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We consider the model of nonregular nonparametric regression where
smoothness constraints are imposed on the regression function f and the
regression errors are assumed to decay with some sharpness level at their
endpoints. The aim of this paper is to construct an adaptive estimator for
the regression function f . In contrast to the standard model where local av-
eraging is fruitful, the nonregular conditions require a substantial different
treatment based on local extreme values. We study this model under the re-
alistic setting in which both the smoothness degree β > 0 and the sharpness
degree a ∈ (0,∞) are unknown in advance. We construct adaptation proce-
dures applying a nested version of Lepski’s method and the negative Hill
estimator which show no loss in the convergence rates with respect to the
general Lq -risk and a logarithmic loss with respect to the pointwise risk. Op-
timality of these rates is proved for a ∈ (0,∞). Some numerical simulations
and an application to real data are provided.

1. Introduction. In the standard model of nonparametric regression, the data

Yj = f (xj ) + εj , j = 1, . . . , n(1.1)

are observed. In this paper, in contrast to classical theory, the observation er-
rors (εj ) are not assumed to be centred, but to have certain support properties.
This is motivated from many applications where rather the support than the mean
properties of the noise are known and where the regression function f describes
some frontier or boundary curve. Below we shall discuss concrete applications to
sunspot data and annual sport records. Typical economical examples include auc-
tions where the bidders’ private values are inferred from observed bids (see Guerre
et al. [25] or Donald and Paarsch [10]) and note the extension to bid and ask prices
in financial data. Related phenomena arise in the context of inference for deter-
ministic production frontiers, where it is assumed that f is concave (convex) or
monotone.
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A pioneering contribution in this area is due to Farrell [17], who introduced data
envelopment analysis (DEA), based on either the conical hull or the convex hull
of the data. This was further extended by Deprins et al. [9] to the free disposal
Hull (FDH) estimator, whose properties have been extensively discussed in the lit-
erature; see, for instance, Banker [2], Korostelev et al. [43], Kneip et al. [37, 38],
Gijbels et al. [19], Park et al. [52, 54], Jeong and Park [34] and Daouia et al. [6].
The issue of stochastic frontier estimation goes back to the works of Aigner et
al. [1] and Meeusen and van den Broeck [49]; see also the more recent contribu-
tions of Kumbhakar et al. [45], Park et al. [53] and Kneip et al. [39].

In a general nonparametric setting the accuracy of the estimator heavily depends
on the average number of observations in the vicinity of the support boundary. The
key quantity is the sharpness ax > 0 of the distribution function Fx of εj at x = xj ,
which in its simplest case has polynomial tails

Fx(y) = 1 − c′x |y|ax +O
(|y|ax+δ) with c′x, δ > 0 as y → 0.(1.2)

The cases 0 < ax < 1, ax = 1 and ax > 1 are sometimes called sharp boundary,
fault-type boundary and nonsharp boundary. From a theoretical perspective noise
models with ax ∈ (0,2) are nonregular (e.g., Ibragimov and Hasminskii [33]) since
they exhibit nonstandard statistical theory already in the parametric case. Cher-
nozhukov and Hong [4] discuss extensively parametric efficiency of maximum-
likelihood and Bayes estimators in this context and show their relevance in
economics.

From a nonparametric statistics point of view, Korostelev and Tsybakov [44]
and Goldenshluger and Zeevi [23] treat a variety of boundary estimation problems.
The focus is on applications in image recovery and is mathematically and practi-
cally substantially different from ours. The optimal convergence rate n(−2β)/(aβ+1)

over β-Hölder classes of regression functions f depends heavily on a (not assumed
to be varying in x); for ax ∈ (0,2) it is faster than for local averaging estimators
in standard mean regression and can even become faster than the regular squared
parametric rate n−1. Hall and van Keilegom [29] study a local-linear estimator in
a closer related nonparametric regression model and establish minimax optimal
rates in L2-loss if the smoothness and sharpness parameters β ∈ (0,2] and a > 0
are known. Earlier contributions in a related setup are due to Härdle et al. [30],
Hall et al. [26, 28] and Gijbels and Peng [20]. If the support of (εj ) is not one-
sided, but symmetric like [−a, a] and β ≤ 1, a = 1, Müller and Wefelmeyer [51]
have shown that mid-range estimators attain also these better rates. Recently, Meis-
ter and Reiss [50] have proved strong asymptotic equivalence in Le Cam’s sense
between a nonregular nonparametric regression model for a= 1 and a continuous-
time Poisson point process experiment.

All the references above consider a theoretically optimal bandwidth choice
which depends on the unknown quantities a and/or β . Completely data-driven
adaptive procedures have been rarely considered in the literature because the
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intrinsically nonlinear inference and the nonmonotonicity of the stochastic and
approximation error terms block popular concepts from mean regression like
cross-validation or general unbiased risk estimation; cf. the discussion in Hall and
Park [27]. Recently, Chichignoud [5] was able to produce a β-adaptive minimax
optimal estimator, which, however, uses a Bayesian approach hinging on the as-
sumption that the law of the errors (εj ) is perfectly known in advance (in fact, after
log transform a uniform law is assumed). Moreover, a log factor due to adaptation
is paid, which is natural only under pointwise loss. It remained open whether un-
der a global loss function like an Lq -norm loss adaptation without paying a log
factor is possible. For regular nonparametric problems Goldenshluger and Lep-
ski [22] study adaptive methods and convergence rates with respect to general
Lq -loss which is much more involved in the general case q ≥ 1 than for q = 2.

It is therefore of high interest, both from a theoretical and a practical perspec-
tive, to establish a fully data-driven estimation procedure where the error distribu-
tion and the regularity of the regression function are unknown and to analyze it
under local (pointwise) and global (Lq -norm) loss. In particular, neither a nor β

that determine the optimal convergence rate are fixed in advance. In this paper we
introduce a fully data-driven (a, β)-adaptive procedure for estimating f and prove
that it is minimax optimal over a, β > 0.

To ease the presentation, we restrict to equidistant design points xj = j/n

on [0,1] and regression errors (εj ) which are concentrated on the interval
(−∞,0]. Given x ∈ [0,1] and an open neighborhood N (x) ⊆ [0,1], the func-
tion f :N (x) → R is supposed to lie in the Hölder class HN (x)(β,L) with
β,L > 0. Note that β = βx and L = Lx may vary in x. The 〈β〉-derivatives of
all f ∈ HN (x)(β,L) satisfy∣∣f (〈β〉)(y) − f (〈β〉)(z)

∣∣ ≤ L|y − z|β−〈β〉, y, z ∈ N (x).

Here 〈β〉 = max{m ∈ N0 :m < β} is the largest integer strictly smaller than β .
We consider the case where the εj are independent with individual distribution

function Fxj
and tail quantile function

Uxj
(y) = F←

xj
(1 − 1/y),

where F←
xj

denotes the generalized inverse of Fxj
. Weakening the polynomial tail

behavior in (1.2), our key structural condition is that for each x ∈ [0,1], there exist
ax, cx > 0, bx ∈R and a slowly varying function lx(y), such that

Ux(y) = −cxy
−1/ax lx(y),(1.3)

where lx(y) satisfies uniformly for x ∈ [0,1] condition

lx(y) = log(y)bx + O
(
log(y)bx−1)

as y → ∞.(1.4)

If (1.2) holds, then (1.3), (1.4) are valid with bx = 0 (note that cx �= c′x in general;
see Lemma 6.2 for the precise relation). The polynomial tail condition (1.2) is one
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of the standard models in the literature; see de Haan and Ferreira [7], Härdle et
al. [30], Hall and van Keilegom [29] or Girard et al. [21]. In this context, so called
second order conditions are inevitable whenever one is interested in convergence
rates or limit distributions involving estimates of ax ; see Beirlant et al. [3], de Haan
and Ferreira [7] or Falk et al. [16]. Our second order condition (1.4) is rather mild
when compared to examples from the literature; cf. [3, 7, 16, 21, 29, 30]. As will
be explained in Section 3.2, a more general formulation seems to be impossible.

Let us point out two main conceptual results of this paper. First, we wish to ex-
tend the existing theory beyond the limitation βx ≤ 2 imposed by locally constant
or linear approximations and to have a clear notion of stochastic and deterministic
error for the nonlinear estimators. To this end we develop a linear program in terms
of general local polynomials, based on a quasi-likelihood method, because the def-
inition in Hall and van Keilegom [29] does not extend to polynomials of degree 2
or more in our setup. Then Theorem 3.1 below yields for the estimator a nontriv-
ial decomposition in approximation and stochastic error. This decomposition is a
key result for our analysis, and permits us to address the adaptation problem in
full generality, thus abolishing the blockade mentioned in Hall and Park [27]. We
can consider not only pointwise, but also the global Lq -norm as risk measure for
the whole range q ∈ [1,∞). Technically, the optimal Lq -adaptation is much more
demanding compared to the pointwise risk. It requires very tight deviation bounds
since no additional logn-factor widens the margin.

For adaptive bandwidth selection, we apply a nested variant of the Lepski [48]
procedure with pre-estimated critical values. Careful adaptive pre-estimation is
necessary since the distribution of (εj ) is unknown and allowed to vary in x. The
fact that the underlying sample (Yj ) is inhomogeneously shifted by f adds an-
other level of complexity for the estimation of ax and bx , which needs to be ad-
dressed by translation invariant estimators. The remarkable result of Theorem 3.3
is that for general Lq -loss we obtain the rate n(−2β)/(aβ+1)(logn)(2axbxβx)/(axβx+1)

of convergence, the same as in the case of known (global) Hölder regularity
β and known distribution of (εj ). For pointwise loss the rate deteriorates to
(n/ logn)(−2βx)/(axβx+1)(logn)(2axbxβx)/(axβx+1); see Theorem 3.2 below.

In Section 4 it is shown that all our rates are minimax optimal for adaptive esti-
mation. For regular mean regression these rates, inserting ax = 2 and bx = 0, and
particularly the payment for adaptation on βx under pointwise loss are well known.
A priori it is, however, not at all obvious that in the nonregular case with Poisson
limit experiments (Meister and Reiss [50]) exactly the same factor appears. Inter-
estingly, we do not pay in the convergence rates for not knowing ax , bx . The lower
bound in the “default-type boundary” case ax > 2 with slower rates than in regular
regression requires a completely new strategy of proof where not only alternatives
for the regression function, but also for the error distributions are tested against
each other.

In Section 5 we provide some numerical simulations in order to evaluate the
finite sample performance of the estimator. Smaller values in ax indeed lead to
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significantly improved estimation results. The bandwidth selection shows a quite
different behavior from the regular regression case due to taking local extremes.
Applications to empirical data from sunspot observations and annual best running
times on 1500 m are presented. Most proofs are deferred to Section 6, and auxiliary
lemmas and details regarding the sharpness estimation are given in the supplemen-
tary material [35].

2. Methodology. Our approach is a local polynomial estimation based on lo-
cal extreme value statistics. We fix some x ∈ [0,1] and consider the coefficients
(b̂j )j=0,...,β∗ which minimize the objective function

(b0, . . . , bβ∗) �→ ∑
|xi−x|≤hk

β∗∑
j=0

bj (xi − x)j ,(2.1)

under the constraints Yi ≤ ∑β∗
j=0 bj (xi − x)j for all i with |xi − x| ≤ hk . Set

f̃k(x) := b̂0. As an estimator of f we define

f̃k :x �→ f̃k(x), x ∈ [0,1],(2.2)

where the bandwidth hk > 0 remains to be selected.
If −εj is exponentially distributed and the regression function a polynomial of

maximal degree β∗ on the interval [x − hk, x + hk], then f̃k(x) is the maximum
likelihood estimator (MLE), whence the approach can be seen as a local quasi-
MLE method; see also Knight [40]. The idea of local polynomial estimators in
frontier estimation was already employed, for instance, in Hall et al. [28], Hall
and Park [27] and Hall and van Keilegom [29]. However, in contrast to their local
linear estimators (and their higher order extensions), the sum over the evaluations
at xi in the neighborhood of x is minimized instead of the area. This marks a sub-
stantial difference and is crucial for our setup. Already in the case of quadratic
polynomials p, it might occur that the minimization of just the value p(x) under
the support constraints yields the inappropriate estimator f̃k(x) = −∞ if x is not a
design point and f̃k(x) = Yi if x = xi because a sufficiently steep parabola always
fits the constraints. This problem is visualized in Figure 1, where Figure 1(a) corre-
sponds to estimator (2.1), and Figure 1(b) to the minimization approach employed
in the above references. Note that this problem may or may not occur in practice,
but it poses an obstacle for the mathematical analysis. This is why we work with
the base estimators defined in (2.1).

The calculation of our estimator only requires basic linear optimization, but its
error analysis will be more involved. Note that the formulation as a linear program
is particularly important for implementation purposes, since our adaptive proce-
dure requires the computation of many sequential estimators as the bandwidth hk

increases.
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FIG. 1. Dashed line: true function; solid line: estimated function; red squares: sample points; esti-
mation point: fourth sample point from the left.

The adaptation problem consists of finding an (asymptotically) optimal band-
width hk when neither the regression function f nor the specific boundary be-
havior of the errors (εj ) is known, which leads to different convergence rates. We
follow the method inaugurated by Lepski [48] and consider geometrically growing
bandwidths with h0 = nh0−1, h0 ∈ (0,1) and

hk = h0ρ
k, k = 0, . . . ,K + 1

(2.3)
where ρ > 1 and K = ⌊

logρ

(
n1−h0

)⌋
.

The purely data-driven estimator f̂ := f̃
k̂

is defined as

k̂ := inf
{
k = 0, . . . ,K|∃l ≤ k :‖f̃k+1 − f̃l‖ > ẑTl + ẑTk+1

} ∧ K.(2.4)

The critical values ẑTl , l = 0, . . . ,K + 1 depend on the observations {Yi}1≤i≤n,
and will be specified below. The basic idea is to increase the bandwidth hk as
long as the distance (in some suitable seminorm ‖ · ‖) between the estimators is
not significantly larger than the usual stochastic fluctuations of the estimators such
that at k̂ the bias is not yet dominating. In order to choose ẑTl , the extreme-value
index ax , bx and the constant cx from equations (1.3) and (1.4) have to be estimated
locally. For that purpose a quasi-negative-Hill method is developed in Section 3.2.

3. Asymptotic upper bounds. In this section we will study the convergence
rate of our estimator f̂ = f̃

k̂
with k̂ as defined in (2.4) when the sample size n

tends to infinity. We will consider both the pointwise risk Ef |f̂ (x) − f (x)|2 for
some fixed x ∈ [0,1] and the Lq -risk Ef

∫ 1
0 |f̂ (x) − f (x)|q dx for q ≥ 1. To deal
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with the upper bounds, first some preparatory remarks and work are necessary.
Throughout this section, we suppose:

ASSUMPTION 3.1. (i) cx,bx,ax ∈ H[0,1](β0,L0), where β0,L0 > 0 and
infx∈[0,1] ax, cx > 0,

(ii) max1≤j≤nE[|εj |] < ∞,
(iii) (εj ) are independent, and the distribution of εj satisfies (1.3), (1.4).

For our theoretical treatment, an important quantity in the sequel is the approx-
imative tail-function

Ax(y) = −cxy
−1/ax log(y)bx ,(3.1)

since it asymptotically describes the quantile Ux(y).

3.1. General upper bounds. Most of our analysis relies on Theorem 3.1 and
Proposition 3.1 below. These give rise to a decomposition, where the error for
the implicitly defined base estimators f̃k(x) in (2.2) is split into a deterministic
and a stochastic error part. Even though f̃k(x) is highly nonlinear, we obtain a
relatively sharp and particularly simple upper bound.

THEOREM 3.1. For any x ∈ [0,1] and βx ∈ (0, β∗ + 1] there exist constants
c(β∗,Lx), c(β∗) and J (β∗), only depending on β∗ and Lx , respectively, such that∣∣f̃k(x) − f (x)

∣∣
≤ c

(
β∗,L

)
h

βx

k

+ c
(
β∗)

max
{∣∣Zj(hk, x)

∣∣ : j = 1, . . . ,2J
(
β∗)

, x + hkIj ⊆ [0,1]}
holds true for all f ∈ HN (x)(β,L) where

Zj(hk, x) := max{εi :xi ∈ x + hkIj } and

Ij := [−1 + (j − 1)/J
(
β∗)

,−1 + j/J
(
β∗)]

.

REMARK 1. Interestingly, this decomposition holds true for any underlying
distribution function F and dependence structure within (εj ). Its proof is entirely
based on nonprobabilistic arguments and has an interesting connection to algebra.
A generalization to arbitrary dimensions or other basis functions than polynomials
seems challenging.

We continue the range of the indices j of the (xj , εj ) from {1, . . . , n} to Z while
the equidistant location of the xj and the independence of the εj is maintained.
Then, Theorem 3.1 yields that with c∗ = c(β∗,L)∣∣f̃k(x) − f (x)

∣∣ ≤ c∗hβx

k + c
(
β∗)

max
{∣∣Zj(hk, x)

∣∣ : j = 1, . . . ,2J
(
β∗)}

,(3.2)

‖f̃k − f ‖q ≤ c∗hβx

k + c
(
β∗)∥∥max

{∣∣Zj(hk, ·)
∣∣ : j = 1, . . . ,2J

(
β∗)}∥∥

q,(3.3)
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where ‖ ·‖q denotes the Lq([0,1])-norm, q ≥ 1. To pursue adaptivity, suppose that
in terms of some seminorm ‖ · ‖, we can bound the error via

‖f̃k − f ‖ ≤ Rk + Bk ∀k = 0, . . . ,K + 1, f ∈ HN (x)(β,L),(3.4)

for some nonnegative random variables Bk,Rk , where Bk increases in k and Rk

decreases in k. Neither the Bk nor the Rk depend on f , only on βx and Lx . In the
sequel Bk will be a bias upper bound while Rk is a bound on the stochastic error,
which here—in contrast to usual mean regression—decays in k for each noise
realisation. The following fundamental proposition addresses both, the pointwise
and the Lq -risk of the adaptive estimator, since the pointwise distance of function
values at some x as well as the Lq -distance of functions on [0,1] define seminorms
for q ≥ 1.

PROPOSITION 3.1. Let ‖ · ‖ denote some seminorm, and let f̃k , f lie in the
corresponding normed space. Assume (3.4) and that the ẑTk decrease a.s. in k.
Defining the oracle-type index

k̂∗ := inf
{
k = 0, . . . ,K − 1 :Bk+1 > ẑTk+1/2

} ∧ K,(3.5)

we obtain for q ≥ 1:

(a) Ef

[‖f̂ − f̃
k̂∗‖q1

(
k̂ > k̂∗)]1/q ≤ Ef

[(
ẑT
k̂∗

)q]
,

(b) Ef

[‖f̂ − f̃
k̂∗‖q1

(
k̂ < k̂∗)]1/q

≤ 2(2q−1)/q
Ef

[
ẑ
q

k̂∗
]1/q

+ 2(2q−1)/q
K−1∑
k=0

Ef

[
R

q
k 1

(∃l ≤ k :Rl > ẑTl /2
)]1/q .

3.2. Critical values and their estimation. Our adaptive procedure and particu-
larly the question of optimality crucially hinge on the (estimated) critical values ẑTk ,
and thereby as a quantile for the distribution function Fx(−y−1) as y → ∞. In the
literature (de Haan and Ferreira [7]), the standard, nonparametric quantile estima-
tor is constructed via the approximation

Ux(ty) ≈ Ux(y) + ax(t)
(
y−1/ax − 1

)
ax as t, y → ∞,(3.6)

where the function ax(t) is a so-called first-order scale function. Unfortunately,
this approach fails in our setup. The reason for this failure is the severely shifted
sample (Yj ) (we do not observe εj ) and the particular type of interpolation used
in (3.6), which leads to an insufficient rate of convergence in the above approach.
The bias that is induced by the shift will be present in any estimation method. This
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fact makes us believe that under model (1.1), quantile estimation for general regu-
lar varying distributions is not possible. Since for any t > 0 we have the relation

Fx

(
Ax(n/t)

)n(
1 + O(1)

) = Fx

(
Ux(n/t)

)n
= (1 − t/n)n(3.7)

= e−t (1 + O(1)
)

as n → ∞,

a viable alternative is provided by a plug-in estimator Âx(y), based on suitable
estimates âx , b̂x and ĉx . Here, the shift may be overcome by location invariant es-
timators for these quantities. The fact that these parameters additionally vary in x

with unknown smoothness degree adds another level of complexity and needs to
be dealt with in a localized, adaptive manner. At this stage, it is worth mentioning
that our adaptive procedure does not hinge on any particular type of quantile esti-
mator. As a matter of fact, we only require the following property of an admissible
quantile estimator Âx(y).

DEFINITION 1. Given x ∈ [0,1], let Yx = [logn,n4/ax ] and s ∈ {0,1}. We
call Âx(y) admissible if for any fixed v ∈ N and constants c−

1 < 1 < c+
1 , which

may be arbitrarily close to one, we have

Pf

(
c−

1 ≤ sup
y∈Yx

∣∣∣∣Â(s)
x (y)

A
(s)
x (y)

∣∣∣∣ ≤ c+
1

)
= 1 −O

(
n−v)

,

uniformly over f ∈ HN (x)(β,L), where g(s)(·) denotes the sth derivative of a
function g(·).

REMARK 2. Admissibility for s = 1 is only required in case of the Lq -norm
loss.

Now we shall construct an admissible estimator under Assumption 3.1. Even
though the class of potential estimators seems to be quite large under Assump-
tion 3.1, verifying the conditions of Definition 1 leads to quite technical and
tedious calculations. Moreover, the requirement of location invariance rules out
many prominent estimators from the literature. Regarding the shape parame-
ter ax , this eliminates, for instance, Hill-type estimators as possible candidates;
see Alves [18] and de Haan and Ferreira [7]. Possible alternatives are Pickand’s
estimator (cf. Pickand [55] and Drees [11]) or the probability weighted moment
estimator by Hosking and Wallis [32]. These may, however, exhibit a poor per-
formance in practice; see, for instance, de Haan and Peng [8] for a comparison.
In [15], Falk proposed the negative Hill estimator, which, unlike to its positive
counter part, is also location invariant; see also de Haan and Ferreira [7]. Trans-
ferring this approach to our setup, we construct estimators âx , b̂x and ĉx that are
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location invariant, and also inherit the favorable variance property of Hill’s estima-
tor. Based on these estimates, we can use the plug-in estimator

Âx(y) = −ĉx(logy)b̂x y−1/âx .(3.8)

To construct the estimators âx , b̂x and ĉx for fixed x ∈ [0,1], consider the
neighborhoods Nk(x) = {y : |x − y| ≤ hk} for k = 0, . . . ,K − 1. Introduce the sets
Sk(x) = {Yi : i/n ∈ Nk(x)}, and note that its cardinality n̄k(x) := #Sk(x) satisfies
nhk ≤ n̄k(x) ≤ 2nhk + 1. Let us rearrange the sample in Sk(x) as

Y1,n̄k(x), Y2,n̄k(x), . . . , Yn̄k(x),n̄k(x),(3.9)

where Yj,n̄k(x) denotes the j th largest Yi ∈ Sk(x). For each k = 0, . . . ,K − 1, let
mk = m(n̄k(x)) such that mk/n̄k → 0, where n̄k = n̄k(x) to lighten the notation. In
the literature, a common parametrization of mk is mk = n̄mk for 0 < m ≤ 1. Before
discussing the important issue of possible choices of m, we formally introduce our
estimation procedure. Apart from the necessary location invariance, an estimator
of Ax(y) should also adapt to the unknown smoothness degree of the parameters
ax , bx and cx . A related issue is dealt with in the literature; see, for instance,
Drees [13] or Grama and Spokoiny [24]. In order to achieve this adaptivity, we
apply a Lepski-type procedure to select among appropriate base estimators. We
first tackle the problem of estimating ax . Using Falk’s idea in [15], we define

1

âx(mk)
= 1

mk

mk−1∑
i=2

log
(

Ymk,n̄k
− Y1,n̄k

Yi,n̄k
− Y1,n̄k

)
, k = 0,1, . . . ,K − 1.(3.10)

Note that this estimator is clearly location invariant. For ρ > 1 select the index
k̂a(x) via

k̂a(x) := inf
{
k = 0, . . . ,K − 1|∃l ≤ k :

(3.11) ∣∣â−1
x (mk+1) − â−1

x (ml)
∣∣ > ρ−k(logn)−1} ∧ K.

As a final estimator, we put

â−1
x = â−1

x (m
k̂a

) where k̂a = k̂a(x).(3.12)

For the estimation of bx , we proceed in a similar manner. For k = 0,1, . . . ,

K − 1, we put

b̂x(mk) = 1

mk log log n̄k

mk−1∑
i=2

log
(

Yi,n̄k
− Y1,n̄k

(n̄k/i)−1/âx(mk) − (n̄k/1)−1/âx(mk)

)
,(3.13)

and select the index k̂b(x) via

k̂b(x) := inf
{
k = 0, . . . , k̂a(x)|∃l ≤ k :

(3.14) ∣∣b̂x(mk+1) − b̂x(ml)
∣∣ > ρ−k(log logn)−1} ∧ K.
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As final estimator, we then put

b̂x = b̂x(mk̂b
) where k̂b = k̂b(x).(3.15)

Interestingly, it turns out that b̂x = bx + log cx
log lognh

k̂b

(1 + OP (1)). Since this implies

that

(lognhk)
b̂x = cx(lognhk)

bx
(
1 + OP (1)

)
for k = 0, . . . ,K − 1,

there is no need to specifically estimate cx , it is included in the bias for free. We
are thus lead to the definition of our estimator

Âx(y) = −(logy)b̂x y−1/âx .(3.16)

For the consistent estimation of Âx(·), we need a relation between the initial
bandwidth h0 and the bias, induced by the parameter βx . Note that such an as-
sumption is inevitable, since any adaptive estimation procedure needs to start off
with some initial bandwidth. Thus in the sequel, we will assume that

h
βx

0

∣∣Ax(m0)
∣∣−1 = O

(
(logn)−1)

.(3.17)

If h0,m> 0 is such that

mh0 < (1 − h0)a0β0,(3.18)

for some lower bounds

a0 ≤ ax and β0 ≤ βx(3.19)

on the unknown parameters, then (3.17) is valid. In the supplementary mate-
rial [35] we prove the following result under the more general Assumption 10.1,
which is implied by Assumption 3.1.

PROPOSITION 3.2. Grant Assumption 10.1, and suppose that (3.17) is valid.
Then Âx(y) defined in (3.16) is admissible.

In practice the negative Hill estimator works well for ax ∈ (0,3/2] (and
small bx ), but has increasing (asymptotically negligible) bias for ax > 3/2 and
bx �= 0, which should be corrected in applications; see also Section 5, para-
graph (B). Also note that our assumptions in Assumption 3.1 include cases where
a CLT for an estimator âx fails to hold, and only slower rates of convergence than
m

−1/2
k are possible. This is particularly the case if bx �= 0; we refer to de Haan

and Ferreira [7] for details. In practice, the choice of the actual bandwidth mk

(and hence m) is of significant relevance, and much research has been devoted to
this subject; see, for instance, Drees [12] and Drees et al. [14]. In [18], Alves ad-
dresses this question for a related (positive) location invariant Hill-type estimator
both in theory (Theorem 2.2) and practice (concluding remarks and algorithm).
Transferring the practical aspects, this amounts to the choice mk = 2n̄mk , m = 2/3
in our case. Still, any other choice also leads to the total optimal rates presented in
Theorems 3.2 and 3.3, as long as 0 < m< 1 holds.
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3.3. Pointwise adaptation. Throughout this subsection we fix a point x ∈
[0,1]. For the seminorm in Proposition 3.1 we take ‖f ‖ := |f (x)|. According
to Theorem 3.1, we set

Bk := c
(
β∗,L

)
h

β
k ,

(3.20)
Rk := c

(
β∗)

max
{∣∣Zj(hk, x)

∣∣ : j = 1, . . . ,2J
(
β∗)}

,

in the notation of (3.4). The nonnegativity and monotonicity constraints on Bk

and Rk are satisfied since hk increases. We define the oracle and estimated critical
values as

zk(x) = 4c
(
β∗)∣∣∣∣Ax

(
axnhk

4J (β∗) logn

)∣∣∣∣, ẑk(x) = 4c
(
β∗)∣∣∣∣Âx

(
âxnhk

4J (β∗) logn

)∣∣∣∣,
for k = 0, . . . ,K −1 and set zK(x) = ẑK(x) := 0. To lighten the notation, we often
drop the index x and write zk and ẑk . As outlined earlier in (3.7), this definition is
motivated by the fact that Ux(y) ≈ Ax(y) as y → ∞. The critical values can thus
be viewed as an appropriate estimate for certain extremal quantiles. The additional
logn-factor turns out to be the price to pay for adaption. We proceed by introducing
the estimated truncated critical values as

ẑTk = min{ẑk,1}.(3.21)

The truncation of the estimator ẑTk is required to exclude a possible pathological
behavior both in theory and practice. Note that this does not affect its proximity
to zk if ẑk is consistent, since zk → 0 uniformly in k = 0, . . . ,K − 1. We have the
following pointwise result.

THEOREM 3.2. Fix x ∈ [0,1], and suppose ax,bx, cx and βx ∈ (0, β∗ + 1]
are unknown with h0 < βxax/(βxax + 1). If Assumption 3.1 holds, then

sup
f ∈HN (x)(β,L)

Ef

[(
f̂ (x) − f (x)

)2]
= O

(
(n/ logn)(−2βx)/(axβx+1)(logn)(2axbxβx)/(axβx+1)).

As will be demonstrated in Section 4, this result is optimal in the minimax sense.

3.4. Lq -adaptation. Let us consider the Lq([0,1])-norm as seminorm in
Proposition 3.1. Due to (3.3) we can choose

Bk := c
(
β∗,L

)
h

β
k ,(3.22)

Rk := c
(
β∗)∥∥max

{∣∣Zj(hk, ·)
∣∣ : j = 1, . . . ,2J

(
β∗)}∥∥

q(3.23)

in the notation of (3.4). We verify that the nonnegativity and monotonicity con-
straints on Bk and Rk are satisfied for ρ > 1 in (2.3) since for any x ∈ [0,1]
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each interval x + hkIj , j = 1, . . . ,2J (β∗) is included in x + hk+1Ij ′ for some
j ′ = 1, . . . ,2J (β∗) for any k. Throughout this paragraph, we assume that the pa-
rameters ax,bx, cx remain constant for x ∈ [0,1]. We denote these with aF ,bF , cF ,
and the corresponding Ax(·) with AF (·).

The construction of the critical values is more intricate compared to the point-
wise case, and relies on the following quantity. Introduce

ÎUn(s, q) =
(∫ n1/2

n−2/âF

(
(−ÂF )q(s/y)

)(1) exp(−y)dy

)1/q

, q ≥ 1,(3.24)

and the corresponding version IUn(s, q) where we replace ÂF (·) by AF (·) and
âF by aF [recall that g(s)(·) denotes the sth derivative of a function g(·)]. For
k = 0, . . . ,K − 1, we introduce the critical values as

zk = √
5c

(
β∗)∣∣∣∣IUn

(
nhk

6J (β∗)
, q

)∣∣∣∣, ẑk = √
5c

(
β∗)∣∣∣∣ÎUn

(
nhk

6J (β∗)
, q

)∣∣∣∣,
and set zK = ẑK := 0. Moreover, we define the corresponding truncated values as

ẑTk = min{ẑk,1}.(3.25)

Unlike the pointwise case, the critical values do not correspond to an extremal
quantile, but they can be considered as an estimate of E[Rq

k ]1/q . This already in-
dicates that the Lq -case is substantially different from the pointwise situation, and
indeed additional, more refined arguments are necessary to prove the result given
below.

THEOREM 3.3. Suppose aF > 0 and β ∈ (0, β∗ + 1] are unknown with
βaF /(βaF + 1) > h0. We select ρ ∈ N with ρ > 1. If q ≥ 1, then the adaptive
estimator f̂ from Section 2 satisfies

sup
f ∈H[0,1](β,L)

Ef

[‖f̂ − f ‖q
q

] =O
(
n(−qβ)/(aF β+1)(logn)(qβaF bF )/(aF β+1)).

REMARK 3. If one allows for ax,bx, cx ∈ H(β0,L) for x ∈ [0,1], the above
result remains valid if one takes the supremum over the above bound. This result
is also optimal in the minimax sense.

Theorem 3.3 shows that the estimator f̂ is Lq -adaptive; that is, it attains the
minimax rates, which are optimal in the oracle setting of known aF and β , although
it does not use these constants in its construction; see Theorem 4.2 below for the
lower bound.
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4. Asymptotic lower bounds. We show that the logarithmic loss in the con-
vergence rate in Theorem 3.2 is unavoidable with respect to any estimator sequence
of f . First, we treat the case ax ∈ (0,2] for which we derive a lower bound, even
for a known error distribution. It suffices to treat the case where a = ax , b = bx

and c = cx remain constant for x ∈ [0,1]. We maintain this convention throughout
this section.

We assume that the εj have a Lebesgue density fε which is continuous and
strictly positive on (−∞,0), and vanishes on [0,∞]. Moreover, we impose that
the χ2-distance for the parametric location problem satisfies∫ 0

−∞
∣∣fε(x + ϑ) − fε(x)

∣∣2/fε(x) dx ≤ cεϑ
a| logϑ |−ab ∀ϑ ∈ (0,1),(4.1)

for some a ∈ (0,2] and b ∈ R. Note that a and b correspond to ax and bx , respec-
tively, in (1.3) and (1.4) with uniform x. As examples for such error densities with
b= 0, we consider the reflected gamma-densities

fλ(x) := 1

	(λ)
(−x)λ−1 exp(x)1(−∞,0)(x), x ∈ R,

for λ ∈ [1,2). Thus, by |(1 + ϑ/x)λ−1 − 1| ≤ ϑ/|x| for x ≤ −ϑ we have∫ 0

−∞
∣∣fλ(x + ϑ) − fλ(x)

∣∣2/fλ(x) dx

=
∫ −ϑ

−∞

∣∣∣∣(1 + ϑ

x

)λ−1

exp(ϑ) − 1
∣∣∣∣2fλ(x) dx +

∫ 0

−ϑ
fλ(x) dx

≤ 2
(
exp(ϑ) − 1

)2 + 2 exp(2ϑ)ϑ2

+ 2 exp(2ϑ)ϑ2
∫ −ϑ

−1
x−2fλ(x) dx +

∫ 0

−ϑ
fλ(x) dx

≤ O
(
ϑ2) + 2

(2 − λ)	(λ)
exp(2ϑ)ϑλ(

1 − ϑ2−λ) + ϑλ/	(λ + 1)

= O
(
ϑλ)

.

Therefore, the reflected gamma-density satisfies (4.1) when putting a = λ. Note
that (4.1) implies (1.3), (1.4) under the Assumption 3.1(i). The following theorem
together with the upper bound in Theorem 3.2 shows that pointwise adaptation
causes a logarithmic loss in the convergence rates, which is known from regular
regression when inserting a= 2.

THEOREM 4.1. Assume condition (4.1), and fix some arbitrary x0 ∈ [0,1],
β1 > β2 > 0 and C0,C1 > 0. Let {f̂n(x0)}n be any sequence of estimators of f (x0)

based on the data Y1, . . . , Yn which satisfies

sup
f ∈H[0,1](β1,C0)

Ef

∣∣f̂n(x0) − f (x0)
∣∣2 = O

(
n−2β2/(1+β2a)n−ξ )

,
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for some ξ > 0. Then this estimator sequence suffers from the lower bound

lim inf
n→∞ (n/ logn)(2β2)/(1+aβ2)(logn)(−2abβ2)/(1+aβ2)

× sup
f ∈H[0,1](β2,C1)

Ef

∣∣f̂n(x0) − f (x0)
∣∣2 > 0.

For completeness we also derive the Lq -minimax optimality of the convergence
rates established by our estimator f̂ in Theorem 3.3. This rectifies a conjecture
after Theorem 3 in Hall and van Keilegom [29] for general smoothness degrees.

THEOREM 4.2. Assume condition (4.1), and let {f̂n}n be any sequence of es-
timators of f based on the data Y1, . . . , Yn. Then, for any fixed q ≥ 1, we have

lim inf
n→∞ nβ2/(1+aβ2)(logn)(−abβ2)/(1+aβ2) sup

f ∈H[0,1](β2,C1)

Ef

[‖f̂n − f ‖q

]
> 0.

Now we focus on the case a > 2. To simplify some of the technical argu-
ments in the proofs, we restrict to the case b = 0. If a > 2, the convergence rates
become slower than in the Gaussian case. Instead of the convenient conditions
(1.3) and (1.4), we choose the slightly different Definition 2, under which the up-
per bound proofs obviously still hold true.

DEFINITION 2. Let a > 2, 0 < h0 ≤ 1, and denote with Dn(a,h0) the set of
all error distribution functions whose quantile functions U (n) satisfy:

(i) sup
y∈(0,∞]

∣∣∣∣U (n)(y)

A(y/2)

∣∣∣∣ ≤ 1 where A(y) = −y−1/a,

(ii) sup
n

sup
y∈[logN,N]

∣∣∣∣U (n)(y)

A(y)
− 1

∣∣∣∣| logy| ≤ (logn)−2, N = nh0 .

Note that we have Dn(a,h0) ⊆ Dn(a,h
′
0) if h0 > h′

0.

The above conditions particularly imply that the distribution function F(y) =
F (n)(y) [or likewise U(y) = U (n)(y)] of the errors εj may depend on n. While
the lower bound results for a ≤ 2 still hold true if the error distribution is known
and independent of the design point, here two competing types of regression errors
have to be considered in the proof. Note that the probability measure thus depends
on both the regression function f and the distribution function F , which we mark
as Pf,F .

THEOREM 4.3. Fix some arbitrary x0 ∈ [0,1], β1 > β2 > 0 and C0,C1 > 0.
Let a > 2, and suppose that h0 <

β2
aβ2+1 . Let {f̂n(x0)}n be any sequence of estima-

tors of f (x0) based on the data Y1, . . . , Yn which satisfies

sup
f ∈H[0,1](β1,C0)

sup
F∈Dn(a,h0)

Ef,F

∣∣f̂n(x0) − f (x0)
∣∣2 =O

(
n−2β2/(1+aβ2)n−ξ )

,
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for some ξ > 0. Then this estimator sequence suffers from the lower bound

lim inf
n→∞ (n/ logn)(2β2)/(1+aβ2) sup

f ∈H[0,1](β2,C1)

sup
F∈Dn(a,h0)

Ef,F

∣∣f̂n(x0) − f (x0)
∣∣2 > 0.

The proofs of Theorems 4.1, 4.2 and 4.3 are given in the supplementary mate-
rial [35]. Theorem 4.2 can be extended in a similar way to a > 2, a detailed proof
is omitted.

5. Numerical simulations and real data application. The aim of this section
is to highlight some of the theoretical findings with numerical examples. We will
briefly touch on the following points:

(A) Performance of the estimator on different function types and the corre-
sponding effect on adaptive bandwidth selection.

(B) The effect of different parameters ax , bx and cx .
(C) Application: wolf sunspot-number.
(D) Application: yearly best men’s outdoor 1500 times.

In order to illustrate the behavior of the estimation procedure, we consider three
different regression functions, displayed in black in Figures 2 and 3(a),

f1(x) = −2 · 1(x < 1/3) − 3 · 1(1/3 ≤ x < 2/3) − 1(2/3 < x), x ∈ [0,1],
f2(x) = −2 + 2 cos(2πx) + 0.3 sin(19πx), x ∈ [0,1].

They are similar to those discussed in Chichignoud [5]. Comments on the imple-
mentation and setup are given in the supplementary material [35], together with a

FIG. 2. (a) Function f = f1, β∗ = 2, n = 200, εj ∼ exp(1); (b) function f = f2, β∗ = 2, n = 200,
εj ∼ exp(1).
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FIG. 3. (a) Function f = f2, β∗ = 4, n = 600, εj ∼ 	(ax,1); (b) ax (black line) and âx (blue
points).

numerical comparison to oracle estimators and additional simulations. All of the
results can be reproduced by R-code, available at [36].

(A) Figure 2 gives a first impression on the behavior and accuracy of our esti-
mation procedure. In both cases, the errors εj follow an exponential distribution
exp(1), and the sample size is n = 200. The window size in Figure 2 corresponds
to the local sample size, chosen by the adaptive procedure. Even though n is only
of moderate size, the estimation procedure achieves good results by essentially
recovering the shape of the underlying regression, also in the wiggly case of func-
tion f2. Simulations of other nonparametric (adaptive) estimators that do not take
the nonregularity into account (cf. Lepski and Spokoiny [47] and the R-packages
crs, gam, smooth-spline, etc.) often fail to do so (with mean correction).

The effect of the shape (type) of the function on the bandwidth selection is
highlighted by a color-scheme, ranging from dark red (low) to dark violet (high).
In order to understand the “coloring of the estimator,” one has to recall that the
estimation procedure always tries to fit a local polynomial which “stays above
the observations.” At first sight, this can lead to a surprisingly large bandwidth
selection at particular spots. The bandwidth size is not necessarily an indicator for
estimation accuracy. The reason for this effect is the maximum function: additional
observations are taken into account as long as this does not substantially change
the maximum, which can lead to a surprisingly large bandwidth selection.

(B) Here, the setup is different from paragraph (A). We consider a sample size
of n = 600, and we let the parameters vary in x. The impact of bx , cx (and their
estimates) is rather insignificant on the total estimator. This is not unexpected
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and can be explained by the very definition in (3.1). We therefore focus only on
the parameter ax in this paragraph. We consider the setup where the errors fol-
low a Gamma distribution εj ∼ 	(ax,1) and ax varies according to the function
ax = sin(2πx + π/2) − √

(1 − (x − 1)2) + 2. We only discuss function f2 here;
a more comprehensive comparison including an additional function f3 is given
in the supplementary material [35]. As can be clearly seen in Figure 3, there is a
considerable increase in estimation accuracy as ax gets closer to zero. Generally
speaking, for larger ax the bias can be pronounced, and this is indeed the case
at the left top of Figure 3(a). It simply turns out that there are no observations
at all near the regression function f2, which leads to the large gap. An approxi-
mate bias correction [e.g., by ÎU(nhk,1), Section 3.4] could be applied, but we
do not pursue this any further. Figure 3 also reveals that the estimator âx (blue)
has a large variance and problems with quickly oscillating regression functions f

(compare with the supplementary material [35]). On the other hand, it seems to
capture the general trend of decrease and increase to some extent. We would like
to point out, however, that these estimations are very sample dependent, and due
to the relatively small, local sample size, the actual behavior of local samples may
deviate significantly from a large sample of 	(ax,1)-distributed random variables.
Significant overestimation leads to critical values that are too large, which in turn
results in a slight overestimation of the regression function; see the very center
of Figure 3(a) (0.4 to 0.6). The opposite effect can be observed at both endpoints
of Figure 3(a), where an underestimation is present, which leads to critical values
that are too small. Also note that the negative Hill estimator generally tends to un-
derestimate ax if ax ≥ 3/2, which is due to an (asymptotic negligible) bias; cf. de
Haan and Ferreira [7]. A thorough bias correction requires a precise second order
asymptotic expansion of the limit distribution of the negative Hill estimator, which
is beyond the scope of this paper. Note, however, that a rudimentary bias correction
is available in our implemented code. Another, more practical option would be to
consider the estimation of ax itself as a regression problem with one-sided errors,
treating the local estimates âx as “sample.”

A similar behavior appears when considering function f1, but, as can be ex-
pected, the estimates âx are more accurate.

(C) The Wolf sunspot number (often also referred to as Zürich number), is a
measure for the number of sunspots and groups of sunspots present on the surface
of the sun. Initiated by Rudolf Wolf in 1848 in Zürich, this famous time series has
been studied for decades by physicists, astronomers and statisticians. The relative
sunspot number Rt is computed via the formula

Rt = Kt(10gt + st ),(5.1)

where st is the number of individual spots observed at time t , gt is the number of
groups observed at time t and Kt is the observatory factor or personal reduction
coefficient. The factor Kt (always positive and usually smaller than one) depends
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on the individual observatories around the world and is intended to convert the
data to Wolf’s original scale, but also to correct for seeing conditions and other
diversions. In general, we have the relationship

observed data = observed fraction × true value,(5.2)

where we always have that the random variable observed fraction ∈ (0,1]. There-
fore, the factor Kt can be viewed as an aggregated individual estimate for the right
scaling. Over the last century, many different models have been fit to the sunspot
data; we refer to He [31] and Solanki et al. [56] for an overview. In particular, the
study of the sunspots has attracted people long before 1848. Recorded observa-
tions are, for instance, due to Thomas Harriot, Johannes and David Fabricius (in
the 17th century), Edward Maunder and many more. However, much uncertainty
lies in these data, and the sunspot time series before 1850 is usually referred to as
“unreliable” or “poor.” It is therefore interesting to reconstruct the “true time se-
ries” or at least reduce some uncertainty. We attempt do so for the period from 1749
to 1810, based on monthly observations. Let us reconsider model (5.1). Given Rt ,
we may then postulate the model

Rt = XtS
(
10g◦

t + s◦
t

)
,(5.3)

where g◦
t , s◦

t denote the corresponding true sunspot values, and Xt ∈ (0,1].
This means we concentrate all random components in Xt , which is in spirit of
model (5.2). We point out that this is only one possible way from a modeling
perspective; we refer to Kneip et al. [39] or Koenker et al. [42] and the references
therein for alternatives and more general models. In our setup, the parameter S > 0
reflects the support of the “misjudgment” of the observer. For example, S ≤ 1 is
equivalent with the assumption that every observer always reports less than the
true value. As we see below, it incorporates the systematic bias of the observers.
By using a log-transformation, we have the additive model

logRt = logXt + log
(
10g◦

t + s◦
t

) + logS,(5.4)

which can be interpreted as a nonparametric regression problem with stochastic
error logXt ∈ (−∞,0]. The goal is to estimate the function f (t) = log(10g◦

t +
s◦
t ), the “true” relative sunspot number. Such estimation results can serve as input

to structural physical models for sunspot activity like the time series approaches
mentioned above. Unfortunately, one can only estimate f (t) + logS , where the
bias logS cannot be removed without any further assumptions. This is clear from
the nonidentifiability in model (5.3). Generally S is a systematic (intrinsic) bias,
which has to be overcome using other sources of information (expert judgement).
Any other statistical approach will also suffer from such a global bias.

The results of the estimated sunspot number is given in Figure 4, where we plot-
ted an estimate corresponding to S = 1. Given that observation techniques where
much less advanced and coordinated in the 18th and 19th centuries, it is reason-
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FIG. 4. Estimated Wolf number with S = 1, β∗ = 5.

able to assume S ≤ 1. Apart from the estimated sunspot number itself, our esti-
mation procedure provides a map from the uncertainty level S to the true sunspot
number f (t). The sharpness ax seems to mainly vary within the interval [0,3.5].
Finally, we would like to comment on the “peaks” around 1768 and 1774. These
peaks are artifacts and originate from a too large initial bandwith selection at these
particular points. However, for the sake of reproducibility, we have kept them and
did not make any ad-hoc, data-dependent changes.

(D) As another example we discuss the yearly best men’s outdoor 1500 m times
starting from 1966, depicted in Figure 5 with estimated lower boundary. Following

FIG. 5. Yearly best men’s outdoor 1500 m times in seconds with estimated boundary (β∗ = 2).
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Knight [41], the boundary can be interpreted as the best possible time for a given
year. This data set displays an interesting behavior. As can be clearly seen from
Figure 5, the boundary steadily decreases from 1970 until around the year 2000,
followed by a sudden and sharp increase. This event leaves room for speculation.
Let us mention that until the year 2000, it had been very difficult to distinguish
between the biological and synthetical EPO. The breakthrough was achieved by
Lasne and Ceaurriz [46], and since then, more and more refined and efficient dop-
ing tests have been developed. It seems plausible that this change and advance in
doping controls has lead to the sudden increase, but it might as well be attributed
to some other reason.

6. Proof of the main results. Throughout the proofs, we make the following
convention. For two sequences of positive numbers an and bn, we write an � bn

when an ≥ Cbn for some absolute constant C > 0, and an � bn when bn � an.
Finally, we write an ∼ bn when both an � bn and an � bn hold.

PROOF OF THEOREM 3.1. Throughout the proof, we fix some arbitrary x ∈
[0,1] and write β = βx to lighten the notation. The data Yi , i = 1, . . . , n, can be
written as

Yi =
β∗∑

j=0

bj (xi − x)j + εi + �i,

where �i := f (xi) − ∑β∗
j=0 bj (xi − x)j . Putting � := max{|�i | : |xi − x| ≤ hk},

the coefficients bj are chosen as the Taylor coefficients bj = f (j)(x)/j ! for j ≤
〈β〉 and bj = 0 otherwise, such that by the Hölder condition on f (〈β〉) in the Taylor
remainder term

� ≤ Lh
β
k /

(〈β〉 + 1
)!.(6.1)

Selecting b∗
0 := b0 + �, b∗

j := bj , j > 0, we realize that

β∗∑
j=0

b∗
j (xi − x)j =

β∗∑
j=0

bj (xi − x)j + � ≥ Yi

∀i = 1, . . . , n with |x − xi | ≤ hk,

so that by the definition of the b̂j , j = 0, . . . , β∗, we have

∑
|xi−x|≤hk

β∗∑
j=0

b̂j (xi − x)j ≤ ∑
|xi−x|≤hk

β∗∑
j=0

b∗
j (xi − x)j

(6.2)

= ∑
|xi−x|≤hk

{ β∗∑
j=0

bj (xi − x)j + �

}
.
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We define the polynomial

Q(y) :=
β∗∑

j=0

(b̂j − bj )(y − x)j − �.

Then inequality (6.2) implies that

inf
n,k,f

∫
Q(y)dλn(y) ≤ 0,(6.3)

where λn denotes the uniform probability measure on the discrete set {xi : |xi −
x| ≤ hk} inside the interval [x − hk, x + hk] ∩ [0,1]. We introduce the sets Q±
of all y ∈ [x − hk, x + hk] ∩ [0,1] such that Q(y) is nonnegative or negative,
respectively. Our first task is to show that

inf
n,k,f

λn

(
Q−)

> 0 or Q = 0 identically.(6.4)

In the latter case Theorem 3.1 is trivially true; hence we focus on the case where
Q �= 0. As Q− is the complement of Q+ with respect to [x − hk, x + hk] ∩ [0,1],
we have λn(Q

+) ≥ 1/2 or λn(Q
−) ≥ 1/2. Clearly, we have (6.4) in the second

case, so let us study the situation where λn(Q
+) ≥ 1/2.

As Q is a polynomial with degree ≤ β∗ the set Q+ equals the union of at most
β∗ + 1 disjoint sub-intervals of [x − hk, x + hk] ∩ [0,1]. The number of all design
points in [x −hk, x +hk] is denoted by mk . Hence, there exists at least one interval
I+

0 ⊆ Q+ such that λn(I
+
0 ) ≥ 1/(2β∗ + 2). At least �mk/(2β∗ + 2)� of the xi lie

in I+
0 so that, due to the equidistant location of the design points, the length of I+

0
is larger or equal to{⌈

mk/
(
2β∗ + 2

)⌉ − 1
}
/n ≥ {⌈�nhk�/(

2β∗ + 2
)⌉ − 1

}
/n ≥ c1

(
β∗) · hk,

for n sufficiently large and some uniform constant c1(β
∗) > 0 which does not

depend on n or k, but only on β∗. The polynomial Q takes only nonnegative values
on the interval I+

0 . By Lemma 6.1 below there exists some interval I+
1 ⊆ I+

0 with
the length c2(β

∗)hk such that

inf
y∈I+

1

∣∣Q(y)
∣∣ ≥ c3

(
β∗) · sup

|z−x|≤hk

∣∣Q(z)
∣∣,

where the constants c2(β
∗), c3(β

∗) > 0 only depend on β∗. It follows from there
that ∫

Q+
Q(y)dλn(y) ≥

∫
I+

1

Q(y)dλn(y)

≥ λn

(
I+

1

) · inf
y∈I+

1

∣∣Q(y)
∣∣

≥ λn

(
I+

1

)
c3

(
β∗) · sup

|z−x|≤hk

∣∣Q(z)
∣∣.



1992 M. JIRAK, A. MEISTER AND M. REISS

On the other hand we learn from (6.3) that∫
Q+

Q(y)dλn(y) ≤
∫
Q−

∣∣Q(y)
∣∣dλn(y) ≤ λn

(
Q−) · sup

|z−x|≤hk

∣∣Q(z)
∣∣,

so that

λn

(
Q−) ≥ λn

(
I+

1

)
c3

(
β∗) ≥ c3

(
β∗) · (

c2
(
β∗)

hkn − 1
)
/mk

≥ c3
(
β∗) · (

c2
(
β∗) − n−h0

)
/
(
2 + n−h0

)
,

unless Q = 0 identically. Thus (6.4) has been shown.
Using the arguments as above, we can now find some interval I−

0 ⊆ Q− whose
length is bounded from below by a constant (only depending on β∗) times hk . By
Lemma 6.1 there exists an interval I−

1 ⊆ I−
0 , whose length is also bounded from

below by a constant (only depending on β∗) times hk and on which |Q| is bounded
from below by a uniform multiple of

sup
|z−x|≤hk

∣∣Q(z)
∣∣ ≥ ∣∣Q(x)

∣∣ ≥ |b̂0 − b0| − �.

This implies that

inf
y∈I−

1

(−Q(y)
) ≥ c4

(
β∗)(|b̂0 − b0| − �

)
.(6.5)

On the other hand, for all xi ∈ I−
1 we have

Q(xi) =
β∗∑

j=0

b̂j (xi − x)j + �i − f (xi) − � ≥ Yi − f (xi) − 2�.(6.6)

Combining the inequalities in (6.5) and (6.6), we conclude that∣∣f̃k(x) − f (x)
∣∣ = |b̂0 − b0| ≤ −c∗(

β∗)
max

{
εi :xi ∈ I−

1

} + c∗(
β∗)

�

for some positive constant c∗(β∗). Choosing J (β∗) sufficiently large (regardless
of k, n and f ) there exists some l = 1, . . . ,2J (β∗) such that x + hkIl ⊆ I−

1 , and
hence ∣∣f̃k(x) − f (x)

∣∣ ≤ c∗(
β∗)

� − c∗(
β∗) · Zj(hk, x),

which completes the proof. �

LEMMA 6.1. Let Q by any polynomial with the degree ≤ β∗ and I ⊆
[x − hk, x + hk] be an interval with the length ≥ c5(β

∗)hk for some constant
c5(β

∗) > 0. Then there exist some finite constants c6(β
∗), c7(β

∗) > 0 which only
depend on β∗ and some interval I ∗ ⊆ I with the length ≥ c6(β

∗)hk such that

inf
y∈I∗

∣∣Q(y)
∣∣ ≥ c7

(
β∗) · sup

|z−x|≤hk

∣∣Q(z)
∣∣.
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PROOF. If Q is a constant function, the assertion is satisfied by putting c = 1.
Otherwise, by the fundamental theorem of algebra, Q can be represented by

Q(y) = αQ

β ′∏
j=1

(y − yj ),

where 1 ≤ β ′ ≤ β∗, the yj denote the complex-valued roots of Q. By the pigeon
hole principle there exists some square I+

1 × [−c5(β
∗)hk/(2β∗ + 2), c5(β

∗)hk/

(2β∗ + 2)] in the complex plane which does not contain any yj where I+
1 ⊆ I

has the length c5(β
∗)hk/(β

∗ + 1). Now we shrink that square by the factor
1/2 where the center of the square does not change, leading to the square
I+

2 × [−c5(β
∗)hk/(4β∗ + 4), c5(β

∗)hk/(4β∗ + 4)]. Thus, for any y in this
shrinked square, the distance between y and any yj is bounded from below by
c5(β

∗)hk/(4β∗ + 4) and by |yj − x| − hk . If the latter bound dominates, we
have |yj − x| ≥ {1 + c5(β

∗)/(4β∗ + 4)} · hk . Then the distance between any
z ∈ [x − hk, x + hk] and yj has the upper bound

|yj − x| + hk ≤ |yj − y| + 2hk ≤ {
1 + (

8β∗ + 8
)
/c5

(
β∗)} · |yj − y|,

when applying the first bound. Otherwise, if the first bound dominates, we have

|z − yj | ≤ |yj − x| + hk ≤ {
2 + c5

(
β∗)

/
(
4β∗ + 4

)} · hk

≤ |y − yj | · (
4β∗ + 4

){
2/c5

(
β∗) + 1/

(
4β∗ + 4

)}
.

In both cases |z − yj | is bounded from above by a uniform constant c6(β
∗) times

|y − yj |. Then we learn from the root-decomposition of the polynomial Q that

inf
y∈I∗

∣∣Q(y)
∣∣ ≥ c7

(
β∗) · sup

|z−x|≤hk

∣∣Q(z)
∣∣,

for some deterministic constant c7(β
∗) > 0, which only depends on β∗. �

PROOF OF PROPOSITION 3.1. Part (a) follows directly from the definition of
Lepski’s method. For part (b) we obtain from (3.4), and repeated application of the
triangle and Jensen’s inequality that

Ef

[‖f̂ − f̃
k̂∗‖q1

(
k̂ < k̂∗)]1/q

≤ Ef

[‖f̃
k̂
− f ‖q1

(
k̂ < k̂∗)]1/q +Ef

[‖f̃
k̂∗ − f ‖q1

(
k̂ < k̂∗)]1/q

≤ 2(q−2)/q

(6.7)
× (

Ef

[(
R

q

k̂
+ B

q

k̂

)
1
(
k̂ < k̂∗)]1/q +Ef

[(
R

q

k̂∗ + B
q

k̂∗
)
1
(
k̂ < k̂∗)]1/q)

≤ 2(2q−1)/q(
Ef

[
B

q

k̂∗
]1/q +Ef

[
R

q

k̂
1
(
k̂ < k̂∗)]1/q)

≤ 2(2q−1)/q

(
Ef

[
ẑ
q

k̂∗
]1/q +

K−1∑
k=0

Ef

[
R

q
k 1

(
k̂ = k, k < k̂∗)]1/q

)
,
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where we also used that Rk decreases in k and Bk increases in k. Note that

1
(
k̂ = k, k < k̂∗) ≤ 1

(∃l ≤ k :‖f̃k+1 − f̃l‖ > ẑTl + ẑTk+1
) · 1

(
k < k̂∗)

≤ 1
(∃l ≤ k :‖f̃k+1 − f ‖ + ‖f − f̃l‖ > ẑTl + ẑTk+1

) · 1
(
k < k̂∗)

≤ 1
(∃l ≤ k :Rl + Bk+1 > ẑTl

) · 1
(
Bk+1 ≤ ẑTk+1/2

)
≤ 1

(∃l ≤ k :Rl > ẑTl /2
)
.

Inserting this inequality into (6.7) completes the proof. �

In the sequel, the following three lemmas will be useful. The proofs are given
in the supplementary material [35].

LEMMA 6.2. If y, t → ∞ and

y = c(log t)bta
(
1 + O(1)

)
, c,a> 0,b ∈ R,

then

t = (
c−1(

logy1/a)−b
y
)1/a +O(1).

In particular, if we have v = Ux(y) with v → 0, then

Fx(v) = 1 − c−ax
x

(
log |v|−1/ax

)−bxax |v|ax
(
1 + O(1)

)
.

LEMMA 6.3. For 1 ≤ j0, j1 ≤ n, let J = {j0, . . . , j1} such that |j0 − j1|/n =
O(n−ρ0) for some 0 < ρ0 < 1. If u → 0, u ≤ −n−ρ1 for some ρ1 > 0, then∏

j∈J
P

(
εj ≤ Axj0

(−u−1)) ≤ e#J c−
3 u,

where c−
3 < 1 may be chosen arbitrarily close to one.

LEMMA 6.4. Let (qn)n be a real-valued sequence which satisfies qn ∈
[1, logn] for all integer n, and denote with F(·) the c.d.f. of ε. Then we have

E
∣∣max{ε1, . . . , εn}

∣∣qn ≤ (
1 + O(1)

) ∫ n1/2

0

(
(−U)qn(n/y)

)(1) exp(−y)dy.

If U(·) is not differentiable, replace U(·) with c+
2 A(·) in the above inequality,

where c+
2 > 1 can be chosen arbitrarily close to one. If qn = q is finite and in-

dependent of n, we obtain that

E
∣∣max{ε1, . . . , εn}

∣∣q =O
(
(logn)qbF n−q/aF

)
.

For arbitrary qn ∈ [1, logn] we have

O
(
n−c+

2 aF /qn
) ≤

∫ ∞
0

F
(−x1/qn

)n
dx ≤ O

(
n−c−

2 aF /qn
)
,

where 0 < c−
2 < 1 < c+

2 can be chosen arbitrarily close to one.
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PROOF OF THEOREM 3.2. In the course of the proof we will frequently ap-
ply Proposition 3.2. We may do so since condition h0 < βxax/(βxax + 1) im-
plies (3.18). The general strategy is the following. By the triangle inequality and
Jensen’s inequality, we have

Ef

[(
f̂ (x) − f (x)

)2] ≤ 2Ef

[(
f̂ (x) − f̃

k̂∗
)2] + 2Ef

[(
f̃

k̂∗ − f (x)
)2]

,(6.8)

and we will treat both quantities separately. In order to deal with the first, Proposi-
tion 3.1 implies that it suffices to consider

sup
f ∈HN (x)(β,L)

Ef

[(
ẑT
k̂∗

)2]1/2 + sup
f ∈HN (x)(β,L)

K−1∑
k=0

Ef

[
R2

k1
(∃l ≤ k :Rl > ẑTl /2

)]1/2

=: I +
K−1∑
k=0

IIk.

To treat I , we require the following simple lemma; the proof is given in the sup-
plementary material [35].

LEMMA 6.5. Let q ≥ 1. Under the assumptions of Theorem 3.2, we have uni-
formly over f ∈ HN (x)(β,L)

Ef

[(
ẑT
k̂∗

)q] ≤ (
c+

1

)q
Ef

[(
zT
k̂∗

)q] +O
(
n−q/ax

)
,

where c+
1 > 1.

Applying the above result with q = 2 we obtain

I 2 ≤ (
c+

1

)2
Ef

[(
zT
k̂∗

)2] +O
(
n−2/ax

)
,(6.9)

and it remains to deal with Ef [(zT
k̂∗)

2]. We define

k± := inf
{
k = 0, . . . ,K − 1 :Bk+1 > c±

2 z
T
k+1/2

} ∧ K.

On the event An = {c−
2 zk ≤ ẑk ≤ c+

2 zk for all k = 0, . . . ,K − 1} we have k− ≤
k̂∗ ≤ k+. From Proposition 3.2 we infer P(Ac

n) = O(n−v logn) due to
K = O(logn). Since zk decreases monotonically in k, we deduce E[(zT

k̂∗)
2] ≤

z2
k− + O(n−2/ax ). Note that the deterministic sequences (h±

k ) satisfy (see
Lemma 6.2 for details)

zk− ∼ −(
h±

k

)βx and
(6.10)

hk± ∼ (n/ logn)−1/(axβx+1)(logn)(axbx)/(axβx+1),
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under our assumption h0 < β0a0/(β0a0 + 1). We obtain

sup
f ∈HN (x)(β,L)

Ef

[(
ẑT
k̂∗

)2]
(6.11)

= O
(
(n/ logn)(−2βx)/(axβx+1)(logn)(2axbxβx)/(axβx+1)),

and it remains to deal with the second part. Let Bk = {∃l ≤ k :Rl > ẑTl /2}. Then
for δ0 = n−h0/ax , we have

II2
k =

∫ ∞
0

Pf

(
R2

k1(Bk) ≥ x
)
dx ≤

∫ δ0

0
Pf (Bk) dx +

∫ ∞
δ0

P
(
R2

k ≥ x
)
dx

≤ δ0

k∑
l=0

Pf

(
Rl > ẑTl /2

) +
∫ ∞
δ0

P
(
R2

k ≥ x
)
dx =: IIIk + IVk.

We first deal with IIIk . Recall that for j = 1, . . . ,2J (β∗) we have

Zj(hk, x) = max{εi :xi ∈ x + hkIj }
and

Ij := [−1 + (j − 1)/J
(
β∗)

,−1 + j/J
(
β∗)]

.

Put Jj (l) = {0,1/n,2/n, . . . ,1}∩ {x +hlIj } for j = 1, . . . ,2J (β∗), and note that
#Jj (l) ≥ nhl/2J (β∗). An application of Proposition 3.2 and Theorem 3.1 then
yields that

Pf

(
Rl > ẑTl /2

) ≤
J (β∗)∑
j=1

P
(∣∣Zj(hl, x)

∣∣ > c−
1 zl

) +O
(
n−2/ax

)
(6.12)

≤
2J (β∗)∑
j=1

∏
i∈Jj (l)

P
(
εi < −c−

1 zl
) +O

(
n−2/ax

)
,

where c−
1 < 1 may be chosen arbitrarily close to one. Arguing as in Lemma 6.3 we

obtain ∏
i∈Jj

P
(
εi > −c−

1 zl
) = O

(
n−2c−

2 /ax
)
,(6.13)

where c−
2 < 1 may be chosen arbitrarily close to one. Hence we obtain that

IIIk ≤ δ0

k∑
l=0

2J (β∗)∑
j=1

O
(
n−2c−

2 /ax
) = O

(
Kδ0n

−2c−
2 /ax

) = O
(
n−2/ax

)
,(6.14)

since K = O(logn). For dealing with IVk , set η0 = exp(nh0/4). Let ux = A−1
x (δ0).

Then Lemma 6.2 implies that ux < −n−h0/2 for large enough n. Then as in (6.13),
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it follows from Lemma 6.3 that for sufficiently large n,∫ ηk

δ0

P
(
R2

k ≥ x
)
dx =

∫ ηk

δ0

P
(
Rk ≤ −x1/2)

dx

≤ ηk

2J (β∗)∑
j=1

∏
i∈Jj (k)

P
(
εi < Ax

(−n−h0/2))

≤ ηk

2J (β∗)∑
j=1

exp
(−#Jj (k)n

−h0/2)

≤ ηk

2J (β∗)∑
j=1

exp
(−nh0/2) = O

(
exp

(−nh0/4))
.

Let p > 2. Since E[|Rk|p] = O(1) by Lemma 6.4, it follows from the Markov
inequality that∫ ∞

ηk

P
(
R2

k ≥ x
)
dx ≤

∫ ∞
ηk

x−p/2
E

[|Rk|p]
dx = 2

p − 2
η

−p/2+1
k O(1).

Combining the above and (6.14), it follows that IVk = O(exp(−nh0/8)), which in
turn yields

II2
k = IIIk + IVk = O

(
n−2/ax

) +O
(
exp

(−nh0/8)) = O
(
n−2/ax

)
.(6.15)

We thus conclude
K−1∑
k=0

IIk = O
(
Kn−1/ax

) = O
(
lognn−1/ax

)
= O

(
(n logn)−βx/(axβx+1)(logn)(axbx)/(axβx+1)).

Piecing everything together and taking squares, we arrive at

sup
f ∈HN (x)(β,L)

Ef

[(
f̂ (x) − f̃

k̂∗
)2]

(6.16)
= O

(
(n logn)−βx/(axβx+1)(logn)(axbx)/(axβx+1)).

To complete the proof, it remains to deal with Ef [(f̃
k̂∗ −f (x))2]. Let p′ > 2. Then

by (3.20) and the triangle, Jensen and Hölder inequalities, we have

Ef

[(
f̂ (x) − f̃

k̂∗
)2] ≤ 2Ef

[
R2

k̂∗ + B2
k̂∗

]
(6.17)

≤ 2Ef

[
R2

k̂∗1(An) + B2
k̂∗1(An)

]
+ P

(
Ac

n

)(p′−2)/p′(
E

[
R

p′
k−

]1/p′ +O(Lx)
)
.(6.18)
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Hence Proposition 3.2, Lemma 6.4 and (6.10) imply that the above is of order

Ef

[
R2

k̂∗ + B2
k̂∗

] ≤ 2Ef

[
R2

k−
] + B2

k+ +O
(
n−2/ax

)
= O

(
n

−2/ax

k− (lognk−)2bx + z2
k+ + n−2/ax

)
(6.19)

= O
(
(n logn)(−2βx)/(axβx+1)(logn)(2axbx)/(axβx+1)).

The above bound is uniform over HN (x)(β,L), and the proof is complete. �

PROOF OF THEOREM 3.3. For the proof we require the following lemma,
which provides a sub-polynomial upper bound on the probability that Rk exceeds
the threshold ẑTl /2.

LEMMA 6.6. Suppose hk ≤ exp(−cH logγ n) for fixed constants γ ∈ (0,1),
cH > 0. Grant Assumption 3.1, and let m,a0, β0,h0 satisfy (3.18) in view of (3.19).
Then

sup
k=0,...,K−1

P
(
Rk > ẑTl /2

) = O
(
exp

(−cH log1+γ n/2q
))

,

as n → ∞.

Let p > q . Then Lemma 6.4 gives

E
[
R

p
k

]q/p = O
(
(nhk)

−q/aF (lognhk)
qbF

)
.(6.20)

An application of Hölder’s inequality, (6.20) and Lemma 6.6 yields that

sup
f ∈H[0,1](β,L)

K−1∑
k=0

Ef

[
R

q
k 1

(∃l ≤ k :Rl > ẑTl /2
)]1/q

≤
K∑

k=0

(k + 1)(p−q)/p1[0,exp(−cH logγ n)](hk)

×O
(
n−h0/aF · exp

(−cH/q(p − q) log1+γ n/[2qp]))(6.21)

+
K∑

k=0

1(exp(−cH logγ n),∞)(hk) · (nhk)
−1/aF

= O
(
n−c−

2 /aF exp
([cH/aF ] logγ n

) · logn
)
.

Choosing cH , γ > 0 sufficiently small, the above is of order O(n−c−
3 /aF ), where

c−
3 < 1 can be chosen arbitrarily close to one. According to Proposition 3.1 it re-

mains to bound the expectation Ef [(ẑT
k̂∗)

q] uniformly over f ∈ H[0,1](β,L). Ap-
plying Lemma 6.5, we obtain that uniformly over f ∈ H[0,1](β,L)

E
[(
ẑT
k̂∗

)q] ≤ (
T c+

1

)q
Ef

[
(z

k̂∗)q
] +O

(
n−q/aF

)
.
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To deal with Ef [(z
k̂∗)q], we introduce

k± := inf
{
k = 0, . . . ,K − 1 :Bk+1 > c±

2 z
T
k+1/2

} ∧ K.

On the event An = {c−
2 zk ≤ ẑk ≤ c+

2 zk for all k = 0, . . . ,K − 1} we have k− ≤
k̂∗ ≤ k+. From Proposition 3.2 we infer P(Ac

n) = O(n−q/aF ). Since zk decreases
monotonically in k, we find E[zq

k̂∗] ≤ z
q

k− +O(n−q/aF ). Note that the deterministic

sequences (h±
k ) satisfy

hk± ∼ (n)−1/(aF β+1)(logn)(aF bF )/(aF β+1) and
(6.22)

zk− ∼ n−β/(aF β+1)(logn)(βaF bF )/(aF β+1),

provided that h0 < β0a0/(β0a0 + 1). For computational details, refer to
Lemma 6.2. Moreover, condition h0 < β0a0/(β0a0 + 1) also implies (3.18). We
obtain

sup
f ∈H[0,1](β,L)

Ef

[(
ẑT
k̂∗

)q] =O
(
n(−qβ)/(aF β+1)(logn)(qβaF bF )/(aF β+1)).(6.23)

Combining this result with (6.21), Proposition 3.1 yields that

sup
f ∈H[0,1](β,L)

Ef

[‖f̂ − f̃
k̂∗‖q

q

] =O
(
n(−qβ)/(aF β+1)(logn)(qβaF bF )/(aF β+1)).

Arguing similarly as in (6.19), by (3.22) and (3.23) we deduce that

Ef

[‖f̃
k̂∗ − f ‖q

q

] ≤ 2q
Ef

[
B

q

k̂∗
] + 2q

Ef

[
R

q

k̂∗
]

≤ 2qB
q

k+ +O
(
n−q/aF

) + 2q
Ef

[
R

q

k−
]

(6.24)

= O
(
n(−qβ)/(aF β+1)(logn)(qβaF bF )/(aF β+1)),

uniformly with respect to f ∈ H[0,1](β,L), by conditioning on the event An and
using (6.20). The proof is complete. �

The proofs of Theorems 4.1, 4.2 and 4.3 are given in the supplementary mate-
rial [35].
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SUPPLEMENTARY MATERIAL

Additional simulations, proof of lower bound, technical lemmas and sharp-
ness estimation (DOI: 10.1214/14-AOS1248SUPP; .pdf). In the supplementary
material we provide additional simulations and the proofs of the lower bound re-
sults as well as technical lemmas and sharpness estimation.
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