P̂ is
a critical point for the likelihood function on the manifold of rank r matrices. There
are methods by Hauenstein et al. [24] for finding the MLE with certificate. The ML
degree, which they compute, bounds the number of critical points, and hence all
candidates for the global maximizer P̂ . However, things are more difficult when
P̂ lies in the boundary ∂M. In that case, P̂ is generally not a critical point for
the likelihood function in the manifold of rank r matrices, and none of the results
on ML degrees in [14, 19, 23–25] are applicable. The present paper is the first
to address the question of how P̂ varies when it occurs in the boundary ∂M.
Table 1 underscores the significance of our approach. As the matrix size grows,
the boundary case is much more likely to happen for randomly chosen input U .
The details for choosing U and the simulation study that generated Table 1 will be
described in Example 3.4.
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TABLE 1
Percentage of data matrices whose maximum likelihood estimate P̂

lies in the boundary ∂M

Size

Rank 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8

3 4.4% 23% 49% 62% 85%
4 7% 37% 71% 95%
5 10% 55% 96%
6 20% 75%
7 24%

We now summarize the contents of this article. Section 2 furnishes an introduc-
tion to the geometry of the mixture model M from Figure 1. We define the topolog-
ical boundary of M and the algebraic boundary of M, and we explain how these
two notions of boundary differ. Concrete numerical examples for 4 × 4-matrices
of rank 3 demonstrate how P̂ behaves as the data U vary.

In Section 3, we review the EM algorithm for the model M, and we identify its
fixed points in the parameter space. The main result is the characterization of the
set of fixed points in Theorem 3.5.

In Section 4, we identify M with the set of matrices of nonnegative rank at
most 3. Theorem 4.1 gives a quantifier-free formula for this semialgebraic set. The
importance of finding such a formula was already stressed in the articles [3, 4].
The resulting membership test for M is very fast and can be applied to matrices
that contain parameters. The proof of Theorem 4.1 is based on the familiar char-
acterization of nonnegative rank in terms of nested polytopes [1, 10, 33], and, in
particular, on work of Mond et al. [29] on the structure of critical configurations in
the plane (shown in Figure 5).

In Section 5, we return to Expectation–Maximization, and we study the system
of equations that characterize the EM fixed points. Proposition 5.1 characterizes
its solutions in the interior of M. Even in the smallest interesting case, m = n = 4
and r = 3, the variety of all EM fixed points has a huge number of irreducible
components, to be determined and interpreted in Theorem 5.5.

The most interesting among these are the 288 components that delineate the
topological boundary ∂M inside the simplex �15. These are discussed in Ex-
amples 5.7 and 6.2. Explicit matrices that lie on these components are featured
in (6.5) and in Examples 2.1, 2.2 and 3.2. In Proposition 6.3, we resolve a prob-
lem left open in [24, 25] concerning the ML degree arising from ∂M. The main
result in Section 6 is Theorem 6.1 which characterizes the algebraic boundary of
m×n-matrices of nonnegative rank 3. The commutative algebra of the irreducible
components in that boundary is the content of Theorem 6.4. Corollary 6.6 furnishes
a quantifier-free semialgebraic formula for ∂M.
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The proofs of all lemmas, propositions and corollaries appear in Appendix A.
A review of basic concepts in algebraic geometry is given in Appendix B. This will
help the reader understand the technicalities of our main results. Supplementary
materials and software are posted at the website http://math.berkeley.edu/~bernd/
EM/boundaries.html. Our readers will find code in R, Macaulay2 and Magma
for various sampling experiments, prime decompositions, semialgebraic formulas
and likelihood equations discussed in this paper.

The methods presented here are not limited to the matrix model M, but are
applicable to a wide range of statistical models for discrete data, especially those
used in computational biology [31]. Such models include phylogenetic models
[2, 4] and hidden Markov models [12]. The most immediate generalization is to
the r th mixture model of several random variables. It consists of all distributions
corresponding to tensors of nonnegative rank at most r . In other words, we replace
m×n-matrices by tensors of arbitrary format. The geometry of the case r = 2 was
studied in depth by Allman et al. [3]. For each of these models, there is a natural
EM algorithm, with an enormous number of stationary points. The model itself is
a complicated semialgebraic set, and the MLE typically occurs on the boundary of
that set. For binary tree models, this was shown in [36], Section 3.

This article introduces tools needed to gain a complete understanding of these
EM fixed points and model boundaries. We here study them for the graphical
model in Figure 1. Already in this very simple case, we discovered patterns that are
surprisingly rich. Thus, the present work serves as a blueprint for future research
in real algebraic geometry that underlies statistical inference.

2. Model geometry. We begin with a geometric introduction of the likelihood
inference problem to be studied. Let �mn−1 denote the probability simplex of
nonnegative m × n-matrices P = [pij ] with p++ = 1. Our model M is the subset
of �mn−1 consisting of all matrices of the form

P = A · � · B,(2.1)

where A is a nonnegative m × r-matrix whose columns sum to 1, � is a non-
negative r × r diagonal matrix whose entries sum to 1, and B is a nonnegative
r × n-matrix whose rows sum to 1. The triple of parameters (A,�,B) represents
conditional probabilities for the graphical model in Figure 1. In particular, the kth
column of A is the conditional probability distribution of X given that Z = k, the
kth row of B is the conditional probability distribution given that Z = k, and the
diagonal of � is the probability distribution of Z. The parameter space in which
A,�,B lie is the convex polytope � = (�m−1)

r × �r−1 × (�n−1)
r . Our model

M is the image of the trilinear map

φ :� → �mn−1, (A,�,B) �→ P.(2.2)

http://math.berkeley.edu/~bernd/EM/boundaries.html
http://math.berkeley.edu/~bernd/EM/boundaries.html
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We seek to learn the model parameters (A,�,B) by maximizing the likelihood
function (

u++
u

)
·

m∏
i=1

n∏
j=1

p
uij

ij(2.3)

over M. This is equivalent to maximizing the log-likelihood function

�U =
m∑

i=1

n∑
j=1

uij · log

(
r∑

k=1

aikλkbkj

)
(2.4)

over M. One issue that comes up immediately is that the model parameters are
not identifiable:

dim(�) = r(m + n) − r − 1 but dim(M) = r(m + n) − r2 − 1.(2.5)

The first expression is the sum of the dimensions of the simplices in the product
that defines the parameter space �. The second one counts the degrees of freedom
in a rank r matrix of format m×n. The typical fiber, that is, the preimage of a point
in the image of (2.2), is a semialgebraic set of dimension r2 − r . This is the space
of explanations whose topology was studied by Mond et al. in [29]. Likelihood
inference cannot distinguish among points in each fiber, so it is preferable to re-
gard MLE not as an unconstrained optimization problem in � but as a constrained
optimization problem in M. The aim of this paper is to determine its constraints.

Let V denote the set of real m × n-matrices P of rank ≤ r satisfying p++ = 1.
This set is a variety because it is given by the vanishing of a set of polynomials,
namely, the (r + 1) × (r + 1) minors of the matrix P plus the linear constraint
p++ = 1. A point P ∈ M is an interior point of M if there is an open ball U ⊂
�mn−1 that contains P and satisfies U ∩V = U ∩M. We call P ∈ M a boundary
point of M if it is not an interior point. The set of all such points is denoted by ∂M
and called the topological boundary of M. In other words, ∂M is the boundary of
M inside V . The variety V is the Zariski closure of the set M; see Appendix B.
In other words, the set of polynomials that vanish on M is exactly the same as the
set of polynomials that vanish on V . Our model M is a full-dimensional subset of
the variety V and is given by a set of polynomial inequalities inside V .

Fix U , r and P ∈ M as above. A matrix P is a nonsingular point on V if and
only if the rank of P is exactly r . In this case, its tangent space TP (V) has di-
mension r(m + n) − r2 − 1, which, as expected, equals dim(M). We call P a
critical point of the log-likelihood function �U if P ∈ M, P is a nonsingular point
for V , that is, rank(P ) = r , and the gradient of �U is orthogonal to the tangent
space TP (V). Thus, the critical points are the nonnegative real solutions of the
various likelihood equations derived in [14, 24, 31, 35] to address the MLE prob-
lem for M. In other words, the critical points are the solutions obtained by using
the Lagrange multipliers method for maximizing the likelihood function over the
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set V . In the language of algebraic statistics, the critical points are those points in
M that are accounted for by the ML degree of the variety V .

Table 1 shows that the global maximum P̂ of �U is often a noncritical point.
This means that the MLE lies on the topological boundary ∂M. The ML degree
of the variety V is irrelevant for assessing the algebraic complexity of such P̂ .
Instead, we need the ML degree of the boundary, as given in Proposition 6.3, as
well as the ML degrees for the lower-dimensional boundary strata.

The following example illustrates the concepts we have introduced so far and
what they mean.

EXAMPLE 2.1. Fix m = n = 4 and r = 3. For any integers a ≥ b ≥ 0, consider
the data matrix

Ua,b =

⎡⎢⎢⎣
a a b b

a b a b

b a b a

b b a a

⎤⎥⎥⎦ .(2.6)

Note that rank(Ua,b) ≤ 3. For a = 1 and b = 0, this is the standard example [10]
of a nonnegative matrix whose nonnegative rank exceeds its rank. Thus, 1

8U1,0

is a probability distribution in V \ M. Within the 2-parameter family (2.6), the
topological boundary ∂M is given by the linear equation b = (

√
2 − 1)a. This

follows from the computations in [7], Section 5, and [29], Section 5. We conclude
that

1

8(a + b)
Ua,b lies in V \M if and only if b < (

√
2 − 1)a.(2.7)

For integers a > b ≥ 0 satisfying (2.7), the likelihood function (2.3) for Ua,b has
precisely eight global maxima on our model M. These are the following matrices,
each divided by 8(a + b):⎡⎢⎢⎣

a a b b

v w t u

w v u t

s s r r

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
v t w u

a b a b

s r s r

w u v t

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
t v u w

r s r s

b a b a

u w t v

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
r r s s

t u v w

u t w v

b b a a

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
a v w s

a w v s

b t u r

b u t r

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
v a s w

t b r u

w a s v

u b r t

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
t r b u

v s a w

u r b t

w s a v

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
r t u b

r u t b

s v w a

s w v a

⎤⎥⎥⎦ .
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This claim can be verified by exact symbolic computation, or by validated nu-
merics as in the proof of [24], Theorem 4.4. Here, t is the unique simple real root
of the cubic equation(

6a3 + 16a2b + 14ab2 + 4b3)
t3 − (

20a4 + 44a3b + 8ab3 + 32a2b2)
t2

+ (
22a5 + 43a4b + 30a3b2 + 7a2b3)

t − (
8a6 + 16a5b + 10a4b2 + 2a3b3)

= 0.

To fill in the other entries of these nonnegative rank 3 matrices, we use the rational
formulas

s = (a + b)t − a2

a
, u = tb

a
,

w = − t (3a2 + 5ab + 2b2)t − 4a3 − 5a2b − 2ab2

2a3 + a2b
,

r = 2a2 + ab − (a + b)t

a
,

v = (3a2 + 5ab + 2b2)t2 − (6a3 + 8a2b + 3ab2)t + 6a3b + 2a2b2 + 4a4

2a3 + a2b
.

These formulas represent an exact algebraic solution to the MLE problem in this
case. They describe the multivalued map (a, b) �→ P̂a,b from the data to the eight
maximum likelihood estimates. This allows us to understand exactly how these
solutions behave as the matrix entries a and b vary.

The key point is that the eight global maxima lie in the model boundary ∂M.
They are not critical points of �U on the rank 3 variety V . They will not be found by
the methods in [24, 31, 35]. Instead, we used results about the algebraic boundary
in Section 5 to derive the eight solutions.

We note that this example can be seen as an extension of [24], Theorem 4.4,
which offers a similar parametric analysis for the data set of the “100 Swiss Francs
Problem” studied in [19, 35].

We now introduce the concept of algebraic boundary. Recall that the topological
boundary ∂M of the model M is a semialgebraic subset inside the probability
simplex �mn−1. Its dimension is

dim(∂M) = dim(M) − 1 = rm + rn − r2 − 2.

Any quantifier-free semialgebraic description of ∂M will be a complicated
Boolean combination of polynomial equations and polynomial inequalities. This
can be seen for r = 3 in Corollary 6.6.

To simplify the situation, it is advantageous to relax the inequalities and keep
only the equations. This replaces the topological boundary of M by a much sim-
pler object, namely the algebraic boundary of M. To be precise, we define the
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algebraic boundary to be the Zariski closure ∂M of the topological boundary
∂M. Thus, ∂M is a subvariety of codimension 1 inside the variety V ⊂ Pmn−1.
Theorem 6.1 will show us that ∂M can have many irreducible components.

The following two-dimensional family of matrices illustrates the results to be
achieved in this paper. These enable us to discriminate between the topological
boundary ∂M and the algebraic boundary ∂M, and to understand how these
boundaries sit inside the variety V .

EXAMPLE 2.2. Consider the following 2-parameter family of 4 × 4-matrices:

P(x, y) =

⎡⎢⎢⎣
51 9 64 9
27 63 8 8
3 34 40 31
30 25 80 35

⎤⎥⎥⎦ + x ·

⎡⎢⎢⎣
1 1 3 0
1 0 1 0
0 1 0 1
0 0 1 1

⎤⎥⎥⎦ + y ·

⎡⎢⎢⎣
5 4 1 1
5 1 5 1
1 5 1 5
1 1 5 5

⎤⎥⎥⎦ .

This was chosen so that P(0,0) lies in a unique component of the topological
boundary ∂M. The equation det(P (x, y)) = 0 defines a plane curve C of degree 4.
This is the thin black curve shown in Figure 2. In our family, this quartic curve C
represents the Zariski closure V of the model M.

The algebraic boundary ∂M is the variety described in Example 6.2. The quar-
tic curve C meets ∂M in 1618 real points (x, y). Of these 1618 points, precisely
188 satisfy the constraint P(x, y) ≥ 0. These 188 points are the landmarks for our
analysis. They are shown in blue on the right in Figure 2. In addition, we mark
the unique point where the curve C intersects the boundary polygon defined by
P(x, y) ≥ 0. This is the leftmost point, defined by {det(P (x, y)) = x + 5y + 8 =
0}. It equals

(−3.161429,−0.967714).(2.8)

FIG. 2. In a two-dimensional family of 4 × 4-matrices, the matrices of rank 3 form a quartic
curve. The mixture model, shown in red, has two connected components. Its topological boundary
consists of four points (on the left). The algebraic boundary includes many more points (on the right).
Currently, there is no known way to obtain the four points on the topological boundary (in the left
picture) without first considering all points on the algebraic boundary (in the right picture).
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We examined the 187 arcs on C between consecutive points of ∂M as well as the
two arcs at the ends. For each arc we checked whether it lies in M. This was done
by a combination of the EM algorithm in Section 3 and Theorem 4.1. Precisely 96
of the 189 arcs were found to lie in M. These form two connected components on
the curve C, namely 19 arcs between (2.8) and (0,0), and

76 arcs between
(2.9)

(11.905773,8.642630) and (21.001324,35.202110).

These four points represent the topological boundary ∂M. We conclude that, in
the 2-dimensional family P(x, y), the model M is the union of the two red arcs
shown on the left in Figure 2.

Our theory of EM fixed points distinguishes between the (relatively open) red
arcs and their blue boundary points. For the MLE problem, the red points are
critical while the blue points are not critical. By Table 1, the MLE is more likely
to be blue than red, for larger values of m and n.

This example demonstrates that the algebraic methods of Sections 4, 5 and 6
are indispensable when one desires a reliable analysis of model geometries, such
as that illustrated in Figure 2. To apply a method for finding the critical points of
a function, for example, Lagrange multipliers, the domain of the function needs to
be given by equality constraints only. But using only these constraints, one cannot
detect the maxima lying on the topological boundary. For finding the critical points
of the likelihood function on the topological boundary by using the same methods,
one needs to relax the inequality constraints and consider only the equations defin-
ing the topological boundary. Therefore, one needs to find the critical points on the
algebraic boundary ∂M of the model.

3. Fixed points of Expectation–Maximization. The EM algorithm is an it-
erative method for finding local maxima of the likelihood function (2.3). It can be
viewed as a discrete dynamical system on the polytope � = (�m−1)

r × �r−1 ×
(�n−1)

r . Algorithm 1 presents the version in [31], Section 1.3.
The alternating sequence of E-steps and M-steps defines trajectories in the pa-

rameter polytope �. The log-likelihood function (2.4) is nondecreasing along each
trajectory (cf. [31], Theorem 1.15). In fact, the value can stay the same only at a
fixed point of the EM algorithm. See Dempster et al. [13] for the general version
of EM and its increasing behavior and convergence.

DEFINITION 3.1. An EM fixed point for a given table U is any point
(A,�,B) in the polytope � = (�m−1)

r × �r−1 × (�n−1)
r to which the EM al-

gorithm can converge if it is applied to (U, r).

Every global maximum P̂ of �U is among the EM fixed points. One hopes that
P̂ has a large basin of attraction, and that the initial parameter choice (A,�,B)
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Algorithm 1 Function EM(U, r)
Select random a1, a2, . . . , ar ∈ �m−1, random λ ∈ �r−1, and random
b1, b2, . . . , br ∈ �n−1.
Run the following steps until the entries of the m × n-matrix P converge.
E-step: Estimate the m × r×n-table that represents this expected hidden data:

Set vikj := aikλkbkj∑r
l=1 ailλlblj

uij for i = 1, . . . ,m, k = 1, . . . , r and j = 1, . . . , n.

M-step: Maximize the likelihood function of the model for the hidden
data:

Set λk := ∑m
i=1

∑n
j=1 vikj /u++ for k = 1, . . . , r .

Set aik := (
∑n

j=1 vikj )/(u++λk) for k = 1, . . . , r and i = 1, . . . ,m.
Set bkj := (

∑m
i=1 vikj )/(u++λk) for k = 1, . . . , r and j = 1, . . . , n.

Update the estimate of the joint distribution for our mixture model :
Set pij := ∑r

k=1 aikλkbkj for i = 1, . . . ,m and j = 1, . . . , n.
Return P .

gives a trajectory that converges to P̂ . However, this need not be the case, since the
EM dynamics on � has many fixed points other than P̂ . Our aim is to understand
all of these.

EXAMPLE 3.2. The following data matrix is obtained by setting a = 1, b = 0
in Example 2.1:

U =

⎡⎢⎢⎣
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎤⎥⎥⎦ .

Among the EM fixed points for this choice of U with r = 3 we find the probability
distributions

P1 = 1

24

⎡⎢⎢⎣
3 3 0 0
2 0 4 0
0 2 0 4
1 1 2 2

⎤⎥⎥⎦ , P2 = 1

16

⎡⎢⎢⎣
2 2 0 0
2 0 2 0
0 1 1 2
0 1 1 2

⎤⎥⎥⎦ and

P3 = 1

48

⎡⎢⎢⎣
4 8 0 0
3 0 4 5
5 4 0 3
0 0 8 4

⎤⎥⎥⎦ ,

and their orbits under the symmetry group of U . For instance, the orbit of P1 is
obtained by setting s = 1

3 , r = 2
3 , v = 2

3 , t = 4
3 ,w = u = 0 in the eight matrices in

Example 2.1. Over 98% of our runs with random starting points in � converged to
one of these eight global maximizers of �U . Matrices in the orbits of P2, respec-
tively, P3 were approached only rarely (less than 2%) by the EM algorithm.
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LEMMA 3.3. The following are equivalent for a point (A,�,B) in the pa-
rameter polytope �:

(1) The point (A,�,B) is an EM fixed point.
(2) If we start EM with (A,�,B) instead of a random point, then EM converges

to (A,�,B).
(3) The point (A,�,B) remains fixed after one completion of the E-step and

the M-step.

It is often believed (and actually stated in [31], Theorem 1.5) that every EM
fixed point is a critical point of the log-likelihood function �U . This statement
is not true for the definition of “critical” given in Section 2. In fact, for many
instances U , the global maximum P̂ is not critical.

To underscore this important point and its statistical relevance, we tested the
EM algorithm on random data matrices U for a range of models with m = n. The
following example explains Table 1.

EXAMPLE 3.4. In our first simulation, we generated random matrices U from
the uniform distribution on �mn−1 by using R and then scaling to get integer en-
tries. For each matrix U , we ran the EM algorithm 2000 times to ensure conver-
gence with high probability to the global maximum P̂ on M. Each run had 2000
steps. We then checked whether P̂ is a critical point of �U using the rank criterion
in [24], equation (2.3). Our results are reported in Table 1. The main finding is
that, with high probability as the matrix size increases, the MLE P̂ lands on the
topological boundary ∂M, and it fails to be critical.

In a second simulation, we started with matrices A ∈ Nm×r and B ∈ Nr×n

whose entries were sampled uniformly from {0,1, . . . ,100}. We then fixed P ∈ M
to be the m × n probability matrix given by AB divided by the sum of its entries.
We finally took T mn samples from the distribution P and recorded the results in
an m×n data matrix U . Thereafter, we applied EM to U . We observed the follow-
ing. If T ≥ 20 then the fraction of times the MLE lies in ∂M is very close to 0.
When T ≤ 10 though, this fraction was higher than the results reported in Table 1.
For T = 10 and m = n = 4, r = 3, this fraction was 13%, for m = n = 5, r = 3, it
was 23%, and for m = n = 5, r = 4, it was 17%. Therefore, based on these experi-
ments, in order to have the MLE be a critical point in M, one should have at least
20 times more samples than entries of the matrix.

This brings our attention to the problem of identifying the fixed points of EM. If
we could compute all EM fixed points, then this would reveal the global maximizer
of �U . Since a point is EM fixed if and only if it stays fixed after an E-step and an
M-step, we can write rational function equations for the EM fixed points in �:

λk = 1

u++

m∑
i=1

n∑
j=1

aikλkbkj∑r
l=1 ailλlblj

uij for all k,
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aik = 1

λku++

n∑
j=1

aikλkbkj∑r
l=1 ailλlblj

uij for all i, k,

bkj = 1

λku++

m∑
i=1

aikλkbkj∑r
l=1 ailλlblj

uij for all k, j.

Our goal is to understand the solutions to these equations for a fixed positive ma-
trix U . We seek to find the variety they define in the polytope � and the image of
that variety in M.

In the EM algorithm, we usually start with parameters aik, λk, bkj that are
strictly positive. The aik or bkl may become zero in the limit, but the parame-
ters λk always remain positive when the uij are positive since the entries of each
column of A and each row of B sum to 1. This justifies that we cancel out the fac-
tors λk in our equations. After this, the first equation is implied by the other two.
Therefore, the set of all EM fixed points is a variety, and it is characterized by

aik = 1

u++

n∑
j=1

aikbkj∑r
l=1 ailλlblj

uij for all i, k,

bkj = 1

u++

m∑
i=1

aikbkj∑r
l=1 ailλlblj

uij for all k, j.

Suppose that a denominator
∑

l ailλlblj is zero at a point in �. Then aikbkj = 0

for all k, and the expression aikbkj∑r
l=1 ailλlblj

would be considered 0. Using the identity

pij = ∑r
l=1 ailλlblj , we can rewrite our two fixed point equations in the form

aik

(
n∑

j=1

(
u++ − uij

pij

)
bkj

)
= 0 for all k, i and

(3.1)

bkj

(
m∑

i=1

(
u++ − uij

pij

)
aik

)
= 0 for all k, j.

Let R denote the m × n matrix with entries rij = u++ − uij

pij
. The matrix R is the

gradient of the log-likelihood function �U(P ), as seen in [24], equation (3.1). With
this, our fixed point equations are

aik

(
n∑

j=1

rij bkj

)
= 0 for all k, i and

(3.2)

bkj

(
m∑

i=1

rij aik

)
= 0 for all k, j.

We summarize our discussion in the following theorem, with (3.2) rewritten in
matrix form.
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THEOREM 3.5. The variety of EM fixed points in the polytope � is defined by
the equations

A 	
(
R · BT ) = 0, B 	

(
AT · R) = 0,(3.3)

where R is the gradient matrix of the log-likelihood function and 	 denotes the
Hadamard product. The subset of EM fixed points that are critical points is defined
by R · BT = 0 and AT · R = 0.

PROOF. Since (3.3) is equivalent to (3.2), the first sentence is proved by the
derivation above. For the second sentence, we consider the normal space of the
variety V at a rank r matrix P = A�B . This is the orthogonal complement of
the tangent space TP (V). The normal space can be expressed as the kernel of
the linear map Q �→ (Q · BT ,AT · Q). Hence, R = gradP (�U) is perpendicular
to TP (V) if and only if R · BT = 0 and AT · R = 0. Therefore, the polynomial
equations (3.3) define the Zariski closure of the set of parameters for which P is
critical. �

The variety defined by (3.3) is reducible. In Section 5, we shall present a detailed
study of its irreducible components, along with a discussion of their statistical
interpretation. As a preview, we here decompose the variety of EM fixed points in
the simplest possible case.

EXAMPLE 3.6. Let m = n = 2, r = 1, and consider the ideal generated by the
cubics in (3.3):

F = 〈
a11(r11b11 + r12b12), a21(r21b11 + r22b12),

b11(a11r11 + a21r21), b12(a11r12 + a21r22)
〉
.

The software Macaulay2 [22] computes a primary decomposition into 12 com-
ponents:

F = 〈r11r22 − r12r21, a11r11 + a21r21, a11r12 + a21r22, b11r11

+ b12r12, b11r21 + b12r22〉
∩ 〈a11, r21, r22〉 ∩ 〈a21, r11, r12〉 ∩ 〈r12, r22, b11〉 ∩ 〈r11, r21, b12〉(3.4)

∩ 〈a11, r22, b11〉 ∩ 〈a11, r21, b12〉 ∩ 〈a21, r12, b11〉 ∩ 〈a21, r11, b12〉
∩ 〈a11, a21〉 ∩ 〈b11, b12〉 ∩ (〈a11, a21〉2 + 〈b11, b12〉2 +F

)
.

The last primary ideal is embedded. Thus, F is not a radical ideal. Its radical
requires an extra generator of degree 5. The first 11 ideals in (3.4) are the minimal
primes of F . These give the irreducible components of the variety V (F). The first
ideal represents the critical points in M.
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4. Matrices of nonnegative rank three. While the EM algorithm operates
in the polytope � of model parameters (A,�,B), the mixture model M lives in
the simplex �mn−1 ⊂ Rm×n of all joint distributions. The parametrization φ is
not identifiable. The topology of its fibers was studied by Mond et al. [29], with
focus on the first nontrivial case, when the rank r is three. We build on their work
to derive a semialgebraic characterization of M. This section is self-contained. It
can be read independently from our earlier discussion of the EM algorithm. It is
aimed at all readers interested in nonnegative matrix factorization, regardless of its
statistical relevance.

We now fix r = 3. Let A be a real m × 3-matrix with rows a1, . . . , am, and
B a real 3 × n-matrix with columns b1, . . . , bn. The vectors bj ∈ R3 represent
points in the projective plane P2. We view the ai as elements in the dual space
(R3)∗. These represent lines in P2. Geometric algebra (a.k.a. Grassmann–Cayley
algebra [34]) furnishes two bilinear operations,

∨ :R3 ×R3 → (
R3)∗ and ∧ :

(
R3)∗ × (

R3)∗ →R3.

These correspond to the classical cross product in 3-space. Geometrically, ai ∧ aj

is the intersection point of the lines ai and aj in P2, and bi ∨ bj is the line spanned
by the points bi and bj in P2. The pairing (R3)∗ × R3 → R can be denoted by
either ∨ or ∧. With these conventions, the operations ∨ and ∧ are alternating,
associative and distributive. For instance, the minor

ai ∧ aj ∧ ak = det(ai, aj , ak)(4.1)

vanishes if and only if the lines ai, aj and ak are concurrent. Likewise, the poly-
nomial

(ai ∧ aj ) ∨ bi′ ∨ bk′

= ai1aj2b1i′b2k′ − ai1aj2b1k′b2i′ + ai1aj3b1i′b3k′ − ai1aj3b1k′b3i′
(4.2)

− ai2aj1b1i′b2k′ + ai2aj1b1k′b2i′ + ai2aj3b2i′b3k′ − ai2aj3b2k′b3i′

− ai3aj1b1i′b3k′ + ai3aj1b1k′b3i′ − ai3aj2b2i′b3k′ + ai3aj2b2k′b3i′

expresses the condition that the lines ai and aj intersect in a point on the line given
by bi′ and bk′ . Of special interest is the following formula involving four rows of
A and three columns of B:((

(ai ∧ aj ) ∨ bi′
) ∧ ak

) ∨ ((
(ai ∧ aj ) ∨ bj ′

) ∧ al

) ∨ bk′ .(4.3)

Its expansion is a bihomogeneous polynomial of degree (6,3) with 330 terms
in (A,B).

A matrix P ∈ Rm×n has nonnegative rank ≤ 3 if it admits a factorization
P = AB with A and B nonnegative. The set of such matrices P with p++ = 1
is precisely the mixture model M discussed in the earlier sections. Comparing
with (2.1), we here subsume the diagonal matrix � into either A or B . In what fol-
lows, we consider the set N of pairs (A,B) whose product AB has nonnegative
rank ≤ 3. Thus, N is a semialgebraic subset of Rm×3 ⊕R3×n. We shall prove:
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THEOREM 4.1. A pair (A,B) is in N if and only if AB ≥ 0 and the following
condition holds: either rank(AB) < 3, or rank(AB) = 3 and there exist indices
i, j ∈ [m], i′, j ′ ∈ [n] such that:

sign(4.1) is the same or zero for all k ∈ [m] \ {i, j},
and sign(4.2) is the same or zero for all k′ ∈ [n] \ {i ′},
and sign((4.2)[i′ → j ′]) is the same or zero for all k′ ∈ [n] \ {j ′},
and (4.3) · (4.3) [k ↔ l] ≥ 0 for all {k, l} ⊆ [m] \ {i, j} and k′ ∈ [n] \ {i ′, j ′},
or there exist i, j ∈ [n], i ′, j ′ ∈ [m] such that these conditions hold after swap-

ping A with BT .

Here, [m] = {1,2, . . . ,m}, and the notation [i ′ → j ′] means that the index i′ is
replaced by the index j ′ in the preceding expression, and [k ↔ l] means that k and
l are switched.

Theorem 4.1 is our main result in Section 4. It gives a finite disjunction of
conjunctions of polynomial inequalities in A and B , and thus a quantifier-free
first order formula for N . This represents our mixture model as follows: to test
whether P lies in M, check whether rank(P ) ≤ 3; if yes, compute any rank 3
factorization P = AB and check whether (A,B) lies in N . Code for performing
these computations in Macaulay2 is posted on our website.

Theorem 4.1 is an algebraic translation of a geometric algorithm. For an illustra-
tion, see Figure 3. In the rest of the section, we will study the geometric description
of nonnegative rank that leads to the algorithm. Let P be a nonnegative m×n ma-
trix of rank r . We write span(P ) and cone(P ) for the linear space and the cone
spanned by the columns of P , and we define

A = span(P ) ∩ �m−1 and B = cone(P ) ∩ �m−1.(4.4)

The matrix P has a size r nonnegative factorization if and only if there exists a
polytope � with r vertices such that B ⊆ � ⊆ A; see [29], Lemma 2.2. Without
loss of generality, we will assume in the rest of this section that the vertices of � lie
on the boundary of A. We write Mr for the set of m × n-matrices of nonnegative
rank ≤ r . Here is an illustration that is simpler than Example 2.2:

EXAMPLE 4.2. In [17], Section 2.7.2, the following family of matrices of
rank ≤ 3 is considered:

P(a, b) =

⎡⎢⎢⎣
1 − a 1 + a 1 + a 1 − a

1 − b 1 − b 1 + b 1 + b

1 + a 1 − a 1 − a 1 + a

1 + b 1 + b 1 − b 1 − b

⎤⎥⎥⎦ .(4.5)

Here, B is a rectangle and A = {x ∈ �3 :x1 − x2 + x3 − x4 = 0} is a square, see
Figure 4. Using Theorem 4.1, we can check that P(a, b) lies in M3 if and only if
ab + a + b ≤ 1.
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FIG. 3. In the diagrams (a) and (b), the conditions of Theorem 4.1 are satisfied for the chosen
i, j, i′, j ′. In the diagrams (c) and (d), the conditions of Theorem 4.1 fail for the chosen i, j, i′, j ′.

FIG. 4. The matrix P(a, b) defines a nested pair of rectangles.
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FIG. 5. Critical configurations.

LEMMA 4.3. A matrix P ∈ Rm×n
≥0 of rank r lies in the interior of Mr if and

only if there exists an (r − 1)-simplex � ⊆ A such that B is contained in the
interior of �. It lies on the boundary of Mr if and only if every (r − 1)-simplex �

with B ⊆ � ⊆ A contains a vertex of B on its boundary.

For r = 3, Mond et al. [29] prove the following result. Suppose B ⊆ � ⊆ A and
every edge of � contains a vertex of B. Then tB ⊆ �′ ⊆ A for some triangle �′
and some t > 1, unless:

(a) an edge of � contains an edge of B, or
(b) a vertex of � coincides with a vertex of A.

Here, the dilate tB is taken with respect to a point in the interior of B. By
Lemma 4.3, this means that P lies in the interior of Mm×n

3 unless one of (a)
and (b) holds. The conditions (a) and (b) are shown in Figure 5. For the proof of
this result, we refer to [29], Lemmas 3.10 and 4.3.

COROLLARY 4.4. A matrix P ∈ M3 lies on the boundary of M3 if and
only if:

• P has a zero entry, or
• rank(P ) = 3 and if � is any triangle with B ⊆ � ⊆ A then every edge of �

contains a vertex of B, and (a) or (b) holds.

COROLLARY 4.5. A matrix P ∈ Rm×n
≥0 has nonnegative rank ≤ 3 if and only

if:

• rank(P ) < 3, or
• rank(P ) = 3 and there exists a triangle � with B ⊆ � ⊆ A such that a vertex of

� coincides with a vertex of A, or
• rank(P ) = 3 and there exists a triangle � with B ⊆ � ⊆ A such that an edge of

� contains an edge of B.

Corollary 4.5 provides a geometric algorithm similar to that of Aggarwal et al.
[1] for checking whether a matrix has nonnegative rank 3. For the algorithm, we
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need to consider one condition for every vertex of A and one condition for every
edge of B. We now explain these conditions.

Let v be a vertex of A. Let b1, b2 be the vertices of B such that l1 = vb1 and
l2 = vb2 support B. Let � be the convex hull of v and the other two intersection
points of the lines l1, l2 with the boundary of A. If B ⊆ �, then P has nonnegative
rank 3.

Let l be the line spanned by an edge of B. Let v1, v2 be the intersection points
of l with ∂A. Let b1, b2 be the vertices of B such that l1 = v1b1 and l2 = v2b2
support B. Let v3 be the intersection point of l1 and l2. If conv(v1, v2, v3) ⊆ A,
then P has nonnegative rank 3.

PROOF OF THEOREM 4.1. Let rank(P ) = 3 and consider any factorization
P = AB where a1, . . . , am ∈ (R3)∗ are the row vectors of A and b1, . . . , bn ∈ R3

are the column vectors of B . The map x �→ Ax identifies R3 with the com-
mon column space of A and P . Under this identification, and by passing from
3-dimensional cones to polygons in R2, we can assume that the edges of A are
given by a1, . . . , am and the vertices of B are given by b1, . . . , bn.

To test whether P belongs to M3, we use the geometric conditions in Corol-
lary 4.5. These still involve a quantifier over �. Our aim is to translate them into
the given quantifier-free formula, referring only to the vertices bi of B and the
edges aj of A. First, we check with the sign condition on (4.1) that the intersec-
tion point ai ∧aj defines a vertex of A. Next we verify that the lines (ai ∧aj )∨bi′
and (ai ∧ aj ) ∨ bj ′ are supporting B, that is, all vertices of B lie on the same side
of the lines (ai ∧ aj ) ∨ bi′ and (ai ∧ aj ) ∨ bj ′ . For this, we use the sign conditions
on (4.2) and (4.2) [i ′ → j ′].

Finally, we need to check whether all vertices of B belong to the convex hull
of ai ∧ aj and the other two intersection points of the lines (ai ∧ aj ) ∨ bi′ and
(ai ∧ aj ) ∨ bj ′ with the boundary of A. Fix {k, l} ⊆ [m] \ {i, j}. If either the line
(ai ∧ aj ) ∨ bi′ intersects ak or the line (ai ∧ aj ) ∨ bj ′ intersects al outside A, then
the polygon B lies completely on one side of the line (((ai ∧ aj ) ∨ bi′) ∧ ak) ∨
(((ai ∧ aj ) ∨ bj ′) ∧ al). Similarly, if either the line (ai ∧ aj ) ∨ bi′ intersects al or
the line (ai ∧ aj )∨ bj ′ intersects ak outside A, then the polygon B lies completely
on one side of the line (((ai ∧ aj ) ∨ bi′) ∧ al) ∨ (((ai ∧ aj ) ∨ bj ′) ∧ ak). Then the
condition (4.3) · (4.3) [k ↔ l] ≥ 0 is automatically satisfied for all k′ ∈ [n]\{i ′, j ′}.
If the intersection points ((ai ∧ aj ) ∨ bi′) ∧ ak and ((ai ∧ aj ) ∨ bj ′) ∧ al are on
the boundary of A, then the polygon B is on one side of (((ai ∧ aj ) ∨ bi′) ∧ al) ∨
(((ai ∧aj )∨bj ′)∧ak). In this case, we use the conditions (4.3) · (4.3) [k ↔ l] ≥ 0
to check whether B is also on one side of the line (((ai ∧ aj ) ∨ bi′) ∧ ak) ∨ (((ai ∧
aj ) ∨ bj ′) ∧ al). For an illustration, see Figure 3. �

We wish to reiterate that the semialgebraic formula for our model in Theo-
rem 4.1 is quantifier-free. It is a finite Boolean combination of polynomial in-
equalities with rational coefficients.
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COROLLARY 4.6. If a rational m × n matrix P has nonnegative rank ≤ 3,
then there exists a nonnegative rank ≤ 3 factorization P = AB where all entries
of A and B are rational numbers.

This answers a question of Cohen and Rothblum in [10] for matrices of nonneg-
ative rank 3. It is not known whether this result holds in general. In Section 6, we
apply Theorem 4.1 to derive the topological boundary and the algebraic boundary
of M. Also, using what follows in Section 5, we shall see how these boundaries
are detected by the EM algorithm.

5. Decomposing the variety of EM fixed points. After this in-depth study
of the geometry of our model, we now return to the fixed points of Expectation–
Maximization on M. We fix the polynomial ring Q[A,R,B] in mr + mn + rn

indeterminates aik , rij and bkj . Let F denote the ideal generated by the entries of
the matrices A 	 (R · BT ) and B 	 (AT · R) in (3.3). Also, let C denote the ideal
generated by the entries of R · BT and AT · R. Thus, F is generated by mr + rn

cubics, C is generated by mr + rn quadrics, and we have the inclusion F ⊂ C. By
Theorem 3.5, the variety V (C) consists of those parameters A,R,B that corre-
spond to critical points for the log-likelihood function �U , while the variety V (F)

encompasses all the fixed points of the EM algorithm. We are interested in the
irreducible components of the varieties V (F) and V (C). These are the zero sets
of the minimal primes of F and C, respectively. More precisely, if F has minimal
primes F1,F2, . . . ,FN , then V (Fi ) are the irreducible components of V (F), and
V (F) = ⋃

i V (Fi ).
Recall that the matrix R represents the gradient of the log-likelihood func-

tion �U , that is,

rij = u++ − uij

pij

= u++ − uij∑
k aikλkbkj

.(5.1)

The set of EM-fixed points corresponding to a data matrix U ∈ Nm×n is defined
by the ideal F ′ ⊂ Q[A,B,�] that is obtained from F by substituting (5.1), clear-
ing denominators, and saturating. Note that V (F ′) = ⋃

i V (F ′
i ). So, studying the

minimal primes Fi will help us study the fixed points of EM. A big advantage of
considering F rather than F ′ is that F is much simpler. Also, it does not depend
on the data U . This allows a lot of the work in exact MLE using algebraic methods
(as in Example 2.1) to be done in a preprocessing stage.

There are two important points we wish to make in this section:

1. the minimal primes of F have interesting statistical interpretations, and
2. the nontrivial boundaries of the mixture model M can be detected from this.

We shall explain these points by working out two cases that are larger than Exam-
ple 3.6.

Example 3.6 showed that F is not radical but has embedded components. Here,
we focus on the minimal primes Fi of F , as these correspond to geometric com-
ponents of V (F). If Fi is also a minimal prime of C then Fi is a critical prime
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of F . Not every minimal prime of C is a minimal prime of F . For instance, for
m = n = 2, r = 1, the ideal C is the intersection of the first prime in Example 3.6
and 〈a11, a21, b11, b12〉. The latter is not minimal over F . We now generalize this
example:

PROPOSITION 5.1. The ideal C has precisely r + 1 minimal primes, indexed
by k = 1, . . . , r + 1:

C + 〈k-minors of A〉 + 〈
(m − k + 2)-minors of R

〉 + 〈
(n − m + k)-minors of B

〉
if m ≤ n,

C + 〈
(m − n + k)-minors of A

〉 + 〈
(n − k + 2)-minors of R

〉 + 〈k-minors of B〉
if m ≥ n.

Moreover, the ideal C is radical, and hence, it equals the intersection of its minimal
primes.

We refer to Example A.1 for an illustration of Proposition 5.1. The proof we
give in Appendix A relies on methods from representation theory. The duality
relation (A.2) plays an important role.

We now proceed to our case studies of the minimal primes of the EM fixed
ideal F .

EXAMPLE 5.2. Let m = n = 3 and r = 2. The ideal F has 37 minimal primes,
in six classes. The first three are the minimal primes of the critical ideal C, as seen
in Proposition 5.1:

I1 = 〈r23r32 − r22r33, r13r32 − r12r33, r23r31 − r21r33, r22r31 − r21r32,

r13r31 − r11r33, r12r31 − r11r32, r13r22 − r12r23, r13r21 − r11r23,

r12r21 − r11r22, b21r31 + b22r32 + b23r33, b11r31 + b12r32 + b13r33,

b21r21 + b22r22 + b23r23, b11r21 + b12r22 + b13r23,

a12r13 + a22r23 + a32r33, a11r13 + a21r23 + a31r33,

a12r12 + a22r22 + a32r32, a11r12 + a21r22 + a31r32,

b21r11 + b22r12 + b23r13, b11r11 + b12r12 + b13r13,

a12r11 + a22r21 + a32r31, a11r11 + a21r21 + a31r31〉,
I2 = 〈r13r22r31 − r12r23r31 − r13r21r32 + r11r23r32 + r12r21r33 − r11r22r33,

b21r31 + b22r32 + b23r33, b11r31 + b12r32 + b13r33,

b21r21 + b22r22 + b23r23, b11r21 + b12r22 + b13r23,

a12r13 + a22r23 + a32r33, a11r13 + a21r23 + a31r33,
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a12r12 + a22r22 + a32r32, a11r12 + a21r22 + a31r32,

b21r11 + b22r12 + b23r13, b11r11 + b12r12 + b13r13,

a12r11 + a22r21 + a32r31, a11r11 + a21r21 + a31r31,

b13b22 − b12b23, b13b21 − b11b23, b12b21 − b11b22,

a31a22 − a21a32, a31a12 − a11a32, a21a12 − a11a22〉,
I3 = 〈a11, a21, a31, a12, a22, a32, b11, b12, b13, b21, b22, b23〉.

In addition to these three, F has 12 noncritical components like

J1 = 〈a11, a21, r31, r32, r33, r13r22 − r12r23, r13r21 − r11r23,

r12r21 − r11r22, b21r21 + b22r22 + b23r23, b21r11 + b22r12 + b23r13,

a12r13 + a22r23, a12r12 + a22r22, a12r11 + a22r21〉,
four noncritical components like

J2 = 〈a11, a21, a31, r13r22r31 − r12r23r31 − r13r21r32 + r11r23r32

+ r12r21r33 − r11r22r33, b21r21 + b22r22 + b23r23, b21r11

+ b22r12 + b23r13, b21r31 + b22r32 + b23r33, a12r13 + a22r23

+ a32r33, a12r12 + a22r22 + a32r32, a12r11 + a22r21 + a32r31〉
and 18 noncritical components like

J3 = 〈a11, a21, b11, b12, r33, r13r22r31 − r12r23r31 − r13r21r32 + r11r23r32,

b21r31 + b22r32, b21r21 + b22r22 + b23r23, b21r11 + b22r12 + b23r13,

a12r13 + a22r23, a12r12 + a22r22 + a32r32, a12r11 + a22r21 + a32r31〉.
Each of the 34 primes J1, J2, J3 specifies a face of the polytope �, as it contains
two, three or four of the parameters aik, bkj , and expresses rank constraints on the
matrix R = [rij ].

REMARK 5.3. Assuming the sample size u++ to be known, we can recover
the data matrix U from the gradient R using the formula U = R 	 P + u++P . In
coordinates, this says

uij = (rij + u++) · pij for i ∈ [m], j ∈ [n].
This formula is obtained by rewriting (5.1). Hence, rij = 0 holds if and only if
pij = uij /u++. This can be rephrased as follows. If a minimal prime of F contains
the unknown rij , then the corresponding fixed points of the EM algorithm maintain
the cell entry uij from the data.

With this, we can now understand the meaning of the various components in
Example 5.2. The prime I1 parametrizes critical points P of rank 2. This represents
the behavior of the EM algorithm when run with random starting parameters in the
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interior of �. For special data U , the MLE will be a rank 1 matrix, and such
cases are captured by the critical component I2. The components I3 and J2 can be
disregarded because each of them contains a column of A. This would force the
entries of that column to sum to 0, which is impossible in �.

The components J1 and J3 describe interesting scenarios that are realized by
starting the EM algorithm with parameters on the boundary of the polytope �. On
the components J1, the EM algorithm produces an estimate that maintains one of
the rows or columns from the data U , and it replaces the remaining table of format
2 × 3 or 3 × 2 by its MLE of rank 1. This process amounts to fitting a context
specific independence (CSI) model to the data. Following Georgi and Schliep [21],
CSI means that independence holds only for some values of the involved variables.
Namely, J1 expresses the constraint that X is independent of Y given that Y is
either 1 or 2. Finally, on the components J3, we have rank(A) = rank(B) = 2 and
rij = 0 for one cell entry (i, j).

DEFINITION 5.4. Let F = 〈A 	 (R · BT ),B 	 (AT · R)〉 be the ideal of EM
fixed points. A minimal prime of F is called relevant if it contains none of the mn

polynomials pij = ∑r
k=1 aikbkj .

In Example 3.6, only the first minimal prime is relevant. In Example 5.2, all
minimal primes besides I3 are relevant. Restricting to the relevant minimal primes
is justified because the EM algorithm never outputs a matrix containing zeros for
positive starting data. Note also that the pij appear in the denominators in the
expressions (3.1) that were used in our derivation of F .

Our main result in this section is the computation in Theorem 5.5. We provide a
census of EM fixed points for 4×4-matrices of rank r = 3. This is the smallest case
where rank can differ from nonnegative rank, and the boundary hypersurfaces (4.3)
appear.

THEOREM 5.5. Let m = n = 4 and r = 3. The radical of the EM fixed point
ideal F has 49,000 relevant primes. These come in 108 symmetry classes, listed in
Table 2.

PROOF. We used an approach that mirrors the primary decomposition of bi-
nomial ideals [16]. Recall that the EM fixed point ideal equals

F = 〈
A 	

(
R · BT )

,B 	
(
AT · R)〉

=
〈
aik

(
n∑

l=1

rilbkl

)
, bkj

(
m∑

l=1

rlj alk

)
:k ∈ [r], i ∈ [m], j ∈ [n]

〉
.

Any prime ideal containing F contains either aik or
∑n

l=1 rilbkl for any k ∈ [r],
i ∈ [m], and either bkj or

∑m
l=1 rlj alk for any k ∈ [r], j ∈ [n]. We enumerated

all primes containing F according to the set S of unknowns aik, bkj they contain.
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TABLE 2
Minimal primes of the EM fixed ideal F for 4 × 4-matrices of rank 3

Set S |S| a’s b’s deg codim rA rB rR rP |orbit|
∅ 0 0 0 1 24 0 0 4 0 1

0 0 0 1630 19 1 1 3 1 1
0 0 0 3491 16 2 2 2 2 1
0 0 0 245 15 3 3 1 3 1

{a11} 1 1 0 245 16 3 3 1 3 24
1 1 0 3491 17 2 2 2 2 24

{a11, a21} 2 2 0 20 17 3 3 1 3 36
2 2 0 245 17 3 3 1 3 36
2 2 0 1460 17 2 3 2 2 36

{a11, a21, a31} 3 3 0 53 17 3 3 1 3 24
3 3 0 188 17 2 3 2 2 24

∗{a11, a21, b11, b12}∗ 4 2 2 245 19 3 3 1 3 108
4 2 2 20 19 3 3 1 3 108 × 2
4 2 2 1460 19 2 3 2 2 108 × 2
4 2 2 2370 20 2 2 3 2 108
4 2 2 240 19 3 3 2 3 108

{a11, a21, b21, b22} 4 2 2 825 18 3 3 2 3 216
{a11, a21, a31, a41} 4 4 0 689 16 2 3 2 2 6

4 4 0 474 17 1 2 3 1 6
{a11, a21, a12, a22} 4 4 0 592 17 2 3 2 2 36

4 4 0 9 17 3 3 1 3 36
{a11, a21, a32, a42} 4 4 0 20 19 3 3 1 3 36 × 2

4 4 0 245 19 3 3 1 3 36
4 4 0 400 18 2 3 2 2 36

{a11, a21, a31, b11, b12} 5 3 2 474 20 2 2 3 2 144
5 3 2 188 19 2 3 2 2 144
5 3 2 448 19 3 3 2 3 144
5 3 2 53 19 3 3 1 3 144

{a11, a21, a31, b21, b22} 5 3 2 125 18 3 3 2 3 288
{a11, a21, a32, a42, b31} 5 4 1 723 19 3 3 2 3 144
{a11, a21, a31, b11, b12, b13} 6 3 3 689 19 3 3 2 3 48

6 3 3 474 20 2 2 3 2 48
{a11, a21, a31, b21, b22, b23} 6 3 3 21 18 3 3 2 3 96
{a11, a21, a32, b11, b12, b33} 6 3 3 2785 20 3 3 3 3 864
∗{a11, a22, a33, b11, b22, b33}∗ 6 3 3 9016 21 3 3 4 3 576

6 3 3 245 21 3 3 1 3 576
{a11, a21, a31, a41, b21, b22} 6 4 2 265 17 2 3 2 2 72
{a11, a21, a12, a22, b11, b12} 6 4 2 592 19 2 3 2 2 432

6 4 2 9 19 3 3 1 3 432
6 4 2 104 19 3 3 2 3 432

{a11, a21, a32, a42, b11, b12} 6 4 2 825 20 3 3 2 3 432
6 4 2 100 20 3 3 2 3 432
6 4 2 400 20 2 3 2 2 432

{a11, a21, a32, a42, b31, b32} 6 4 2 301 19 3 3 2 3 216
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TABLE 2
(Continued)

Set S |S| a’s b’s deg codim rA rB rR rP |orbit|
{a11, a21, a31, a41, a12, a22} 6 6 0 265 17 2 3 2 2 72
{a11, a21, a31, a12, a22, a32} 6 6 0 35 16 2 3 2 2 24
{a11, a21, a12, a22, a33, a43} 6 6 0 180 18 2 3 2 2 36

6 6 0 9 19 3 3 1 3 36
{a11, a21, a31, a41, b21, b22, b23} 7 4 3 35 17 2 3 2 2 48
{a11, a21, a31, a42, b11, b12, b33} 7 4 3 557 20 3 3 3 3 576
{a11, a21, a12, a22, b11, b12, b13} 7 4 3 191 19 3 3 2 3 288
{a11, a21, a32, a42, b11, b12, b13} 7 4 3 140 20 3 3 2 3 288

7 4 3 125 20 3 3 2 3 288
{a11, a21, a32, a42, b11, b12, b33} 7 4 3 835 20 3 3 3 3 864
{a11, a21, a32, a42, b31, b32, b33} 7 4 3 49 19 3 3 2 3 144
∗{a11, a21, a32, a43, b11, b22, b33}∗ 7 4 3 3087 21 3 3 4 3 1728
{a11, a21, a31, a12, a22, b21, b22} 7 5 2 31 19 3 3 2 3 864
{a11, a21, a31, a12, a42, b11, b12} 7 5 2 225 20 3 3 2 3 864
{a11, a21, a12, a32, a43, b11, b22} 7 5 2 1193 21 3 3 3 3 1728
{a11, a21, a31, a41, b21, b22, b23, b24} 8 4 4 85 15 2 2 3 1 6
{a11, a21, a31, a41, b21, b22, b33, b34} 8 4 4 81 18 2 3 2 2 36
{a11, a21, a31, a42, b11, b12, b13, b34} 8 4 4 557 20 3 3 3 3 96
{a11, a21, a31, a42, b11, b12, b33, b34} 8 4 4 167 20 3 3 3 3 288
{a11, a21, a12, a22, b11, b12, b21, b22} 8 4 4 850 20 2 2 3 2 108

8 4 4 45 19 3 3 2 3 108
{a11, a21, a12, a22, b11, b12, b23, b24} 8 4 4 9 21 3 3 1 3 216

8 4 4 1024 21 3 2 3 2 216
8 4 4 104 21 3 3 2 3 216 × 2
8 4 4 592 21 2 3 2 2 216

{a11, a21, a12, a32, b11, b12, b21, b23} 8 4 4 2121 21 3 3 3 3 1728
{a11, a21, a12, a32, b11, b12, b23, b24} 8 4 4 2125 21 3 3 3 3 864
{a11, a21, a32, a42, b11, b12, b23, b24} 8 4 4 2125 21 3 3 3 3 108
{a11, a21, a32, a42, b11, b12, b33, b34} 8 4 4 265 20 3 3 3 3 216
{a11, a21, a32, a43, b11, b12, b23, b34} 8 4 4 2205 21 3 3 4 3 432
{a11, a21, a32, a43, b11, b22, b23, b34} 8 4 4 1029 21 3 3 4 3 864
{a11, a21, a31, a12, a22, b21, b22, b23} 8 5 3 35 19 3 3 2 3 576
{a11, a21, a31, a12, a42, b11, b12, b13} 8 5 3 265 20 3 3 2 3 576
{a11, a21, a12, a32, a43, b11, b12, b23} 8 5 3 1185 21 3 3 3 3 3456
{a11, a21, a31, a41, a12, a22, b21, b22} 8 6 2 425 18 2 3 3 2 432
{a11, a21, a12, a22, a33, a43, b11, b12} 8 6 2 180 20 2 3 2 2 432

8 6 2 45 20 3 3 2 3 432
{a11, a21, a31, a41, a12, a22, a32, a42} 8 8 0 85 15 1 3 3 1 6
{a11, a21, a31, a41, a12, a22, a33, a43} 8 8 0 81 18 2 3 2 2 36
{a11, a21, a31, a12, a22, b11, b12, b23, b24} 9 5 4 296 21 3 3 3 3 864

9 5 4 31 21 3 3 2 3 864
{a11, a21, a31, a12, a42, b11, b12, b21, b23} 9 5 4 425 21 3 3 3 3 3456
{a11, a21, a31, a12, a42, b11, b12, b23, b24} 9 5 4 425 21 3 3 3 3 864
{a11, a21, a12, a22, a33, b11, b12, b23, b24} 9 5 4 839 21 3 3 3 3 432
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TABLE 2
(Continued)

Set S |S| a’s b’s deg codim rA rB rR rP |orbit|
{a11, a21, a12, a32, a43, b11, b12, b13, b24} 9 5 4 237 21 3 3 3 3 1152
{a11, a21, a12, a32, a43, b11, b12, b23, b24} 9 5 4 875 21 3 3 3 3 864
{a11, a21, a31, a41, a12, a22, b21, b22, b23} 9 6 3 85 18 2 3 3 2 288
{a11, a21, a31, a12, a22, a43, b11, b12, b23} 9 6 3 163 21 3 3 3 3 1728
{a11, a21, a12, a22, a33, a43, b11, b12, b13} 9 6 3 63 20 3 3 2 3 288
{a11, a21, a31, a41, a12, a22, a32, b21, b22} 9 7 2 85 18 2 3 3 2 288
{a11, a21, a31, a12, a22, b11, b12, b13, b21, b24} 10 5 5 425 21 3 3 3 3 1728
{a11, a21, a31, a12, a22, b11, b12, b21, b22, b23} 10 5 5 85 20 3 3 3 3 864
{a11, a21, a31, a12, a42, b11, b12, b13, b21, b24} 10 5 5 425 21 3 3 3 3 864
{a11, a21, a31, a12, a42, b11, b12, b21, b23, b24} 10 5 5 85 21 3 3 3 3 864
{a11, a21, a31, a12, a22, a32, b11, b12, b21, b22} 10 6 4 85 19 2 3 3 2 144
{a11, a21, a31, a12, a22, a42, b11, b12, b21, b23} 10 6 4 85 21 3 3 3 3 1728
{a11, a21, a31, a12, a22, a42, b11, b12, b23, b24} 10 6 4 85 21 3 3 3 3 432
{a11, a21, a31, a12, a22, a43, b11, b12, b13, b24} 10 6 4 237 21 3 3 3 3 576
{a11, a21, a31, a12, a22, a43, b11, b12, b23, b24} 10 6 4 175 21 3 3 3 3 864
{a11, a21, a12, a22, a33, a43, b11, b12, b23, b24} 10 6 4 225 21 3 3 3 3 216
{a11, a21, a31, a41, a12, a22, a32, b21, b22, b23} 10 7 3 85 18 2 3 3 2 192
{a11, a21, a31, a12, a22, a42, b11, b12, b13, b21, b24} 11 6 5 85 21 3 3 3 3 1728
{a11, a21, a31, a12, a22, a32,

b11, b12, b13, b21, b22, b23} 12 6 6 85 20 2 2 3 2 48
{a11, a21, a31, a12, a22, a42,

b11, b12, b13, b21, b22, b24} 12 6 6 85 21 3 3 3 3 432

There are 224 subsets and the symmetry group acts on this power set by replacing A

with BT , permuting the rows of A, the columns of B , and the columns of A and the
rows of B simultaneously. We picked one representative S from each orbit that is
relevant, meaning that we excluded those orbits for which some pij = ∑r

k=1 aikbkj

lies in the ideal 〈S〉. For each relevant representative S, we computed the cellular
component FS = ((F + 〈S〉) : (

∏
Sc)∞), where Sc = {a11, . . . , b34} \ S. Note that

F∅ = C is the critical ideal. We next minimalized our cellular decomposition by
removing all representatives S such that FT ⊂ FS for some representative T in
another orbit. This led to a list of 76 orbits, comprising 42,706 ideals FS in total.
For the representative FS , we computed the set Ass(FS) of associated primes P .
By construction, the sets Ass(FS) partition the set of relevant primes of F . The
block sizes |Ass(FS)| range from 1 to 7. Up to symmetry, each prime is uniquely
determined by its attributes in Table 2. These are its set S, its degree and codimen-
sion, and the ranks rA = rank(A), rB = rank(B), rR = rank(R), rP = rank(P ) at
a generic point. Our list starts with the four primes from coming from S = ∅. See
Example A.1. In each case, the primality of the ideal was verified using a linear
elimination sequence as in [20], Proposition 23(b). Proofs in Macaulay2 code
are posted on our website. �
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Below is the complete list of all 108 classes of prime ideals in Theorem 5.5.
Three components are marked with stars. After the table, we discuss these compo-
nents in Examples 5.6, 5.7 and 5.8.

We illustrate our census of relevant primes for three sets S that are especially
interesting.

EXAMPLE 5.6. Let S = {a11, a21, b11, b12}. The cellular component FS

is the ideal generated by S,det(R34
34),det(R), and the entries of the matrices

B23RT ,B1(RT )34,R
T A23, (R

T )34A1. In specifying submatrices, upper indices
refer to rows and lower indices refer to columns. The ideal FS is radical with 7
associated primes, to be discussed in order of their appearance in Table 2. For in-
stance, the prime (1) below has degree 245. The phrase “Generated by” is meant
modulo FS :

(1) Generated by entries of BRT ,AT R, and 2 × 2-minors of R. This gives 60
quadrics.

(2) Generated by entries of AT R,R34, and 2 × 2-minors of R,A12
23. This gives

19 quadrics.
(2′) Mirror image of (2) under swapping A and BT .
(3) Generated by entries of AT R, 2 × 2-minors of A12

23,R
34, and 3 × 3-minors

of A, R123,R124. This gives 29 quadrics and 10 cubics.
(3′) Mirror image of (3) under swapping A and BT .
(4) Generated by 2×2-minors of A23 and B23. This gives 33 quadrics and one

quartic.
(5) Generated by entries of R34

34 , 2×2-minors of R12
34,R34

12,A
12
23,B

23
12 , and 3×3-

minors of R. This gives 20 quadrics and 4 cubics.

These primes have the following meaning for the EM algorithm:

(1) The fixed points P = φ(A,R,B) given by this prime ideal are those critical
points for the likelihood function �U for which the parameters a11, a21, b11, b21
happen to be 0.

(2) The fixed points P = φ(A,R,B) given by this prime ideal have the last
two rows of P fixed and equal to the last two rows of the data matrix U (divided
by the sample size u++). Therefore, the points coming from this ideal are the
maximum likelihood estimates with these eight entries fixed and which factor so
that a11, a21, b11, b21 are 0.

(3) Since the 3 × 3 minors of A lie in this ideal, we have rank(P ) ≤ 2. There-
fore, these fixed points give an MLE of rank 2. This component is the restriction
to V (FS) of the generic behavior on the singular locus of V .

(4) On this component, the duality relation in (A.2) fails since rank(P ) = 2 but
rank(R) = 3.

(5) The fixed points P = φ(A,R,B) given by this ideal have the four entries in
the last 2 rows and last 2 columns of P fixed and equal to the corresponding entries
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in U (divided by u++). Therefore, the points coming from this ideal are maximum
likelihood estimates with those four entries fixed, and parameters a11, a21, b11, b21
being 0.

EXAMPLE 5.7. Let S = {a11, a21, a32, a43, b11, b22, b33}. The ideal FS has
codimension 21, degree 3087, and is generated modulo 〈S〉 by 20 quadrics and
two cubics. To show that FS is prime, we use the elimination method of [20],
Proposition 23(b), with the variable x1 taken successively to be r44, r43, r34, a13,
r21, r12, r14, r33, b21, a31, r41, a21, a32.

The last elimination ideal is generated by an irreducible polynomial of degree 9,
thus proving primality of FS .

If we add the relation P = AB to FS and thereafter eliminate {A,B,R}, we ob-
tain a prime ideal in Q[P ]. That prime ideal has height one over the determinantal
ideal 〈det(P )〉. Any such prime gives a candidate for a component in the boundary
of our model M. By matching the set S with the combinatorial analysis in Sec-
tion 4, we see that Figure 5(b) corresponds to V (S). Hence, by Corollary 4.4, this
component does in fact contribute to the boundary ∂M. This is a special case of
Theorem 6.1 below; see equation (6.2) in Example 6.2.

This component is the most important one for EM. It represents the typical
behavior when the output of the EM algorithm is not critical. In particular, the
duality relation (A.2) fails in the most dramatic form because rank(R) = 4. As
seen in Table 1, this failure is still rare (4.4%) for m = n = 4. For larger matrix
sizes, however, the noncritical behavior occurs with overwhelming probability.

EXAMPLE 5.8. Let S = {a11, a22, a33, b11, b22, b33}. The computation for the
ideal FS was the hardest among all cellular components. It was found to be radical,
with two associated primes of codimension 21. The first prime has the largest
degree, namely 9016, among all entries in Table 2. In contrast to Example 5.7,
the set S cannot contribute to ∂M. Indeed, for both primes, the elimination ideal
in Q[P ] is 〈det(P )〉. The degree 9016 ideal is the only prime in Table 2 that has
rank(R) = 4 but does not map to the boundary of the model M. Starting the EM
algorithm with zero parameters in S generally leads to the correct MLE.

6. Algebraic boundaries. In Section 4, we studied the real algebraic geome-
try of the mixture model M for rank three. In this section, we also fix r = 3 and
focus on the algebraic boundary of our model. Our main result in this section is
the characterization of its irreducible components.

THEOREM 6.1. The algebraic boundary ∂M is a pure-dimensional reducible
variety in Pmn−1. All irreducible components have dimension 3m + 3n − 11 and
their number equals

mn + m(m − 1)(m − 2)(m + n − 6)n(n − 1)(n − 2)

4
.

Besides the mn components {pij = 0} that come from ∂�mn−1 there are:
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(a) 36
(m

3

)(n
4

)
components parametrized by P = AB , where A has three zeros in

distinct rows and columns, and B has four zeros in three rows and distinct columns.
(b) 36

(m
4

)(n
3

)
components parametrized by P = AB , where A has four zeros

in three columns and distinct rows, and B has three zeros in distinct rows and
columns.

This result takes the following specific form in the first nontrivial case:

EXAMPLE 6.2. For m = n = 4, the algebraic boundary of our model M has
16 irreducible components {pij = 0}, 144 irreducible components corresponding
to factorizations like⎡⎢⎢⎣

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎤⎥⎥⎦
(6.1)

=

⎡⎢⎢⎣
0 a12 a13

a21 0 a23
a31 a32 0
a41 a42 a43

⎤⎥⎥⎦ ·
⎡⎣ 0 0 b13 b14

b21 b22 0 b24
b31 b32 b33 0

⎤⎦ ,

and 144 irreducible components that are transpose to those in (6.1), that is,⎡⎢⎢⎣
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎤⎥⎥⎦
(6.2)

=

⎡⎢⎢⎣
0 a12 a13
0 a22 a23

a31 0 a33
a41 a42 0

⎤⎥⎥⎦ ·
⎡⎣ 0 b12 b13 b14

b21 0 b23 b24
b31 b32 0 b34

⎤⎦ .

The prime ideal of each component is generated by the determinant and four poly-
nomials of degree six. These are the maximal minors of a 4 × 5-matrix. For the
component (6.2), this can be chosen as⎡⎢⎢⎣

p11 p12 p13 p14 0
p21 p22 p23 p24 0
p31 p32 p33 p34 p33(p11p22 − p12p21)

p41 p42 p43 p44 p41(p12p23 − p13p22) + p43(p11p22 − p12p21)

⎤⎥⎥⎦ .

(6.3)

This matrix representation was suggested to us by Aldo Conca and Matteo Var-
baro.

We begin by resolving a problem that was stated in [24], Section 5, and [25],
Example 2.13.
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PROPOSITION 6.3. The ML degree of each variety (6.1) in the algebraic
boundary ∂M is 633.

Proposition 6.3 is a first step towards deriving an exact representation of the
MLE function U �→ P̂ for our model M = . As highlighted in Table 1,
the MLE P̂ typically lies on the boundary ∂M. We now know that this boundary
has 304 = 16 + 144 + 144 strata X1,X2, . . . ,X304. If P̂ lies on exactly one of
the strata (6.1) or (6.2), then we can expect the coordinates of P̂ to be algebraic
numbers of degree 633 over the rationals Q. This is the content of Proposition 6.3.
By [24], Theorem 1.1, the degree of P̂ over Q is only 191 if P̂ happens to lie in
the interior of M.

In order to complete the exact analysis of MLE for the 4 × 4-model, we also
need to determine which intersections Xi1 ∩ · · · ∩ Xis are nonempty on ∂M. For
each such nonempty stratum, we would then need to compute its ML degree. This
is a challenge left for a future project.

PROOF OF THEOREM 6.1. By Corollary 4.4, an m × n matrix P of rank 3
without zero entries lies on ∂Mm×n

3 if and only if all triangles � with B ⊆ � ⊆ A
contain an edge of B on one of its edges and a vertex of B on all other edges, or
one of its vertices coincides with a vertex of A and all other edges contain a vertex
of B. We will write down these conditions algebraically.

The columns of A correspond to the vertices of �, and the columns of B cor-
respond to the convex combinations of the vertices of � that give the columns of
P = AB . If a vertex of � and a vertex of A coincide, then the corresponding col-
umn of A has two 0’s. Otherwise the corresponding column of A has one 0. If a
vertex of B lies on an edge of �, then one entry of B is zero.

We can freely permute the columns of the left m × 3 matrix A of a factoriza-
tion—this corresponds to permuting the rows of the corresponding right 3 × n

matrix B . Thus we can assume that the first column contains two 0’s and/or the
rest of the 0’s appear in the increasing order.

In the first case, there are
(m

3

)
possibilities for choosing the three rows of A

containing 0’s, there are 3 choices for the row of B with two 0’s,
(n
2

)
possibilities

for choosing the positions for the two 0’s, and (n − 2)(n − 3) possibilities for
choosing the positions of the 0’s in the other two rows of B . In the second case,
there are

(m
2

)
possibilities for choosing the 0’s in the first column of A and

(m−2
2

)
choices for the positions of the 0’s in other columns. There are

(n
3

)
choices for the

columns of B containing 0’s and 3! choices for the positions of the 0’s in these
columns. �

The prime ideal in (6.3) can be found and verified by direct computation, for
example, by using the software Macaulay2 [22]. For general values of m and n,
the prime ideal of an irreducible boundary component is generated by quartics and
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sextics that generalize those in Example 6.2. The following theorem was stated as
a conjecture in the original December 2013 version of this paper. That conjecture
was proved in April 2014 by Eggermont, Horobeţ and Kubjas [15].

THEOREM 6.4 (Eggermont, Horobeţ and Kubjas). Let m ≥ 4, n ≥ 3 and con-
sider the irreducible component of ∂M in Theorem 6.1(b). The prime ideal of this
component is minimally generated by

(m
4

)(n
4

)
quartics, namely the 4 × 4-minors

of P , and by
(n
3

)
sextics that are indexed by subsets {i, j, k} of {1,2, . . . , n}. These

form a Gröbner basis with respect to graded reverse lexicographic order. The sex-
tic indexed by {i, j, k} is homogeneous of degree e1 + e2 + e3 + ei + ej + ek in the
column grading by Zn and homogeneous of degree 2e1 + 2e2 + e3 + e4 in the row
grading by Zm.

The row and column gradings of the polynomial ring Q[P ] are given by
deg(pij ) = ei and deg(pij ) = ej where ei and ej are unit vectors in Zm and Zn,
respectively.

EXAMPLE 6.5. If m = 5 and n = 6, then our component is given by the
parametrization⎡⎢⎢⎢⎢⎣

p11 p12 p13 p14 p15 p16
p21 p22 p23 p24 p25 p26
p31 p32 p33 p34 p35 p36
p41 p42 p43 p44 p45 p46
p51 p52 p53 p54 p55 p56

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
0 a12 a13
0 a22 a23

a31 0 a33
a41 a42 0
a51 a52 a53

⎤⎥⎥⎥⎥⎦ ·
⎡⎣ 0 b12 b13 b14 b15 b16

b21 0 b23 b24 b25 b26
b31 b32 0 b34 b35 b36

⎤⎦ .

This parametrized variety has codimension 7 and degree 735 in P29. Its prime ideal
is generated by 75 quartics and 20 sextics of the desired row and column degrees.

The base case for Theorem 6.4 is the case of 4×3-matrices, even though ∂M =
M∩ �11 is trivial in this case.

The corresponding ideal is principal, and it is generated by the determinant of
the 4 × 4-matrix that is obtained by deleting the fourth column of (6.3).

The sextics in Theorem 6.4 can be constructed as follows. Start with the poly-
nomial ((

(a1 ∧ a2) ∨ b1
) ∧ a3

) ∨ ((
(a1 ∧ a2) ∨ b2

) ∧ a4
) ∨ b3

that is given in (4.3). Now multiply this with the 3×3-minor bi ∨bj ∨bk of B . The
result has bidegree (6,6) in the parameters (A,B) and can be written as a sextic
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in P = AB . By construction, it vanishes on our component of ∂M, and it has the
asserted degrees in the row and column gradings on Q[P ]. This is the generator of
the prime ideal referred to in Theorem 6.4.

Theorem 6.1 characterizes the probability distributions in the algebraic bound-
ary of our model, but not those in the topological boundary, since the following
inclusion is strict:

∂M ⊂ ∂M∩ �mn−1.(6.4)

In fact, the left-hand side is much smaller than the right-hand side.
To quantify the discrepancy between the two semialgebraic sets in (6.4), we

conducted the following experiment in the smallest interesting case m = n = 4. We
sampled from the component (6.1) of ∂M ∩ �15 by generating random rational
numbers for the nine parameters aij and the eight parameters bij . This was done
using the built-in Macaulay2 function random(QQ). The resulting matrix in
∂M ∩ �15 was obtained by dividing by the sum of the entries. For each matrix,
we tested whether it lies in ∂M. This was done using the criterion in Corollary 6.6.
The answer was affirmative only in 257 cases out of 5000 samples. This suggests
that ∂M occupies only a tiny part of the set ∂M ∩ �15. One of those rare points
in the topological boundary is the matrix⎡⎢⎢⎣

6 13 3 1
4 16 6 2

12 4 8 12
5 9 10 9

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 3
1 0 4
4 4 0
4 1 2

⎤⎥⎥⎦ ·
⎡⎣ 0 0 2 2

3 1 0 1
1 4 1 0

⎤⎦ .(6.5)

To construct this particular example, the parameters aij and bij were selected uni-
formly at random among the integers between 1 and 4. Only 1 out of 1000 samples
gave a matrix lying in ∂M. In fact, this matrix lies on precisely one of the 304
strata in the topological boundary ∂M.

We close this paper with a quantifier-free semialgebraic formula for the topo-
logical boundary.

COROLLARY 6.6. An m × n-matrix P lies on the topological boundary ∂M
if and only if:

• the conditions of Theorem 4.1 are satisfied, and
• P contains a zero, or rank(P ) = 3 and for each i, j, i′, j ′ for which the

conditions of Theorem 4.1 are satisfied there exist k, l such that (4.3) · (4.3) [k ↔
l] = 0.

This corollary will be derived (in Appendix A) from our results in Section 4.
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APPENDIX A: PROOFS

This appendix furnishes the proofs for all lemmas, propositions and corollaries
in this paper.

PROOF OF LEMMA 3.3. (3) ⇒ (2): If (A,�,B) remains fixed after one com-
pletion of the E-step and the M-step, then it will remain fixed after any number of
rounds of the E-step and the M-step.

(2) ⇒ (3): By the proof of [31], Theorem 1.15, the log-likelihood function �U

grows strictly after the completion of an E-step and an M-step unless the param-
eters (A,�,B) stay fixed, in which case �U also stays fixed. Thus, the only way
to start with (A,�,B) and to end with it is for (A,�,B) to stay fixed after every
completion of an E-step and an M-step.

(2) ⇒ (1): If (A,�,B) is the limit point of EM when we start with it, then
it is in the set of all limit points. This argument is reversible, and so we also get
(1) ⇒ (2), (3). �

PROOF OF LEMMA 4.3. The if-direction of the first sentence follows from the
following two observations: 1. The function that takes P ∈ Rm×n

≥0 to the vertices
of B is continuous on all m × n nonnegative matrices without zero columns, since
the vertices of B are of the form P j/P+j , where P+j denotes the j th column sum
of P . 2. The function that takes P ∈ Rm×n

≥0 to the vertices of A is continuous on
all m × n nonnegative matrices of rank r , since the vertices of A are solutions to a
system of linear equations in the entries of P .

For the only-if-direction of the first sentence assume that P lies in the interior
of Mr . Each P ′ of rank r in a small neighborhood of P has nonnegative rank r .
We can choose P ′ in this neighborhood such that the columns of P ′ are in span(P )

and cone(P ′) = t · cone(P ) for some t > 1. Since P ′ has nonnegative rank r , there
exists an (r − 1)-simplex � such that B′ ⊆ �′ ⊆ A. Hence, B is contained in
the interior of �′. Finally, the second sentence is the contrapositive of the first
sentence. �

PROOF OF COROLLARY 4.4. The if-direction follows from the second sen-
tence of Lemma 4.3. For the only-if-direction, assume that P ∈ ∂M3 and it con-
tains no zeros. We first consider the case rank(P ) = 3. By Lemma 4.3, every tri-
angle � with B ⊆ � ⊆ A contains a vertex of B on its boundary. Moreover, by
the discussion above, every edge of � contains a vertex of B, and (a) or (b) must
hold. It remains to be seen that rank(P ) ≤ 2 is impossible on the strictly positive
part of the boundary of M3. Indeed, for every rank 3 matrix P ′ in a neighborhood
of P , the polygons A′,B′ have the property that B′ is very close to a line segment
strictly contained in the interior of A′. Hence, tB′ ⊆ � ⊆ A′ for some triangle �.
Thus, P ′ /∈ ∂M3 and, therefore, P /∈ ∂M3. �
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PROOF OF COROLLARY 4.5. The if-direction is immediate. For the only-if
direction, consider any P ∈ M3. If P ∈ ∂M3, then the only-if-direction follows
from Corollary 4.4. If P lies in the interior of M3, then let t be maximal such
that tB ⊆ �′ ⊆ A for some triangle �′. Then either a vertex of �′ coincides with
a vertex of A or an edge of �′ contains an edge of tB. In the first case, we take
� = �′. In the second case, we take � = 1

t
�′. In the first case, a vertex of �

coincides with a vertex of A, and in the second case, an edge of � contains an
edge of B. �

PROOF OF COROLLARY 4.6. If P has a nonnegative factorization of size 3,
then it has one that corresponds to a geometric condition in Corollary 4.5. The left
matrix in the factorization can be taken to be equal to the vertices of the nested
triangle, which can be expressed as rational functions in the entries of P . Finally,
the right matrix is obtained from solving a system of linear equations with rational
coefficients, hence its entries are again rational functions in the entries of P . �

PROOF OF PROPOSITION 5.1. Consider the sequence of linear maps

Rr BT−→ Rn R−→ Rm AT−→ Rr .(A.1)

The ideal C says that the two compositions are zero. It defines a variety of com-
plexes [27], Example 17.8. The irreducible components of that variety correspond
to irreducible rank arrays [27], Section 17.1, that fit inside the format (A.1) and
are maximal with this property. By [27], Theorem 17.23, the quiver loci for these
rank arrays are irreducible and their prime ideals are the ones we listed. These can
also be described by lacing diagrams [27], Proposition 17.9.

The proof that C is radical was suggested to us by Allen Knutson. Consider
the Zelevinski map [27], Section 17.2, that sends the triple (AT ,R,BT ) to the
(r + m + n + r) × (r + m + n + r) matrix⎡⎢⎢⎣

0 0 BT 1
0 R 1 0

AT 1 0 0
1 0 0 0

⎤⎥⎥⎦ .

Next, apply the map that takes this matrix to the big cell (the open Borel orbit) in
the flag variety GL(2r + m + n)/parabolic(r,m,n, r) corresponding to the given
block structure.

Our scheme is identified with the intersection of two Borel invariant Schubert
varieties. The first Schubert variety encodes the fact that there are 0’s in the North
West block, and the (r + n + m) × (r + m) North West rectangle has rank ≤ m.
The second Schubert variety corresponds to the (r + n) × (r + m + n) North West
rectangle having rank ≤ n. The intersection of Schubert varieties is reduced by [9],
Section 2.3.3, page 74. Hence, the original scheme is reduced, and we conclude
that C is the radical ideal defining the variety of complexes (A.1). �
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The following relations hold for P = AB and R on the variety of critical
points V (C):

P T · R = 0 and R · P T = 0.(A.2)

These bilinear equations characterize the conormal variety associated to a pair of
determinantal varieties. Suppose P is fixed and has rank r . Then P is a nonsingular
point in V , and (A.2) is the system of linear equations that characterizes normal
vectors R to V at P .

EXAMPLE A.1. Let m = n = 4 and r = 3. Then C has four minimal primes,
corresponding to the four columns in the table below. These are the ranks for
generic points on that prime:

rank(A) = 0, rank(A) = 1, rank(A) = 2, rank(A) = 3,

rank(R) = 4, rank(R) = 3, rank(R) = 2, rank(R) = 1,

rank(B) = 0, rank(B) = 1, rank(B) = 2 rank(B) = 3.

The lacing diagrams that describe these four irreducible components are as fol-
lows:

For instance, the second minimal prime is C + 〈2 × 2-minors of A and B〉 +
〈det(R)〉.

Note that the ranks of P = AB and R are complementary on each irreducible
component. They add up to 4. The last component gives the behavior of EM for
random data: the MLE P has rank 3, it is a nonsingular point on the determinantal
hypersurface V , and the normal space at P is spanned by the rank 1 matrix R. This
is the duality (A.2). The third component expresses the behavior on the singular
locus of V . Here, the typical rank of both P and R is 2.

PROOF OF PROPOSITION 6.3. Let f,g1, g2, g3, g4 denote the 4 × 4 minors
of the matrix (6.3), where deg(f ) = 4 and deg(gi) = 6. Fix i ∈ {1,2,3,4}, select
u11, . . . , u44 ∈ N randomly, and set

L =

⎡⎢⎢⎣
u11 u12 · · · u44
p11 p12 · · · p44

p11 ∂f/∂p11 p12 ∂f/∂p12 · · · p44 ∂f/∂p44
p11 ∂gi/∂p11 p12 ∂gi/∂p12 · · · p44 ∂gi/∂p44

⎤⎥⎥⎦ .(A.3)

This is a 4 × 16 matrix. Let λ1 and λ2 be new unknowns and consider the row
vector

[ 1 −u+ λ1 λ2 ] · L.(A.4)
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Inside the polynomial ring Q[pij , λk] with 20 unknowns, let I denote the ideal
generated by {f,g1, g2, g3, g4}, the 16 entries of (A.4), and the linear polynomial
p11 + p12 + · · · + p44 − 1. Thus, I is the ideal of Lagrange likelihood equations
introduced in [23], Definition 2. Gross and Rodriguez [23], Proposition 3, showed
that I is a 0-dimensional radical ideal, and its number of roots is the ML degree
of the variety V (f,g1, g2, g3, g4). We computed a Gröbner bases for I using the
computer algebra software Magma [8]. This computation reveals that V (I) con-
sists of 633 points over C. �

PROOF OF COROLLARY 6.6. A matrix P has nonnegative rank 3 if and only
if the conditions of Theorem 4.1 are satisfied. Assume rank(P ) = 3. By Corol-
lary 4.4, a matrix P ∈ M lies on the boundary of M if and only if it contains a
zero or for any triangle � with B ⊆ � ⊆ A every edge of � contains a vertex of
B and (a) or (b) holds. By proof of Theorem 4.1, the latter implies that for each
i, j, i ′, j ′ for which the conditions of Theorem 4.1 are satisfied there exist k, l such
that (4.3) · (4.3) [k ↔ l] = 0. On the other hand, if P lies in the interior of Mm×n

3 ,
then by the proof of Corollary 4.5, the following holds: there exists a triangle �

with a vertex coinciding with a vertex of A or with an edge containing an edge
of B, and such that the inequality (4.3) · (4.3) [k ↔ l] > 0 holds for all k, l in the
corresponding semialgebraic condition. �

APPENDIX B: BASIC CONCEPTS IN ALGEBRAIC GEOMETRY

This appendix gives a synopsis of basic concepts from algebraic geometry that
are used in this paper. It furnishes the language to speak about solutions to poly-
nomial equations in many variables.

B.1. Ideals and varieties. Let R = K[x1, . . . , xn] be the ring of polynomials
in n variables with coefficients in a subfield K of the real numbers R, usually the
rational numbers K = Q. The concept of an ideal I in the ring R is similar to the
concept of a normal subgroup in a group.

DEFINITION B.1. A subset I ⊆ R is an ideal in R if I is an subgroup of R

under addition, and for every f ∈ I and every g ∈ R we have fg ∈ I . Equiva-
lently, an ideal I is closed under taking linear combinations with coefficients in
the ring R.

Let T be any set of polynomials in R. Their set of zeros is called the variety
of T . It is denoted

V (T ) = {
P ∈ Cn :f (P ) = 0 for all f ∈ T

}
.

Here, we allow zeros with complex coordinates. This greatly simplifies the study
of V (T ) because C is algebraically closed, that is, every nonconstant polynomial
has a zero.
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The ideal generated by T , denoted by 〈T 〉, is the smallest ideal in R contain-
ing T . Note that

V (T ) = V
(〈T 〉).

In computational algebra, it is often desirable to replace the given set T by a Gröb-
ner basis of 〈T 〉. This allows us to test ideal membership and to determine geo-
metric properties of the variety V (T ).

DEFINITION B.2. A subset X ⊆ Cn is a variety if X = V (T ) for some subset
T ⊆ R.

Hilbert’s basis theorem ensures that here T can always be chosen to be a finite
set of polynomials. The concept of variety allows us to define a new topology
on Cn. It is coarser than the usual topology.

DEFINITION B.3. We define the Zariski topology on Cn by taking closed sets
to be the varieties and open sets to be the complements of varieties. This topology
depends on the choice of K .

If K = Q, then X = {+√
2,−√

2} is a variety (for n = 1) but Y = {+√
2} is

not a variety. Indeed, X = Y is the Zariski closure of Y , that is, it is the smallest
variety containing Y , because the minimal polynomial of

√
2 over Q is x2 − 2.

Likewise, the set of 1618 points in Example 2.2 is a variety in C2. It is the Zariski
closure of the four points on the topological boundary on the left in Figure 2. The
following proposition justifies the fact that the Zariski topology is a topology.

PROPOSITION B.4. Varieties satisfy the following properties:

1. The empty set ∅= V (R) and the whole space Cn = V (〈0〉) are varieties.
2. The union of two varieties is a variety:

V (I) ∪ V (J ) = V (I · J ) = V (I ∩ J ).

3. The intersection of any family of varieties is a variety:⋂
i∈I

V (Ii) = V
(〈Ii : i ∈ I〉).

Given any subset X ⊆ Cn (not necessarily a variety), we define the ideal of X

by

I (X) = {
f ∈ R :f (P ) = 0 for all P ∈ X

}
.

Thus, I (X) consists of all polynomials in R that vanish on X. The Zariski closure
X of X equals

X = V
(
I (X)

)
.
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B.2. Irreducible decomposition. A variety X ⊆ Cn is irreducible if we can-
not write X = X1 ∪ X2, where X1,X2 � X are strictly smaller varieties. An ideal
I ⊆ R is prime if fg ∈ I implies f ∈ I or g ∈ I . For instance, I ({±√

2}) =
〈x2 − 2〉 is a prime ideal in Q[x].

PROPOSITION B.5. The variety X is irreducible if and only if I (X) is a prime
ideal.

An ideal is radical if it is an intersection of prime ideals. The assignment X �→
I (X) is a bijection between varieties in Cn and radical ideals in R. Indeed, every
variety X satisfies V (I (X)) = X.

PROPOSITION B.6. Every variety X can be written uniquely as X = X1 ∪
X2 ∪ · · · ∪ Xm, where X1,X2, . . . ,Xm are irreducible and none of these m com-
ponents contains any other. Moreover,

I (X) = I (X1) ∩ I (X2) ∩ · · · ∩ I (Xm)

is the unique decomposition of the radical ideal I (X) as an intersection of prime
ideals.

For an explicit example, with m = 11, we consider the ideal (3.4) with the last
intersectand removed. In that example, the EM fixed variety X is decomposed into
11 irreducible components.

All ideals I in R can be written as intersections of primary ideals. Primary
ideals are more general than prime ideals, but they still define irreducible varieties.
A minimal prime of an ideal I is a prime ideal J such that V (J ) is an irreducible
component of V (I). See [32], Chapter 5, for the basics on primary decomposition.

DEFINITION B.7. Let I ⊆ R be an ideal and f ∈ R a polynomial. The satu-
ration of I with respect to f is the ideal(

I :f ∞) = 〈
g ∈ R :gf k ∈ I for some k > 0

〉
.

Saturating an ideal I by a polynomial f geometrically means that we obtain a
new ideal J = (I :f ∞) whose variety V (J ) contains all components of the variety
V (I) except for the ones on which f vanishes. For the more on these concepts
from algebraic geometry we recommend the text [11].

B.3. Semialgebraic sets. The discussion above also applies if we consider
the varieties V (T ) as subsets of Rn instead of Cn. This brings us to the world of
real algebraic geometry. The field R of real numbers is not algebraically closed, it
comes with a natural order, and it is fundamental for applications. These features
explain why real algebraic geometry is a subject in its own right. In addition to the
polynomial equations we discussed so far, we can now also introduce inequalities.
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DEFINITION B.8. A basic semialgebraic set X ⊆ Rn is a subset of the form

X = {
P ∈ Rn :f (P ) = 0 for all f ∈ T and g(P ) ≥ 0 for all g ∈ S

}
,

where S and T are finite subsets of R. A semialgebraic set is a subset X ⊆ Rn that
is obtained by a finite sequence of unions, intersections and complements of basic
semialgebraic sets.

In other words, semialgebraic sets are described by finite Boolean combinations
of polynomial equalities and polynomial inequalities. For basic semialgebraic sets,
only conjunctions are allowed. For example, the following two simple subsets of
the plane are both semialgebraic:

X = {
(x, y) ∈R2 :x ≥ 0 and y ≥ 0

}
and

Y = {
(x, y) ∈R2 :x ≥ 0 or y ≥ 0

}
.

The set X is basic semialgebraic, but Y is not. All convex polyhedra are semialge-
braic. A fundamental theorem due to Tarski states that the image of a semialgebraic
set under a polynomial map is semialgebraic. Applying this to the map (2.2), we
see that the model M is semialgebraic. The boundary of any semialgebraic set is
again semialgebraic. The formulas in Theorem 4.1 and Corollary 6.6 make this
explicit. For more on semialgebraic sets and real algebraic geometry, see [5].

Acknowledgements. This work was carried out at the Max-Planck-Institut für
Mathematik in Bonn, where all three authors were based during the Fall of 2013.

We thank Aldo Conca, Allen Knutson, Pierre-Jean Spaenlehauer and Matteo
Varbaro for helping us with this project. Mathias Drton, Sonja Petrović, John
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