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In this paper, we study the detection boundary for minimax hypothesis
testing in the context of high-dimensional, sparse binary regression models.
Motivated by genetic sequencing association studies for rare variant effects,
we investigate the complexity of the hypothesis testing problem when the
design matrix is sparse. We observe a new phenomenon in the behavior of
detection boundary which does not occur in the case of Gaussian linear re-
gression. We derive the detection boundary as a function of two components:
a design matrix sparsity index and signal strength, each of which is a func-
tion of the sparsity of the alternative. For any alternative, if the design matrix
sparsity index is too high, any test is asymptotically powerless irrespective of
the magnitude of signal strength. For binary design matrices with the spar-
sity index that is not too high, our results are parallel to those in the Gaussian
case. In this context, we derive detection boundaries for both dense and sparse
regimes. For the dense regime, we show that the generalized likelihood ratio
is rate optimal; for the sparse regime, we propose an extended Higher Criti-
cism Test and show it is rate optimal and sharp. We illustrate the finite sample
properties of the theoretical results using simulation studies.

1. Introduction. The problem of testing for the association between a set
of covariates and a response is of fundamental statistical interest. In the con-
text of testing for a linear relationship of covariates with a continuous response,
R. A. Fisher introduced analysis of variance (ANOVA) in the 1920s, which is still
widely used in the present day. In recent years, finding the detection boundary of
various testing problems has gained substantial popularity. A fruitful way of find-
ing the detection boundary is to study the minimax error of testing and obtain a
threshold of signal strength under which all testing procedures in the concerned
problem are useless. For Gaussian linear models, this has been extensively stud-
ied by Arias-Castro, Candès and Plan (2011) and Ingster, Tsybakov and Verze-
len (2010); these works were inspired by the previous work on hypothesis testing
in various contexts, such as sparse normal mixtures [Cai, Jeng and Jin (2011),
Donoho and Jin (2004)], Gaussian sequence models [Ingster and Suslina (2003)]
and correlated multivariate normal problems [Hall and Jin (2010)]. However, very
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little work has been done on detection boundaries in generalized linear models for
discrete outcomes.

In this paper, we study the detection boundary for hypothesis testing in the con-
text of high-dimensional, sparse binary regression models. Motivated by case–
control sequencing association studies for detecting the effects of rare variants on
disease risk [Lee et al. (2014), Tang et al. (2014)], we are interested in the com-
plexity of the hypothesis testing problem when the design matrix is sparse. Specif-
ically, sequencing studies allow sequencing massive genetic variants in candidate
genes or across the whole genome. A rapidly increasing number of sequencing
association studies have been conducted, such as the 1000 Genome Project [1000
Genomes Project Consortium (2012)] and the NHLBI Exome Sequencing Project
[Fu et al. (2013)]. It is of substantial interest to study rare variant effects on diseases
case–control candidate gene and whole genome sequencing association studies.
A major challenge in analysis of sequencing data is that a vast majority of variants
across the genome are rare variants [1000 Genomes Project Consortium (2012)
(Figure 2b), Fu et al. (2013) (Figure 1a), Nelson et al. (2012) (Figure 1c)]. For a
review of analysis of data of sequencing association studies, see Lee et al. (2014).

For example, in the Dallas Heart candidate gene sequencing study [Victor et al.
(2004)], 3476 individuals were sequenced in the region consisting of three genes
ANGPTL3, ANGPTL4 and ANGPTL5. The goal of study was to test the effects
of these genes on the risk of hypertriglyceridemia. A total of 93 genetic variants
were observed in these genes. Each variant took values 0, 1, 2, which represents
the number of minor alleles in a genetic variant. About half of the variants were
singletons, that is, they were observed in only one person; 92 variants have the
minor allele frequencies < 5%. The design matrix is hence very sparse, with a
vast majority of its columns having <5% nonzero values (1 or 2), and the propor-
tion of total nonzero elements in the design matrix being <2.5%. It is expected
only a small number of variants might be associated with hypertriglyceridemia.
The presence of the sparse design matrix and sparse signals for binary outcomes
results in substantial challenges in testing the association of these genes and hyper-
triglyceridemia. Figure 1 provides the histogram of rare variants with minor allele
frequencies less than 5%.

Suppose there are n samples of binary outcomes, p covariates for each. Con-
sider a binary regression model linking the outcomes to the covariates. We are
interested in testing a global null hypothesis that the regression coefficients are all
zero and the alternative is sparse with k signals, where k = p1−α and α ∈ [0,1]. For
binary regression models, we observe a new phenomenon in the behavior of de-
tection boundaries which does not occur in the Gaussian framework, as explained
below.

The main contribution of our paper is to derive the detection boundary for binary
regression models as a function of two components: a design matrix sparsity index
and signal strength, each of which is a function of the sparsity of the alternative,
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FIG. 1. The histogram of minor allele frequencies of uncommon/rare variants (MAF ≤ 5%) in the
Dallas Heart study data.

that is, α. Throughout the paper, we will call the first component as “design ma-
trix sparsity index.” This is unlike the results in Gaussian linear regression which
has a one component detection boundary, namely the necessary signal strength.
In the Gaussian linear model framework, Arias-Castro, Candès and Plan (2011)
and Ingster, Tsybakov and Verzelen (2010) show that if the design matrix satisfies
certain “low coherence conditions,” then it is possible to detect the presence of a
signal in a global sense, provided the signal strength exceeds a certain threshold.
In contrast, our results suggest that for binary regression problems, the difficulty of
the problem is also determined by the design matrix sparsity index. In this paper,
we explore two key implications of this phenomenon which are outlined below.

First, if the design matrix sparsity index is too high, we show that no signal
can be detected irrespective of its strength. In Section 3, we provide sufficient
conditions on the design matrix sparsity index which yield such nondetectability
problems. Such conditions on the design matrix sparsity index corresponds to the
first component of the detection boundary. Plan and Vershynin (2013a, 2013b) dis-
cussed a difficulty in inference similar to that of ours, for design matrices with bi-
nary entries in the context of 1-bit compressive sensing and sparse logistic models.
Our results in Section 3 pertain to sparse design matrices with arbitrary entries,
which are not necessarily orthogonal. We give a few examples of design matri-
ces which satisfy our criteria for nondetectability. These include block diagonal
matrices and banded matrices.

Second, for design matrices with binary entries and with low correlation among
the columns, we are able to characterize both components of the detection bound-
ary. In particular, if the design matrix sparsity index, the first component of the
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detection boundary, is above a specified threshold, no signal is detectable irre-
spective of strength. Once the design matrix sparsity index is below the same
threshold, we also obtain the optimal thresholds with respect to the second com-
ponent of the detection boundary, that is, the minimum signal strength required
for successful detection. In this regime, our results parallel the theory of detection
boundary in Gaussian linear regression. We also provide relevant tests to attain
the optimal detection boundaries. In the sparse regime (α > 1

2), our results are
sharp and rate adaptive in terms of the signal strength component of the detection
boundary. Moreover, we observe a phase transition in both components of the de-
tection boundary depending on the sparsity (α) of the alternative. To the best of
our knowledge, this is the first work optimally characterizing a two component
detection boundary in global testing problems against sparse alternatives in binary
regression.

To illustrate further, we contrast our results with the existing literature. In the
case of a balanced one-way ANOVA type design matrix with each treatment having
r independent replicates, for Gaussian linear models, Arias-Castro, Candès and

Plan (2011) show that the detection boundary is given by O(
p1/4√

kr
) in the dense

regime (α < 1
2 ) and equals

√
2ρ∗

linear(α) log(p)

r
in the sparse regime α > 1

2 , where

ρ∗
linear(α) =

{
α − 1

2 , if 1
2 < α < 3

4 ,
(1 − √

1 − α)2, if α ≥ 3
4

(1.1)

and ρ∗
linear(α) matches the detection boundary in Donoho and Jin (2004) in the nor-

mal mixture problem. For given sparsity of the alternative, the detection boundary
depends a single function of r .

For binary regression, we show that the detection boundary is drastically differ-
ent and depends on two functions of r : a design matrix sparsity index and signal
strength under the alternative hypothesis for a given regime. In particular, define
the design matrix sparsity index of a design matrix as 1/r . For r = 1, every test
is powerless irrespective of the signal sparsity and the signal strength under the
alternative hypothesis. When r > 1, the behavior of the detection boundary can be
categorized into three situations. In the dense regime where r > 1 and α ≤ 1

2 ,
the detection boundary matches that of the Gaussian case up to rates and the
usual Generalized Likelihood Ratio Test achieves the detection boundary. In the
sparse regime, that is, when α > 1

2 , the detection boundary behaves differently for
r � log(p) and r � log(p). For α > 1

2 and r � log(p), a new phenomenon that
does not exist in the Gaussian case arises: all tests are asymptotically powerless
irrespective of how strong the signal strength is in the alternative. For α > 1

2 and
r � log(p), our results are identical to the Gaussian case, up to a constant factor
accounting for the Fisher information. In this regime, we construct a version of the
Higher Criticism Test and show that this test achieves the lower bound. We use the
strong embedding theorem [Komlós, Major and Tusnády (1975)] to obtain sharp
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detection boundary. Noting that this problem can also be cast as a test of homo-
geneity among p binomial populations with contamination in k of them. Hence,
roughly speaking, the two component detection boundary in this binary problem

setting equals [1,O(
p1/4√

kr
)) in the dense regime and (O( 1

log(p)
),O(

√
log(p)

r
)] in the

sparse regime, where the first component represents the design matrix sparsity in-
dex, which is of the order of 1/r , and the second component indicates the order
of signal strength. Successful detection requires both components to be above the
component-specific detection boundaries.

Borrowing ideas from orthogonal designs, we further obtain analogous results
for general binary design matrices which are sparse and have weak correlation
among columns, mimicking design matrices often observed in sequencing associ-
ation studies. For such general binary designs, we are able to completely charac-
terize the two component detection boundary in both dense and sparse regimes.
Our versions of Generalized Likelihood Ratio Test and the Higher Criticism Test
continue to attain the optimal detection boundaries in dense and sparse regimes, re-
spectively. Similar to orthogonal designs, our results are sharp in the sparse regime
and we once again obtain optimal phase transition in the two component detection
boundary depending on the sparsity (α) of the alternative. Our results show that
under certain low correlation structures, the problem essentially behaves as an or-
thogonal problem.

The rest of the paper is organized as follows. We first formally introduce the
model in Section 2 and discuss general strategies. Here, we also provide a set of
notation to be used throughout the paper. In Section 3, we study the nondetectabil-
ity for sparse design matrices with arbitrary entries. In Section 4, we formally
introduce a class of designs for which we derive the sharp detection boundaries,
namely, one-way ANOVA designs and weakly correlated binary designs. Section 5
introduces the Generalized Likelihood Ratio Test (GLRT) and the Higher Criticism
Test in our designs, which will be used in subsequent sections to attain the sharp
detection boundaries in two different regimes of sparsity. In Section 6, we first
analyze the one-way ANOVA designs and derive the sharp detection boundary in
different sparsity regimes. In Section 7, we derive the sharp detection boundary in
different sparsity regimes for weakly correlated binary designs. Section 8 presents
simulation studies which validate our theoretical results. Finally, we collect all the
technical proofs in the supplementary material [Mukherjee, Pillai and Lin (2014)].

2. Preliminaries. Suppose there are n binary observations yi ∈ {0,1}, for
1 ≤ i ≤ n, with covariates xi = (xi1, . . . , xip)t . The design matrix with rows xt

i

is denoted by X. Set y = (y1, y2, . . . , yn)
t . The conditional distribution of yi given

xi is given by

P(yi = 1|xi ,β) = θ
(
xt
iβ

)
,(2.1)
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where β = (β1, . . . , βp)t ∈ R
p is an unknown p-dimensional vector of regression

coefficients. Henceforth, we will assume that θ is an arbitrary distribution function
that is symmetric around 0, that is,

θ(z) + θ(−z) = 1 for all z ∈ R.(2.2)

For some of the results, we will also require certain smoothness assumptions on
θ(·) which we will state when and where required. Examples of such θ(·) include
logistic and normal distributions which, respectively, correspond to logistic and
probit regression models.

Let M(β) = ∑p
j=1 I (βj 	= 0) and let R

p
k = {β ∈ R

p :M(β) = k}. For some
A > 0, we are interested in testing the global null hypothesis

H0 :β = 0 vs H1 :β ∈ �A
k =

{
β ∈ ⋃

k′≥k

R
p

k′ : min
{|βj | :βj 	= 0

} ≥ A

}
.(2.3)

Set k = p1−α with α ∈ (0,1]. We note that these types of alternatives have been
considered by Arias-Castro, Candès and Plan (2011), referred to as the “Sparse
Fixed Effects Model” or SFEM. In particular, under the alternative, β has at least k

nonzero coefficients exceeding A in absolute values. Alternatives corresponding to
α ≤ 1

2 belong to the dense regime and those corresponding to α > 1
2 belong to the

sparse regime. We will denote by π a prior distribution on �A
k ⊂ R

p . Through-
out we will refer to A as the signal strength corresponding to the alternative in
equation (2.3).

We first recall a few familiar concepts from statistical decision theory. Let a test
be a measurable function of the data taking values in {0,1}. The Bayes risk of a
test T = T(X,y) for testing H0 :β = 0 versus H1 :β ∼ π when H0 and H1 occur
with the same probability, is defined as the sum of its probability of type I error
(false positives) and its average probability of type II error (missed detection):

Riskπ(T) := P0(T = 1) + π
[
Pβ(T = 0)

]
,

where Pβ denotes the probability distribution of y under model (2.1) and π [·] is the
expectation with respect to the prior π . We study the asymptotic properties of the
binary regression model (2.1) in the high-dimensional regime, that is, with p → ∞
and n = n(p) → ∞ and a sequence of priors {πp}. Adopting the terminology
from Arias-Castro, Candès and Plan (2011), we say that a sequence of tests {Tn,p}
is asymptotically powerful if limp→∞ Riskπp(Tn,p) = 0, and it is asymptotically
powerless if lim infp→∞ Riskπp(Tn,p) ≥ 1. When no prior is specified, the risk is
understood to be the worst case risk or the minimax risk defined as

Risk(T) := P0(T = 1) + max
β∈�A

k

[
Pβ(T = 0)

]
.

The detection boundary of the testing problem (2.3) is the demarcation of signal
strength A which determines whether all tests are asymptotically powerless (we
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call this lower bound of the problem) or there exists some test which is asymptoti-
cally powerful (we call this the upper bound of the problem).

To understand the minimax risk, set

d(P0,P1) = inf
{|P − Q|1 :P ∈ P0,Q ∈ P1

}
,

where P0,P1 are two families of probability measures and |P − Q|1 =
supB |P(A) − Q(A)|, with B being a Borel set in R

n, denotes the total-variation
norm. Then for any test T, we have [Wald (1950)]

Risk(T) ≥ 1 − 1
2 d

(
P0, convβ∈�A

k
(Pβ)

)
,

where conv denotes the convex hull. However, d(P0, convβ∈�A
k
(Pβ)) is difficult

to calculate. But it is easy to see that for any test T and any prior π , one has
Risk(T) ≥ Riskπ(T). So in order to prove that a sequence of tests is asymptotically
powerful, it suffices to bound from above the worst-case risk Risk(T). Similarly,
in order to show that all tests are asymptotically powerless, it suffices to work with
an appropriate prior to make calculations easier and bound the corresponding risk
from below for any test T.

It is worth noting that, for any prior π on the set of k-sparse vectors in R
p and

for any test T, we have

Riskπ(T) ≥ 1 − 1
2E0|Lπ − 1| ≥ 1 − 1

2

√
E0

(
L2

π

) − 1,

where Lπ is the π -integrated likelihood ratio and E0 denotes the expectation un-
der H0. For the model (2.1), we have

Lπ = 2n
∫ n∏

i=1

(
θ(xt

iβ)

θ(−xt
iβ)

)yi

θ
(−xt

iβ
)
dπ(β).(2.4)

Hence, in order to assess the lower bound for the risk, it suffices to bound from
above E0(L

2
π). By Fubini’s theorem, for fixed design matrix X, we have

E0
(
L2

π

)
(2.5)

= 2n
∫ ∫ n∏

j=1

[
θ
(
xt
iβ

)
θ
(
xt
iβ

′) + θ
(−xt

iβ
)
θ
(−xt

iβ
′)]dπ(β) dπ

(
β ′),

where β,β ′ ∼ π are independent. In the rest of the paper, all of our analysis is
based on studying E0(L

2
π) carefully for the prior distribution π chosen below.

In the context of finding an appropriate test matching the lower bound, by the
Neyman–Pearson lemma, the test which rejects when Lπ > 1 is the most powerful
Bayes test and has risk equal to 1 − 1

2E0|Lπ − 1|. However, this test requires
knowledge of the sparsity index α and is also computationally intensive. Hence, we
will construct tests which do not require knowledge of α and are computationally
much less cumbersome.

Ideally, one seeks least favorable priors, that is, those priors for which the mini-
mum Bayes risk equals the minimax risk. Inspired by Baraud (2002), we choose π

to be uniform over all k sparse subsets of Rp with signal strength either A or −A.
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2.1. Notation. We provide a brief summary of notation used in the paper. For
two sequences of real numbers ap and bp , we say ap � bp or ap = o(bp), when
lim supp→∞

ap

bp
→ 0 and we say ap � bp or ap = O(bp) if lim supp→∞

ap

bp
< ∞.

The indicator function of a set B will be denoted by I(B).
We take π to be uniform over all k sparse subsets of Rp with signal strength

either A or −A. Let M(k,p) be the collection of all subsets of {1, . . . , p} of
size k. For each m ∈ M(k,p), let ξm = (ξj )j∈m be a sequence of independent
Rademacher random variables taking values in {+1,−1} with equal probability.
Given A > 0 for testing (2.3), a realization from the prior distribution π on R

p can
be expressed as

βξ,m = ∑
j∈m

Aξjej ,

where (ej )
p
j=1 is the canonical basis of R

p and m is uniformly chosen from
M(k,p). Since, the alternative in (2.3) allows both positive and negative directions
of signal strength βj , we call it a two-sided alternative. On the contrary, when we
are given the extra information in (2.3) that the βj ’s have the same sign, then we
call the alternative a one-sided alternative. A realization from a prior distribution
over one-sided k sparse alternatives can be expressed as

∑
j∈m Aξej , where ξ is a

single Rademacher random variable.
For any distribution π ′ on M(k,p), by support(π ′) we mean the smallest

set I ′ := {M :M ∈ M(k,p)} such that π ′(I ′) = 1. For any distribution π∗ over
M(k,p), we say that another distribution π0 over M(k,p) is equivalent to π∗ (de-
noted by π0 ∼ π∗) if π0 is uniform on its support and

π∗(
M /∈ support(π0)

) = o(1).

By the support of a vector v ∈ R
p , we mean the set {j ∈ {1, . . . , p} :vj 	= 0}; the

vector v is Q-sparse if the support of v has at most Q elements. For i = 1, . . . , n,
we will denote the support of the ith row of X by Si := {j : Xi,j 	= 0} ⊂ {1, . . . , p}.
Let BCl denote the set of all functions whose lth derivative is continuous and
bounded over R. By θ(·) ∈ BCl(0), we mean that the lth derivative of θ(·) is con-
tinuous and bounded in a neighborhood of 0. Finally, by saying that a sequence
measurable map χn,p(y,X) of the data is tight, we mean that it is stochastically
bounded as n,p → ∞.

3. Sparse design matrices and nondetectability of signals. In this section,
we study the effects of sparsity structures of the design matrix X on the detection
of signals. Our key results in Theorem 3.1 below provide a sufficient condition on
the sparsity structure of the X which renders all tests asymptotically powerless in
the sparse regime irrespective of signal strength A. This result for nondetectability
is quite general and are satisfied by different classes of sparse design matrices
as we discuss below. We verify the hypothesis of Theorem 3.1 in a few instances
where certain global detection problems can be extremely difficult.
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Let π0 ∼ π and Rπ0 denote the support of π0. For a sequence of positive inte-
gers σp , we say that j1, j2 ∈ {1, . . . , p} are “σp-mutually close” if |j1 − j2| ≤ σp .
For an m1 from π0 and N ≥ 0, let RN

m1
(σp) denote the set of all {l1, . . . , lk} ∈ Rπ0

such that there are exactly N elements “σp-mutually close” with members of m1.

THEOREM 3.1. Let k = p1−α with α > 1
2 . Let π0 ∼ π and {σp} be a sequence

of positive integers with σp � pε for all ε > 0. Let m1 be drawn from π0. Suppose
that for all N = 0, . . . , k and every m2 drawn from π0 with m2 ∈ RN

m1
(σp), the

following holds for some sequence δp > 0:

n∑
i=1

{
I

(
min

{|m1 ∩ Si |, |m2 ∩ Si |} > 0
)} ≤ Nδp,(3.1)

where Si is defined in the last paragraph of Section 2. Then if δp � log(p), all
tests are asymptotically powerless.

An intuitive explanation of Theorem 3.1 is as follows. If the support of β under
the alternative does not intersect the support of a row of the design matrix X, the
observation corresponding to that particular row does not provide any information
about the alternative hypothesis. If randomly selected draws from M(k,p) fail to
intersect with the support of most of the rows, as quantified by equation (3.1), then
all tests will be asymptotically powerless irrespective of the signal strength in the
alternative. In the Gaussian linear regression, the effect of a similar situation is
different. We provide an intuitive explanation for a special case in Section 6. Also
intuitively, the quantity 1

δp
in Theorem 3.1 is a candidate for the design matrix

sparsity index of X. This is because if 1
δp

is too large, as quantified by 1
δp

� 1
log(p)

,
then all tests are asymptotically powerless in the sparse regime irrespective of the
signal strength. Now we provide a few examples where condition (3.1) can be
verified to hold for appropriate parameters.

EXAMPLE 1 (Block structure). Suppose that, up to permutation of rows, X
can be partitioned into a block diagonal matrix consisting of G(1), . . . ,G(M) and a
matrix G as follows:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(1)
c1×d1

. . .

G(j)
cj×dj

. . .

G(M)
cM×dM

Gc̃×p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×p,(3.2)
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FIG. 2. Heat map of the genotype matrix X of the Dallas Heart study data after a suitable rear-
rangement of subject indices, after removing the single common variant. The nonzero entries of the
genotype matrix that represent mutations are colored white, while the zero entries that represent no
mutation are colored in black.

where c̃ = n − ∑M
j=1 cj . The matrices G,G(1), . . . ,G(M) are arbitrary matrices

of specified dimensions. Let c∗ = max1≤j≤M cj and l∗ = max1≤j≤M dj . Indeed
c∗, l∗ and the structure of G decide the sparsity of the design matrix X. In Theo-
rem 3.2 below, we provide necessary conditions on c∗, l∗ and G which dictate the
validity of condition (3.1), and hence renders all tests asymptotically powerless
irrespective of signal strength.

Design matrices in sequencing association studies for rare variants generally
have this structure. Figure 2 shows a heat map of the genotype matrix of the sub-
jects in the Dallas Heart study after a suitable rearrangement of subject indices,
after removing the single common variant. It shows that the genotype matrix has
the same structure as X described above. Specially, it can be partitioned into two
parts. The top part of the matrix is an orthogonal block diagonal structure and the
bottom part is a nonorthogonal sparse matrix which corresponds to G.

THEOREM 3.2. Assume that the matrix X is of the form given by (3.2). Let
k = p1−α with α > 1

2 and suppose that |⋃i>n∗ Si | � p where n∗ = ∑M
j=1 cj . Let

l∗ � pε for all ε > 0. If c∗ � logp, then condition (3.1) holds, and thus all tests
are asymptotically powerless.

In Theorem 3.2, the condition |⋃i>n∗ Si | � p is an assumption on the structure
of G which restricts the locations of nonzero elements of G. This condition on G



362 R. MUKHERJEE, N. S. PILLAI AND X. LIN

is not tight and can be much relaxed provided one assumes further structures on G.
In fact, this implies that asymptotically the bulk of the information about the al-
ternatives comes from the block diagonal part of X and the information from G is
asymptotically negligible.

Further, intuitively, 1
c∗ is the candidate for the design matrix sparsity index.

Since if 1
c∗ is too high, as quantified by 1

c∗ � 1
log(p)

, then all tests are asymptotically
powerless in the sparse regime. It is natural to ask about the situation when the
design matrix sparsity index is below the specified threshold of 1

log(p)
, that is, c∗ �

log(p). To this end, it is possible to analyze the necessary and sufficient conditions
on the signal strength A dictating asymptotic detectability in problem (2.3) when
c∗ � log(p) for X in (3.2) but possibly with |⋃i>n∗ Si | � p. In Section 7, we
provide an answer to this question when X has binary entries.

EXAMPLE 2 (Banded matrix). Suppose X has the following banded structure,
possibly after a permutation of its rows. Suppose there exists l2 > l1 such that for
i = 1, . . . , n, Xi,j = 0 for j < i − l1 or j > i + l2. Further, let |⋃i>n Si | � p. Note
that this allows design matrices X which can be partitioned into a banded matrix
of band-width l2 − l1 and an arbitrary design matrix with sparsity restrictions as
specified by |⋃i>n Si | � p.

THEOREM 3.3. Let k = p1−α with α > 1
2 . Suppose X is a banded design

matrix as described above. Suppose that l2 − l1 � log(p). Then condition (3.1)
holds and thus all tests are asymptotically powerless.

4. Design matrices. In Section 3, we provided conditions on X under which
all tests are asymptotically powerless irrespective of signal strength A. To com-
plement those results, the subsequent sections will be devoted toward analyz-
ing situations when X is not pathologically sparse, and hence one can expect to
study nontrivial conditions on the signal strength A that determine the complexity
in (2.3). In this section, we introduce certain design matrices with binary entries
motivated by sequencing association studies. In subsequent sections, we will de-
rive the detection boundary for binary regression models with these design matri-
ces.

In order to introduce the design matrices we wish to study, we need some no-
tation. Set ∗ = {i : |Si | = 1}. For j = 1, . . . , p, let ∗

j = {i ∈ ∗ :Si = {j}} with
rj = |{i ∈ ∗ :Si = {j}}|. Let r∗ = max1≤j≤p rj and r∗ = min1≤j≤p rj . Also, let
n∗ = ∑p

j=1 rj and n∗ = n − n∗. In words, for each j , ∗
j is the collection of indi-

viduals with only one nonzero informative covariate appearing as the j th covariate
and rj is the number of such individuals.

A binary design matrix, as described above, is orthogonal if and only if all of
its rows have at most one nonzero element. Hence, up to a permutation of rows,
any binary design matrix can be potentially partitioned as a one-way ANOVA type
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design and an arbitrary matrix. In particular, up to a permutation of rows, any bi-
nary design matrix is equivalent to equation (3.2) where each G(j)

rj×1 = (1, . . . ,1)t ,
cj = rj , dj = 1, c∗ = r∗, l∗ = 1, c̃ = n∗ and G is an arbitrary matrix with binary
entries. Keeping this in mind, we have the following definitions.

DEFINITION 4.1. A design matrix X is defined as a Weakly Correlated De-
sign with parameters (n∗, n∗, r∗, r∗,Qn,p, γn,p) if the following conditions hold:

(C1) The design matrix Xn×p has binary entries;
(C2) |Si | ≤ Qn,p for all i = 1, . . . , n, for some sequence Qn,p;

(C3)
n∗Q2

n,p

r∗ � γn,p for some sequence γn,p → ∞.

As a special case of the above definition, we have the following definition.

DEFINITION 4.2. A design matrix X is called an ANOVA design with pa-
rameter r , and denoted by X ∈ ANOVA(r), if it is a Weakly Correlated Design
with r∗ = r∗ = r and n∗ = 0.

A few comments are in order for the above set of assumptions in Definitions
4.1 and 4.2. The motivation for condition (C1) comes from genetic association
studies assuming a dominant model. As our proofs will suggest, this can be easily
relaxed, allowing the elements of X to be uniformly bounded above and below.
Condition (C2) imposes sparsity on X. Finally, since the part of X without G is
exactly orthogonal, condition (C3) restricts the deviation of X from exact orthog-
onality. In particular, if the size of G is “not too large” compared to the orthogonal
part of X, as we will quantify later, then the behavior of the detection problem is
similar to the one with an exactly orthogonal design. In essence, this captures low
correlation designs suitable for binary regression with ideas similar to low coher-
ence designs as imposed by Arias-Castro, Candès and Plan (2011) for Gaussian
linear regression.

Because of the presence of G, Weakly Correlated Designs in Definition 4.1
allow for correlated binary design matrices with sparse structures. However, con-
dition (C3) restricts the size of G (numerator) compared to the orthogonal part
(denominator) by a factor of γn,p . Intuitively, this implies low correlation struc-
tures in X. The condition (C3) restricts the effect of G on the correlation structures
of X by not allowing too many rows compared to the size of the orthogonal part
of X. It is easy to see that when n∗Qp � p, then since |⋃i /∈∗ Si | � p, one can
essentially ignore the rows outside ∗ using an argument similar to that in the
proof of Theorem 3.2 and the problem becomes equivalent to ANOVA(r∗) de-
signs. However, condition (C3) allows for the cases |⋃i /∈∗ Si | � p. For example,
if Q = log(p)b for some b > 0, then as long as r∗γp � pap log(p)b for some
sequence ap → ∞, one can potentially have n∗Qp � p, and hence the simple re-
duction of the problem as in proof of Theorem 3.2 is no longer possible. In order
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TABLE 1
Characteristics of the genotype matrix of uncommon/rare variants of the Dallas Heart study using

the parameters defined in Definition 4.1

Demography r∗ n∗ Q
n∗Q2/r∗

p1/4
n∗Q2/r∗√

p
n∗Q2/r∗

log(p)

Overall 148.00 25.00 2.00 0.22 0.07 0.15
White 14.00 2.00 2.00 0.18 0.06 0.13
Black 142.00 19.00 2.00 0.17 0.06 0.12
Hispanic 26.00 4.00 2.00 0.20 0.06 0.14

to show that the detection problem still behaves similar to an orthogonal design,
one needs much subtler analysis to ignore the information about the alternative
coming from the subjects corresponding to G part of the design X. Therefore,
condition (C3) allows for a rich class of correlation structures in X.

The genotype matrix of the Dallas Heart study data shown in Figure 2 provides
empirical evidence that the assumptions in Definition 4.1 are reasonable for de-
sign matrices in sequencing data. Specifically, Table 1 provides the values of the
parameters used in Definition 4.1 that were calculated using the Dallas Heart study
data for different subpopulations of the study to motivate our conditions. Here, we
assumed a dominant coding of the alleles for the rare variants (MAF < 5%). In
most cases, whenever a subject has more than one mutation, it does not have more
than 2 mutations, which effectively yields Q = 2 in our conditions. The last three
columns of Table 1 refer to condition (C3). In particular, small values in these
columns suggest that the size of G is much smaller than the orthogonal part of the
design, supporting condition (C3).

In subsequent sections, we study the role of the parameter vector (n∗, n∗, r∗,
r∗, Qn,p , γn,p) in deciding the detection boundary. We first present the analysis
of relatively simpler ANOVA designs followed by the study of Weakly Correlated
Designs. The analysis of simpler ANOVA designs provides the crux of insight for
the study of detection boundary under Weakly Correlated Designs, and at the same
time yields cleaner results for easier interpretation. We will demonstrate that the
quantity 1

r
is the design matrix sparsity index when X ∈ ANOVA(r). In the case of

Weakly Correlated Designs, r∗ and r∗ play the same role as that of r in ANOVA(r)

designs. We divide our study of each design into two main sections, namely the
Dense Regime (α ≤ 1

2) and the Sparse Regime (α > 1
2). In the next section, we

first introduce the tests which will be essential for attaining the optimal detection
boundaries in dense and sparse regimes, respectively.

5. Tests. We propose in this section the Generalized Likelihood Ratio Test
and a Higher Criticism Test for binary regression models. We begin by defining
Z-statistics for Weakly Correlated Designs which will be required for introducing
and analyzing upper bounds later. Also, in order to separate the information about
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the alternative coming from the G part of X, we define a Z-statistic separately for
the nonorthogonal part. With this in mind, we have the following definitions.

DEFINITION 5.1. Let X be a Weakly Correlated Design as in Definition 4.1.

1. Define the j th Z-statistic as follows:

Zj = ∑
i∈∗

j

yi, j = 1, . . . , p.

2. Letting G = {Gij }n∗×p define

ZG
j =

n∑
i=n−n∗+1

Gij yi, j = 1, . . . , p.

With these definitions, we are now ready to construct our tests.

5.1. The Generalized Likelihood Ratio Test (GLRT). We now introduce a test
that will be used to attain the detection boundary in the dense regime. Let Zj be
the j th Z-statistic in Definition 5.1. Then the Generalized Likelihood Ratio Test is
based on the following test statistic:

TGLRT :=
p∑

j=1

4(Zj − (rj /2))2

rj
.(5.1)

Under H0, we have EH0(TGLRT) = p and VarH0(TGLRT) = O(p). Hence,
TGLRT−p√

2p
is tight. Our test rejects the null when

TGLRT − p√
2p

> tp

for a suitable tp to be decided later.
Note that this test only uses partial information from the data. Since we shall

show that, asymptotically using this partial information is sufficient, we will not
lose power in an asymptotic sense. However, from finite sample performance point
of view, it is more desirable to use the following test using all the data by incor-
porating information from G as well. This test can be viewed as a combination of
GLRT statistics using the orthogonal and nonorthogonal parts of X, respectively.
Specifically, we reject the null hypothesis

when: max
{

TGLRT − p√
2p

,

∑p
j=1 [(ZG

j )2 −EH0((Z
G
j )2)]√

VH0(
∑p

j=1(Z
G
j )2)

}
> tp.

Note that given a particular G, the quantities EH0{(ZG
j )2} and VH0{

∑p
j=1(Z

G
j )2}

can be easily calculated by simple moment calculations of Bernoulli random vari-
ables. We do not go into specific details here. Finally, since combining correct size
tests by Bonferroni correction does not change asymptotic power, our proofs about
asymptotic power continue to hold for this modified GLRT without any change.
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5.2. Extended Higher Criticism Test. Assume r∗ ≥ 2. Let Rj be a generic
Bin(rj ,

1
2) random variable and Bj ,Bj , respectively, denote the distribution func-

tion and the survival function of |Rj−(rj /2)|√
rj /4

. Hence,

Bj (t) = P

( |Rj − (rj /2)|√
rj /4

≤ t

)
, Bj (t) = 1 −Bj (t).

From Definition 5.1, the Zj ’s are independent Bin(rj ,
1
2) under H0 for j =

1, . . . , p. Let

Wp(t) =
∑p

j=1 I(|Zj − (rj /2)|/
√

rj /4 > t) −Bj (t)√∑p
j=1 Bj (t)(1 −Bj (t))

.

Now we define the Higher Criticism Test as

THC := max
t∈[1,

√
3 log(p)]∩N

Wp(t),(5.2)

where N denotes the set of natural numbers. The next theorem provides the rejec-
tion region for the Higher Criticism Test.

THEOREM 5.2. For Weakly Correlated Designs, limp→∞ PH0(THC >

log(p)) = 0.

Hence, one can use (1 + ε) log(p) as a cutoff to construct a test based on THC
for any arbitrary fixed ε > 0:

Higher Criticism Test: Reject when THC > (1 + ε) log(p).(5.3)

By Theorem 5.2, the above test based on THC has asymptotic type I error converg-
ing to 0. We note that, when r∗ � log(p), we can obtain a rejection region of the
form THC >

√
2(1 + ε) log log(p) while maintaining asymptotic type I error con-

trol. This type of rejection region is common in the Higher Criticism literature. As
we will see in Section 6, the interesting regime where the Higher Criticism Test
is important is when r∗ � log(p). In this regime, we can have the same rejection
region of the Higher Criticism as obtained in Donoho and Jin (2004) and Hall and
Jin (2010). However, for generality we will instead work with the rejection region
given by equation (5.3).

Note that this test only uses partial information from the data. We shall show
that, asymptotically, using this partial information is sufficient, we will not lose
power in an asymptotic sense. However, from a finite sample performance point
of view, it is more desirable to use the following test using all the data by incorpo-
rating information from G. The below can be viewed as a combination of Higher
Criticism Tests based on the orthogonal and nonorthogonal parts of X, respectively.
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Specifically, letting gj = ∑
i>n∗ Xij , j = 1, . . . , p, define the Higher Criticism

type test statistic based on G as

WG
p (t)

=
∑p

j=1 I(|ZG
j − (gj/2)|/

√
gj/4 > t) − PH0(|ZG

j − (gj /2)|/
√

gj/4 > t)√
VarH0

∑p
j=1 I(|ZG

j − (gj/2)|/
√

gj/4 > t)

.

The quantities PH0{
|ZG

j −(gj /2)|√
gj /4

> t} and VarH0

∑p
j=1 I{ |ZG

j −(gj /2)|√
gj /4

> t} can be

suitably approximated based on G. However, we omit the specific details here
for coherence of exposition. Finally, defining

W comb
p (t) = max

{
Wp(t),WG

p (t)
}
,

one can follow the previous steps in defining the Higher Criticism Test with ex-
actly similar arguments. Since combining correct size tests by Bonferroni correc-
tion does not change asymptotic power, the proofs concerning the power of the
resulting test goes through with similar arguments. We omit the details here.

6. Detection boundary and asymptotic analysis for ANOVA designs. We
begin by noting that the ANOVA(r) designs can be equivalently cast as a problem
of testing homogeneity among p different binomial populations with r trials each.
Suppose

yj ∼ Bin
(
r, 1

2 + νj

)
independent for j = 1, . . . , p.(6.1)

Let ν = (ν1, . . . , νp)t . For some � ∈ (0, 1
2 ], we are interested in testing the global

null hypothesis

H0 :ν = 0 vs H1 :ν ∈ ��
k = {

ν ∈ R
p
k : min

{|νj | :νj 	= 0
} ≥ �

}
.(6.2)

When X ∈ ANOVA(r), models (2.1) and (6.1) are equivalent with ηj = θ(βj ) −
1
2 . Hence, sparsity in β is equivalent to sparsity in ν in the sense that β ∈ R

p
k

if and only if ν ∈ R
p
k . Further, the rate of �, which determines the asymptotic

detectability of (6.2), can be related to the rate of A, which determines detectability
in (2.3) when the link function θ is continuously differentiable in a neighborhood
around 0.

REMARK 6.1. When θ is the distribution function for a uniform random vari-
able U(−1

2 , 1
2), then νj = βj for all j = 1, . . . , p. Hence, the detection boundary in

problem (6.2) follows from that in problem (2.3) by taking θ to be the distribution
function of U(−1

2 , 1
2), that is, θ(x) = (x + 1

2)I(−1
2 < x < 1

2).
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REMARK 6.2. The prior πeq that we will use for testing for the binomial ho-
mogeneity of proportions is as follows. For each m ∈ M(k,p), let ξm = (ξj )j∈m

be a sequence of independent Rademacher random variables taking values in
{+1,−1} with equal probability. Given � ∈ (0, 1

2) for testing (6.2), a realization
from the prior distribution πeq on R

p can be expressed as νξ,m = ∑
j∈m �ξjej ,

where (ej )
p
j=1 is the canonical basis of R

p and m is uniformly chosen from
M(k,p). Note that given the prior π on β = (β1, . . . , βp)r discussed earlier, πeq

is the prior induced on ν = (ν1, . . . , νp)t with 1
2 + νj = θ(βj ) for j = 1, . . . , p.

Owing to Remark 6.1, one can deduce the detection boundary of the binomial
proportion model (6.1) from the detection boundary in ANOVA(r) designs. How-
ever, for the sake of easy reference, we provide the detection boundaries for both
models. Before proceeding further, we first state a simple result about ANOVA
designs, a part of which directly follows from Theorem 3.1. Note that ANOVA(1)

design corresponds to the case when the design matrix is identity Ip×p . Unlike
Gaussian linear models, for binary regression, when the design matrix is identity,
for two-sided alternatives, all tests are asymptotically powerless irrespective of
sparsity (i.e., in both dense and sparse regimes) and signal strengths. Such a result
arises for r = 1 because we allow the alternative to be two-sided. In the modified
problem where one only considers the one-sided alternatives, all tests still remain
asymptotically powerless irrespective of signal strengths when r = 1 in the sparse
regime, that is, when α > 1

2 . However, in the dense regime, that is, when α ≤ 1
2 ,

the problem becomes nontrivial and the test based on the total number of successes
attains the detection boundary. The detection boundary for this particular problem
is provided in Theorem 6.3 part 2(b). Also, in the one-sided problem, the Bayes
test can be explicitly evaluated and quite intuitively turns out to be a function of
the total number of successes. In the next theorem, we collect all these results.

THEOREM 6.3. Assume X ∈ ANOVA(1), which assumes r = 1 and X = I .
Then the following holds for both problems (2.3) and (6.2).

1. For two-sided alternatives all tests are asymptotically powerless irrespective of
sparsity and signal strength.

2. For one-sided alternatives:

(a) Suppose θ ∈ BC1(0), which is defined in Section 2.1. Then in the dense

regime (α ≤ 1
2 ), all tests are asymptotically powerless if A2

p1−2α → 0 in prob-

lem (2.3) or �2

p1−2α → 0 in problem (6.2). Further, if A2

p1−2α → ∞ in prob-

lem (2.3) or �2

p1−2α → ∞ in problem (6.2), then the test based on the total

number of successes (
∑p

i=1 yi ) is asymptotically powerful.
(b) In sparse regime (α > 1

2 ), all tests are asymptotically powerless.
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The case of two-sided of alternatives when r = 1 can indeed be understood
in the following way. Under the null hypothesis, each yi is an independent
Bernoulli(1/2) random variable and under the prior on the alternative which al-
lows each βi to be +A or −A with probability 1

2 , the yi ’s are again independent
Bernoulli(1/2) random variables. So, of course, there is no way to distinguish them
based on the observations yi ’s when the β is generated according to the prior men-
tioned earlier. Our proof is based on this heuristic. However, the above argument is
invalid even for r > 1 and one can expect nontrivial detectability conditions on A

when r > 1. In the dense regime, we observe that simply r > 1 is enough for this
purpose. However, the sparse regime requires a more delicate approach in terms of
the effect of r > 1.

REMARK 6.4. Note that Theorem 6.3, other than part 2(a), requires no addi-
tional assumption on θ other than the symmetry requirement in equation (2.2).

6.1. Dense regime (α ≤ 1
2). The detection complexity in the dense regime

with r > 1 matches the Gaussian linear model case. Interestingly, just by increas-
ing 1 observation per treatment from the identity design matrix scenario, the de-
tection boundary changes completely. The following theorem provides the lower
and upper bound for the dense regime when r > 1.

THEOREM 6.5. Let X ∈ ANOVA(r). Let k = p1−α with α ≤ 1
2 and the block

size/binomial denominator r > 1.

1. Consider the model (2.1) and the testing problem given by (2.3). Assume θ ∈
BC1(0). Then:

(a) If A �
√

p1/2

kr
, then all tests are asymptotically powerless.

(b) If A �
√

p1/2

kr
, then the GLRT is asymptotically powerful.

2. Consider model (6.1) and the testing problem (6.2). Then:

(a) If � �
√

p1/2

kr
, then all tests are asymptotically powerless.

(b) If � �
√

p1/2

kr
, then the GLRT is asymptotically powerful.

Also when A2kr√
p

or �2kr√
p

remains bounded away from 0 and ∞, the asymptotic

power of GLRT remains bounded between 0 and 1. The upper and lower bound
rates of the minimum signal strength match with that of Arias-Castro, Candès and
Plan (2011) and Ingster, Tsybakov and Verzelen (2010).

6.2. Sparse regime (α > 1
2). Unlike the dense regime, the sparse regime de-

pends more heavily on the value of r . The next theorem quantifies this result; it
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shows that in the sparse regime if r � log(p), then all tests are asymptotically
powerless. Indeed this can be argued from Theorems 3.1 and 3.2. However, for the
sake of completeness, we provide it here.

THEOREM 6.6. Let k = p1−α with α > 1
2 . If r � log(p), then for both the

problems and (2.3) and (6.2), all tests are asymptotically powerless.

REMARK 6.7. Theorem 6.6 requires no additional smoothness assumption
on θ other than the symmetry requirement in equation (2.2).

Thus, for the rest of this section we consider the case where k � √
p and r �

log(p). We first divide our analysis into two parts, where we study the lower bound
and upper bound of the problem separately.

6.2.1. Lower bound. To introduce a sharp lower bound in the regime where
α > 1

2 and r � log(p) in the binary regression model (2.1) and the testing prob-
lem (2.3) for the ANOVA(r) design, we define the following functions. Figure 3
provides a graphical representation of the detection boundary. Define

ρ∗
binary(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(α − (1/2))

4(θ ′(0))2 , if
1

2
< α <

3

4
,

(1 − √
1 − α)2

4(θ ′(0))2 , if α ≥ 3

4
.

(6.3)

FIG. 3. Detection boundary t = ρ∗
binary(α) in the sparse regime when θ corresponds to logistic

regression. The detectable region is t > ρ∗
binary(α), and the undetectable region is t < ρ∗

binary(α).

The curve corresponds to t = ρ∗
binary(α).
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This is the same as the Gaussian detection boundary (1.1) multiplied by
1/4(θ ′(0))2. The reason for the appearance of the factor 1/4(θ ′(0))2 is that
the Fisher information for a single Bernoulli sample under binary regression
model (2.1) is equal to

√
4(θ ′(0))2.

For every j ∈ {1, . . . , p}, we have

β̂MLE
j

d→ N
(
βj , σ

2
j

)
,

where σ 2
j = 4(θ ′(0))2 under H0 and σ 2

j ≈ 4(θ ′(0))2 under H1. To see this, note

that under H1 we have σ 2
j = (1

2 + δ)(1
2 − δ) ≈ 4θ ′(0) where δ > 0 is small and

denotes a departure of the Bernoulli proportion from the null value of 1
2 , that is,

under H1, the outcomes corresponding to the signals follow Bernoulli(1
2 + δ) or

Bernoulli(1
2 − δ). This implies

√
1

4(θ ′(0))2 β̂ should yield a detection boundary sim-

ilar to the multivariate Gaussian model case.
For the detection boundary in the corresponding binomial proportion

model (6.1) and the testing problem (6.2), we define the following function:

ρ∗
binomial(α) =

⎧⎪⎪⎨
⎪⎪⎩

(α − (1/2))

4
, if

1

2
< α <

3

4
,

(1 − √
1 − α)2

4
, if α ≥ 3

4
.

(6.4)

The following theorem provides the exact lower boundary for the ANOVA(r)

designs for the binary regression model as well as the corresponding binomial
problem.

THEOREM 6.8. Let X ∈ ANOVA(r). Suppose r � log(p) and k = p1−α with
α > 1

2 .

1. Consider the binary regression model (2.1) and the testing problem (2.3). Fur-

ther suppose that θ ∈ BC2(0). Let A =
√

2t log(p)
r

. If t < ρ∗
binary(α), all tests are

asymptotically powerless.
2. Consider the binomial model (6.1) and the testing problem (6.2). Let � =√

2t log(p)
r

. If t < ρ∗
binomial(α), all tests are asymptotically powerless.

REMARK 6.9. As mentioned in the Introduction, the analysis turns out to be
surprisingly nontrivial since it seems not possible to simply reduce the calculations
to the Gaussian case by doing a Taylor expansion of Lπ around β = 0. In particu-
lar, a natural approach to analyze these problems is to expand the integrand of Lπ

by a Taylor series around β = 0 and thereby reducing the analysis to calculations in
the Gaussian situation and a subsequent analysis of the remainder term. However,
in order to find the sharp detection boundary, the analysis of the remainder term
turns out to be very complicated and nontrivial. Thus, our proof to Theorem 6.8 is
not a simple application of results from the Gaussian linear model.
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6.2.2. Upper bound. According to Theorem 6.8, all tests are asymptotically
powerless if t < ρ∗

binary(α) in the sparse regime. In this section, we introduce tests
which reach the lower bound discussed in the previous section. We divide our
analysis into two subsections. In Section 6.2.2.1, we study the Higher Criticism
Test defined by (5.2) which is asymptotically powerful as soon as t > ρ∗

binary(α)

in the sparse regime. In Section 6.2.2.3, we discuss a more familiar Max Test or
minimum p-value test which attains the sharp detection boundary only for α ≥ 3

4 .

6.2.2.1. The Higher Criticism Test. In this section, we study the version of
Higher Criticism introduced in Section 6.2. Recall, we have by Theorem 5.2 that
the type I error of the Higher Criticism Test, as defined by equation (5.3), con-
verges to 0. The next theorem states the optimality of the Higher Criticism Test as
soon as the signal strength exceeds the detection boundary.

THEOREM 6.10. Let X ∈ ANOVA(r). Suppose r � log(p) and k = p1−α

with α > 1
2 .

1. Consider the binary regression model (2.1) and the testing problem (2.3). Fur-

ther suppose that θ ∈ BC2(0). Let A =
√

2t log(p)
r

. If t > ρ∗
binary(α), then the

Higher Criticism Test is asymptotically powerful.
2. Consider the binomial model (6.1) and the testing problem (6.2). Let � =√

2t log(p)
r

. If t > ρ∗
binomial(α), then the Higher Criticism Test is asymptotically

powerful.

6.2.2.2. Comparison with the original Higher Criticism Test. We begin by pro-
viding a slight simplification of THC in ANOVA(r) designs. Let S be a generic
Bin(r, 1

2) random variable and B,B, respectively, denote the distribution function

and the survival function of |S−(r/2)|√
r/4

. Hence,

B(t) = P

( |S − (r/2)|√
r/4

≤ t

)
, B(t) = 1 −B(t).

In the case of ANOVA(r) designs, Wp(t) = √
p

Fp(t)−B(t)√
B(t)(1−B(t))

. The original Higher

Criticism Test as defined by Donoho and Jin (2004) can also be calculated as a
maximum over some appropriate function of p-values. By that token, ideally we
would like to define the Higher Criticism Test statistic as

TIdeal
HC = sup

0<t<r/2
Wp(t).

However, due to difficulties in calculating the null distribution for deciding a
cut-off for the rejection region, we instead work with a discretized version of it.
We detail this below in the context of ANOVA(r) designs. Define the j th p-value
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as qj = P(|Bin(r, 1
2) − r

2 | > |Zj − r
2 |) for 1, . . . , p and let q(1), . . . , q(p) be the

ordered p-values based on exact binomial distribution probabilities. Define

T′
HC = max

1≤j≤p

√
p

(j/p) − q(j)√
q(j)(1 − q(j))

.

It is difficult to analyze the distribution of T′
HC under the null to decide a valid

cut-off for testing. The following proposition yields a relationship between THC,
TIdeal

HC and T′
HC.

PROPOSITION 6.11. Let |Z − r
2 |(j) denote the j th order statistics based on

|Zi − r
2 |, i = 1, . . . , p. For t such that |Z − r

2 |(p−j) ≤ t < |Z − r
2 |(p−j+1), we have

√
p

Fp(t) −B(t)√
B(t)(1 −B(t))

≤ √
p

(j/p) − q(j)√
q(j)(1 − q(j))

.

Hence, from Proposition 6.11, we observe that we have the following inequality:

T′
HC ≥ TIdeal

HC ≥ THC.(6.5)

This unlike the results in Donoho and Jin (2004) and Cai, Jeng and Jin (2011),
where the leftmost inequality is a equality. Therefore, it is worth further compar-
ing the above discussion to the Higher Criticism Test introduced by Donoho and
Jin (2004), Hall and Jin (2010) in the Gaussian framework. In the case of orthog-
onal Gaussian linear models, THC,T′

HC and TIdeal
HC are defined by standard normal

survival functions and p-values, respectively, and one uses Zj instead of Zj−(r/2)√
r/4

in the definition of THC. This yields that in the Gaussian framework the leftmost
inequality of (6.5) is an equality. Moreover, under the framework, standard em-
pirical process results for continuous distribution functions yield asymptotics for
TIdeal

HC under the null. Therefore, in the Gaussian case the uncountable supremum
in the definition of TIdeal

HC is attained and the statistic is algebraically equal to a
maximum over finitely many functions of p-values, namely, T′

HC. However, due to
the possibility of strict inequality in Proposition 6.11 for the binomial distribution,
we cannot reduce our computation to p-values as in the Gaussian case. Although
it is true that marginally each qj is stochastically smaller than a U(0,1) random
variable, we are unable to find a suitable upper bound for the rate of T′

HC since
it also depends on the joint distribution of q(1), . . . , q(p). It might be possible to
estimate the gaps between T′

HC,TIdeal
HC and THC, but since this is not essential for

our purpose, we do not attempt this.

6.2.2.3. Rate optimal upper bound: Max Test. A popular multiple comparison
procedure is the minimum p-value test. In the context of Gaussian linear regres-
sion, Donoho and Jin (2004) and Arias-Castro, Candès and Plan (2011) showed
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that the minimum p-value test reaches the sharp detection boundary if and only if
α ≥ 3

4 . In this section, we introduce and study the minimum p-value test in binary
regression models.

As before, define the j th p-value as

qj = P

(∣∣∣∣Bin
(
r,

1

2

)
− r

2

∣∣∣∣ >

∣∣∣∣Zj − r

2

∣∣∣∣
)

for j = 1, . . . , p and let q(1), . . . , q(p) be the ordered p-values. We will study the
test based on the minimum p-value q(1). Note that it is equivalent to study the test
based on the statistic

max
1≤j≤p

Wj , Wj = |Zj − (r/2)|√
r/4

.

From now on, we will call this the Max Test. In the following theorem, we show
that similar to Gaussian linear models, for binary regression, the Max Test attains
the sharp detection boundary if and only if α ≥ 3

4 . However, if one is interested in
rate optimal testing, that is, only the rate or order of the detection boundary rather
than the exact constants, the Max Test continues to perform well in the entire sparse
regime.

THEOREM 6.12. Let X ∈ ANOVA(r). Suppose r � (log r)2 log(p) and k =
p1−α with α > 1

2 .

1. Suppose θ ∈ BC2(0) and let A =
√

2t log(p)
r

. Set

ρ∗
Max,binary(α) = (1 − √

1 − α)2

4(θ ′(0))2 .

Then in the model (2.1) and problem (2.3) one has the following:

(a) If t > ρ∗
Max,binary(α), then the Max Test is asymptotically powerful.

(b) If t < ρ∗
Max,binary(α), then the Max Test is asymptotically powerless.

2. Let � =
√

2t log(p)
r

. Set ρ∗
Max,binomial(α) = (1−√

1−α)2

4 . Then in the model (6.1)
and problem (6.2) one has the following:

(a) If t > ρ∗
Max,binomial(α), then the Max Test is asymptotically powerful.

(b) If t < ρ∗
Max,binomial(α), then the Max Test is asymptotically powerless.

Theorem 6.12 implies that the detection boundary for the Max Test matches
the detection boundary of the Higher Criticism Test only for α ≥ 3

4 . For α < 3
4 ,

the detection boundary of the Max Test lies strictly above that of the Higher Crit-
icism Test. Hence, the Max Test fails to attain the sharp detection boundary in
the moderate sparsity regime, α < 3

4 . Thus, if one is certain of high sparsity it
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can be reasonable to use the Max Test whereas the Higher Criticism Test per-
forms well throughout the sparse regime. It is worth noting that the requirement
r � (log(r))2 log(p) is a technical constraint and can be relaxed. In most situa-
tions, it does not differ much from the actual necessary condition r � log(p), and
hence we use r � (log(r))2 log(p) for proving Theorem 6.12.

7. Detection boundary and asymptotic analysis for Weakly Correlated De-
signs. In this section, we study the role of the parameter vector (n∗, n∗, r∗, r∗,
Qn,p, γn,p) in deciding the detection boundary for Weakly Correlated Designs de-
fined in Definition 4.1. For the sake of brevity, we will often drop the subscripts
n,p from Q and γ when there is no confusion. Recall ∗ from Section 4.

If we just concentrate on the observations corresponding to the rows with index
in ∗, we have an orthogonal design matrix similar to ANOVA(r) designs. Our
proofs of lower bounds in both dense and sparse regimes and also the test statis-
tics proposed for the attaining the sharp upper bound is motivated by this fact.
Similar to ANOVA(r) designs, we divide our analysis into the dense and sparse
regimes. Also, owing to the possible nonorthogonality of X for Weakly Corre-
lated Designs, we cannot directly reduce this problem to testing homogeneity of
binomial proportions as in (6.2). So, henceforth, we will be analyzing model (2.1)
and corresponding testing problem (2.3). However, as we shall see, under certain
combinations of (n∗, n∗, r∗, r∗,Q,γ ), one can essentially treat the problem as an
orthogonal design like in ANOVA(r) designs. This is explained in the following
two sections.

7.1. Dense regime (α ≤ 1
2). We recall the definition of the GLRT from equa-

tion (5.1). The following theorem provides the lower and upper bound for the dense
regime.

THEOREM 7.1. Let X be a Weakly Correlated Design as in Definition 4.1.
Suppose Let k = p1−α with α ≤ 1

2 and r∗ > 1. Assume θ ∈ BC2(0) and set γ =
p(1/2)−α . Then we have the following:

1. If A �
√

p1/2

kr∗ , then all tests are asymptotically powerless.

2. If A �
√

p1/2

kr∗ , then the GLRT is asymptotically powerful.

We note that the form of the detection boundary is exactly same as that in The-
orem 6.5 for ANOVA(r) designs with r∗ and r∗ playing the role of r . This implies

that when n∗Q2 is not too large (n∗Q2

r∗ � γ = p(1/2)−α); we can still recover the
same results as in ANOVA(r) designs because the columns of the design matrix
are weakly correlated.
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7.2. Sparse regime (α > 1
2). Unlike the dense regime, the sparse regime de-

pends more heavily on the values of r∗ and r∗. The next theorem quantifies this
result; it shows that in the sparse regime if r∗ � log(p), then all tests are asymptot-
ically powerless. This result is analogous to Theorem 6.6 for ANOVA(r) designs.
Indeed this can be argued from Theorems 3.1 and 3.2. However, for the sake of
completeness, we provide it here.

THEOREM 7.2. Let X be a Weakly Correlated Design as in Definition 4.1. Let
k = p1−α with α > 1

2 and let |⋃i /∈∗ Si | � p. If r∗ � log(p), then all tests are
asymptotically powerless.

REMARK 7.3. The condition |⋃i /∈∗ Si | � p, restricts the location of
nonzero elements in the support of rows of X when the row has more than one
nonzero element. This restriction imposes a structure on the deviation of X from
orthogonality. As the proof of Theorem 7.2 will suggest, this condition ensures that
the assumptions of Theorem 3.1 hold, and hence renders all tests asymptotically
powerless irrespective of signal strength.

The following theorem provides the value of γ that is defined in condition (C3)
in Definition 4.1, to ensure the results parallel to Theorem 6.8. Not surprisingly, the
test attaining the sharp lower bound turns to be the version of the Higher Criticism
Test introduced in Section 6. Similar to the ANOVA(r) design, it is also possible to
introduce and study the Max Test which attains the sharp detection boundary only
for α ≥ 3

4 . However, we omit this since it can be easily derived from the existing
arguments.

THEOREM 7.4. Let X be a Weakly Correlated Design as in Definition 4.1 and
k = p1−α with α > 1

2 . Suppose r∗ � log(p), γ = log(p), where γ is defined in
Definition 4.1. Further suppose that θ ∈ BC2(0).

1. Let A =
√

2t log(p)
r∗ . If t < ρ∗

binary(α), then all tests are asymptotically power-
less.

2. Let A =
√

2t log(p)
r∗ . If t > ρ∗

binary(α), then the Higher Criticism Test is asymp-
totically powerful.

REMARK 7.5. The assumptions on the design matrix in Theorem 7.4 is
weaker than the assumptions in Theorem 7.2. In particular, one is allowed to go
beyond |⋃i /∈∗ Si | � p in Theorem 7.2 as long as the condition (C3) is satisfied
with γ = log(p). This is expected since the conditions under which all tests are
asymptotically powerless irrespective of sample size are often more stringent.

REMARK 7.6. Theorem 7.4 states that the Higher Criticism Test attains the
sharp detection boundary in the sparse regime. Note that the difference in the de-
nominators of A in the statement of upper and lower bound in Theorem 7.4 is
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unavoidable and the difference vanishes asymptotically if r∗/r∗ → 1. This is ex-
pected since the detection boundary depends on the column norms of the design
matrix.

8. Simulation studies. We complement our study with some numerical sim-
ulations which illustrate the empirical performance of the test statistics described
in earlier sections for finite sample sizes. Since detection complexity of the general
weakly correlated binary design matrices depend on the behavior of ANOVA(r)

type designs, we only provide simulations for strong one-way ANOVA type de-
sign. Let X be a balanced design matrix with p = 10,000 covariates and r repli-
cates per covariate. For different values of sparsity index α ∈ (0,1) and r , we study
the performance of Higher Criticism Test, GLRT and Max Test, respectively, for

different values of t , where t which corresponds to A =
√

2(ρ∗
logistic(α)+t) log(p)

r
.

Following Arias-Castro, Candès and Plan (2011), the performance of each of
the three methods is computed in terms of the empirical risk defined as the sum of
probabilities of type I and II errors achievable across all thresholds. The errors are
averaged over 300 trials. Even though the theoretical calculation of null distribu-
tion of the Higher Criticism Test statistic computed from p-values remains a chal-

lenge, we found that using the p-value based statistic max1≤j≤p/2
√

p
(j/p)−q(j)√
q(j)(1−q(j))

yielded expected results similar to our version of discretized Higher Criticism.

To be precise, the performance of the test based on max1≤j≤p/2
√

p
(j/p)−q(j)√
q(j)(1−q(j))

was similar to the performance of the test based on THC defined in Section 5.2.
Note that this statistic is different from T′

HC in that the maximum is taken over the
first p

2 elements instead of all p of them. The main reason for this is the fact that,
as noted by Donoho and Jin (2004), the information about the signal in the sample
lies away from the extreme p-values. The GLRT is based on TGLRT as defined in
Section 5.1 and the Max Test is based on the test statistic defined in Section 6.2.2.3.

The results are reported in Figures 4 and 5. For r = √
log(p) � log(p) and

k = 2,7 which corresponds to k � √
p, that is, the sparse regime, we can see

that all tests are asymptotically powerless in Figure 4 which is expected from the
theoretical results. However, even when r = �√log(p)� � log(p), for the dense
regime, and k = 159 and 631, we see from Figure 4 that the GLRT is asymptoti-
cally powerful whereas the other two tests are asymptotically powerless. Once r is
much larger than log(p) in Figure 5, our observations are similar to Arias-Castro,
Candès and Plan (2011). Here, we employ simulations for k = 2,7,40 which cor-
respond to the sparse regime and for k = 159 which corresponds to the dense
regime. We note that the performance of GLRT improves very quickly as the spar-
sity decreases and begins dominating the Max Test. The performance of the Max
Test follows the opposite pattern with errors of testing increasing as k increases.
The Higher Criticism Test, however, continues to have good performance across
the different sparsity levels once r � log(p).
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FIG. 4. Simulation results are for p = 10,000 and r = �√log(p)� = 4. Sparsity level k is
indicated below each plot. In each plot, the empirical risk of each method [GLRT (trian-
gles); Higher Criticism (diamonds); Max Test (stars)] is plotted against t which corresponds

to A =
√

max{2(ρ∗
logistic(α)+t),0} log(p)

r .

9. Discussions. In this paper, we study testing of the global null hypothesis
against sparse alternatives in the context of general binary regression. We show
that, unlike Gaussian regression, the problem depends not only on signal spar-
sity and strength, but also heavily on a design matrix sparsity index. We provide
conditions on the design matrix which render all tests asymptotically powerless
irrespective of signal strength. In the special case of design matrices with binary
entries and certain sparsity structures, we derive the lower and upper bounds for
the testing problem in both dense (rate optimal) and sparse regimes (sharp includ-
ing constants). In this context, we also develop a version of the Higher Criticism
Test statistic applicable for binary data which attains the sharp detection boundary
in the sparse regime.

In this paper, we constructed tests by combining tests based on Z-statistics from
the orthogonal part and the nonorthogonal part of the X. In particular, we combine
procedures based on Zj and ZG

j separately. This helps us achieve optimal rates
for upper bounds on testing errors under the same conditions required for lower
bounds in these problems. Indeed, one can consider constructing GLRT and Higher
Criticism Test using Z-statistics constructed based on whole X, that is, based on
ZX

j = XT
j y, j = 1, . . . , p directly. We could obtain similar results based on the
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FIG. 5. Simulation results are for p = 10,000 and r = �(log(p))5� = 66,280. Sparsity level
k is indicated below each plot. In each plot, the empirical risk of each method [GLRT (tri-
angles); Higher Criticism (diamonds); Max Test (stars)] is plotted against t which corresponds

to A =
√

2(ρ∗
logistic(α)+t) log(p)

r .

combined Z-statistics under stronger structural information on G than what we
require here.

In particular, the conditions regarding the relative size of G with respect to the
orthogonal part of the design matrix, can be substantially relaxed if more structural
assumptions on G are made. For example, for sequencing data, as observed in the
Dallas Heart study data, for people having more than one mutation, the locations
of the mutations are in fact usually clustered, due to linkage disequilibrium. For
such structures, strong results can be obtained. We omit those results here due to
space limitation. Future research is also needed to study the detection boundary
for binary regression for more general design matrices.

The study of detection boundaries associated with binary regression models for
a general design matrix is much more delicate. We allow in this paper for a more
general sparse design when the nonorthogonal columns of the design matrix are
sufficiently sparse and the number of subjects with multiple nonzero entries in
the design matrix are not too large. Future research is needed to extend the re-
sults to a general design matrix allowing a stronger correlation among the covari-
ates Xj ’s.
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