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PHASE TRANSITION AND REGULARIZED BOOTSTRAP
IN LARGE-SCALE t-TESTS WITH FALSE DISCOVERY

RATE CONTROL

BY WEIDONG LIU1 AND QI-MAN SHAO2

Shanghai Jiao Tong University and The Chinese University of Hong Kong

Applying the Benjamini and Hochberg (B–H) method to multiple Stu-
dent’s t tests is a popular technique for gene selection in microarray data
analysis. Given the nonnormality of the population, the true p-values of the
hypothesis tests are typically unknown. Hence it is common to use the stan-
dard normal distribution N(0,1), Student’s t distribution tn−1 or the boot-
strap method to estimate the p-values. In this paper, we prove that when the
population has the finite 4th moment and the dimension m and the sample
size n satisfy logm = o(n1/3), the B–H method controls the false discovery
rate (FDR) and the false discovery proportion (FDP) at a given level α asymp-
totically with p-values estimated from N(0,1) or tn−1 distribution. However,
a phase transition phenomenon occurs when logm ≥ c0n1/3. In this case, the
FDR and the FDP of the B–H method may be larger than α or even converge
to one. In contrast, the bootstrap calibration is accurate for logm = o(n1/2)

as long as the underlying distribution has the sub-Gaussian tails. However,
such a light-tailed condition cannot generally be weakened. The simulation
study shows that the bootstrap calibration is very conservative for the heavy
tailed distributions. To solve this problem, a regularized bootstrap correction
is proposed and is shown to be robust to the tails of the distributions. The
simulation study shows that the regularized bootstrap method performs better
than its usual counterpart.

1. Introduction. Multiple Student’s t tests often arise in many real applica-
tions, such as gene selection. Consider m tests on the mean values

H0i :μi = 0 versus H1i :μi �= 0, 1 ≤ i ≤ m.

A popular procedure is to use the Benjamini and Hochberg (B–H) method to search
for significant findings, with the false discovery rate (FDR) controlled at a given
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level 0 < α < 1; that is,

E
[

V

R ∨ 1

]
≤ α,

where V is the number of wrongly rejected hypotheses and R is the total number
of rejected hypotheses. The seminal work of Benjamini and Hochberg (1995) is to
reject the null hypotheses for which pi ≤ p

(k̂)
, where pi is the p-value for H0i ,

k̂ = max{0 ≤ i ≤ m :p(i) ≤ αi/m}(1)

and p(1) ≤ · · · ≤ p(m) are the ordered p-values. Let T1, . . . , Tm be Student’s t test
statistics

Ti = X̄i

ŝni/
√

n
,

where

X̄i = 1

n

n∑
k=1

Xki, ŝ2
ni = 1

n − 1

n∑
k=1

(Xki − X̄i)
2,

and (Xk1, . . . ,Xkm)′, 1 ≤ k ≤ n, are i.i.d. random samples from (X1, . . . ,Xm)′.
When T1, . . . , Tm are independent and the true p-values pi are known, Benjamini
and Hochberg (1995) showed that the B–H method controls the FDR at level α.

In many applications, the distributions of Xi , 1 ≤ i ≤ m, are non-Gaussian.
Hence it is difficult to know the exact null distributions of Ti and the true p-values.
When applying the B–H method, the p-values are actually estimators. According
to the central limit theorem, it is common to use the standard normal distribu-
tion N(0,1) or Student’s t distribution tn−1 to estimate the p-values, where tn−1
denotes the Student’s t random variable with n − 1 degrees of freedom. In a mi-
croarray analysis, Efron (2004) observed that the null distribution choices sub-
stantially affect the simultaneous inference procedure. However, a systematic the-
oretical study on the influence of the estimated p-values is still lacking. It is im-
portant to know how accurate N(0,1) and tn−1 calibrations can be. In this paper,
we show that N(0,1) and tn−1 calibrations are accurate when logm = o(n1/3).
Moreover, if the underlying distributions are symmetric, then the dimension can
be as large as logm = o(n1/2). Under the finite 4th moment of Xi , the FDR and
the false discovery proportion (FDP) of the B–H method with the estimated p-
values p̂i,� = 2−2�(|Ti |) or p̂i,�n−1 = 2−2�n−1(|Ti |) will converge to αm0/m,
where m0 is the number of true null hypotheses, �(t) is the standard normal dis-
tribution and �n−1(t) = P(tn−1 ≤ t). However, when logm ≥ c0n

1/3 for some
c0 > 0 and the distributions are asymmetric, N(0,1) and tn−1 calibrations may
not work well, and a phase transition phenomenon occurs. Under logm ≥ c0n

1/3,
the number of true alternative hypotheses m1 = exp(o(n1/3)) and the average of
skewnesses τ = limm→∞ m−1

0
∑

i∈H0
|EX3

i /σ
3
i | > 0, we show that the FDR of
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the B–H method satisfies lim(m,n)→∞ FDR ≥ κ for some constant κ > α, where
H0 = {i :μi = 0}. Furthermore, if logm/n1/3 → ∞, then lim(m,n)→∞ FDR = 1.
Similar results are proven for the false discovery proportion. This indicates that
N(0,1) and tn−1 calibrations are inaccurate when the average of skewnesses τ �= 0
in the ultra high dimensional setting.

It is well known that the bootstrap is an effective way to improve the accuracy
of an exact null distribution approximation. Fan, Hall and Yao (2007) showed that
for the bounded noise, the bootstrap can improve the accuracy and allow a higher
dimension logm = o(n1/2) on controlling the family-wise error rate. Delaigle, Hall
and Jin (2011) showed that the bootstrap method has significant advantages in
higher criticism. In this paper, we show that when the bootstrap calibration is used
and logm = o(n1/2), the B–H method can asymptotically control FDR and FDP
at level α. In our results, we assume the sub-Gaussian tails instead of the bounded
noise in Fan, Hall and Yao (2007).

Although the bootstrap method allows for a higher dimension, the light-tailed
condition cannot generally be weakened. The simulation study shows that the boot-
strap method is very conservative for the heavy-tailed distributions. To solve this
problem, we propose a regularized bootstrap method that is robust to the tails of
the distributions. The proposed regularized bootstrap only requires a finite 6th mo-
ment, and the dimension can be as large as logm = o(n1/2).

It is also not uncommon in real applications for X1, . . . ,Xm to be dependent.
This results in a dependency between T1, . . . , Tm. In this paper, we obtain some
similar results for the B–H method under a general weak dependence condition. It
should be noted that much work has been done on the robustness of the FDR/FDP
controlling method against dependence. Benjamini and Yekutieli (2001) proved
that the B–H procedure controlled FDR under positive regression dependency.
Storey (2003), Storey, Taylor and Siegmund (2004) and Ferreira and Zwinderman
(2006) imposed a dependence condition that required the law of large numbers for
the empirical distributions under the null and alternative hypothesis. Wu (2008)
developed FDR controlling procedures for the data coming from special models,
such as the time series model. However, to satisfy the conditions in most of the ex-
isting methods, it is often necessary to assume that the number of true alternative
hypotheses m1 is asymptotically π1m with some π1 > 0. They exclude the sparse
setting m1 = o(m), which is important in applications such as gene selection. For
example, if m1 = o(m), then the conditions of Theorem 4 in Storey, Taylor and
Siegmund (2004), and the conditions of the main results in Wu (2008) are not sat-
isfied. In contrast, our results on FDR and FDP control under dependence allows
m1 ≤ γm for some γ < 1.

The remainder of this paper is organized as follows. In Section 2.1, we show
the robustness of and the phase transition phenomenon for the N(0,1) and tn−1
calibrations. In Section 2.2, we show that the bootstrap calibration can improve the
FDR and FDP control. The regularized bootstrap method is proposed in Section 3.
The results are extended to the dependence case in Section 4. The simulation study
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is presented in Section 5 and the proofs are postponed to Section 6. Throughout
the paper, all constants such as γ, b0, c0 in the upper bounds and lower bounds do
not depend on n and m.

2. Main results.

2.1. Robustness and phase transition. In this section, we assume that the Stu-
dent’s t test statistics T1, . . . , Tm are independent, and the results are extended to
the dependent case in Section 4. Before stating the main theorems, we introduce
some notation. Let p̂i,� = 2 − 2�(|Ti |) and p̂i,�n−1 = 2 − 2�n−1(|Ti |) be the p-
values calculated from the standard normal distribution and the t-distribution, re-
spectively. Let FDR� and FDR�n−1 be the FDR of the B–H method with p̂i,� and
p̂i,�n−1 in (1), respectively. Similarly, we denote the false discovery proportions of
the B–H method by FDP� (= V

R∨1 ) and FDP�n−1 . Recall that R is the total num-
ber of rejections. The critical values of the tests are then t̂� = �−1(1 − αR/(2m))

and t̂�n−1 = �−1
n−1(1 − αR/(2m)). Set Yi = (Xi − μi)/σi with σ 2

i = Var(Xi),
1 ≤ i ≤ m.

Recall that m1 is the number of true alternative hypotheses. Throughout this
paper, we assume m1 ≤ γm for some γ < 1, which includes the important sparse
setting m1 = o(m).

THEOREM 2.1. Suppose X1, . . . ,Xm are independent and logm = o(n1/2).
Assume that max1≤i≤m EY 4

i ≤ b0 for some constant b0 > 0 and

Card
{
i : |μi/σi | ≥ 4

√
logm/n

} → ∞.(2)

Then

lim
(n,m)→∞

FDR�

(m0/m)ακ�

= 1 and lim
(n,m)→∞

FDR�n−1

(m0/m)ακ�n−1

= 1,

where

κ� = E
[
κ̂�I

{
κ̂� ≤ 2(α − αγ )−1}]

,

κ̂� =
∑

i∈H0
{ exp(t̂3

�EX3
i /(

√
nσ 3

i )) + exp(−t̂3
�EX3

i /(
√

nσ 3
i ))}

2m0

and κ�n−1 is defined in the same way. For the false discovery proportion, we have

FDP�

(m0/m)ακ̂�

→ 1 and
FDP�n−1

(m0/m)ακ̂�n−1

→ 1

in probability as (n,m) → ∞.

Let τ = limm→∞ m−1
0

∑
i∈H0

|EY 3
i |. We have the following corollary.
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COROLLARY 2.1. Assume that the conditions in Theorem 2.1 are satisfied.

(i) If logm = o(n1/3), then we have

lim
(n,m)→∞ FDR�/(αm0/m) = 1 and FDP�/(αm0/m) → 1 in probability.

(ii) Suppose logm ≥ c0n
1/3 for some c0 > 0 and m1 = exp(o(n1/3)). Also as-

sume that τ > 0. Then lim(n,m)→∞ FDR� ≥ β and lim(n,m)→∞ P(FDP� ≥ β) = 1
for some constant β > α.

(iii) Suppose logm/n1/3 → ∞ and m1 = exp(o(n1/3)). Assume that τ > 0.
Then we have lim(n,m)→∞ FDR� = 1 and FDP� → 1 in probability.

The same conclusions hold for FDR�n−1 and FDP�n−1 .

Theorem 2.1 and Corollary 2.1 show that when logm = o(n1/3), N(0,1) and
tn−1 calibrations are accurate. Note that only a finite 4th moment of Yi is required.
Furthermore, if the skewnesses EY 3

i = 0 for i ∈ H0, then the dimension can be
as large as logm = o(n1/2). However, a phase transition occurs if the average of
skewnesses τ > 0, for example, for the exponential distribution. The FDR and FDP
of the B–H method are greater than α as long as logm ≥ c0n

1/3 and converge to
one when logm/n1/3 → ∞.

Under a finite 4th moment of Xi , Cao and Kosorok (2011) prove the robustness
of Student’s t test statistics and N(0,1) calibration in the control of FDR and FDP.
They require m1/m → c for some 0 < c < 1, which does not cover the sparse case.

Corollary 2.1 also indicates that the choice of asymptotic null distributions is
important in the study of large-scale testing problems. When the dimension is
much larger than the sample size, simply using the null limiting distribution to
estimate the true p-values may result in larger FDR and FDP. This is further veri-
fied by our simulation study in Section 5.

In Theorem 2.1 and Corollary 2.1, we require technical condition (2). Actually,
this condition is nearly optimal for the FDP results. If the number of true alternative
hypotheses m1 is fixed as m → ∞, then Proposition 2.1 below shows that even for
the true p-values, the B–H method is unable to control FDP at any level 0 < ξ < 1
with overwhelming probability. Note that (2) is only slightly stronger than m1 →
∞.

Let FDPtrue be the false discovery proportion of the B–H method, with the true
p-values pi , 1 ≤ i ≤ m. Let U(0,1) be the uniform random variable on (0,1).

PROPOSITION 2.1. Assume that m1 is fixed as m → ∞ and X1, . . . ,Xm are
independent. Suppose that pi ∼ U(0,1) for i ∈ H0. For any 0 < ξ < 1, we have

lim
(n,m)→∞

P(FDPtrue ≥ ξ) ≥ η

for some η > 0, where η may depend on m1 and ξ .
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Proposition 2.1 indicates that m1 → ∞ is a necessary condition for FDP control.
In contrast, the control of FDR does not need m1 → ∞ when logm = o(n1/3).
However, FDR� and FDR�n−1 may still converge to one if logm/n1/3 → ∞ and
τ > 0.

PROPOSITION 2.2. Suppose m1 is fixed as m → ∞, X1, . . . ,Xm are inde-
pendent and logm = o(n1/2). Assume that max1≤i≤m EY 4

i ≤ b0 for some constant
b0 > 0.

(i) If logm = o(n1/3) and pi ∼ U(0,1) for i ∈ H0, then
lim(n,m)→∞ FDR� ≤ α.

(ii) Suppose logm/n1/3 → ∞. Assume that τ > 0. We have
lim(n,m)→∞ FDR� = 1.

The same conclusions remain valid for FDR�n−1 .

2.2. Bootstrap calibration. In this section, we show that the bootstrap proce-
dure can improve the accuracy of FDR and FDP control. Write Xi = {X1i , . . . ,

Xni}. Let X ∗
ki = {X∗

1ki, . . . ,X
∗
nki}, 1 ≤ k ≤ N , be resamples drawn randomly

with replacement from Xi . Let T ∗
ki be Student’s t test statistics constructed from

{X∗
1ki − X̄i, . . . ,X

∗
nki − X̄i}. We use G∗

N,m(t) = 1
Nm

∑N
k=1

∑m
i=1 I {|T ∗

ki | ≥ t} to ap-
proximate the null distribution and define the p-values by p̂i,B = G∗

N,m(|Ti |). Let
FDRB and FDPB denote the FDR and FDP of the B–H method with p̂i,B in (1),
respectively.

THEOREM 2.2. Suppose that max1≤i≤m EetY 2
i ≤ K for some constants t > 0

and K > 0, and the conditions in Theorem 2.1 are satisfied.

(i) If logm = o(n1/3), then we have

lim
(n,m)→∞ FDRB/(αm0/m) = 1 and FDPB/(αm0/m) → 1

(3)
in probability.

(ii) If logm = o(n1/2) and m1 ≤ mη for some η < 1, then (3) holds.

Another common bootstrap method is to estimate the p-values individually by
p̆i,B = G∗

i (Ti), where G∗
i (t) = 1

N

∑N
k=1 I {T ∗

ki ≥ t}; see Fan, Hall and Yao (2007)
and Delaigle, Hall and Jin (2011). Similar results to those achieved in Theorem 2.2
can be obtained if N is large enough. Let FDR

B̆
and FDP

B̆
be the FDR and FDP

of the B–H method with p̆i,B , respectively. The following result holds.

PROPOSITION 2.3. Suppose that N ≥ m2+δ for some δ > 0,
max1≤i≤m EetY 2

i ≤ K for some constants t > 0 and K > 0, and logm = o(n1/2).
Assume that X1, . . . ,Xm are independent.
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(i) If (2) holds, then the results of Theorem 2.2(i) and (ii) hold for FDR
B̆

and
FDP

B̆
.

(ii) Suppose that m1 is fixed and pi ∼ U(0,1) for i ∈ H0. If logm = o(n1/2),
then we have lim(n,m)→∞ FDR

B̆
≤ α.

Fan, Hall and Yao (2007) proved that the bootstrap calibration accurately
controls the family-wise error rate if logm = o(n1/2) and P(|Yi | ≤ C) = 1 for
1 ≤ i ≤ m. Our result on FDR control only requires the sub-Gaussian tails, which
is a weaker requirement than the bounded noise.

The bootstrap method has often been used in multiple Student’s t tests in real ap-
plications. Fan, Hall and Yao (2007) and Delaigle, Hall and Jin (2011) have proven
that the bootstrap method provides more accurate p-values than the normal or tn−1
approximation for the light-tailed distributions. Theorem 2.2 and Proposition 2.3
show that the bootstrap method allows a higher dimension logm = o(n1/2) for
FDR control as long as max1≤i≤m EetY 2

i ≤ K . However, some real data may not
satisfy such a light-tailed condition. The simulation study in Section 5 also indi-
cates that the bootstrap calibration does not always outperform the N(0,1) or tn−1
calibrations.

3. Regularized bootstrap in large-scale tests. In this section, we introduce
a regularized bootstrap method that is robust for heavy-tailed distributions, and the
dimension m can be as large as eo(n1/2). For the regularized bootstrap method, the
finite 6th moment condition is enough. Let λni → ∞ be a regularization parameter.
Define

X̂ki = XkiI
{|Xki | ≤ λni

}
, 1 ≤ k ≤ n,1 ≤ i ≤ m.

Write X̂i = {X̂1i , . . . , X̂ni}. Let X̂ ∗
ki = {X̂∗

1ki, . . . , X̂
∗
nki}, 1 ≤ k ≤ N , be resam-

ples drawn independently and uniformly with replacement from X̂i . Let T̂ ∗
ki be

Student’s t test statistics constructed from {X̂∗
1ki − X̂i, . . . , X̂

∗
nki − X̂i}, where

X̂i = 1
n

∑n
k=1 X̂ki . We use Ĝ∗

N,m(t) = 1
Nm

∑N
k=1

∑m
i=1 I {|T̂ ∗

ki | ≥ t} to approximate

the null distribution and define the p-values by p̂i,RB = Ĝ∗
N,m(|Ti |). Let FDRRB

and FDPRB be the FDR and FDP of the B–H method with p̂i,RB in (1), respec-
tively.

THEOREM 3.1. Assume that max1≤i≤m EX6
i ≤ K for some constant K > 0.

Suppose X1, . . . ,Xm are independent, (2) holds and min1≤i≤m σii ≥ c1 for some
c1 > 0. Let c2(n/ logm)1/6 ≤ λni ≤ c3(n/ logm)1/6 for some c2, c3 > 0.

(i) If logm = o(n1/3), then

lim
(n,m)→∞ FDRRB/(αm0/m) = 1 and FDPRB/(αm0/m) → 1

(4)
in probability.
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(ii) If logm = o(n1/2) and m1 ≤ mη for some η < 1, then (4) remains valid.

In Theorem 3.1, we only require max1≤i≤m EX6
i ≤ K , which is much weaker

than the moment condition in Theorem 2.2.
As in Section 2.2, we can also estimate the p-values individually by p̆i,RB =

Ĝ∗
i (Ti), where Ĝ∗

i (t) = 1
N

∑N
k=1 I {T̂ ∗

ki ≥ t}. Let FDR
R̆B

and FDP
R̆B

be the FDR
and FDP of the B–H method with p̆i,RB , respectively. We have the following result.

PROPOSITION 3.1. Suppose that N ≥ m2+δ for some δ > 0, max1≤i≤m EX6
i ≤

K for some constant K > 0, min1≤i≤m σii ≥ c1 for some c1 > 0 and
c2(n/ logm)1/6 ≤ λni ≤ c3(n/ logm)1/6 for some c2, c3 > 0. Assume that X1, . . . ,

Xm are independent.

(i) Suppose that (2) holds. Then Theorem 3.1(i) and (ii) hold for FDR
R̆B

and
FDP

R̆B
.

(ii) Suppose that m1 is fixed and pi ∼ U(0,1) for i ∈ H0. If logm = o(n1/2),
then we have lim(n,m)→∞ FDR

R̆B
≤ α.

Theorem 3.1 does not cover the case when m1 is fixed. However, if p̆i,RB ,
1 ≤ i ≤ m are used, then Proposition 3.1 shows that the FDR can be con-
trolled when m1 is fixed and logm = o(n1/2). Actually, when m1 is fixed and
logm = o(n1/3), by the proof of Propositions 2.2 and 3.1, we can show that
lim(n,m)→∞ FDRRB ≤ α. It is unclear whether the similar result holds for FDRRB

when the dimension becomes larger, that is, logm = o(n1/2). However, under (2),
Theorem 3.1 only requires N ≥ 1 because we use the average of all m variables.
Hence p̂i,RB have the significant advantage on the computational cost over p̆i,RB .
Moreover, Proposition 2.1 indicates that (2) is nearly necessary for FDP control.
Note that when one has FDP control, one can also have FDR control, but the re-
verse is not true, as Proposition 2.1 shows. Because FDR control is about the FDP
average, studying FDP is more appealing in applications than FDR control.

In the regularized bootstrap method, we must choose the regularization param-
eter λni . By Theorem 1.2 in Wang (2005), equation (2.2) in Shao (1999) and the
proof of Theorem 3.1, we have

P
(∣∣T̂ ∗

ki

∣∣ ≥ t |X̂ ) = 1

2
G(t)

[
exp

(
t3
√

n
κ̂i(λni)

)
+ exp

(
− t3

√
n
κ̂i(λni)

)](
1 + oP(1)

)
,

uniformly for 0 ≤ t ≤ o(n1/4), where G(t) = 2 − 2�(t), X̂ = {X̂1, . . . , X̂m},

κ̂i(λni) = 1

nσ̂ 3
i

n∑
k=1

(X̂ki − X̂i)
3 and σ̂ 2

i = 1

n

n∑
k=1

(X̂ki − X̂i)
2.(5)

Also,

P
(|Ti | ≥ t

) = 1

2
G(t)

[
exp

(
t3
√

n
κi

)
+ exp

(
− t3

√
n
κi

)](
1 + o(1)

)
,
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uniformly for 0 ≤ t ≤ o(n1/4), where κi = EY 3
i . A good choice of λni is to make

κ̂i(λni) approach κi . As κi is unknown, we propose the following cross-validation
method.

Data-driven choice of λni . We propose to choose λ̂ni = |X̄i | + ŝniλ, where λ

will be selected as follows. Split the samples into two parts I0 = {1, . . . , n1} and
I1 = {n1 + 1, . . . , n} with sizes n0 = [n/2] and n1 = n − n0, respectively. For
I = I0 or I1, let

κ̂i,I = 1

|I|ŝ3
ni,I

∑
k∈I

(Xki − X̄i,I)3, ŝ2
ni,I = 1

|I|
∑
k∈I

(Xki − X̄i,I)2,

X̄i,I = 1

|I|
∑
k∈I

Xki.

Let κ̂i,I(λni), with λni = |X̄i,I | + ŝni,Iλ/2, be defined as in (5) based on {X̂ki, k ∈
I}. Define the risk

Rj(λ) =
m∑

i=1

(
κ̂i,Ij

(λni) − κ̂i,I1−j

)2
.

We choose λ by

λ̂ = arg min
0<λ<∞

{
R0(λ) + R1(λ)

}
.(6)

The final regularization parameter is λ̂ni = |X̄i | + ŝni λ̂.
The numerical performance comparison between the data-driven choice λ̂ni and

the theoretical choice [e.g., (n/ logm)1/6] is given in Section 5. In addition, it is
important to investigate the theoretical property of λ̂ni and to see whether Theo-
rem 3.1 still holds when λ̂ni is used. We leave this for future work.

4. FDR control under dependence. To generalize the results to the depen-
dent case, we introduce a class of correlation matrices. Let A = (aij ) be a symmet-
ric matrix. Let km and sm be positive numbers. Assume that for every 1 ≤ j ≤ m,

Card
{
1 ≤ i ≤ m : |aij | ≥ km

} ≤ sm.(7)

Let A(km, sm) be the class of symmetric matrices satisfying (7). Let R = (rij ) be
the correlation matrix of X. We introduce the following two conditions:

(C1) Suppose that max1≤i<j≤m |rij | ≤ r for some 0 < r < 1 and R ∈
A(km, sm) with km = (logm)−2−θ and sm = O(mρ) for some θ > 0 and 0 < ρ <

(1 − r)/(1 + r).
(C1∗) Suppose that max1≤i<j≤m |rij | ≤ r for some 0 < r < 1. For each Xi ,

assume that the number of variables Xj that are dependent with Xi is no more
than sm.
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(C1) and (C1∗) impose the weak dependence between X1, . . . ,Xm. In (C1),
each variable can be highly correlated with other sm variables and weakly corre-
lated with the remaining variables. (C1∗) is stronger than (C1). For each Xi , (C1∗)
requires the independence between Xi and other m − sm variables.

Recall that m1 ≤ γm for some γ < 1.

THEOREM 4.1. Assume that max1≤i≤m EY 4
i ≤ b0 for some constant b0 > 0,

and (2) holds.

(i) If logm = O(nζ ) for some 0 < ζ < 3/23 and (C1) is satisfied, then we have

lim
(n,m)→∞

FDR�

(m0/m)α
= 1 and

FDP�

(m0/m)α
→ 1 in probability.(8)

(ii) Under logm = o(n1/3) and (C1∗), (8) also holds.

The same conclusions hold for FDR�n−1 and FDP�n−1 .

For the bootstrap and regularized procedures, we have similar results.

THEOREM 4.2. Suppose that max1≤i≤m EetY 2
i ≤ K and (2) is satisfied.

(1) Under the conditions of (i) or (ii) in Theorem 4.1, we have

lim
(n,m)→∞

FDRB

(m0/m)α
= 1 and

FDPB

(m0/m)α
→ 1 in probability.(9)

(2) Under (C1∗), logm = o(n1/2) and m1 ≤ mη for some η < 1, (9) holds.

THEOREM 4.3. Suppose that max1≤i≤m EX6
i ≤ K for some constant K > 0,

min1≤i≤m σii ≥ c1 for some c1 > 0 and (2) is satisfied. Let c2(n/ logm)1/6 ≤ λni ≤
c3(n/ logm)1/6 for some c2, c3 > 0.

(1) Under the conditions of (i) or (ii) in Theorem 4.1, we have

lim
(n,m)→∞

FDRRB

(m0/m)α
= 1 and

FDPRB

(m0/m)α
→ 1 in probability.(10)

(2) Under (C1∗), logm = o(n1/2) and m1 ≤ mη for some η < 1, (10) holds.

Theorems 4.1–4.3 imply that the B–H method remains valid asymptotically for
weak dependence. As the phase transition phenomenon caused by the growth of
the dimension, it would be interesting to investigate when the B–H method will
fail to control the FDR as the correlation becomes stronger.
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5. Numerical study. In this section, we conduct a small simulation to verify
the phase transition phenomenon. Let

Xi = μi + (εi − Eεi), 1 ≤ i ≤ m,(11)

where (ε1, . . . , εm)′ are i.i.d. random variables. We consider three models for εi

and μi .
Model 1. εi is the exponential random variable with parameter 1. Let μi =

2σ
√

logm/n for 1 ≤ i ≤ m1 with m1 = 0.05m and μi = 0 for m1 < i ≤ m, where
σ 2 = Var(εi).

Model 2-1. εi is the Gamma random variable with parameter (0.5,1). Let μi =
4σ

√
logm/n for 1 ≤ i ≤ m1 with m1 = 0.05m and μi = 0 for m1 < i ≤ m.

Model 2-2. εi is the Gamma random variable with parameter (0.5,1). Let
m1 = 0.

In all three models, the average of skewness is τ > 0. We generate n = 30,50
independent random samples from (11). In our simulation, α is taken to be
0.1,0.2,0.3 and m is taken to be 500, 1000, 3000. For computational reasons,
we only consider the estimated p-values p̂i,B and p̂i,RB in the bootstrap and reg-
ularized bootstrap procedures, respectively. The number of bootstrap resamples is
taken to be N = 200. We use FDRB , FDRRB and FDR∗

RB to denote the FDR of
the B–H method with bootstrap, regularized bootstrap with data-driven λ̂ni and
regularized bootstrap with theoretical λni = (n/ logm)1/6, respectively. The sim-
ulation is replicated 1000 times and the empirical FDR and power for m = 3000
are summarized in Tables 1 and 2. To save space, we leave the simulation results
for m = 500 and 1000 in the supplementary material of Liu and Shao (2014). The
empirical power is defined by the average ratio between the number of correct re-
jections and m1. Due to the nonzero skewness and m  exp(n1/3), the empirical
FDR� and FDR�n−1 are much larger than the target FDR. The bootstrap method
and the regularized bootstrap method with data-driven λ̂ni provide more accurate
approximations for the true p-values. Thus the empirical FDRB and FDRRB are
much closer to α than FDR� and FDR�n−1 . For Models 1, 2-1 and 2-2, the boot-
strap method and the proposed regularized bootstrap method with data-driven λ̂ni

perform quite similarly. In addition, the data-driven λ̂ni performs much better than
the theoretical λni . All of four methods perform better as the sample size n grows
from 30 to 50, although the empirical FDR� and FDR�n−1 still exhibit a serious
departure from α.

Next, we consider the following two models to compare the performance be-
tween the four methods when the distributions are symmetric and heavy tailed.

Model 3. εi is Student’s t distribution with 4 degrees of freedom. Let μi =
2
√

logm/n for 1 ≤ i ≤ m1 with m1 = 0.1m and μi = 0 for m1 < i ≤ m.
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TABLE 1
Comparison of FDR (FDR = α, m = 3000)

n = 30 n = 50

α 0.1 0.2 0.3 0.1 0.2 0.3

exp(1)

FDR� 0.3811 0.4791 0.5527 0.2931 0.3975 0.4809
FDR� 0.3127 0.4184 0.4987 0.2508 0.3569 0.4422
FDRB 0.0712 0.1810 0.2866 0.0926 0.1939 0.2930
FDRRB 0.0712 0.1810 0.2866 0.0926 0.1940 0.2931
FDR∗

RB 0.2520 0.3727 0.4642 0.2109 0.3234 0.4153

Gamma(0.5,1), m1 = 0.05m

FDR� 0.5036 0.5826 0.6384 0.4009 0.4946 0.5634
FDR� 0.4492 0.5400 0.6034 0.3629 0.4623 0.5348
FDRB 0.0735 0.1756 0.2847 0.0855 0.1889 0.2930
FDRRB 0.0735 0.1756 0.2847 0.0854 0.1889 0.2930
FDR∗

RB 0.2614 0.4144 0.5180 0.2326 0.3650 0.4633

Gamma(0.5,1), m1 = 0
FDR� 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FDR� 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
FDRB 0.0110 0.0350 0.0630 0.0270 0.0630 0.1010
FDRRB 0.0110 0.0350 0.0630 0.0270 0.0630 0.1010
FDR∗

RB 0.4450 0.7780 0.9570 0.5170 0.8081 0.9490

Model 4. εi = εi1 − εi2, where εi1 and εi1 are independent lognormal random
variables with parameters (0,1). Let μi = 4

√
logm/n for 1 ≤ i ≤ m1 with m1 =

0.1m and μi = 0 for m1 < i ≤ m.
For these two models, the normal approximation performs the best on the con-

trol of FDR; see Tables 3 and 4. FDRB is much smaller than α, so the bootstrap
method is quite conservative. This is mainly due to the heavy tails of the t (4) and
lognormal distributions. The regularized bootstrap method works much better than
the bootstrap method to control FDR. Table 4 shows that it also has a higher power
(powerRB ) than the bootstrap method (powerB ). Hence the proposed regularized
bootstrap is more robust than the commonly used bootstrap method.

Finally, we examine the FDP control of the B–H method when m is small and
p-values are known. To this end, we consider Model 5 in which the exact null
distributions are known.

Model 5. Let εi be i.i.d. N(0,1) random variables. Let μi = 2
√

logm/n for
1 ≤ i ≤ m1 and μi = 0 for m1 < i ≤ m, where m1 = 0,1 and 5.

In Figure 1, we plot the curve of the tailed probability of FDP based on 5000
replications, that is,

∑5000
i=1 I {FDPi ≥ t}/5000, where FDPi is the true FDP in

the ith replication. From Figure 1, we can see that when m1 is small, the B–H
method works unfavorably on FDP control. For example, the empirical probabil-
ity of FDP > 0.4 is 1 when m1 = 0, 0.35 when m1 = 1 and 0.12 when m1 = 5.
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TABLE 2
Comparison of power (FDR = α)

n = 30 n = 50

m α 0.1 0.2 0.3 0.1 0.2 0.3

exp(1)

3000 power� 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
power� 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
powerB 0.9642 0.9984 0.9999 0.9987 1.0000 1.0000

powerRB 0.9648 0.9983 0.9998 0.9989 1.0000 1.0000
power∗RB 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000

Gamma(0.5,1), m1 = 0.05m

3000 power� 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
power� 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
powerB 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000

powerRB 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000
power∗RB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

This phenomenon is in accord with Proposition 2.1. In contrast, as indicated by
Theorem 2.1, the performance of FDP control improves when m1 increases.

6. Proof of main results. We begin the proof by showing a uniform law of
large numbers (13), which plays a key role in the proof of main results. According
to Theorem 1.2 in Wang (2005) and equation (2.2) in Shao (1999), we have for

TABLE 3
Comparison of FDR (FDR = α)

n = 30 n = 50

m α 0.1 0.2 0.3 0.1 0.2 0.3

t (4)

3000 FDR� 0.1158 0.2137 0.3087 0.1028 0.1984 0.2920
FDR� 0.0713 0.1569 0.2464 0.0773 0.1638 0.2551
FDRB 0.0381 0.1093 0.1946 0.0542 0.1348 0.2238

FDRRB 0.0609 0.1439 0.2341 0.0722 0.1591 0.2500
FDR∗

RB 0.0636 0.1476 0.2380 0.0733 0.1603 0.2512

Lognormal(0,1)

3000 FDR� 0.0807 0.1706 0.2656 0.0745 0.1627 0.2574
FDR� 0.0442 0.1146 0.1983 0.0523 0.1282 0.2175
FDRB 0.0008 0.0148 0.0509 0.0071 0.0441 0.1056

FDRRB 0.0323 0.0956 0.1761 0.0488 0.1239 0.2129
FDR∗

RB 0.0006 0.0268 0.1124 0.0487 0.1235 0.2116
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TABLE 4
Comparison of power (FDR = α)

n = 30 n = 50

m α 0.1 0.2 0.3 0.1 0.2 0.3

t (4)

3000 power� 0.9075 0.9413 0.9589 0.9109 0.9449 0.9621
power� 0.8765 0.9250 0.9483 0.8936 0.9357 0.9564
powerB 0.8291 0.9036 0.9362 0.8712 0.9262 0.9509

powerRB 0.8655 0.9200 0.9456 0.8903 0.9347 0.9557
power∗RB 0.8685 0.9215 0.9464 0.8912 0.9351 0.9560

Lognormal(0,1)

3000 power� 0.8639 0.9009 0.9229 0.8613 0.9021 0.9256
power� 0.8322 0.8810 0.9085 0.8420 0.8898 0.9169
powerB 0.5881 0.7688 0.8385 0.7193 0.8307 0.8783

powerRB 0.8141 0.8711 0.9019 0.8374 0.8865 0.9149
power∗RB 0.5438 0.7986 0.8785 0.8368 0.8866 0.9149

0 ≤ t ≤ o(n1/4),

P
(|Ti − √

nμi/ŝn| ≥ t
) = 1

2
G(t)

[
exp

(
− t3

3
√

n
κi

)
+ exp

(
t3

3
√

n
κi

)]
(12)

× (
1 + o(1)

)
,

where o(1) is uniformly in 1 ≤ i ≤ m, G(t) = 2 − 2�(t) and κi = EY 3
i .

For any bm → ∞ and bm = o(m), we first prove that, under (C1∗) and logm =
o(n1/2) [or (C1) and logm = O(nζ ) for some 0 < ζ < 3/23],

sup
0≤t≤G−1

κ (bm/m)

∣∣∣∣
∑

i∈H0
I {|Ti | ≥ t}

m0Gκ(t)
− 1

∣∣∣∣ → 0(13)

in probability, where

Gκ(t) = 1

2m0
G(t)

∑
i∈H0

[
exp

(
− t3

3
√

n
κi

)
+ exp

(
t3

3
√

n
κi

)]
=: G(t)κ̂�(t)

and G−1
κ (t) = inf{y ≥ 0 :Gκ(y) = t} for 0 ≤ t ≤ 1. Note that for 0 ≤ t ≤ o(

√
n),

Gκ(t) is a strictly decreasing and continuous function. Let z0 < z1 < · · · <

zdm ≤ 1 and ti = G−1
κ (zi), where z0 = bm/m, zi = bm/m + b

2/3
m eiδ/m, dm =

[{log((m − bm)/b
2/3
m )}1/δ] and 0 < δ < 1, which will be specified later. Note that

Gκ(ti)/Gκ(ti+1) = 1 + o(1) uniformly in i, and t0/
√

2 log(m/bm) = 1 + o(1).
Then to prove (13), it is enough to show that

sup
0≤j≤dm

∣∣∣∣
∑

i∈H0
I {|Ti | ≥ tj }

m0Gκ(tj )
− 1

∣∣∣∣ → 0(14)
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(a) m1 = 0 (b) m1 = 1

(c) m1 = 5

FIG. 1. Tailed probability of FDP with α = 0.2 and n = 50. The y-axis values are the empirical
tailed probabilities

∑5000
i=1 I {FDPi ≥ t}/5000.

in probability. Under (C1), define

Sj = {
i ∈ H0 : |rij | ≥ (logm)−2−θ}

, Sc
j =H0 − Sj ,

and under (C1∗), define

Sj = {i ∈ H0 : Xi is dependent with Xj }.
We claim that, under (C1∗) and logm = o(n1/2) [or (C1) and logm = O(nζ ) for
some 0 < ζ < 3/23], for any ε > 0 and some γ1 > 0,

I2(t) := E
( ∑

i∈H0

{
I {Ti ≥ t} − P

(|Ti | ≥ t
)})2

(15)

≤ Cm2
0G

2
κ(t)

(
1

m0Gκ(t)
+ exp((r + ε)t2/(1 + r))

m1−ρ
+ (logm)−1−γ1

)
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uniformly in t ∈ [0,K
√

logm] for all K > 0. Take (1 + γ1)
−1 < δ < 1. Given (15)

and G−1
κ (bm/m) ∼ √

2 log(m/bm), for any ε > 0, we have

dm∑
j=0

P
(∣∣∣∣

∑
i∈H0

I {Ti ≥ tj }
m0Gκ(tj )

− 1
∣∣∣∣ ≥ ε

)

≤
dm∑
j=0

P
(∣∣∣∣

∑
i∈H0

(I {Ti ≥ tj } − P(|Ti | ≥ tj ))

m0Gκ(tj )

∣∣∣∣ ≥ ε/2
)

≤ C

(
1

m0Gκ(t0)
+

dm∑
j=1

1

m0Gκ(tj )
+ dmm−1+ρ+((2r+2ε)/(1+r))+o(1)

+ dm(logm)−1−γ1

)

≤ C

(
b−1
m + b−2/3

m

dm∑
j=1

e−jδ + o(1)

)
= o(1).

This proves (14).
To prove (15), we need the following lemma, which is proven in the supplemen-

tary material Liu and Shao (2014).

LEMMA 6.1. (i) Suppose that logm = O(n1/2). For any ε > 0,

max
j∈H0

max
i∈Sj\j P

(|Ti | ≥ t, |Tj | > t
) ≤ C exp

(−(1 − ε)t2/(1 + r)
)

(16)

uniformly in t ∈ [0, o(n1/4)).
(ii) Suppose that logm = O(nζ ) for some 0 < ζ < 3/23. We have for any K > 0

P
(|Ti | > t, |Tj | > t

) = (1 + An)P
(|Ti | > t

)
P
(|Tj | > t

)
(17)

uniformly in 0 ≤ t ≤ K
√

logm, j ∈ H0 and i ∈ Sc
j , where |An| ≤ C(logm)−1−γ1

for some γ1 > 0.

Set fij (t) = P(|Ti | ≥ t, |Tj | ≥ t)−P(|Ti | ≥ t)P(|Tj | ≥ t). Note that under (C1∗)
fij = 0 when j ∈ H0 \ Si . We have

I2(t) ≤ ∑
i∈H0

∑
j∈Si

P
(|Ti | ≥ t, |Tj | ≥ t

) + ∑
i∈H0

∑
j∈H0\Si

fij (t)

≤ Cm0Gκ(t) + C
exp((r + 2ε)t2/(1 + r))

m1−ρ
m2

0G
2
κ(t) + Anm

2
0G

2
κ(t),

where the last inequality follows from Lemma 6.1 and Gκ(t) = G(t)eo(1)t2
for

t = o(
√

n). This proves (15).
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6.1. Proof of Theorem 2.1 and Corollary 2.1. We only prove the theorem for
p̂i,�. The proof for p̂i,�n−1 is exactly the same when G(t) is replaced with 2 −
2�n−1(t). By Lemma 1 in Storey, Taylor and Siegmund (2004), we can see that
the B–H method with p̂i,� is equivalent to the following procedure: reject H0i if
and only if p̂i,� ≤ t̂0, where

t̂0 = sup
{

0 ≤ t ≤ 1 : t ≤ α max(
∑

1≤i≤m I {p̂i,� ≤ t},1)

m

}
.

It is equivalent to reject H0i if and only if |Ti | ≥ t̂ , where

t̂ = inf
{
t ≥ 0 : 2 − 2�(t) ≤ α max(

∑
1≤i≤m I {|Ti | ≥ t},1)

m

}
.

By the continuity of �(t) and the monotonicity of the indicator function, it is easy
to see that

mG(t̂)

max(
∑

1≤i≤m I {|Ti | ≥ t̂},1)
= α,

where G(t) = 2 − 2�(t). Let M be a subset of {1,2, . . . ,m} satisfying M ⊂
{i : |μi/σi | ≥ 4

√
logm/n} and Card(M) ≤ √

n. By max1≤i≤m EY 4
i ≤ K and

Markov’s inequality, for any ε > 0,

P
(
max
i∈M

∣∣ŝ2
ni/σ

2
i − 1

∣∣ ≥ ε
)

= O(1/
√

n).

This, together with (2) and (12), implies that there exist some c >
√

2 and some
bm → ∞,

P

(
m∑

i=1

I
{|Ti | ≥ c

√
logm

} ≥ bm

)
→ 1.(18)

This implies that P(t̂ ≤ G−1(αbm/m)) → 1. Given (13) and Gκ(t) ≥ G(t), it fol-
lows that P(t̂ ≤ G−1

κ (αbm/m)) → 1. Therefore, by (13)∑
i∈H0

I {|Ti | ≥ t̂}
m0Gκ(t̂)

→ 1

in probability. Note that

G(t̂) = αm̂

m
+ αm0

m

∑
i∈H0

I {|Ti | ≥ t̂}
m0

,

where m̂ = ∑
i∈H1

I {|Ti | ≥ t̂}. With probability tending to one,

G(t̂) = αm̂

m
+ αm0

m
G(t̂)κ̂�

(
1 + o(1)

) ≥ αm0

m
G(t̂)κ̂�

(
1 + o(1)

)
.(19)
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Thus P(κ̂� ≤ m/(αm0) + ε) → 1 for any ε > 0. Let κ̂∗
� = κ̂�I {κ̂� ≤ 2(α(1 −

γ ))−1}. Note that m/(αm0) + ε ≤ 2(α(1 − γ ))−1. We have

FDP�

(m0/m)ακ̂∗
�

=
∑

i∈H0
I {|Ti | ≥ t̂}

m0Gκ(t̂)

κ̂�

κ̂∗
�

(
1 + o(1)

) → 1

in probability. Then for any ε > 0,

FDR� ≤ (1 + ε)
m0

m
αEκ̂∗

� + P
(

FDP� ≥ (1 + ε)
m0

m
ακ̂∗

�

)

and

FDR� ≥ (1 − ε)
m0

m
αEκ̂∗

� − 2
(
α(1 − γ )

)−1P
(

FDP� ≤ (1 − ε)
m0

m
ακ̂∗

�

)
.

This proves Theorem 2.1. Corollary 2.1(1) follows directly from Theorem 2.1 and
P(t̂ ≤ √

2 logm) → 1.
To prove Corollary 2.1(2), we first assume that αm0

m
κ̂� ≤ 1 − η for some

(1 − η)/α > 1. So, by (19) and the condition m1 = exp(o(n1/3)), with probability
tending to one, G(t̂) ≤ 2αη−1m̂/m ≤ 2αη−1m−1+o(1). Hence, t̂ ≥ c

√
logm for

any c <
√

2. Recall that τ = limm→∞ m−1
0

∑
i∈H0

|EY 3
i | > 0. Set

H01 = {
i ∈H0 :

∣∣EY 3
i

∣∣ ≥ τ/8
}
.

According to the definition of τ and |EY 3
i | ≤ (E(Y 4

i )3/4 ≤ b
3/4
0 , m−1

0 |Hc
01|τ/8 +

b
3/4
0 m−1

0 |H01| ≥ τ/2. This implies that |H01| ≥ τb
−3/4
0 m0/4. Hence, we can get

m−1
0

∑
i∈H0

|EY 3
i |2 ≥ cτ for some cτ > 0. It follows from Taylor’s expansion of the

exponential function and t̂ ≥ c
√

logm that κ̂� ≥ 1+ ε for some ε > 0. However, if
αm0
m

κ̂� > 1−η, then κ̂� ≥ 1+ε for some ε > 0. This yields that P(κ̂� ≥ 1+ε) →
1 for some ε > 0. So we have κ� ≥ 1 + ε for some ε > 0. Note that m0/m → 1.
We prove Corollary 2.1(2).

We next prove Corollary 2.1(3). By the inequality ex + e−x ≥ |x|, P(κ̂� ≤
m/(αm0) + ε) → 1, we obtain that∑

i∈H0
(t̂3/

√
n)|EY 3

i |
2m0

≤ m/(αm0) + ε

with probability tending to one. By τ > 0, we have P(t̂ ≤ cn1/6) → 1 for
some constant c > 0. Thus P(G(t̂) ≥ exp(−2cn1/3) → 1. Because m̂/m ≤
exp(−Mn1/3) for any M > 0, and given (19), we have

αm0

m
κ̂� → 1

in probability. Hence, κ� → 1/α as m0/m → 1. The proof is finished.
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6.2. Proof of Theorems 2.2 and 4.2. Let κ̂i = 1
nŝ3

ni

∑n
k=1(Xki − X̄i)

3. Define

the event

F =
{

max
1≤i≤m

1

nŝ4
ni

n∑
k=1

(Xki − X̄i)
4 ≤ K1, max

1≤i≤m
|κ̂i − κi | ≤ K2

√
logm/n

}

for some large K1 > 0 and K2 > 0. We first suppose that P(F) → 1. Let G�
i (t) =

P∗(|T ∗
ki | ≥ t) be the conditional distribution of T ∗

ki given X = {X1, . . . ,Xm}. Note
that, given X and on the event F,

G�
i (t) = 1

2
G(t)

[
exp

(
− t3

3
√

n
κ̂i

)
+ exp

(
t3

3
√

n
κ̂i

)](
1 + o(1)

)

= 1

2
G(t)

[
exp

(
− t3

3
√

n
κi

)
+ exp

(
t3

3
√

n
κi

)](
1 + o(1)

)
uniformly in 0 ≤ t ≤ o(n1/4). Hence, given X and on the event F,

G�
i (t)

P(|Ti − √
nμi/ŝn| ≥ t)

= 1 + o(1)(20)

uniformly in 1 ≤ i ≤ m and 0 ≤ t ≤ o(n1/4). Put

Ĝκ(t) = 1

2m
G(t)

∑
1≤i≤m

[
exp

(
− t3

3
√

n
κi

)
+ exp

(
t3

3
√

n
κi

)]
.

Set ĉm = Ĝ−1
κ (bm/m). Note that, given X , T ∗

ki , 1 ≤ k ≤ N , 1 ≤ i ≤ m, are inde-
pendent. Hence, as (13), we can show that for any bm → ∞,

sup
0≤t≤ĉm

∣∣∣∣G
∗
N,m(t)

Ĝκ(t)
− 1

∣∣∣∣ → 0(21)

in probability. For t = O(
√

logm), under the conditions of Theorem 3.2, we have
Ĝκ(t)/Gκ(t) = 1+o(1). So, it is easy to see that (13) still holds when G−1

κ (bm/m)

is replaced by Ĝ−1
κ (bm/m). This implies that for any bm → ∞,

sup
0≤t≤ĉm

∣∣∣∣
∑

i∈H0
I {|Ti | ≥ t}

m0G
∗
N,m(t)

− 1
∣∣∣∣ → 0(22)

in probability.
Let

t̂0 = sup
{

0 ≤ t ≤ 1 : t ≤ α max(
∑

1≤i≤m I {p̂i,B ≤ t},1)

m

}
.

Then we have

t̂0 = α max(
∑

1≤i≤m I {p̂i,B ≤ t̂0},1)

m
.
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According to (12) and (20) we have, given X and on the event F, G∗
i (c

√
logm) =

m−c2/2+o(1) for any c >
√

2 uniformly in i. So, by Markov’s inequality, for any
ε > 0, we have P(G∗

N,m(c
√

logm) ≤ m−c2/2+ε) → 1. By (2) and (18), we have
P(t̂0 ≥ αbm/m) → 1 for some bm → ∞. It follows from (22) that∑

i∈H0
I {p̂i,B ≤ t̂0}
m0 t̂0

→ 1

in probability. This finishes the proof of Theorem 2.2(1), (2) and Theorem 4.2 if
we can show that P(F) → 1. Without loss of generality, we can assume that μi = 0
and σi = 1. We first show that for some constant K1 > 0,

P

(
max

1≤i≤m

∣∣∣∣∣
n∑

k=1

(
X4

ki − EX4
ki

)∣∣∣∣∣ ≥ K1n

)
= o(1).(23)

For 1 ≤ i ≤ n, put

X̂ki = XkiI
{|Xki | ≤

√
n/ logm

}
, X̆ki = Xki − X̂ki .

Then, for large n,

P

(
max

1≤i≤m

∣∣∣∣∣
n∑

k=1

(
X̆4

ki − EX̆4
ki

)∣∣∣∣∣ ≥ K1n/2

)

≤ nm max
1≤i≤m

P
(|X1i | ≥

√
n/ logm

)
≤ C exp(logm + logn − tn/ logm)

= o(1).

Let Zki = X̂4
ki − EX̂4

ki . By the inequality |es − 1 − s| ≤ s2emax(s,0) and 1 + s ≤ es ,
we have for η = 2−1t (logm)/n and some large K1

P

(
max

1≤i≤m

∣∣∣∣∣
n∑

k=1

Zki

∣∣∣∣∣ ≥ K1n/2

)

≤
m∑

i=1

P

(
n∑

k=1

Zki ≥ K1n/2

)
+

m∑
i=1

P

(
−

n∑
k=1

Zki ≥ K1n/2

)

≤
m∑

i=1

exp(−ηK1n/2)

[
n∏

k=1

exp(ηZki) +
n∏

k=1

exp(−ηZki)

]

≤ 2
m∑

i=1

exp
(−ηK1n/2 + η2nEZ2

1ie
η|Z1i |)

≤ C exp
(
logm − tK1(logm)/4

)
= o(1).
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This proves (23). By replacing X4
ki , η = 2−1t (logm)/n and K1n/2 with X3

ki , η =
2−1t

√
(logm)/n and K1

√
n logm/2, respectively, in the above proof, we can show

that

P

(
max

1≤i≤m

∣∣∣∣∣1

n

n∑
k=1

(
X3

ki − EX3
ki

)∣∣∣∣∣ ≥ K1

√
(logm)/n

)
= o(1).(24)

Similarly, we have

P

(
max

1≤i≤m

∣∣∣∣∣1

n

n∑
k=1

(
X2

ki − EX2
ki

)∣∣∣∣∣ ≥ K1

√
(logm)/n

)
= o(1)(25)

and

P

(
max

1≤i≤m

∣∣∣∣∣1

n

n∑
k=1

(Xki − EXki)

∣∣∣∣∣ ≥ K1

√
(logm)/n

)
= o(1).(26)

Combining (23)–(26), we prove that P(F) → 1.

6.3. Proof of Theorems 3.1 and 4.3. Let

F̂ =
{

max
1≤i≤m

1

nσ̂ 4
i

n∑
k=1

(X̂ki − X̂i)
4 ≤ K1, max

1≤i≤m

∣∣κ̂i(λni) − κi

∣∣ ≤ K2

√
logm/n

}
.

By the proof of Theorems 2.2 and 4.2, it is enough to show that P(F̂) → 1. Recall
that X̂ki = XkiI {|Xki | ≤ λni} and put Zki = X̂4

ki − EX̂4
ki . Take η = (logm)/n. We

have

P

(
max

1≤i≤m

∣∣∣∣∣
n∑

k=1

Zki

∣∣∣∣∣ ≥ K1n/2

)

≤ 2
m∑

i=1

exp
(−ηK1n/2 + η2nEZ2

1ie
η|Z1i |)

≤ C exp
(
2 logm − K1(logm)/4

)
= o(1).

Similarly, by replacing X̂4
ki , η = (logm)/n and K1n/2 with X̂3

ki , η = √
(logm)/n

and K1
√

n logm/2, respectively, in the above proof, we can show that

P

(
max

1≤i≤m

∣∣∣∣∣1

n

n∑
k=1

(
X̂3

ki − EX̂3
ki

)∣∣∣∣∣ ≥ K1

√
(logm)/n

)
= o(1).

Also, using the above arguments, it is easy to show that

P

(
max

1≤i≤m

∣∣∣∣∣1

n

n∑
k=1

(
X̂2

ki − EX̂2
ki

)∣∣∣∣∣ ≥ K1

√
(logm)/n

)
= o(1)
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and

P

(
max

1≤i≤m

∣∣∣∣∣1

n

n∑
k=1

(X̂ki − EX̂ki)

∣∣∣∣∣ ≥ K1

√
(logm)/n

)
= o(1).

Note that

max
1≤i≤m

E|X1i |3I{|X1i | ≥ λni

} ≤ C

√
logm

n
max

1≤i≤m
EX6

1i

and

max
1≤i≤m

E|X1i |2I{|X1i | ≥ λni

} ≤ C

(
logm

n

)2/3

max
1≤i≤m

EX6
1i .

This proves that P(F̂) → 1.

6.4. Proof of Theorem 4.1. Recall that

mG(t̂)

max(
∑

1≤i≤m I {|Ti | ≥ t̂},1)
= α.

From (18), we have P(t̂ ≥ G−1(αbm/m)) → 1. The theorem follows from (13)
and the fact that Gκ(t)/G(t) = 1 + o(1) uniformly in t ∈ [0, o(n1/6)).

6.5. Proof of Propositions 2.1, 2.2, 2.3 and 3.1. To save space, the proof of
these propositions is given in the supplementary material Liu and Shao (2014).
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