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This paper is aimed at deriving the universality of the largest eigenvalue
of a class of high-dimensional real or complex sample covariance matrices
of the form WN = �1/2XX∗�1/2. Here, X = (xij )M,N is an M × N ran-
dom matrix with independent entries xij ,1 ≤ i ≤ M,1 ≤ j ≤ N such that

Exij = 0, E|xij |2 = 1/N . On dimensionality, we assume that M = M(N)

and N/M → d ∈ (0,∞) as N → ∞. For a class of general deterministic
positive-definite M × M matrices �, under some additional assumptions on
the distribution of xij ’s, we show that the limiting behavior of the largest
eigenvalue of WN is universal, via pursuing a Green function comparison
strategy raised in [Probab. Theory Related Fields 154 (2012) 341–407, Adv.
Math. 229 (2012) 1435–1515] by Erdős, Yau and Yin for Wigner matrices
and extended by Pillai and Yin [Ann. Appl. Probab. 24 (2014) 935–1001]
to sample covariance matrices in the null case (� = I ). Consequently, in the
standard complex case (Ex2

ij = 0), combing this universality property and the
results known for Gaussian matrices obtained by El Karoui in [Ann. Probab.
35 (2007) 663–714] (nonsingular case) and Onatski in [Ann. Appl. Probab. 18
(2008) 470–490] (singular case), we show that after an appropriate normal-
ization the largest eigenvalue of WN converges weakly to the type 2 Tracy–
Widom distribution TW2. Moreover, in the real case, we show that when �

is spiked with a fixed number of subcritical spikes, the type 1 Tracy–Widom
limit TW1 holds for the normalized largest eigenvalue of WN , which ex-
tends a result of Féral and Péché in [J. Math. Phys. 50 (2009) 073302] to the
scenario of nondiagonal � and more generally distributed X. In summary,
we establish the Tracy–Widom type universality for the largest eigenvalue of
generally distributed sample covariance matrices under quite light assump-
tions on �. Applications of these limiting results to statistical signal detection
and structure recognition of separable covariance matrices are also discussed.

1. Introduction. In recent decades, researchers working on multivariate anal-
ysis have a growing interest in data with large size arising from various fields such
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as genomics, image processing, microarray, proteomics and finance, to name but
a few. The classical setting of fixed p and large n may lose its validity in tackling
some statistical problems for high-dimensional data, due to the so-called curse
of dimensionality. As a feasible and useful way in dealing with high-dimensional
data, the spectral analysis of high-dimensional sample covariance matrices has
attracted considerable interests among statisticians, probabilitists and mathemati-
cians. Study toward the eigenvalues of sample covariance matrices traces back to
the works of Fisher [25], Hsu [26] and Roy [47], and becomes flourishing after the
seminal work of Marčenko and Pastur [33], in which the authors established the
limiting spectral distribution (MP type distribution) for a class of sample covari-
ance matrices, under the setting that p and n are comparable. Since then, a lot of
research has been devoted to understanding the asymptotic properties of various
spectral statistics of high-dimensional sample covariance matrices. One can refer
to the monograph of Bai and Silverstein [1] for a comprehensive summary and
detailed references.

In this paper, we will focus on the limiting behavior of the largest eigenvalue of
a class of high-dimensional sample covariance matrices, which is of great interest
naturally from the principal component analysis point of view. The largest eigen-
value has been commonly used in hypothesis testing problems on the structure of
the population covariance matrix. Not trying to be comprehensive, one can refer
to [8, 12, 28, 40, 44] for instance. We also refer to the review paper of Johnstone
[29] for further reading on the statistical motivations of the study on the largest
eigenvalue of sample covariance matrices. Precisely, we will consider the sample
covariance matrix of the form

W = WN := �1/2XX∗�1/2, X = (xij )M,N ,(1.1)

where {xij := xij (N),1 ≤ i ≤ M := M(N),1 ≤ j ≤ N} is a collection of indepen-
dent real or complex variables such that

Exij = 0, E|xij |2 = N−1.

We call WN a standard complex sample covariance matrix if there also exists

Ex2
ij = 0, 1 ≤ i ≤ M,1 ≤ j ≤ N.

In addition, � := �N is assumed to be an M × M positive-definite matrix. In par-
ticular, if the columns of X are independently drawn from h/

√
N for some random

vector h possessing covariance matrix I , W can then be viewed as the sample co-
variance matrix of N observations of the random vector �1/2h. Conventionally,
we call W a Wishart matrix if xij ’s are Gaussian. As is well known now, the limit-
ing distributions of the largest eigenvalues for classical high-dimensional random
matrices were originally discovered by Tracy and Widom in [52, 53] for Gaussian
Wigner ensembles G(O/U/S)E, thus named as the Tracy–Widom law of type β

(β = 1,2,4 for GOE, GUE, GSE, resp.), denoted by TWβ hereafter. The analogs
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in the context of sample covariance matrices with � = I were carried out by Jo-
hansson [27] and Johnstone [28]. More specifically, the TW2 and TW1 limits were
established for the largest eigenvalues of standard complex and real null Wishart
matrices in [27] and [28], respectively.

For the nonnull population covariance matrix, that is, � �= I , much work has
been devoted to the so-called spiked model, introduced by Johnstone in [28]. We
say W is spiked when a few eigenvalues of � are not equal to 1. On the spiked
Wishart models, one can refer to [4] for the standard complex case and [9, 10,
34, 41, 55] for the real case. However, in most cases, � has more complicated
structures. In this paper, a more general setting on � stated in (iii) of Condition
1.1 below will be employed, whereby El Karoui showed in [12] that the TW2 limit
holds for the standard complex nonnull Wishart matrices when d > 1 (nonsingular
case), followed by Onatski’s extension to the singular case (0 < d ≤ 1) in [38].

With the above mentioned limiting results for the Wishart matrices at hand,
a conventional sequel in the Random Matrix Theory is to establish the so-called
universality property for generally distributed sample covariance matrices, which
states that the limiting behavior of an eigenvalue statistic usually does not depend
on the details of the distribution of the matrix entries. The universality property
of the extreme eigenvalues is usually referred to as edge universality. Specifically,
for sample covariance matrices in the null case, the Tracy–Widom law has been
established for W under very general assumptions on the distribution of X. The
readers can refer to [43, 46, 49, 56] for some representative developments on this
topic. For generally distributed spiked models, the universality property was also
partially obtained in [2] and [24]. Especially, in the latter, the authors proved that
TW1 also holds for real spiked sample covariance matrices with a finite number of
subcritical spikes (see Corollary 1.7 for definition).

In this paper, armed with the condition on �, that is, Condition 1.1(iii), we will
prove the universality of the largest eigenvalues of W . It will be clear that such
a class of � contains those spiked population covariance matrices with a finite
number of subcritical spikes, and goes far beyond. This work can therefore be
viewed as a substantial generalization of the Tracy–Widom type edge universality,
verified for the null case in [46] and [56], to a class of nonnull sample covari-
ance matrices under quite light assumptions on �. A direct consequence of such
a universality property, together with the results in [12] and [38], is that the TW2
also holds for generally distributed standard complex W under our setting on �;
see Corollary 1.5. Moreover, by combining the aforementioned result in [24], we
can also show that TW1 holds for real sample covariance matrices with spiked �

containing a fixed number of subcritical spikes; see Corollary 1.7. Note that � is
required to be diagonal in [24] and all odd order moments of xij ’s are assumed to
vanish. We stress here, our result can remove these restrictions. Both Corollary 1.5
and Corollary 1.7 can be used in high-dimensional statistical inference then. In
Section 2, we will introduce two applications, namely Presence of signals in the
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correlated noise and one-sided identity of separable covariance matrix. Related
numerical simulations will also be conducted.

In the sequel, we will start by introducing some notation and then present our
main results. Subsequently, we will give a brief introduction of the so-called Green
function comparison strategy, and then sketch our new inputs for treating the gen-
eral setting of �.

1.1. Main results. Henceforth, we will denote by λn(A) ≤ · · · ≤ λ2(A) ≤
λ1(A) the ordered eigenvalues of an n × n Hermitian matrix A. For simplicity,
we set the dimensional ratio

dN := N/M → d ∈ (0,∞) as N → ∞.

The empirical spectral distribution (ESD) of � is

HN(λ) := 1

M

M∑
i=1

1{λi(�)≤λ}

and that of W is

FN(λ) := 1

M

M∑
i=1

1{λi(W)≤λ}.

Here and throughout the following, 1S represents the indicator function of
the event S. In addition, we will need a crucial parameter c := c(�,N,M) ∈
[0,1/λ1(�)) satisfying the equation∫ (

λc
1 − λc

)2

dHN(λ) = dN .(1.2)

It is elementary to check that the solution to (1.2) in [0,1/λ1(�)) is unique. With
the above notation at hand, we can state our main condition as follows.

CONDITION 1.1. Throughout the paper, we need the following conditions.

(i) (On dimensionality). We assume that there are some positive constants
c1 and C1 such that c1 < dN < C1.

(ii) (On X). We assume that {xij := xij (N),1 ≤ i ≤ M,1 ≤ j ≤ N} is a col-
lection of independent real or complex variables such that Exij = 0 and E|xij |2 =
N−1. Moreover, we assume that

√
Nxij ’s have a uniform subexponential tail, that

is, there exists some positive constant τ0 independent of i, j,N such that for suffi-
ciently large t , one has

P
(|√Nxij | ≥ t

) ≤ τ−1
0 exp

(−tτ0
)
.(1.3)

(iii) (On �). We assume that lim infN λM(�) > 0, lim supN λ1(�) < ∞ and

lim sup
N

λ1(�)c < 1.(1.4)
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Besides, we also need the following ad hoc terminology.

DEFINITION 1.2 (Matching to order k). Let Xu = (xu
ij )M,N and Xv =

(xv
ij )M,N be two matrices satisfying (ii) of Condition 1.1. We say Xu matches

Xv to order k, if for all 1 ≤ i ≤ M,1 ≤ j ≤ N and nonnegative integers l,m with
l + m ≤ k, there exists

E
(
(√

Nxu
ij

)l�(√
Nxu

ij

)m)
(1.5)

= E
(
(√

Nxv
ij

)l�(√
Nxv

ij

)m) + O
(
e−(logN)C )

with some positive constant C > 1. Alternatively, if (1.5) holds, we also say
that Wu matches Wv to order k, where Wu = �1/2Xu(Xu)∗�1/2 and Wv =
�1/2Xv(Xv)∗�1/2.

Our main theorem on edge universality of W can be formulated as follows.

THEOREM 1.3 (Universality for both real and complex cases). Suppose
that two sample covariance matrices Wu = �1/2Xu(Xu)∗�1/2 and Wv =
�1/2Xv(Xv)∗�1/2 satisfy Condition 1.1, where Xu := (xu

ij )M,N and Xv :=
(xv

ij )M,N . Let

λr = 1

c

(
1 + d−1

N

∫
λc

1 − λc
dHN(λ)

)
.(1.6)

Then for sufficiently large N and any real number s which may depend on N , there
exist some positive constants ε, δ > 0 such that

P
(
N2/3(

λ1
(
Wu) − λr

) ≤ s − N−ε) − N−δ

≤ P
(
N2/3(

λ1
(
Wv) − λr

) ≤ s
)

(1.7)

≤ P
(
N2/3(

λ1
(
Wu) − λr

) ≤ s + N−ε) + N−δ

if one of the following two additional conditions holds:

A: � is diagonal and Wu matches Wv to order 2.
B: Wu matches Wv to order 4.

REMARK 1.4. Theorem 1.3 can be extended to the case of joint distribution
of the largest k eigenvalues for any fixed positive integer k, namely, for any real
numbers s1, . . . , sk which may depend on N , there exist some positive constants
ε, δ > 0 such that

P
(
N2/3(

λ1
(
Wu) − λr

) ≤ s1 − N−ε, . . . ,

N2/3(
λk

(
Wu) − λr

) ≤ sk − N−ε) − N−δ

≤ P
(
N2/3(

λ1
(
Wv) − λr

) ≤ s1, . . . ,N
2/3(

λk

(
Wv) − λr

) ≤ sk
)

≤ P
(
N2/3(

λ1
(
Wu) − λr

) ≤ s1 + N−ε, . . . ,

N2/3(
λk

(
Wu) − λr

) ≤ sk + N−ε) + N−δ.
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Such an extension can be realized through a parallel discussion as that for the null
case in [46]. One can refer to [46] for more details. Here, we do not reproduce it.

Combining Theorem 1.3 with Theorem 1 of [12] and Proposition 2 of [38]
yields the following more concrete result in the standard complex case (Ex2

ij = 0).

COROLLARY 1.5 (Tracy–Widom limit for the standard complex case). Let
WgC

N be a standard complex Wishart matrix and WN be a general standard com-
plex sample covariance matrix. Assume that both of them satisfy Condition 1.1.
Denoting

σ 3 = 1

c3

(
1 + d−1

N

∫ (
λc

1 − λc

)3
dHN(λ)

)
,(1.8)

we have

N2/3
(

λ1(WN) − λr

σ

)
�⇒ TW2

if either � is diagonal or WN matches WgC
N to order 4.

REMARK 1.6. According to Remark 1.4, we also have the fact that the joint
distribution of (

λ1(WN) − λr

σ
, . . . ,

λk(WN) − λr

σ

)
converges weakly to the k-dimensional joint TW2.

For real sample covariance matrices, putting our Theorem 1.3 and Theorem 1.6
of [24] together, we can get the following corollary.

COROLLARY 1.7 (Tracy–Widom limit for the real spiked case). Suppose that
WN is a real sample covariance matrix satisfying (i) and (ii) of Condition 1.1. Let r

be some given positive integer. Assume that � is spiked in the sense that λ1(�) ≥
· · · ≥ λr(�) ≥ λr+1(�) = · · · = λM(�) = 1. Moreover, the r spikes λi(�), i =
1, . . . , r are fixed (independent of N ) and subcritical, that is, λ1(�) < 1+(

√
d)−1.

Let WgR
N be a real Wishart matrix with population covariance matrix �. Then in

the scenario of d ∈ [1,∞) (i.e., nonsingular case), we have

N2/3
(

λ1(WN) − λr

σ

)
�⇒ TW1

if either � is diagonal or WN matches WgR
N to order 4, where σ is defined in (1.8).

In addition, we have

λr = (
1 + d

−1/2
N

)2 + O
(
N−1)

, σ = d
−1/2
N

(
1 + d

1/2
N

)4/3 + o(1).(1.9)
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REMARK 1.8. Analogously, under the assumption of Theorem 1.7 we can get
that the joint distribution of the first k normalized eigenvalues converges weakly
to the k-dimensional joint TW1.

REMARK 1.9. Lemma 4.2 below will show that the special spiked � with a
fixed number of subcritical spikes satisfies (iii) of Condition 1.1. It is known that if
there is any spike on or above the critical value 1 + (

√
d)−1, the limiting distribu-

tion of the largest eigenvalue will not be the classical Tracy–Widom law any more,
assuming r is fixed. One can refer to [4] and [9] for such a phase transition phe-
nomenon for the standard complex and real cases, respectively. Such a fact reflects
that (iii) of Condition 1.1 is quite light for the Tracy–Widom type universality to
hold.

REMARK 1.10. We conjecture that the TW1 law holds for all � satisfying
(iii) of Condition 1.1 and the restriction on the nonsingular case is also artificial.
However, as far as we know, only [24] can provide us the reference matrix to use
the universality property in the real case. This is why we just focus on the special
real spiked sample covariance matrices here. Nevertheless, these restrictions do
not conceal the generality of the universality result (Theorem 1.3) itself even in
the real case.

1.2. Basic notions. We define the N × N matrix

W = WN := X∗�X

which shares the same nonzero eigenvalues with W . Denoting the ESD of WN

by FN , we see

FN = d−1
N FN + (

1 − d−1
N

)
1[0,∞).(1.10)

If there is some deterministic distribution H such that HN �⇒ H as N → ∞, it
is well known that there are deterministic distributions Fd,H and Fd,H such that
FN �⇒ Fd,H and FN �⇒ Fd,H in probability. One can refer to [3] or [1] for
detailed discussions. Analogous to (1.10), we have the relation

Fd,H = d−1Fd,H + (
1 − d−1)

1[0,∞).(1.11)

For any distribution function D, its Stieltjes transform mD(z) is defined by

mD(z) =
∫ 1

λ − z
dD(λ)

for all z ∈ C
+ := {ω ∈ C,�ω > 0}. And for any square matrix A, its Green func-

tion is defined by GA(z) = (A − zI)−1, z ∈ C
+. For convenience, we will denote

the Green functions of WN and WN , respectively, by

G(z) = GN(z) := (WN −z)−1 and G(z) = GN(z) := (WN −z)−1, z ∈ C
+.
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The Stieltjes transforms of FN and FN will be denoted by mN(z) and mN(z),
respectively. By definitions, obviously one has

mN(z) = 1

N
TrG(z), mN(z) = 1

M
TrG(z).

Here, we draw attention to the basic relation TrG(z) − TrG(z) = (M − N)/z. Ac-
tually, what really pertains to our discussion in the sequel is the nonasymptotic ver-
sion of Fd,H which can be obtained via replacing d and H by dN and HN in Fd,H ,
and thus will be denoted by FdN,HN

. More precisely, FdN,HN
is the correspond-

ing distribution function of the Stieltjes transform mdN,HN
(z) := mFdN ,HN

(z) ∈ C
+

satisfying the following self-consistent equation:

mdN,HN
(z) = 1

−z + d−1
N

∫
t/(tmdN,HN

(z) + 1) dHN(t)
, z ∈ C

+.(1.12)

Analogously, we can define the nonasymptotic versions of Fd,H and its Stielt-
jes transform, denoted by FdN,HN

and mdN,HN
(z), respectively. Then the N -

dependent version of (1.11) is

FdN,HN
= d−1

N FdN,HN
+ (

1 − d−1
N

)
1[0,∞).(1.13)

For simplicity, we will briefly use the notation

m0(z) := mdN,HN
(z), m0(z) := mdN,HN

(z),

F0 := FdN,HN
, F 0 := FdN,HN

in the sequel.
It has been discussed in [48] by Silverstein and Choi that F0 has a continuous

derivative ρ0 on R \ {0} and the rightmost boundary of the support of ρ0 is λr

defined in (1.6), that is, λr = inf{x ∈ R :F0(x) = 1}. Moreover, the parameter c
defined by (1.2) satisfies c = − limz∈C+→λr

m0(z).

1.3. Sketch of the proof route. As mentioned above, Theorem 1.3 can be
viewed as a substantial generalization of the edge universality for the null sam-
ple covariance matrices provided in [46]. However, the general machinery in [46],
with the so-called Green function comparison approach at the core, still works
well even for general nonnull case. The Green function comparison strategy was
raised in the series of work [21–23] on the local eigenvalue statistics of Wigner
matrices originally, and has shown its strong applicability on some other random
matrix models or statistics; see [5, 15, 45] for its variants for sample covariance
and correlation matrices and see [50] for an application on random determinant.
We also refer to the survey [14] for an overview.

To be specific, the preliminary heuristic of the Green function comparison strat-
egy for our objective can be roughly explained as follows. At first, the distribution
function of λ1(W) can actually be approximated from above and from below by
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the expectations of two functionals of the Stieltjes transform mN(z), that is, the
normalized trace of the Green function GN(z); see (4.4) below. Hence, the com-
parison between the distributions of the largest eigenvalues of Wu and Wv can
then be reduced to the comparison between the expectations of the functionals of
the Green functions. For the latter, a replacement method inherited from the clas-
sical Lindeberg swapping process (see [32]) can be employed. Together with the
expansion formula of the Green function, such a replacement method can effec-
tively lead to the universality property.

A main technical tool escorting the Green function comparison process is the
so-called strong law of local eigenvalue density, which asserts that the limiting
spectral law is even valid on short intervals which contain only Nε eigenvalues
for any constant ε > 0. Such a limiting law on microscopic scales was developed
in a series of work [16–18, 23] for Wigner matrices originally and was shown to
be crucial in recent work on universality problems of local eigenvalue statistics,
one can refer to [19, 22, 50] for instance. For our purpose, we will need a strong
local MP type law around λr , which was established in our recent paper [7] and
is recorded as Theorem 3.2 below. The companion work [7] initiates the project
of edge universality and provides essential technical inputs for the Green function
comparison process. However, the strong law of local eigenvalue density is also of
interest in its own right.

To lighten the notation, we make the convention E = 
z and η = �z hereafter.
And we also denote

�(z) := �1/2G(z)�1/2

for simplicity. It will be seen that, in our comparison process, we need to con-
trol the magnitude of the entries of �(z) in the regime |E − λr | ≤ N−2/3+ε and
η = N−2/3−ε for some small positive constant ε. This issue turns out to be a new
difficulty due to the complexity of �. We handle this main technical task for diag-
onal and nondiagonal � via substantially different approaches, which are sketched
as follows.

Clearly, when � is diagonal, we can turn to bound the entries of G(z) instead.
Invoking the spectral decomposition [see the first inequality of (5.3) below, e.g.],
the desired bound can be obtained via providing (1): an accurate description of the
locations of the eigenvalues; (2): an upper bound for the eigenvector coefficients.
It will be clear that (1) can be transformed into the strong local MP type law which
has already been established. Toward (2), we will prove the so-called delocaliza-
tion property, which states the eigenvector coefficients are of order O(N−1/2+ε)

typically. The delocalization property was first derived in [16] and improved in the
series of papers [17, 18, 23] for Wigner matrices, and extended to sample covari-
ance matrices in the null case in [20, 46, 51, 56]. Here, we extend the delocalization
property to W for those eigenvectors corresponding to the eigenvalues around λr .

However, for the nondiagonal �, we need to focus on the entries of �(z) them-
selves. Fortunately, it turns out that only the diagonal entries �kk(z) should be
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bounded if we are additionally granted in the comparison process that two ensem-
bles match to order 4. To this end, we can start from the spectral decomposition
again [see (5.6) below, e.g.]. Analogous to the diagonal case, we could provide
(1′): an accurate description of the locations of the eigenvalues; (2′): an upper
bound for (�1/2uiu∗

i �
1/2)kk . Observe that (1′) is just the same as (1) for diag-

onal �, actually can also be ensured by the strong local MP type law. However,
(2′) requires some totally novel ideas. More details in Section 5 will show that the
spectral decomposition equality (5.6) can also be applied in a converse direction,
to wit, with a bound on �kk(z0) for some appropriately chosen z0 := E0 + iη0, one
can actually obtain a bound for (�1/2uiu∗

i �
1/2)kk in turn. For η0 = N−2/3+ε � η,

we will perform a novel bounding scheme for �kk(z0), based on the Schur com-
plement and the concentration inequalities on quadratic forms (Lemma 3.4). Then,
by the bound on �kk(z0) one can get a bound on (�1/2uiu∗

i �
1/2)kk , which to-

gether with (1′) implies the desired bound on �kk(z). The choice of η0 � N−2/3

will be technically necessary for our bounding scheme on �kk(z0). Therefore, we
adopt such a roundabout way to bound �kk(z), owing to the fact that η � N−2/3

is unaffordable for a direct application of our bounding scheme based on the Schur
complement and the concentration inequalities.

1.4. Notation and organization. Throughout the paper, we use the notation
O(·) and o(·) in the conventional sense. As usual, C,C1,C2 and C′ stand for some
generic positive constants whose values may differ from line to line. We say x ∼ y

if there exist some positive constants C1 and C2 such that C1|y| ≤ |x| ≤ C2|y|.
Generally, for two functions f (z), g(z) :C→C, we say f (z) ∼ g(z) if there exist
some positive constants C1 and C2 independent of z such that C1|g(z)| ≤ |f (z)| ≤
C2|g(z)|. Moreover, ‖A‖op and ‖A‖HS represent the operator norm and Hilbert–
Schmidt norm of a matrix A, respectively, and ‖u‖ is the L2 norm of a vector u.
We use i to denote the imaginary unit to release i which will be frequently used
as index or subscript. In addition, we conventionally denote by ei the vector with
all 0’s except for a 1 in the ith coordinate and by 1 the vector with 1 in each
coordinate. The dimensions of these vectors are usually obvious according to the
context thus just omitted from the notation. 0α×β will be used to represent the
α × β null matrix which will be abbreviated to 0α if α = β . In addition, we adopt
the notation in [46] to set the frequently used parameter

ϕ := ϕN = (logN)log logN.

For ζ > 0, we say that an event S holds with ζ -high probability if there is some
positive constant C such that for sufficiently large N ,

P(S) ≥ 1 − NC exp
(−ϕζ )

.

We conclude this section by stating its organization. In Section 2, we will in-
troduce some applications of our main results in high-dimensional statistical in-
ference, and some related simulations will be conducted. Then we will turn to
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the theoretical part. In Section 3, we will recall the properties of m0(z) and the
strong local MP type law around λr established in [7] as the preliminaries of our
proofs for the main results. In Section 4, we will use the strong local MP type law
and a Green function comparison approach to prove Theorem 1.3, Corollaries 1.5
and 1.7. Section 5 will be devoted to the aforementioned argument of bounding
the entries of �(z).

2. Applications and simulations. In this section, we introduce some appli-
cations of our universality results in high-dimensional statistical inference, and
conduct related simulations to check the quality of the approximations of our lim-
iting laws and discuss their utility in the concrete hypothesis testing problems. We
remark here, though Corollary 1.7 and Remark 1.8 are only stated for the case of
d ≥ 1, we will also perform the simulations for the case of d < 1.

2.1. Applications.

• Presence of signals in the correlated noise.

Consider an M-dimensional signal-plus-noise vector y := As + �
1/2
a z and its

N i.i.d. samples, namely

yi = Asi + �1/2
a zi , i = 1, . . . ,N,

where s is a k-dimensional real or complex mean zero signal vector with covari-
ance matrix S; z is an M-dimensional real or complex random vector with inde-
pendent mean zero and variance one coordinates; A is an M × k deterministic
matrix which is of full column rank and �a is an M × M deterministic positive-
definite matrix. We call �

1/2
a z the noise vector. Moreover, the signal vector and the

noise vector are assumed to be independent. Set the matrices ZN = [z1, . . . , zN ]
and YN = [y1, . . . ,yN ]. Denoting the covariance matrix of y by R, we can get by
assumption that

R = ASAT + �a.

Such a model stems from several statistical signal processing problems, and is
used commonly in various fields such as wireless communications, bioinformatics
and machine learning, to name a few. We refer to Kay [30] for a comprehensive
overview. A fundamental target is to detect signals via data. Thus the very first step
is to know whether there is any signal present, that is, k = 0 versus k ≥ 1. Once
signals are detected, one can take a step further to estimate the number k. Under
the high-dimensional setting, Nadakuditi and Edelman in [35], and Bianchi et al.
in [8] considered respectively to detect signals in the white Gaussian noise, that is,
�a = I (or more generally, �a = cI with some positive number c) and z is Gaus-
sian. Also under the Gaussian assumption on the noise, Nadakuditi and Silverstein
in [36] considered this detection problem when the noise may be correlated, that
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is, �a may not be a multiple of I . We also refer to the very recent work of Vino-
gradova, etc. [54] for the case of correlated noise. Our aim is to test, for generally
distributed and correlated noise �

1/2
a z, whether there is no signal present. Thus

our hypothesis testing problem can be stated as

(Qa): H0: k = 0 vs. H1: k ≥ 1.

• One-sided identity of separable covariance matrices.

Consider the data model of the form

YN = �
1/2
b ZNT 1/2,

where ZN is an M × N random matrix sharing the same distribution as ZN in the
previous problem, T is an N × N deterministic positive-definite matrix and �b

is an M × M deterministic positive-definite matrix. N−1YNY∗
N is then called the

separable covariance matrix which is widely used for handling the spatiotemporal
sampling data. Such a nomenclature is owing to the fact that the vectorization of
the data matrix YN has a separable covariance �b ⊗ T . The spectral properties
of N−1YNY∗

N have been widely investigated in some recent work under the high-
dimensional setting, for example, one can refer to [13, 42, 57, 58]. Without loss
of generality, we regard T as the temporal covariance matrix and �b as the spatial
covariance matrix. In this paper, we are interested in whether the temporal iden-
tity (i.e., T = I ) holds. Formally, we are concerned with the following hypothesis
testing:

(Qb): H0: T = I vs. H1: T �= I.

Actually, we can consider to test whether T = T0 for any given positive-
definite T0, since considering the renormalized data matrix YNT

−1/2
0 we can re-

cover the testing problem Qb. A similar testing problem with T replaced by �b

can also be considered. We call this kind of hypothesis testing problem one-sided
identity test for the separable covariance matrix.

• Onatski’s statistics.

Note that under H0 of either Qa or Qb, the involved sample covariance ma-
trix N−1YNY ∗

N or N−1YNY∗
N is of the form W defined in (1.1). It is then natu-

ral to construct our test statistics for Qa and Qb from the largest eigenvalues of
N−1YNY ∗

N and N−1YNY∗
N , respectively, such that our universality results can be

employed under H0. For simplicity, we will use W to represent either N−1YNY ∗
N

or N−1YNY∗
N under H0, that is, we will regard (�,X) as (�a,ZN/

√
N) and

(�b,ZN/
√

N) when we refer to Qa and Qb, respectively.
At first glance, it is natural to choose the normalized largest eigenvalue as our

test statistic. Unfortunately, in the real system, � is usually unknown. Hence,
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a general result like Corollary 1.5, where the parameters λr and σ depend on �,
cannot be used directly if no information of � is known priori. To eliminate the
unknown parameters λr and σ , we adopt the strategy used by Onatski in [37, 39].
More specifically, we will use the statistics

Ta = λ1(YNY ∗
N) − λ2(YNY ∗

N)

λ2(YNY ∗
N) − λ3(YNY ∗

N)
and Tb = λ1(YNY∗

N) − λ2(YNY∗
N)

λ2(YNY∗
N) − λ3(YNY∗

N)

for Qa and Qb, respectively. In the sequel, we will call Ta and Tb Onatski’s statis-
tics. Note that under H0, Ta and Tb possess the same limiting distribution, de-
termined by the joint TWβ laws, mentioned in Remarks 1.6 and 1.8. An obvious
advantage of Ta or Tb is that its limiting distribution is independent of λr and σ

under H0, which makes it asymptotically pivotal. Moreover, though the explicit
formula for the limiting distribution function of Onatski’s statistic under H0 is
unavailable currently, one can approximate it via simulation, by generating the
eigenvalues from high-dimensional GOE (resp., GUE) in the real (resp., complex)
case. We will describe such an approximation in detail in the subsequent simula-
tion study.

2.2. Simulations.

• Accuracy of approximations for TW laws.

We conduct some numerical simulations to check the accuracy of the distributional
approximations in Corollaries 1.5 and 1.7, under various settings of (M,N), � and
the distribution of X. Firstly, for each pair of (M,N), we generate an observation
from M × M Haar distributed random orthogonal matrix and denote it by U :=
U(M,N). To get such a U , we can generate in Matlab an M ×M Gaussian matrix
G with i.i.d. N(0,1) entries, and let U = G(G∗G)−1/2 which is well defined with
probability 1; refer to Section 7.1 of [11] for instance. Then we will fix this U

for each pair of (M,N) as a deterministic orthogonal matrix. Next, we set some
scenarios of � in Corollaries 1.5 and 1.7. To this end, we define

Dc := diag(1, . . . ,1︸ ︷︷ ︸
�M/2�

, 2, . . . ,2︸ ︷︷ ︸
M−�M/2�

), Dr := diag
(

1 + (
√

dN)−1

2
,1, . . . ,1

)

and choose � to be some similar forms of Dc and Dr in Corollaries 1.5 and 1.7, re-
spectively. More specifically, we will use the following four choices of population
covariance matrix �, denoted by

�(c,1) := Dc, �(c,2) := UDcU
∗,

�(r,1) := Dr, �(r,2) := UDrU
∗.

Here, U is the orthogonal matrix generated priori.
Now, we state our choice for the distribution of X. For simplicity, we set hij :=√
Nxij for i = 1, . . . ,M and j = 1, . . . ,N , and choose all these (hij )’s to be i.i.d.
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For standard complex Gaussian case, the numerical performance of the limiting
law in Corollary 1.5 has been assessed; see Tables 1 and 2 of [12]. Here, we use a
discrete distribution in our simulation study. Specifically, let s1 and s2 be two i.i.d.
variables with the distribution

u = 1
12δ−2 + 4

25δ−1 + 13
24δ0 + 16

75δ3/2 + 1
600δ4,

where δa represents the Dirac measure at a. It is elementary to check that the first
four moments of u are the same as those of N(0,1). Now we choose h11 for the
standard complex and real cases respectively as

h11(c)
d= 1√

2
(s1 + is2) and h11(r)

d= s1

and denote the corresponding X by X(c) and X(r), respectively. We conduct the
simulations for the combinations (�(c,1),X(c)), (�(c,2),X(c)), (�(r,1),X(r))

and (�(r,2),X(r)) under various settings of (M,N). The results are provided in
Table 1. It can be seen, in each case, the approximation is satisfactory even for
relatively small M and N .

Next, a natural question is, to what extent can we weaken the assumptions im-
posed on X. Very recently, a necessary and sufficient condition for the Tracy–
Widom limit of Wigner matrix with i.i.d. off-diagonal entries (up to symmetry)
was established by Lee and Yin in [31], where the matrix entry is only required
to have mean 0 and variance 1, and satisfies a tail condition slightly weaker than
the existence of the 4th moment. It is reasonable to conjecture a similar moment
condition is sufficient for the validity of Tracy–Widom laws for sample covariance
matrices. To give a numerical evidence for such a conjecture, we also conduct
some simulation for the largest eigenvalue of W whose entries possess a symmet-
ric Pareto distribution. For simplicity, we only state the simulation result for the
complex case with � = �(c,2). We choose p1 and p2 to be i.i.d. variables with the

symmetric Pareto distribution whose density is given by f (x) = 9
10

√
3
5 |x|−6 when

|x| >
√

3
5 and 0 otherwise. It is then elementary to see that

h11
d= 1√

2
(p1 + ip2)(2.1)

has mean 0 and variance 1. Moreover, we see E|h11|4 < ∞. We denote by X(P )

the corresponding X. The simulation results are stated in Table 2. It can be seen
that the approximation is also very good even for small M and N .

• Size and power study for Ta and Tb.

Now, we evaluate the sizes and powers of the statistics Ta and Tb for Qa and Qb

respectively. For simplicity, we only report the results for the real case here. Note
that, in the real case, we do not establish the TW1 law for general � satisfying
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TABLE 1
Simulated quantiles for four pairs of (�,X). The cases of (�(r,1),X(r)), (�(r,2),X(r)),

(�(c,1),X(c)) and (�(c,2),X(2)) are titled by R1, R2, C1 and C2, respectively, for simplicity

(�,X) Percentile TW1 30 × 30 60 × 60 100 × 100 80 × 20 20 × 80 100 × 400 2 ∗ SE

R1 −3.9000 0.0100 0.0053 0.0087 0.0114 0.0075 0.0076 0.0115 0.0020
−3.1800 0.0500 0.0479 0.0523 0.0566 0.0493 0.0580 0.0601 0.0040
−2.7800 0.1000 0.1070 0.1151 0.1151 0.1099 0.1197 0.1192 0.0060
−1.9100 0.3000 0.3520 0.3524 0.3393 0.3535 0.3539 0.3352 0.0090
−1.2700 0.5000 0.5762 0.5674 0.5457 0.5725 0.5714 0.5388 0.1000
−0.5900 0.7000 0.7752 0.7547 0.7388 0.7685 0.7713 0.7372 0.0090

0.4500 0.9000 0.9345 0.9260 0.9214 0.9347 0.9359 0.9171 0.0060
0.9800 0.9500 0.9689 0.9650 0.9620 0.9706 0.9708 0.9620 0.0040
2.0200 0.9900 0.9943 0.9929 0.9931 0.9938 0.9952 0.9905 0.0020

R2 −3.9000 0.0100 0.0054 0.0088 0.0098 0.0063 0.0086 0.0100 0.0020
−3.1800 0.0500 0.0497 0.0533 0.0552 0.0504 0.0556 0.0572 0.0040
−2.7800 0.1000 0.1077 0.1144 0.1143 0.1085 0.1226 0.1116 0.0060
−1.9100 0.3000 0.3617 0.3460 0.3363 0.3470 0.3707 0.3392 0.0090
−1.2700 0.5000 0.5784 0.5582 0.5506 0.5700 0.5834 0.5433 0.1000
−0.5900 0.7000 0.7714 0.7568 0.7503 0.7731 0.7765 0.7404 0.0090

0.4500 0.9000 0.9301 0.9258 0.9248 0.9334 0.9349 0.9166 0.0060
0.9800 0.9500 0.9658 0.9649 0.9630 0.9671 0.9704 0.9605 0.0040
2.0200 0.9900 0.9924 0.9929 0.9928 0.9934 0.9941 0.9937 0.0020

(�,X) Percentile TW2 30 × 30 60 × 60 100 × 100 80 × 20 20 × 80 100 × 400 2 ∗ SE

C1 −3.7300 0.0100 0.0031 0.0053 0.0066 0.0037 0.0042 0.0082 0.0020
−3.2000 0.0500 0.0266 0.0377 0.0363 0.0319 0.0326 0.0396 0.0040
−2.9000 0.1000 0.0674 0.0812 0.0827 0.0749 0.0745 0.0870 0.0060
−2.2700 0.3000 0.2573 0.2728 0.2819 0.2772 0.2648 0.2819 0.0090
−1.8100 0.5000 0.4695 0.4804 0.4866 0.4838 0.4818 0.4861 0.1000
−1.3300 0.7000 0.6913 0.6963 0.6950 0.6942 0.6928 0.6936 0.0090
−0.6000 0.9000 0.9053 0.9004 0.9006 0.9012 0.9021 0.9025 0.0060
−0.2300 0.9500 0.9549 0.9506 0.9489 0.9521 0.9525 0.9531 0.0040

0.4800 0.9900 0.9913 0.9900 0.9886 0.9880 0.9924 0.9912 0.0020

C2 −3.7300 0.0100 0.0021 0.0056 0.0066 0.0032 0.0050 0.0071 0.0020
−3.2000 0.0500 0.0234 0.0321 0.0399 0.0326 0.0321 0.0445 0.0040
−2.9000 0.1000 0.0642 0.0754 0.0852 0.0781 0.0746 0.0926 0.0060
−2.2700 0.3000 0.2639 0.2641 0.2805 0.2721 0.2734 0.2955 0.0090
−1.8100 0.5000 0.4745 0.4756 0.4858 0.4874 0.4864 0.4933 0.1000
−1.3300 0.7000 0.6875 0.6877 0.6930 0.7006 0.6923 0.6954 0.0090
−0.6000 0.9000 0.9008 0.9012 0.8988 0.9055 0.8994 0.9028 0.0060
−0.2300 0.9500 0.9490 0.9512 0.9493 0.9547 0.9517 0.9529 0.0040

0.4800 0.9900 0.9899 0.9905 0.9894 0.9917 0.9891 0.9903 0.0020

The simulation was done in Matlab. In each of the above four cases, we generated 10,000 ma-
trix X with the distribution defined above, and then calculated the largest eigenvalue of W and
renormalized it with the parameters λr and σ according to Corollaries 1.5 and 1.7. In the col-
umn titled “Percentile,” we listed the quantiles of TWβ law for β = 1,2. Simulating 10,000 times
gave us an empirical distribution of the renormalized largest eigenvalue. And we stated the val-
ues of this empirical distribution at the quantiles of the TW laws for various pairs of (M,N) =
(30,30), (60,60), (100,100), (80,20), (20,80), (100,400). The last column states the approximate
standard errors based on binomial sampling.
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TABLE 2
Simulated quantiles for the case of (�,X) = (�(c,2),X(P )) (CP for short)

(�,X) Percentile TW2 30 × 30 60 × 60 100 × 100 80 × 20 20 × 80 100 × 400 2 ∗ SE

CP −3.7300 0.0100 0.0016 0.0043 0.0062 0.0035 0.0044 0.0088 0.0020
−3.2000 0.0500 0.0280 0.0409 0.0460 0.0345 0.0369 0.0512 0.0040
−2.9000 0.1000 0.0776 0.0987 0.1037 0.0862 0.0894 0.1069 0.0060
−2.2700 0.3000 0.3113 0.3311 0.3320 0.3201 0.3275 0.3235 0.0090
−1.8100 0.5000 0.5517 0.5476 0.5507 0.5603 0.5628 0.5347 0.1000
−1.3300 0.7000 0.7675 0.7472 0.7501 0.7736 0.7689 0.7335 0.0090
−0.6000 0.9000 0.9392 0.9303 0.9228 0.9364 0.9380 0.9176 0.0060
−0.2300 0.9500 0.9716 0.9658 0.9659 0.9714 0.9708 0.9580 0.0040

0.4800 0.9900 0.9932 0.9909 0.9921 0.9928 0.9928 0.9912 0.0020

The simulation was taken analogously. We generated 10,000 matrix X with h11 following the distri-
bution defined in (2.1). Each column has the same meaning as that in Table 1.

Condition 1.1(iii). However, in the sequel, we will also perform the simulation for
� which is not spiked, such as � = �(c,1). More specifically, we will focus on
two settings

(I): �a = �b = �(r,1), ZN
d= ZN

d= √
NX(r),

and

(II): �a = �b = �(c,1), ZN
d=ZN

d= √
NX(r).

For Qa , we choose the alternative with some positive number ρa as

H1(a, ρa): k = 1, A = e′
1 and s ∼ N(0, ρa),

where e1 is M-dimensional by the assumption on A. For Qb, we choose two alter-
natives parameterized by ρb as

H1(b, ρb,1): T = I + ρbe1e′
1 and H1(b, ρb,2): T = I + ρb

1

N
11′,

where e1 and 1 are both N -dimensional by the assumption on T . Under the set-
ting (I), for H1(a, ρa), we set ρa := τ(

√
dN)−1, while for both H1(b, ρb,1) and

H1(b, ρb,2), we set ρb := τ
√

dN with some strength parameter τ > 0. Under the
setting (II), for H1(a, ρa), we set ρa := 2τ(

√
dN)−1, while for both H1(b, ρb,1)

and H1(b, ρb,2), we set ρb := 2τ
√

dN with some strength parameter τ > 0. We
will choose τ = 0.5,4,6 for each alternative above.

Now assuming that ξ1, ξ2 and ξ3 have the joint TW1 distribution, we approxi-
mate the percentiles of the distribution of (ξ1 − ξ2)/(ξ2 − ξ3) as follows. We can
simulate 30,000 independent matrices from GOE of dimension 1000 and numeri-
cally compute the ratio of the differences between the first and the second and the
second and the third eigenvalues for each matrix, then we can get the percentiles of
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TABLE 3
Simulated sizes for settings (I) and (II)

Setting 30 × 30 60 × 60 100 × 100 80 × 20 80 × 40 20 × 80 40 × 80 100 × 400 400 × 200

(I) 0.0522 0.0476 0.0490 0.0604 0.0526 0.0474 0.0521 0.0512 0.0486
(II) 0.0544 0.0511 0.0488 0.0543 0.0521 0.0493 0.0526 0.0478 0.0446

the empirical distribution of these 30,000 ratios. By doing the above in Matlab, we
got that the approximate 95th percentile of the distribution of (ξ1 − ξ2)/(ξ2 − ξ3)

is 7.16. The nominal significant level of our tests is 5%. The results for the sizes
are reported in Table 3, and the results for the powers are reported in Table 4 for
setting (I) and Table 5 for (II), respectively. The small τ = 0.5 is tailored for cor-
roborating the following phenomenon, that is, an additive or multiplicative finite
rank perturbation may not cause significant change of the largest eigenvalue of a
sample covariance matrix when the strength of the perturbation is weak enough.
This phenomenon has been explicitly verified for the spiked sample covariance
matrices, see the aforementioned references on the spiked models [4] and [24].
Our Corollary 1.7 also confirms it again. However, for more complicated models
such as N−1YNY ∗

N and N−1YNY∗
N in our Qa and Qb, given general �a and �b,

the theoretical discussions on this phenomenon with respect to various As and T

are still open. Under our choices of �, from the simulations we can see that when
τ = 0.5, the powers of both tests in various scenarios are very poor. However, when
τ is relatively large, our tests are reliable. It can be seen from Tables 4 and 5, in
the cases of τ = 4 or 6, the powers are satisfactory, especially when N and M are
relatively large.

3. Square root behavior and local MP type law. In this section, we will
record several main results proved in our recent paper [7] which will serve as

TABLE 4
Simulated powers for Ta and Tb under setting (I), τ is 0.5, 4 or 6

τ H1 30 × 30 60 × 60 100 × 100 80 × 20 80 × 40 20 × 80 40 × 80 100 × 400 400 × 200

0.5 H1(a,ρa) 0.0630 0.0577 0.0622 0.0604 0.0588 0.0589 0.0614 0.0541 0.0545
H1(b,ρb,1) 0.0541 0.0516 0.0497 0.0540 0.0521 0.0533 0.0522 0.0488 0.0482
H1(b,ρb,2) 0.0551 0.0463 0.0508 0.0540 0.0518 0.0530 0.0545 0.0506 0.0498

4 H1(a,ρa) 0.4825 0.6857 0.8421 0.5090 0.6454 0.5263 0.6680 0.9684 0.9929
H1(b,ρb,1) 0.3932 0.5775 0.7507 0.4243 0.5475 0.4262 0.5488 0.8998 0.9816
H1(b,ρb,2) 0.3983 0.5776 0.7511 0.4216 0.5529 0.4352 0.5427 0.8970 0.9812

6 H1(a,ρa) 0.7319 0.9089 0.9807 0.7434 0.8830 0.7861 0.8980 0.9999 1.0000
H1(b,ρb,1) 0.6556 0.8653 0.9628 0.7205 0.8539 0.6822 0.8247 0.9954 0.9998
H1(b,ρb,2) 0.6623 0.8647 0.9608 0.7235 0.8477 0.6888 0.8277 0.9955 1.0000
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TABLE 5
Simulated powers for Ta and Tb under setting (II), τ is 0.5, 4 or 6

τ H1 30 × 30 60 × 60 100 × 100 80 × 20 80 × 40 20 × 80 40 × 80 100 × 400 400 × 200

0.5 H1(a,ρa) 0.0583 0.0588 0.0534 0.0649 0.0557 0.0568 0.0554 0.0536 0.0512
H1(b,ρb,1) 0.0627 0.0583 0.0587 0.0614 0.0577 0.0607 0.0589 0.0572 0.0545
H1(b,ρb,2) 0.0620 0.0593 0.0532 0.0614 0.0618 0.0590 0.0565 0.0513 0.0502

4 H1(a,ρa) 0.4352 0.6207 0.7891 0.5269 0.6354 0.3476 0.5360 0.8278 0.9913
H1(b,ρb,1) 0.7650 0.9258 0.9870 0.8454 0.9277 0.7237 0.8776 0.9974 1.0000
H1(b,ρb,2) 0.7558 0.9249 0.9856 0.8480 0.9259 0.7263 0.8780 0.9978 1.0000

6 H1(a,ρa) 0.9255 0.9914 0.9996 0.9754 0.9954 0.9031 0.9817 1.0000 1.0000
H1(b,ρb,1) 0.9594 0.9978 1.0000 0.9854 0.9984 0.9595 0.9951 1.0000 1.0000
H1(b,ρb,2) 0.9285 0.9923 0.9997 0.9758 0.9956 0.9072 0.9831 1.0000 1.0000

fundamental inputs for the Green function comparison process. The main result
established in [7] is the aforementioned strong local MP type law around λr ; see
Theorem 3.2 below. As a necessary input to the proof of the strong local MP type
law around λr in [7], the so-called square root behavior of m0(z) has been derived
therein, see Theorem 3.1 below. Then, as a direct consequence of the strong local
MP type law around λr , a nearly optimal convergence rate of FN(x) around λr has
also been obtained, see Theorem 3.3 below. All these results will play roles in our
Green function comparison process.

In [7], it has been shown that c, λr ∼ 1. More precisely, there exist two positive
constants Cl ≤ Cr such that λr ∈ [Cl/2,2Cr ]. Here, Cl and Cr can be chosen
appropriately such that λ1(W) ∈ [Cl,Cr ] with ζ -high probability for any given
constant ζ > 0. We will always write z := E + iη, and use the notation

κ := κ(z) = |E − λr |.
We introduce for ζ ≥ 0 two sets of z,

S(ζ ) := {
z ∈C :Cl ≤ E ≤ Cr,ϕ

ζN−1 ≤ η ≤ 1
}
,

Sr(c̃, ζ ) := {
z ∈C :λr − c̃ ≤ E ≤ Cr,ϕ

ζN−1 ≤ η ≤ 1
}
,

where c̃ is some positive constant.
The first main result we need is a collection of some crucial properties of m0(z),

which are essentially guaranteed by (iii) of Condition 1.1, and can be inferred from
the square root behavior of the limiting spectral density ρ0 on its right edge λr .
Informally, we can call it square root behavior of m0(z).

THEOREM 3.1 (Square root behavior of m0(z), Lemma 2.3 of [7]). Under
Condition 1.1, there exists some small but fixed positive constant c̃ such that the
following three statements hold.
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(i) For z ∈ S(0), we have ∣∣m0(z)
∣∣ ∼ 1;

(ii) For z ∈ Sr(c̃,0), we have

�m0(z) ∼
⎧⎪⎨⎪⎩

η√
κ + η

, if E ≥ λr + η,

√
κ + η, if E ∈ [λr − c̃, λr + η);

(iii) For z ∈ Sr(c̃,0), we have∣∣1 + tm0(z)
∣∣ ≥ ĉ

(
1 + λ1(�)m0(λr)

) ≥ c0, ∀t ∈ [
λM(�),λ1(�)

]
for some small positive constants ĉ, c0 depending on c̃.

The second necessary input is the strong local MP type law around λr . To state
it, we also need to recall some additional notation from [7]. We denote by xi the
ith column of X and set ri = �1/2xi . We introduce the notation X(T) to represent
the M × (N − |T|) minor of X obtained by deleting xi from X if i ∈ T. For
convenience, ({i}) will be abbreviated to (i). Denoting

W(T) = X(T)∗�X(T), W(T) = �1/2X(T)X(T)∗�1/2,

we can further set

G(T)(z) = (
W(T) − z

)−1
, G(T)(z) = (

W(T) − z
)−1

,

m
(T)
N (z) = TrG(T)(z)

N
, m

(T)
N (z) = TrG(T)(z)

M
.

We emphasize here, in the sequel, the names of indices of X for X(T) will be kept,
that is, X

(T)
ij = 1{j /∈T}Xij . Correspondingly, we will denote the (i, j)th entry of

G(T)(z) by G
(T)
ij (z) for all i, j /∈ T. In addition, in light of the discussion in [7] [see

the truncation issue above (3.3) therein], henceforth we can and do additionally
assume that

max
i,j

|√Nxij | ≤ (logN)C(3.1)

with some sufficiently large positive constant C. Then we have the following the-
orem.

THEOREM 3.2 (Strong local MP type law around λr , Theorem 3.2 of [7]). Let
c̃ be the constant in Theorem 3.1. Under Condition 1.1 and assumption (3.1), for
any ζ > 0 there exists some constant Cζ such that

(i) ⋂
z∈Sr (c̃,5Cζ )

{∣∣mN(z) − m0(z)
∣∣ ≤ ϕCζ

1

Nη

}
(3.2)

holds with ζ -high probability, and
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(ii)

⋂
z∈Sr (c̃,5Cζ )

{
max
i �=j

∣∣Gij (z)
∣∣+ max

i

∣∣Gii(z)−m0(z)
∣∣ ≤ ϕCζ

(√
�m0(z)

Nη
+ 1

Nη

)}
(3.3)

holds with ζ -high probability.

For our purpose, the following result concerning the convergence rate of ESD
around λr is also needed, which can be essentially derived from Theorem 3.2.

THEOREM 3.3 (Convergence rate around λr , Theorem 4.1 of [7]). Under
Condition 1.1 and the assumption (3.1), for any ζ > 0 there exists a constant Cζ

such that the following events hold with ζ -high probability.

(i) For the largest eigenvalue λ1(W), there exists∣∣λ1(W) − λr

∣∣ ≤ N−2/3ϕCζ .

(ii) For any E1,E2 ∈ [λr − c̃,Cr ], there exists∣∣(FN(E1) − FN(E2)
) − (

F0(E1) − F0(E2)
)∣∣ ≤ N−1ϕCζ .(3.4)

In addition, we record the following concentration lemma on quadratic forms,
whose proof can be found in Appendix B of [22] for instance.

LEMMA 3.4. Let xi ,xj , i �= j be two columns of the matrix X satisfying (ii) of
Condition 1.1. Then for any M-dimensional vector b and M × M matrix C inde-
pendent of xi and xj , the following three inequalities hold with ζ -high probability

(i) ∣∣∣∣x∗
i Cxi − 1

N
Tr C

∣∣∣∣ ≤ ϕτζ

N
‖C‖HS,

(ii) ∣∣x∗
i Cxj

∣∣ ≤ ϕτζ

N
‖C‖HS,

(iii) ∣∣b∗xi

∣∣ ≤ ϕτζ

√
N

‖b‖.
Here, τ := τ(τ0) > 1 is some positive constant [see (ii) of Condition 1.1 for τ0].
Let Xi be the conjugate transpose of the ith row of the matrix X for i = 1, . . . ,M .
If we replace xi ,xj by Xi and Xj respectively, the above three inequalities also
hold if b is an N -dimensional vector and C is an N × N matrix which are both
independent of Xi and Xj .
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Finally, regarding the ‖ · ‖HS norm of a Green function, we will frequently need
the fact that for any Hermitian matrix A, there is∥∥(A − z)−1∥∥2

HS = Tr |A − z|−2 = Tr(A − z)−1(A − z̄)−1

(3.5)

= 1

η
�Tr(A − z)−1,

which can be verified easily by the spectral decomposition.

4. Universality for the largest eigenvalue. With some bounds on the entries
of �1/2G�1/2 granted (see Lemma 4.7 below), we can successfully prove our main
results in this section via pursuing a Green function comparison strategy tailored
for edge universality, which is analogous to those in [45, 46]. The proof of the
desired bounds of the entries of �1/2G�1/2 will be postponed to the next section,
which can be viewed as our main technical ingredient of this paper.

THEOREM 4.1 (Green function comparison theorem around λr ). Let Wu and
Wv be two sample covariance matrices in Theorem 1.3. Let F be a real function
satisfying

sup
x

∣∣F (k)(x)
∣∣/(|x| + 1

)C ≤ C, k = 0,1,2,3,4(4.1)

for some positive constant C. There exist ε0 > 0 and N0 ∈ N, such that for any
positive constant ε < ε0, N ≥ N0 and for any real numbers E,E1 and E2 satis-
fying |E − λr |, |E1 − λr |, |E2 − λr | ≤ N−2/3+ε and η = N−2/3−ε , we have for
z = E + iη, ∣∣EF

(
Nη�mu

N(z)
) −EF

(
Nη�mv

N(z)
)∣∣ ≤ N−C′ε(4.2)

and ∣∣∣∣EF

(
N

∫ E2

E1

�mu
N(x + iη)dx

)
−EF

(
N

∫ E2

E1

�mv
N(x + iη)dx

)∣∣∣∣ ≤ N−C′ε(4.3)

with some positive constant C′ if either A or B in Theorem 1.3 holds.

Now we are at the stage to prove our main results assuming Theorem 4.1.

PROOF OF THEOREM 1.3. Given Theorems 3.1–3.3 and 4.1, the proof of The-
orem 1.3 is nearly the same as that for the null case in [46] (see the proof of Theo-
rem 1.1 therein). Due to the similarity, here we only sketch the main route and leave
the details to the reader. We start from Theorem 3.3(i), which states that for any
ζ > 0, there exists some positive constant Cζ such that |λ1(W)−λr | ≤ N−2/3ϕCζ

with ζ -high probability. Hence, it suffices to verify (1.7) for s ∈ [−3
2ϕCζ , 3

2ϕCζ ].
To this end, we denote Eζ = λr + 2N−2/3ϕCζ and set E = λr + sN−2/3. With the
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above restriction on s, one can always assume that E ≤ Eζ − 1
2N−2/3ϕCζ . Denot-

ing η1 = N−2/3−9ε1 and � = 1
2N−2/3−ε1 with any given small constant ε1 > 0, we

record the following inequality from Corollary 5.1 of [7]:

Eh

(
N

π

∫ Eζ

E−�
�mN(y + iη1) dy

)
≤ P

(
λ1(W) ≤ E

)
(4.4)

≤ Eh

(
N

π

∫ Eζ

E+�
�mN(y + iη1) dy

)
+ O

(
exp

(−ϕCζ
))

,

where h is a smooth cutoff function satisfying the condition of F in Theorem 4.1;
see Corollary 5.1 of [7] for the definition of the function h. (4.4) states that
P(λ1(W) ≤ E) can be squeezed by the expectations of two functionals of the
Stieltjes transform. Now, setting ε = 9ε1, η = η1, F(x) = h(x/π), E1 = E − �

and E2 = Eζ in (4.3) we obtain

Eh

(
N

π

∫ Eζ

E−�
�mu

N(x + iη1) dx

)
(4.5)

≤ Eh

(
N

π

∫ Eζ

E−�
�mv

N(x + iη1) dx

)
+ 1

2
N−δ,

for sufficiently large N , where we took δ = 1
2C′ε (say). Employing the second

inequality in (4.4) via replacing E by E − 2�, we also have

P
(
λ1

(
Wu) ≤ E − 2�

) ≤ Eh

(
N

π

∫ Eζ

E−�
�mu

N(y + iη1) dy

)
+ O

(
exp

(−ϕCζ
))

,

which together with (4.5) implies that for sufficiently large N ,

P
(
λ1

(
Wu) ≤ E − 2�

) ≤ EF

(
N

π

∫ Eζ

E−�
�mv

N(x + iη1) dx

)
+ N−δ.

Using the first inequality in (4.4) yields

P
(
λ1

(
Wu) ≤ E − 2�

) ≤ P
(
λ1

(
Wv) ≤ E

) + N−δ.(4.6)

Switching the roles of u and v, we can analogously derive that

P
(
λ1

(
Wv) ≤ E

) ≤ P
(
λ1

(
Wu) ≤ E + 2�

) + N−δ.(4.7)

(4.6) and (4.7) then lead to (1.7). Hence, we conclude the sketch of the proof. �

PROOF OF COROLLARY 1.5. Corollary 1.5 follows from Theorem 1.3, Theo-
rem 1 of [12] and Proposition 2 of [38] immediately. �

Now, before commencing the proof of Corollary 1.7, we record the following
lemma whose proof will be provided in the supplementary material [6].
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LEMMA 4.2. Assume that � satisfies the assumption of Corollary 1.7. Then
� also satisfies Condition 1.1(iii). In addition, we have (1.9).

PROOF OF COROLLARY 1.7. With the aid of Lemma 4.2, we see that
W satisfies Condition 1.1 thus Theorem 1.3 can be adopted. Now we in-
voke the fact that the real Wishart matrix with population covariance matrix
diag(λ1(�), . . . , λM(�)) satisfy the conditions of Theorem 1.6 of [24]. Moreover,
taking the property of orthogonal invariance for Gaussian matrices into account,
we know the result of [24] holds for all Wishart matrices with population covari-
ance matrix � (possibly not diagonal) whose eigenvalues satisfy the condition in
Corollary 1.7. We remind here the parameters N and p in [24] are corresponding
to our M and N , respectively. Hence, with (1.9) at hand, choosing the Wishart ma-
trix with population covariance matrix � as the reference matrix and combining
our Theorem 1.3 with Theorem 1.6 of [24], we can complete the proof. �

It remains to prove Theorem 4.1 in this section.

PROOF OF THEOREM 4.1. To simplify the presentation, we will only verify
(4.2) in detail below. The proof of (4.3) can be taken similarly, thus we just leave
it to the reader. As a compensation, some necessary modifications for the proof of
(4.3) will be highlighted in Remarks 4.4 and 4.8. Now, let γ ∈ {1,2, . . . ,N + 1}
and set Xγ to be the matrix whose first γ − 1 columns are the same as those of Xv

and the remaining N − γ + 1 columns are the same as those of Xu. Especially, we
have X1 = Xu and XN+1 = Xv. Correspondingly, we set

WN,γ = X∗
γ �Xγ , WN,γ = �1/2Xγ X∗

γ �1/2.

Then (4.2) can be achieved via checking that for every γ the following estimate
holds:

EF
(
η�Tr(WN,γ − z)−1) −EF

(
η�Tr(WN,γ+1 − z)−1) = O

(
N−1−C′ε).

Observing the fact that Xγ and Xγ+1 only differ in the γ th column yields X
(γ )
γ =

X
(γ )
γ+1, which directly implies W

(γ )
N,γ = W

(γ )
N,γ+1 and W(γ )

N,γ = W(γ )
N,γ+1. Therefore,

we can also write

EF
(
η�Tr(WN,γ − z)−1) −EF

(
η�Tr(WN,γ+1 − z)−1)

= (
EF

(
η�Tr(WN,γ − z)−1) −EF

(
η�[

Tr
(
W

(γ )
N,γ − z

)−1 − z−1]))
(4.8)

− (
EF

(
η�Tr(WN,γ+1 − z)−1)

−EF
(
η�[

Tr
(
W

(γ )
N,γ+1 − z

)−1 − z−1]))
.

Since the comparison process will greatly rely on the moment matching condition,
it will be more convenient to work with the following set:

Mk(i) := {(
E(
√

Nxji)
l(�√

Nxji)
m, j, l,m

)
: j = 1, . . . ,M,m + l ≤ k

}
,
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that is, the set of all moments up to order k of the entries of
√

Nxi , where its
elements are indexed by j, l,m. In the spirit of (4.8), it suffices to show, for any
sample covariance matrix WN satisfying Condition 1.1, the following Lemmas 4.3
and 4.5 hold.

LEMMA 4.3. Let F be a real function satisfying (4.1) and z = E + iη. For
any random matrix WN satisfying Condition 1.1, if |E − λr | ≤ N−2/3+ε and
N−2/3−ε ≤ η � N−2/3 for some ε > 0, there exists some positive constant C in-
dependent of ε such that

EF
(
Nη�mN(z)

) −EF
(
Nη�[

m
(i)
N (z) − (Nz)−1])

(4.9)
= A

(
X(i),M2(i)

) + N−1−Cε

when � is diagonal, and

EF
(
Nη�mN(z)

) −EF
(
Nη�[

m
(i)
N (z) − (Nz)−1])

(4.10)
= B

(
X(i),M4(i)

) + N−1−Cε

for general �, where A(X(i),M2(i)) is a functional depending on the distribution
of X(i) and M2(i) only and similarly B(X(i),M4(i)) is a functional depending
on the distribution of X(i) and M4(i) only.

REMARK 4.4. To verify (4.3), actually we need to show two equalities analo-
gous to (4.9) and (4.10), obtained via replacing

F
(
Nη�mN(z) and F

(
Nη�[

m
(i)
N (z) − (Nz)−1]))

by

F

(
N

∫ E2

E1

�mN(x + iη)dx

)
and F

(
N

∫ E2

E1

�[
m

(i)
N (x + iη) − (Nz)−1]

dx

)
,

respectively, in (4.9) and (4.10) and correspondingly replacing A(·, ·) and B(·, ·)
by some other functionals Ã(·, ·) and B̃(·, ·).

Now, to differentiate, we denote the set Mk(i) for Xu and Xv by Mu
k (i) and

Mv
k(i), respectively. Then, we also have the following lemma.

LEMMA 4.5. Under Condition 1.1 and the assumptions in Lemma 4.3, there
exist some positive constants c0 and C > 1, such that the following statements
hold. If Wu matches Wv to order 2, we have

max
γ

∣∣A(
X(γ )

γ ,Mu
2(γ )

) − A
(
X(γ )

γ ,Mv
2(γ )

)∣∣ = O
(
e−c0(logN)C )

.(4.11)

If Wu matches Wv to order 4, we have

max
γ

∣∣B(
X(γ )

γ ,Mu
4(γ )

) − B
(
X(γ )

γ ,Mv
4(γ )

)∣∣ = O
(
e−c0(logN)C )

.(4.12)

Here, A(·, ·) and B(·, ·) are the functionals in Lemma 4.3.
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It is obvious that (4.2) follows from Lemma 4.3 and Lemma 4.5. The proof
of (4.3) can be taken analogously. Thus, we conclude the proof of Theorem 4.1
assuming the validity of Lemmas 4.3 and 4.5. �

We leave the proof of Lemma 4.5 to the supplementary material [6] and prove
Lemma 4.3 in the sequel. Without loss of generality, we will just check the state-
ments in Lemma 4.3 for i = 1. The others are just analogous. To commence the
proof, we will need the following lemma as an input, whose proof will also appear
in the supplementary material [6].

LEMMA 4.6. Under the assumptions on z and F in Lemma 4.3, for any given
ζ > 0, there exists some positive constant C, such that

F
(
Nη�mN(z)

) − F
(
Nη�[

m
(1)
N (z) − (Nz)−1])

(4.13)

=
3∑

k=1

1

k!F
(k)(Nη�[

m
(1)
N (z) − (Nz)−1])

(�y)k + O
(
N−4/3+Cε)

holds with ζ -high probability, where

y := ηzG11r∗
1
(
G(1))2r1.(4.14)

Moreover, we have∣∣r∗
1
(
G(1))2r1

∣∣ ≤ N1/3+Cε, |y| ≤ N−1/3+Cε(4.15)

with ζ -high probability.

With Lemma 4.6, we now start to prove Lemma 4.3 for i = 1.

PROOF OF LEMMA 4.3 (FOR i = 1). Now, starting from (4.14), we further de-
compose y and then pick out the leading terms in the decomposition. Specifically,
we set

D := m0 − G11

G11
= −m0 · (

z + zr∗
1G(1)r1

) − 1,(4.16)

which is implied by the Schur complement G11 = −1/(z+ zr∗
1G(1)r1). At first, by

(i) of Theorem 3.1 and (ii) of Theorem 3.2 we can see that Gii(z) ∼ 1 with ζ -high
probability. Moreover, with ζ -high probability we can write

G11 = m0

D + 1
= m0

∞∑
k=0

(−D)k(4.17)

since |D| ≤ N−1/3+Cε for some positive constant C, which is implied by Theo-
rem 3.1(ii) and Theorem 3.2(ii). Inserting (4.17) into (4.14), we can write

y =
∞∑

k=1

yk, yk := ηzm0(−D)k−1r∗
1
(
G(1))2r1.(4.18)
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By (4.15) and the aforementioned bound for D, we can easily get

|yk| = O
(
N−k/3+Cε)(4.19)

with ζ -high probability, which directly implies that

�y = �y1 + �y2 + �y3 + O
(
N−4/3+Cε),

(�y)2 = (�y1)
2 + 2�y1�y2 + O

(
N−4/3+Cε),(4.20)

(�y)3 = (�y1)
3 + O

(
N−4/3+Cε)

hold with ζ -high probability. By the discussions in the proof of Lemma 4.6
in the supplementary material [6], one can see that Nη�mN(z) = O(NCε) and

Nη�[m(1)
N (z) − (Nz)−1] = O(NCε) with ζ -high probability for any given ζ > 0.

Consequently, in light of the assumption (4.1), we see that for any real number tN

between Nη�mN(z) and Nη�[m(1)
N (z) − (Nz)−1], there exist∣∣F (k)(tN)

∣∣ = O
(
NCε), k = 0,1,2,3,4(4.21)

with ζ -high probability. Moreover, we have the deterministic bound |mN(z)|,
|m(1)

N (z)| = O(η−1), which implies |Nη�mN(z)|, |Nη�[m(1)
N (z) − (Nz)−1]| =

O(N). Thus, using (4.1) again we have the deterministic bound |F (k)(tN)| =
O(NC), k = 0,1,2,3,4, for any real number tN between Nη�mN(z) and
Nη�[m(1)

N (z) − (Nz)−1]. Analogously, by using the fact that ‖G−1‖op = O(η−1)

and condition (3.1), we can get the deterministic bound |y| = O(NC), |yk| =
O(NC(k)) with some positive constants C and C(k) (depending on k), for
k = 0,1,2,3,4. Then by (4.13), (4.18)–(4.21) and the deterministic bounds above,
it is not difficult to find that

EF
(
Nη�mN(z)

) −EF
(
Nη�[

m
(1)
N (z) − (Nz)−1])

= EF (1)(Nη�[
m

(1)
N (z) − (Nz)−1])

(�y1 + �y2 + �y3)
(4.22) +EF (2)(Nη�[

m
(1)
N (z) − (Nz)−1])(1

2(�y1)
2 + �y1�y2

)
+EF (3)(Nη�[

m
(1)
N (z) − (Nz)−1])(1

6�y1
)3 + O

(
N−4/3+Cε).

Toward the right-hand side of (4.22), our task is to extract the terms depending on
X(1) and Mk(1) (k = 2 or 4) only and bound the remaining terms. For the latter, we
will need the following crucial lemma on bounding the entries of �1/2G(1)�1/2.

LEMMA 4.7. Let z = E + iη with |E − λr | ≤ N−2/3+ε and N−2/3−ε ≤ η �
N−2/3 for some ε > 0. When � is diagonal, for any given ζ > 0, we have∣∣(G(1)(z)

)
ij

∣∣ ≤ NCε and
(4.23) ∣∣([G(1)(z)

]2)
ij

∣∣ ≤ N1/3+Cε, i, j ∈ {1, . . . ,M}
hold with ζ -high probability for some positive constant C independent of ε.
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For general � satisfying Condition 1.1(iii), we have for any given ζ > 0,∣∣(�1/2G(1)(z)�1/2)
kk

∣∣ ≤ N1/3+Cε, k ∈ {1, . . . ,M}(4.24)

hold with ζ -high probability for some positive constant C independent of ε.

REMARK 4.8. When we prove (4.3), as mentioned above, we actually need to
verify the statement in Remark 4.4. To this end, we need to strengthen the bounds
in (4.23) and (4.24) to hold with ζ -high probability uniformly on the set {z =
E + iη : |E − λr | ≤ N−2/3+ε and N−2/3−ε ≤ η � N−2/3}. These uniform bounds
are necessary for the proof of the statement in Remark 4.4, since some integrations
taken w.r.t. the real part of z are involved in the discussion. These stronger bounds
can be obtained from the bounds for single point in (4.23) and (4.24) through some
routine ε-net and Lipschitz continuity argument. One can refer to the extension
from (5.1) to (5.2) below for a similar argument.

Lemma 4.7 is our main technical task whose proof will be postponed to the next
section separately. Now, with Lemma 4.7 granted, we prove (4.9) and (4.10) in the
sequel. At first, we will verify (4.9) for diagonal �. We start with the third term on
the r.h.s. of (4.22). Denoting � := �ηzm0 and � := 
ηzm0, we have

�y1 = �
(
r∗

1
(
G(1))2r1

) + �
(�r∗

1
(
G(1))2r1

)
.

To further simplify the exposition, we denote the real part and imaginary part of a
complex number A by A[0] and A[1] respectively. Introducing the notation Ei to
denote the expectation with respect to xi , we see that E1(�y1)

3 is a summation of
finite terms of the form

1{a+b=3}�a�b
∑

k1,...,k6

3∏
i=1

(
�1/2(

G(1))2
�1/2)

k2i−1k2i
[αi]E

6∏
l=1

xkl,1[βl],(4.25)

where αi, βl are 0 or 1 and a, b are nonnegative integers. Hence, it suffices to
analyze the quantities of the form (4.25) below.

We classify the terms in the summation (4.25) by various coincidence conditions
of the indices k1, . . . , k6. If there is a kj appearing only once in {k1, . . . , k6}, then
this term is zero obviously, due to the independence and centering of the entries
of X. Now we proceed to those terms in which each kj appears exactly twice.
Apparently, these terms only depend on X(1) and M2(1). Finally, it remains to
consider the terms that there is at least one kj appearing at least three times and
no kj appearing only once. It is obviously that the total number of such terms is
O(N2). Putting this observation and (4.23) in Lemma 4.7 together yields the fact
that the total contribution of these terms is less than

CN−1|ηzm0|3 max
ij

∣∣(�1/2(
G(1))2

�1/2)
ij

∣∣3 ≤ CN−1|ηzm0|3 max
ij

∣∣((G(1))2)
ij

∣∣3
= O

(
N−2+Cε)
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with ζ -high probability. Since |(�1/2G(1)�1/2)ij | are trivially bounded by O(η−1),
one can see that the above bound also holds in expectation by the definition of ζ -
high probability. Therefore, we deduce that

E(�y1)
3 = A1

(
X(1),M2(1)

) + O
(
N−2+Cε)(4.26)

for some functional A1 depending on the distribution of X(1) and M2(1) only.
Now, for the first and second term on the right-hand side of (4.22) we can deal

with them analogously. Note that by (4.16) and the definitions of y2, y3, one can
see that

y2 = ηz2m2
0r∗

1G(1)r1 · r∗
1
(
G(1))2r1 + ηzm0 · (1 + zm0) · r∗

1
(
G(1))2r1,

y3 = ηz3m3
0
(
r∗

1G(1)r1
)2 · r∗

1
(
G(1))2r1 + 2ηz2m0 · (1 + zm0) · r∗

1G(1)r1 · r∗
1
(
G(1))2r1

+ ηzm0 · (1 + zm0)r∗
1G(1)r1.

Expanding each term above, then by a routine but detailed discussion on the co-
incidence condition of the indices as what we have done to the third term on the
right-hand side of (4.22) above, we can actually get

E
(
(�y1)

2 + 2(�y1)(�y2)
) = A2

(
X(1),M2(1)

) + O
(
N−5/3+Cε)(4.27)

and

E(�y1 + �y2 + �y3) = A3
(
X(1),M2(1)

) + O
(
N−4/3+Cε)(4.28)

for some functionals A2 and A3 depending on X(1) and M2(1) only. Inserting
(4.26)–(4.28) into (4.22), we obtain (4.9).

Now, we go ahead to investigate (4.10) for more general �. At first, we revisit
the canonical form of the terms in the expansion of E1(�y1)

3, that is, (4.25). Note
that for (4.25), it suffices to bound the terms in which all ki, i = 1, . . . ,6 are the
same, since all the other terms only depend on the distribution of X(1) and M4(1).
In other words, we need to bound the terms in which E|xk1|6 appears. Analogously,
writing E1((�y1)

2 +2(�y1)(�y2)) and E1(�y1 +�y2 +�y3) as some summations
of terms in the forms similar to (4.25), again, we only need to address the terms
containing E|xk1|6 as a factor. It is not difficult to see after simple calculations that
the total contribution of such terms in E1(�y1)

3, E1((�y1)
2 + 2(�y1)(�y2)) and

E1(�y1 + �y2 + �y3) can be bounded by

CN−3
∑
k

η3∣∣(�1/2(
G(1))2

�1/2)
kk

∣∣3
+ CN−3

∑
k

η2∣∣(�1/2(
G(1))2

�1/2)
kk

∣∣∣∣(�1/2(
G(1))2

�1/2)
kk

∣∣2(4.29)

+ CN−3
∑
k

η
∣∣(�1/2(

G(1))�1/2)
kk

∣∣2∣∣(�1/2(
G(1))2

�1/2)
kk

∣∣
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for some positive constant C. Noticing the elementary relation∣∣(�1/2(
G(1))2

�1/2)
kk

∣∣ ≤ η−1∣∣�(
�1/2(

G(1))�1/2)
kk

∣∣
(4.30)

≤ η−1∣∣(�1/2G(1)�1/2)
kk

∣∣,
it thus suffices to bound the last term of (4.29). In addition, combining (4.30) and
(4.24) we see ∣∣(�1/2(

G(1))2
�1/2)

kk

∣∣ ≤ N1+Cε

holds with ζ -high probability. Finally, the estimate of the last term of (4.29) can
be addressed as follows:

N−3
∑
k

η
∣∣(�1/2G(1)�1/2)

kk

∣∣2∣∣(�1/2(
G(1))2

�1/2)
kk

∣∣
≤ N−7/3+Cε

∑
k

∣∣(�1/2G(1)�1/2)
kk

∣∣ ≤ N−7/3+Cε Tr
(
�1/2∣∣G(1)

∣∣�1/2)
≤ C′N−7/3+Cε Tr

∣∣G(1)
∣∣ = O

(
N−4/3+Cε)

holds with ζ -high probability, where in the last step we used the fact that
Tr |G(1)| ≤ N1+ε with ζ -high probability for any fixed ζ > 0, which has been
proved in [7] (see Lemma 3.10 therein). Again, since |(�1/2G(1)�1/2)ij | are triv-
ially bounded by O(η−1), the above bound also holds in expectation. Thus, we
complete the proof of (4.10). �

5. Bounds on the entries of �1/2G�1/2. In this section, we prove Lemma 4.7.
Substantially different strategies will be adopted for the proofs of (4.23) and (4.24).
Thus we will perform them separately. Moreover, since G(i) and G are only differ-
ent in dimension (observing that they share the same population covariance matrix
�), we will harmlessly work on G for simplicity.

PROOF OF (4.23) (WITH G(1) REPLACED BY G). Note when � is diagonal,
we can denote it as � = diag(σ 2

1 , . . . , σ 2
M). Let �[j ] be the (M −1)× (M −1) mi-

nor of �, obtained by deleting the j th column and row of �. Moreover, we denote
the j th row of X by X∗

j thus its conjugate transpose by Xj , and denote by X[j ] the
(M − 1) × N submatrix obtained via deleting X∗

j from X. Correspondingly, we
will use the notation

W [j ] = (
�[j ])1/2

X[j ](X[j ])∗(
�[j ])1/2

, W [j ] = (
X[j ])∗�[j ]X[j ],

G[j ] = (
W [j ] − z

)−1
, G[j ] = (

W [j ] − z
)−1

.

Employing the Schur complement yields

Gii = 1

−z − zσ 2
i X

∗
i ((X

[i])∗�[i]X[i] − z)−1Xi

= 1

−z − zσ 2
1 X

∗
i G

[i]Xi

.
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Then by using Lemma 3.4 and Theorem 3.2 again, we can actually get the fol-
lowing lemma, whose proof will be provided in the supplementary material [6] in
detail.

LEMMA 5.1. For any ζ > 0 given, there exists some positive constant Cζ ,
such that for any z ∈ Sr(c̃,5Cζ ),

Gii = 1/
(−z − zσ 2

i m0(z) + o(1)
)

holds with ζ -high probability.

Now we proceed to the proof of (4.23). Ensured by (iii) of Theorem 3.1, we
deduce from Lemma 5.1 that for z ∈ Sr(c̃,5Cζ ),∣∣Gii(z)

∣∣ ≤ C(5.1)

with ζ -high probability for some positive constant C independent of z. Therefore,
we get the bound for Gii when � is diagonal. Actually we can strengthen (5.1) to
the uniform bound as

sup
z∈Sr (c̃,5Cζ )

∣∣Gii(z)
∣∣ = O(1)(5.2)

with ζ -high probability. To see this, we can assign an ε-net on the region
Sr(c̃,5Cζ ) with ε = N−100 (say). Then by the definition of ζ -high probability,
we see that (5.1) holds for all z in this ε-net uniformly with ζ -high probability.
Moreover, note |G′

ii(z)| ≤ N2 for z ∈ Sr(c̃,5Cζ ), thus by the Lipschitz continuity,
we can extend the bound to the whole region Sr(c̃,5Cζ ) easily.

Now, we are ready to use (5.2) to derive the aforementioned delocalization prop-
erty for the eigenvectors of W in the edge case. Then we use the delocalization
result to bound Gij and (G2)ij in return. Denoting the unit eigenvector of W cor-
responding to λk(W) by

uk = (uk1, . . . , ukM)T ,

we can formulate the following lemma.

LEMMA 5.2. When � is diagonal, for λk(W) ∈ [λr − c̃/2,Cr ], we have

max
i

|uki |2 ≤ ϕCζ N−1

with ζ -high probability.

PROOF. By (5.2) and the spectral decomposition, we have

�Gii(z) =
M∑

k=1

η

(λk(W) − E)2 + η2 |uki |2 = O(1),
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with ζ -high probability. Now we set η = ϕCζ N−1. In light of (5.2), we can set
E = λk(W if λk(W) ∈ [λr − c̃/2,Cr ]. Then with ζ -high probability,

η

(λk(W) − E)2 + η2 |uki |2 = ϕ−Cζ N |uki |2 = O(1),

which implies Lemma 5.2 immediately. Thus, we complete the proof. �

Now relying on the above delocalization property, we proceed to prove (4.23).
Note that by the spectral decomposition, for z satisfying the assumption in
Lemma 4.7 and α = 1,2 we have

∣∣(Gα(z)
)
ij

∣∣ ≤
M∑

k=1

1

|λk(W) − z|α |uki ||ukj |

≤ ∑
k : λk∈[λr−c̃/2,Cr ]

1

|λk − z|α |uki ||ukj | + O(1)(5.3)

≤ ϕCζ
1

N

M∑
k=1

1

|λk(W) − z|α + O(1)

with ζ -high probability. When α = 2, we see that with ζ -high probability,

1

N

M∑
k=1

1

|λk(W) − z|2 = η−1�mN(z) = η−1
(
�m0(z) + O

(
ϕCζ

Nη

))
according to (3.5) and (3.2). From (ii) of Theorem 3.1 we have �m0(z) ∼
η/

√
κ + η. Noticing the assumptions on E and η in Lemma 4.7, we immediately

get that the second inequality in (4.23) holds. Now, when α = 1, we claim that for
some sufficiently large constant Cζ > 0,

1

N

M∑
k=1

1

|λk(W) − z| = 1

N
Tr

∣∣G(z)
∣∣ = O

(
(logN)Cζ

)
(5.4)

holds with ζ -high probability. Such a bound has been established in Lemma 3.10
of [7] for 1

N
Tr |G(i)(z)| by using the strong local MP type law. It is just the same

to check its validity for 1
N

Tr |G(z)| [bearing in mind that for (4.23) what we really
need is the bound for 1

N
Tr |G(1)(z)|]. So we will not reproduce the details here.

Therefore, we complete the proof of (4.23). �

Now we start to tackle the much more complicated case, that is, (4.24) for gen-
eral �.

PROOF OF (4.24) (WITH G(1) REPLACED BY G). For simplicity, we will also
work with G instead of G(1). Note that

�1/2G�1/2 = �1/2(
�1/2XX∗�1/2 − zI

)−1
�1/2 = (

XX∗ − z�−1)−1
.(5.5)
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For convenience, we use the notation � := �−1 and recall � = �(z) :=
�1/2G(z)�1/2 defined in Introduction. Thus, we have �kk := �kk(z) = [(XX∗ −
z�)−1]kk . An elementary observation from the spectral decomposition is

�kk =
M∑
i=1

1

λi(W) − z

(
�1/2uiu∗

i �
1/2)

kk.(5.6)

We will only provide the estimate for �11 in the sequel, since the others can be
handled analogously. The following lemma lies at the core of our subsequent dis-
cussion.

LEMMA 5.3. Let z0 := E0 + iη0 satisfy E0 ∈ [λr − c̃, λr + N−2/3+ε] and
η0 := N−2/3+A0ε for some positive constant A0 > 1 independent of ε. Under Con-
dition 1.1, for any given constant ζ > 0 we have

sup
E0∈[λr−c̃,λr+N−2/3+ε]

∣∣�11(z0)
∣∣ ≤ Cη

−1/2
0(5.7)

with ζ -high probability for some positive constant C.

We postpone the proof of Lemma 5.3 to the end of this section and proceed to
prove (4.24) by assuming Lemma 5.3. By (5.7) and the spectral decomposition we
have

Cη
−1/2
0 ≥ ��11(z0) = ∑

i

η0

(λi(W) − E0)2 + η2
0

(
�1/2uiu∗

i �
1/2)

11(5.8)

with ζ -high probability. We set in (5.8) that E0 = λi(W) for some λi(W) ∈ [λr −
c̃, λr + N−2/3+ε]. Immediately, (5.8) implies that(

�1/2uiu∗
i �

1/2)
11 ≤ Cη

1/2
0 ≤ N−1/3+A0ε(5.9)

holds with ζ -high probability. (5.9) together with (5.7) can then be employed to
bound �11(z), for all z satisfying the assumption of Lemma 4.7. We perform it as
follows. At first, according to (i) of Theorem 3.3, we can assume that λ1(W) ≤
λr +N−2/3+ε . Now, for z = E + iη, we choose E0 = E thus z0 = E + iη0. Again,
by the spectral decomposition, we see that

∣∣�11(z) − �11(z0)
∣∣ =

∣∣∣∣∣
M∑
i=1

(
1

λi(W) − z
− 1

λi(W) − z0

)(
�1/2uiu∗

i �
1/2)

11

∣∣∣∣∣
≤ (η0 − η)

M∑
i=1

(�1/2uiu∗
i �

1/2)11

|(λi(W) − z)(λi(W) − z0)|

≤ (η0 − η)

M∑
i=1

(�1/2uiu∗
i �

1/2)11

|λi(W) − z|2(5.10)
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= (η0 − η)η−1
M∑
i=1

�(�1/2uiu∗
i �

1/2)11

λi(W) − z

≤ N2A0ε
M∑

i=1

�(�1/2uiu∗
i �

1/2)11

λi(W) − z

with ζ -high probability. Now we split the index collection {1, . . . ,M} into two
parts as

I1 := {
i :λi(W) ∈ [

λr − c̃, λr + N−2/3+ε]}, I2 := {
i :λi(W) < λr − c̃

}
.

Combining (5.9), (5.10) and the assumption on z yields∣∣�11(z) − �11(z0)
∣∣

≤ N−1/3+3A0ε
∑
i∈I1

� 1

λi(W) − z
+ CN2A0εη

∑
i∈I2

(
�1/2uiu∗

i �
1/2)

11

≤ N2/3+3A0ε�mN(z) + CN2A0εη�11

≤ N2/3+4A0ε

(
�m0(z) + 1

Nη

)
+ CN−2/3+2A0ε�11

≤ N1/3+5A0ε

with ζ -high probability. Here in the last two inequalities we used (3.2) and (ii) of
Theorem 3.1, along with the fact that �11 is bounded. Hence, we have∣∣�11(z)

∣∣ ≤ ∣∣�11(z0)
∣∣ + N1/3+5A0ε ≤ N1/3+6A0ε(5.11)

with ζ -high probability. Thus (4.24) follows if we replace G by G(1). �

The remaining part of this section will be devoted to the proof of Lemma 5.3.

PROOF OF LEMMA 5.3. At first, analogous to the derivation of (5.2) via (5.1),
the verification of (5.7) can be reduced to providing the desired bound on |�11(z0)|
for any single z0 with E0 ∈ [λr − c̃, λr + N−2/3+ε]. Hence, in the sequel, we will
just fix E0. The extension to the uniform bound via Lipschitz continuity and ε-net
argument is just routine. We recall the notation Xj and X[j ] in the proof of (4.23).
For simplicity, we further write

�−1 = � :=
(

φ11 �∗
1

�1 �[1]

)
,

where φ11 is the (1,1)th entry of � and �1 is its first column with φ11 removed.
As the inverse of �, we know that � is also positive-definite and its eigenvalues
are bounded both from below and above, in light of Condition 1.1. Consequently,
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its entries are also bounded, so is ‖�1‖. Now by using Schur complement to (5.5)
we can deduce that

�11(z0)

= 1/
(
X∗

1X1 − z0φ11

− (
X∗

1
(
X[1])∗ − z0�

∗
1
)(

X[1](X[1])∗ − z0�
[1])−1(

X[1]X1 − z0�1
))

:= 1

D1 + D2 + D3
,

where Di := Di(z0), i = 1,2,3, whose explicit formulas are as follows,

D1 := X∗
1X1 − z0φ11 −X∗

1
(
X[1])∗(

X[1](X[1])∗ − z0�
[1])−1

X[1]X1,

D2 := −z2
0�

∗
1
(
X[1](X[1])∗ − z0�

[1])−1
�1,

D3 := z0X
∗
1
(
X[1])∗(

X[1](X[1])∗ − z0�
[1])−1

�1

+ z0�
∗
1
(
X[1](X[1])∗ − z0�

[1])−1
X[1]X1.

Our starting point is the following elementary inequality:∣∣�11(z0)
∣∣ ≤ min

{(∣∣�(D1 + D2 + D3)
∣∣)−1

,
∣∣
(D1 + D2 + D3)

∣∣−1}
.(5.12)

Observe that if |
(D1 + D2 + D3)| > N1/6, the bound for |�11(z0)| in (5.7) auto-
matically holds. Hence, it suffices to show that with ζ -high probability,∣∣�(D1 + D2 + D3)

∣∣ ≥ Cη
1/2
0(5.13)

when ∣∣
(D1 + D2 + D3)
∣∣ ≤ N1/6(5.14)

for some positive constant C. In order to verify (5.13) under assumption (5.14),
a careful analysis on the real and imaginary parts of D1,D2,D3 is required. We
perform it as follows. We start from the following reduction on D1,

D1 = X∗
1X1 − z0φ11

−X∗
1
(
X[1])∗(

�[1])−1/2((
�[1])−1/2

X[1](X[1])∗(
�[1])−1/2 − z0

)−1

× (
�[1])−1/2

X[1]X1

= X∗
1X1 − z0φ11 −X∗

1
(
X[1])∗(

�[1])−1
X[1]((X[1])∗(

�[1])−1
X[1] − z0

)−1
X1

= −z0φ11 − z0X
∗
1
((

X[1])∗(
�[1])−1

X[1] − z0
)−1

X1.

In the second equality above, we have used the elementary fact that for any m × n

matrix A

A
(
A∗A − z0In

)−1
A∗ = AA∗(

AA∗ − z0I
)−1

,
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which can be checked by the singular decomposition easily. To abbreviate, we use
the notation

G̃[1](z0) := ((
X[1])∗(

�[1])−1
X[1] − z0

)−1
.

Adopting Lemma 3.4 again, we obtain

D1 = −z0φ11 − z0
1

N
Tr G̃[1](z0) + O

(
ϕCζ

N

∥∥G̃[1](z0)
∥∥

HS

)
(5.15)

with ζ -high probability. Now, we need the following lemma whose proof will be
also stated in the supplementary material [6].

LEMMA 5.4. Under the above notation, we can show that

1

N
Tr G̃[1](z0) = mN(z0) + O

(
1

Nη0

)
.(5.16)

Denoting κ0 := |λr − E0|, we deduce from Lemma 5.4 that∣∣∣∣ 1

N
Tr G̃[1](z0)

∣∣∣∣ = O(1),
1

N
�Tr G̃[1](z0) ∼ √

κ0 + η0(5.17)

hold with ζ -high probability, by combining (3.2) and (i)–(ii) of Theorem 3.1.

By (3.5), we have ‖G̃[1](z0)‖HS =
√

�Tr G̃[1](z0)/η0, which together with (5.15)
and (5.17) implies that ∣∣
D1(z0)

∣∣ ≤ ∣∣D1(z0)
∣∣ = O(1)(5.18)

and

�D1(z0) = −E0
1

N
�Tr G̃[1](z0) + O

(
ϕCζ

√
�Tr G̃[1](z0)

N2η0

)
+ O(η0)(5.19)

with ζ -high probability. Here, we also used the fact that |φ11| is bounded. Then by
(5.16), (5.19) and (3.2) we have

�D1 = −E0�m0(z0) + O
(
N−1/3−Cε)(5.20)

with ζ -high probability.
We proceed to the analysis toward D2 and D3. For D2, by definition we have


D2(z0) = −(
E2

0 − η2
0
)
�∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1

(5.21)
+ 2E0η0��∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1,

�D2(z0) = −(
E2

0 − η2
0
)��∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1

(5.22)
− 2E0η0
�∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1.

Now, for D3, we have the following lemma whose proof will be presented in the
supplementary material [6].
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LEMMA 5.5. Assume that z0 satisfies the assumption in Lemma 5.3. For any
ζ > 0, there exists some constant Cζ such that

|D3| ≤ ϕCζ

√
N

√
η−1

0 ��∗
1

(
X[1](X[1])∗ − z0�[1])−1

�1(5.23)

holds with ζ -high probability.

Now we invoke the crude bound

��∗
1
(
X[1](X[1])∗ − z0�

[1])−1
�1 ≤ Cη−1

0

∥∥(
�[1])−1/2

�1
∥∥ ≤ C1η

−1
0(5.24)

with some positive constants C and C1, which trivially implies that

|D3| ≤ CϕCζ

√
N

η−1
0 = O

(
N1/6−C2ε

)
(5.25)

with ζ -high probability for some positive constant C2. In addition, plugging (5.24)
into (5.21) yields that


D2(z0) = −(
E2

0 − η2
0
)
�∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1 + O(1)(5.26)

with ζ -high probability. Now, we are ready to provide a bound for

�∗

1(X
[1](X[1])∗ − z0�

[1])−1�1 which is needed to estimate �D2 according
to (5.22). Combining (5.18), (5.25) and (5.26), we can see that∣∣
(D1 +D2 +D3)

∣∣ = ∣∣(E2
0 −η2

0
)
�∗

1
(
X[1](X[1])∗−z0�

[1])−1
�1

∣∣+O
(
N1/6−C2ε

)
with ζ -high probability. Now, invoking assumption (5.14), we obtain∣∣
�∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1

∣∣ = O
(
N1/6)

(5.27)

with ζ -high probability. Inserting (5.27) into (5.22) we have

�D2 = −(
E2

0 − η2
0
)��∗

1
(
X[1](X[1])∗ − z0�

[1])−1
�1 + O

(
N−1/2+Cε).(5.28)

For convenience, we set t0 = ��∗
1(X

[1](X[1])∗ − z0�
[1])−1�1. Putting (5.23),

(5.28) and (5.20) together, we get

�(D1 + D2 + D3)

= −E0�m0(z0) − (
E2

0 − η2
0
)
t0 + O

(
ϕCζ

√
Nη0

t
1/2
0

)
+ O

(
N−1/3−Cε)

with ζ -high probability. Now observe that E0�m0(z0) and (E2
0 − η2

0)t0 are both
positive. Moreover, by (ii) of Theorem 3.1 we see that

�m0(z0) ∼ √
κ0 + η0.(5.29)

Now we split the discussion into two cases according to whether

t0 � ϕCζ

√
Nη0

t
1/2
0 ,(5.30)



418 Z. BAO, G. PAN AND W. ZHOU

holds. If (5.30) is valid, then we deduce from (5.29) that (5.13) holds. If (5.30)
fails, we claim that one must have

ϕCζ

√
Nη0

t
1/2
0 � √

κ0 + η0.(5.31)

Since if (5.30) does not hold, there exists some positive constant C such that t0 ≤
Cϕ2Cζ /Nη0, which implies (5.31) immediately by our choice of η0. Now (5.29)
and (5.31) imply (5.13) again. Then by (5.12), we complete the proof. �
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SUPPLEMENTARY MATERIAL

Supplement: Proofs of some lemmas (DOI: 10.1214/14-AOS1281SUPP;
.pdf). In the supplementary material [6], we will provide the proofs of Lemmas
4.2, 4.5, 4.6, 5.1, 5.4 and 5.5.
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