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MARKOVIAN ACYCLIC DIRECTED MIXED GRAPHS
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BY ROBIN J. EVANS AND THOMAS S. RICHARDSON

University of Oxford and University of Washington

Acyclic directed mixed graphs (ADMGs) are graphs that contain directed
(→) and bidirected (↔) edges, subject to the constraint that there are no cy-
cles of directed edges. Such graphs may be used to represent the conditional
independence structure induced by a DAG model containing hidden variables
on its observed margin. The Markovian model associated with an ADMG is
simply the set of distributions obeying the global Markov property, given via
a simple path criterion (m-separation). We first present a factorization cri-
terion characterizing the Markovian model that generalizes the well-known
recursive factorization for DAGs. For the case of finite discrete random vari-
ables, we also provide a parameterization of the model in terms of simple
conditional probabilities, and characterize its variation dependence. We show
that the induced models are smooth. Consequently, Markovian ADMG mod-
els for discrete variables are curved exponential families of distributions.

1. Introduction. A directed graph is a finite collection of vertices, V , together
with a collection of ordered pairs E ⊂ V × V such that (v, v) /∈ E for any v; if
(v,w) ∈ E we write v → w. E is the (directed) edge set. We say a directed graph
is acyclic if it contains no directed cycles; that is, there is no sequence of ver-
tices v1 → v2 → ·· · → vk → v1, for any k > 1. We call such a graph a directed
acyclic graph (DAG). Models based on DAGs are popular because of their simple
definition in terms of a recursive factorization, easy to determine conditional inde-
pendence constraints, and potential for causal interpretations [Pearl (1995, 2009)
Robins and Richardson (2011), Spirtes, Glymour and Scheines (1993)]. Unfortu-
nately, if some of the variables in a DAG are unobserved, the resulting pattern
of conditional independences no longer corresponds to a DAG model (on the ob-
served variables); in this sense, DAGs are not closed under marginalization.

An acyclic directed mixed graph (ADMG) consists of a DAG with vertices V

and directed edges E, together with a collection B of unordered (distinct) pairs
of elements of V ; these are the bidirected edges. If {v,w} ∈ B we write v ↔ w,
and if in addition (v,w) ∈ E this is denoted v w. Graphical definitions are best
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FIG. 1. (a) An acyclic directed mixed graph, L. (b) An ADMG studied by Evans and Richardson
(2013).

understood visually, so we invite the reader to consult the example ADMGs given
in Figure 1.

Like DAGs, acyclic directed mixed graphs can be interpreted, via a Markov
property, as representing a set of probability distributions defined by conditional
independence restrictions; these can be read off the graph using a graphical separa-
tion criterion. The advantage of ADMGs is that they are closed under marginaliza-
tion, in the sense mentioned above [Richardson and Spirtes (2002)]; indeed they
represent precisely the conditional independence relations which can be obtained
by marginalizing DAGs. Richardson (2003) gave a global Markov property and
ordered local Markov property for ADMG models, and showed their equivalence.

The patterns of conditional independence implied by a DAG give rise to curved
exponential families in the case of discrete random variables and, therefore, these
models have well understood asymptotic statistical properties. However, general
models induced by conditional independence constraints do not share this prop-
erty, and it may be challenging to determine their dimension; for example, certain
interpretations of chain graphs are known to lead to non-smooth models [Drton
(2009)]. In this paper, we show that discrete ADMG models are curved exponen-
tial families, and give a smooth parameterization.

Evans and Richardson (2013) provide a number of applied examples for
ADMGs representing discrete distributions—such as using the graph in Fig-
ure 1(b) to model an encouragement design for an influenza vaccine—and they dis-
cuss the relationship between Markovian ADMG models and marginal log-linear
models [Bartolucci, Colombi and Forcina (2007), Bergsma and Rudas (2002)].
ADMGs also arise in studying general conditions for identifying intervention dis-
tributions, under the causal interpretation of a DAG model [see Dawid and Didelez
(2010), Huang and Valtorta (2006), Pearl and Robins (1995), Shpitser and Pearl
(2006a, 2006b), Silva and Ghahramani (2009), Tian and Pearl (2002)].

This paper provides a factorization criterion for joint distributions obeying the
global Markov property with respect to an ADMG as well as a parameterization of
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FIG. 2. (a) An ADMG in which there is no vertex ordering such that all parents of a head precede
every vertex in the head; (b) {0,3,4} forms a head in this ADMG, but the induced subgraph on
{0,3,4} is not connected.

these models in the discrete case. The factorizations so obtained are unusual: the
graph in Figure 2(a), for example, gives

f1234(x1, x2, x3, x4) = f23|1(x2, x3 | x1) · f14|2(x1, x4 | x2),

showing that the joint distribution is a product of two conditional distributions that
we would not usually expect to multiply together (see Example 4.13). The factor-
ization criterion generalizes the well known one for DAGs, and is analogous to the
Hammersley–Clifford theorem for undirected graphical models [Hammersley and
Clifford (1971)]; the parameterization enables model fitting, and is used to prove
that the discrete models are curved exponential families of distributions.

ADMGs may be viewed as a subclass of the larger classes of summary graphs
[Wermuth (2011)] and ribbonless mixed graphs [Sadeghi (2013), Sadeghi and Lau-
ritzen (2014)], which allow for undirected edges. The factorization and parameter-
ization developed here may be extended to these larger classes without difficulty.

The remainder of the paper is organized as follows: Section 2 introduces basic
graphical concepts. In Section 3, we give conditions under which a partial ordering
on a class of subsets may be used to define partitions of arbitrary subsets. In Sec-
tion 4, we use these tools to develop our factorization criterion, which then forms
the basis of the simple parameterization introduced in Section 5. In Section 6, we
show that the Markov model associated with an ADMG is smooth, and character-
ize the variation dependence of the parameterization. Finally, Section 7 contains a
brief discussion.

2. Graphical definitions and Markov properties. Let G be an acyclic di-
rected mixed graph with vertices V ; the induced subgraph of G over A ⊆ V , de-
noted GA, is the graph with vertex set A, and all those (directed or bidirected)
edges which join two vertices that are both in A.
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A path in G is a sequence of adjacent edges, without repetition of a vertex;
a path may be empty, or equivalently consist of only one vertex. The first and last
vertices on a path are the endpoints (these are not distinct if the path is empty);
other vertices on the path (if any) are non-endpoints. The graph L in Figure 1(a),
for example, contains the path 1 → 2 → 4 ↔ 3, with endpoints 1 and 3, and non-
endpoints 2 and 4. A directed path is one in which all the edges are directed (→)
and are oriented in the same direction, whereas a bidirected path consists entirely
of bidirected edges.

We use the usual familial terminology for vertices in a graph. If w → v, we say
that w is a parent of v; the set of parents of v is denoted paG(v). More generally,
w is an ancestor of v if there is a directed path from w to v (note that this includes
the case v = w); conversely v is a descendant of w. The ancestors and descendants
of v are denoted anG(v) and deG(v), respectively. In the graph L in Figure 1(a),
for instance, the ancestors of 4 are the vertices anL(4) = {1,2,4}, and

paL(4) = {2}, deL(4) = {4}.
The district containing v, denoted disG(v), is the set of vertices w such that
v ↔ ·· · ↔ w, including v itself; for example, the district of 4 in L is {2,3,4}.
We apply these functions disjunctively to sets so that, for example,

anG(W) = ⋃
v∈W

anG(v).

A set of vertices A is ancestral if A = anG(A); that is, A contains all its own
ancestors. Define

barrenG(B) ≡ {
v ∈ B|deG(v) ∩ B = {v}}.

We say a set B is barren if B = barrenG(B); that is, it contains none of its nontrivial
descendants in G. We will also use the notation disA(v) as a shorthand for disGA

(v),
the district containing v in the induced subgraph of G on A.

For an ADMG G with vertex set V , we consider collections of random variables
(Xv)v∈V taking values in probability spaces (Xv)v∈V ; these spaces are either finite
discrete sets or finite-dimensional real vector spaces. For A ⊆ V , we let XA ≡×v∈A(Xv), X ≡ XV and XA ≡ (Xv)v∈A. We abuse notation in the usual way:
v denotes both a vertex and the random variable Xv , likewise A denotes both a set
of vertices and the random vector XA. For fixed elements of Xv and XA, we write
xv and xA, respectively.

The relationship between a graph G and random variables XV is governed by
Markov properties specified in terms of paths. A non-endpoint vertex c on a path π ,
is a collider on π if the edges preceding and succeeding c on the path both have
an arrowhead at c, for example, → c ← or ↔ c ←; otherwise c is a non-collider.

DEFINITION 2.1. A path π in G between two vertices v,w ∈ V (G) is said to
be blocked by a set C ⊆ V \ {v,w} if either:
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(i) there is a non-collider on π , and that non-collider is contained in C; or
(ii) there is a collider on π which is not in anG(C).

We say v and w are m-separated given C in G if every path from v to w in G is
blocked by C. Note that C may be empty. Sets A,B ⊆ V are said to be m-separated
given C ⊆ V \ (A ∪ B) if every pair a ∈ A and b ∈ B are m-separated given C.

The special case of m-separation for DAGs is the better known d-separation
[Lauritzen (1996), Pearl (1988)]. We next relate m-separation to conditional in-
dependence, for which we use the now standard notation of Dawid (1979): for
random variables X, Y and Z we denote the statement “X is independent of Y

conditional on Z” by X ⊥⊥ Y |Z. If Z is empty, we write X ⊥⊥ Y .

DEFINITION 2.2. A probability measure P on X is said to satisfy the global
Markov property (GMP) for an acyclic directed mixed graph G, if for all disjoint
sets A,B,C ⊆ V with A and B nonempty, A being m-separated from B given C

implies that XA ⊥⊥ XB |XC under P .

Consider the ADMG L in Figure 1(a); the vertices 1 and 4 are m-separated
conditional on 2, and 1 and 3 are m-separated unconditionally. It is not hard to
verify that no other m-separation relations hold for this graph, and that therefore a
distribution P obeys the global Markov property with respect to G if and only if
X1 ⊥⊥ X4|X2 and X1 ⊥⊥ X3 under P .

DEFINITION 2.3. Let G be an ADMG containing an ancestral set A and a
vertex v ∈ barrenG(A). Define

mbG(v,A) ≡ paG
(
disA(v)

) ∪ (
disA(v) \ {v})

to be the Markov blanket for v in the induced subgraph GA. For a set of vertices
W ⊆ barrenG(A), we analogously define the Markov blanket of W to be

mbG(W,A) ≡ paG
(
disA(W)

) ∪ (
disA(W) \ W

)
.

Let < be a topological ordering on the vertices of G, meaning that no vertex ap-
pears before any of its ancestors; let preG,<(v) be the set of vertices containing v

and all vertices preceding v in the ordering. A probability measure P is said to
satisfy the ordered local Markov property for G with respect to <, if for any v and
ancestral set A such that v ∈ A ⊆ preG,<(v),

v ⊥⊥ A \ (
mbG(v,A) ∪ {v})|mbG(v,A)

with respect to P .

REMARK 2.4. For v ∈ barrenG(A), the Markov blanket for v in A consists of
those vertices in A \ {v} that can be reached from v by paths through A on which
all non-endpoints are colliders.
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EXAMPLE 2.5. One can easily verify that for the graph in Figure 1(a),

mbL
(
4, {1,2,4}) = {2}, mbL

(
3, {1,3}) = ∅,

and that therefore under the topological ordering 1,2,3,4, the ordered local
Markov property implies X4 ⊥⊥ X1|X2 and X3 ⊥⊥ X1, just as the global Markov
property does.

The following result shows that the two properties are, in fact, always equiva-
lent.

PROPOSITION 2.6 [Richardson (2003), Theorem 2]. Let G be an ADMG, and
< a topological ordering of its vertices; further let P be a probability measure
on XV . The following are equivalent:

(i) P obeys the global Markov property with respect to G;
(ii) P obeys the ordered local Markov property with respect to G and <.

In particular, this result implies that if the ordered local Markov property is
satisfied for some topological ordering <, then it is satisfied for all such orderings.

3. Partitions and partial orderings. The global Markov property for DAGs
can be equivalently stated in terms of a simple factorization criterion applied to
the joint distribution. In order to achieve something similar for ADMGs, we will
need to consider partitions of sets of vertices into appropriate blocks. This section
develops the necessary mathematical theory on functions that define partitions.

Let V be an arbitrary finite set, and let H be a collection of nonempty subsets
of V , with the restriction that {v} ∈ H for all v ∈ V (i.e., all singletons are in H).
Let ≺ be a partial ordering on the elements of H, and write H1 
 H2 to mean that
either H1 ≺ H2 or H1 = H2.

DEFINITION 3.1. We say that ≺ is partition-suitable (for H) if for any
H1,H2 ∈ H with H1 ∩ H2 �= ∅, there exists H ∗ ∈ H such that H ∗ ⊆ H1 ∪ H2
and Hi 
 H ∗ for each i = 1,2.

In other words, partition-suitability requires that any two intersecting elements
of H are dominated with respect to ≺ by some element of H.

Define a function � on subsets of V such that �(W) “picks out” the ≺-maximal
elements of H which are subsets of W . That is, it returns the collection of subsets

�(W) ≡ {
H ∈ H|H ⊆ W and H ⊀H ′ for all other H ′ ⊆ W

}
.

Partition-suitability ensures that the sets in �(W) are disjoint.

PROPOSITION 3.2. If ≺ is partition-suitable and H1,H2 ∈ �(A) for some
set A, then either H1 = H2 or H1 ∩ H2 = ∅.
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PROOF. This is immediate from the definition of partition-suitable. �

Now let

ψ(W) ≡ W \ ⋃
C∈�(W)

C,

that is, ψ returns those elements of W which are not contained in any set in �(W).
Then recursively define a partitioning function [·] on subsets of V by [∅] = ∅, and

[W ] ≡ �(W) ∪ [
ψ(W)

]
.

The idea is that the function � “removes” the maximal sets from W , and the pro-
cedure is then applied again to what remains, ψ(W). The following proposition
shows that each vertex of W is contained within precisely one set in [W ].

PROPOSITION 3.3. If ≺ is partition-suitable, then the function [·] partitions
sets. That is, for any W ⊆ V , ⋃

H∈[W ]
H = W,

and if A,B ∈ [W ] then either A = B or A ∩ B =∅.

PROOF. We proceed by induction on the size of W . If W = ∅ the result fol-
lows from the definition. Also by definition, if W �= ∅ then

[W ] = �(W) ∪ [
ψ(W)

]
,

so the induction hypothesis and the definitions of � and ψ mean we need only
check that �(W) is nonempty and contains disjoint sets.

The first claim follows from the fact that ≺ is a partial ordering, and so always
contains at least one maximal element (since V is finite); the second is a direct
application of Proposition 3.2. �

LEMMA 3.4. Let ≺ be partition-suitable, A ⊆ V and H ∈ �(A). If H ⊆ B ⊆
A for some subset B , then H ∈ �(B).

PROOF. Let HA be the set of subsets in H contained within A. If H ∈ �(A) ⊆
HA then H is maximal with respect to ≺ in HA. It is trivial that HB ⊆ HA, and so
H is also maximal in HB . Thus, H ∈ �(B). �

We can paraphrase Lemma 3.4 as saying that if a set H is removed from A at
the first application of �, then H is contained in the partition of any subset B of A

(provided B contains H ).
The next proposition shows that partitioning functions as we have defined them

are stable when some set in the partition is removed. This “stability” is very useful
when trying to understand the properties of the partition.
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PROPOSITION 3.5. If C ∈ [W ], then [W ] = {C} ∪ [W \ C].

PROOF. We proceed by induction on the size of W . If [W ] = {C}, including
any case in which |W | = 1, the result is trivial.

If C is not maximal with respect to ≺ in W then, by Lemma 3.4, �(W) =
�(W \ C), so

[W ] = �(W) ∪ [
ψ(W)

]
= �(W \ C) ∪ [

ψ(W)
]
,

and the problem reduces to showing that
[
ψ(W)

] = {C} ∪ [
ψ(W \ C)

] = {C} ∪ [
ψ(W) \ C

]
,

which holds by the induction hypothesis. Thus, without loss of generality, suppose
C ∈ �(W).

Now, by Lemma 3.4 and the supposition, �(W \ C) ∪ {C} ⊇ �(W), and if
equality holds we are done. Otherwise let C1, . . . ,Ck be the sets in �(W \ C) but
not in �(W). Note that by definition, C1, . . . ,Ck ⊆ ψ(W). Further, these sets are
maximal in W \ C, so by Lemma 3.4 they are also maximal in ψ(W) ⊆ W \ C.
Then the problem reduces to showing that

[
ψ(W)

] = {C1, . . . ,Ck} ∪ [
ψ(W) \ (C1 ∪ · · · ∪ Ck)

]
,

which follows from repeated application of the induction hypothesis. �

Lastly, we show that if each set in H is contained within a piece of some parti-
tion of V , then the partitioning function can be applied separately to each piece of
this coarser partition.

PROPOSITION 3.6. Let D1, . . . ,Dk be a partition of V , and suppose that ev-
ery H ∈ H is contained within some Di . Let ≺ be a partition-suitable partial
ordering on H. Then for all W ⊆ V ,

[W ] =
k⋃

i=1

[W ∩ Di].

PROOF. We prove the case k = 2, from which the general result follows by
repeated applications. If either of W ∩ D1 or W ∩ D2 are empty, then the result is
trivial. By definitions

[W ] = �(W) ∪ [
ψ(W)

];
ψ(W) is strictly smaller than W , so by the induction hypothesis

[W ] = �(W) ∪ [
ψ(W) ∩ D1

] ∪ [
ψ(W) ∩ D2

]
.
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Define C1, C2 so that �(W) = C1 ∪C2 and each H ∈ Ci is a subset of Di only; since
the elements of Ci are maximal with respect to ≺ in W , by Lemma 3.4 they are also
maximal in W ∩Di . Hence, Ci ⊆ �(W ∩Di). Repeatedly applying Proposition 3.5
gives

Ci ∪ [
ψ(W) ∩ Di

] = [W ∩ Di],
because (ψ(W) ∩ Di) ∪ ⋃

C∈Ci
C = W ∩ Di . Hence the result. �

4. The factorization criterion. Let P be a probability measure having den-
sity fV :XV → R with respect to some σ -finite dominating product measure μ

on XV . For U,W ⊆ V , we denote by fW :XW → R the marginal density over W ,
and by fW |U(·|u) :XW → R for fU(u) > 0 the conditional density of W given
U = u (more precisely: any member of the equivalence class of such densities).
Then P obeys the global Markov property with respect to a DAG if and only if it
factorizes as

fV (xV ) = ∏
v∈V

fv|pa(v)(xv|xpa(v)),

for μ-almost all xV ∈XV [see, e.g., Lauritzen (1996)]. In the sequel, all equalities
over f are considered to hold almost everywhere with respect to μ.

In this section, we show that factorizations can also be used to characterize
Markov models over ADMGs; however, as we shall see, the criterion is more com-
plicated than that for DAGs.

EXAMPLE 4.1. Consider the ADMG in Figure 1(a). A distribution which
obeys the global Markov property with respect to this graph satisfies X1 ⊥⊥ X3
and X1 ⊥⊥ X4|X2. It is not possible to specify a factorization on the joint distri-
bution of X1, X2, X3 and X4 which implies precisely these two independences.
Instead, we require factorizations of certain marginal distributions:

f13(x1, x3) = f1(x1) · f3(x3),

f124(x1, x2, x4) = f1(x1) · f2|1(x2|x1) · f4|2(x4|x2).

Such marginal factorizations can be used to represent distributions which obey
the global Markov property with respect to an ADMG.

DEFINITION 4.2 (Head). A vertex set H ⊆ V is a head if it is barren in G and
contained within a single district of Gan(H). We write H(G) for the collection of all
heads in G.

Note that every singleton vertex {v} forms a head.
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EXAMPLE 4.3. For the ADMG shown in Figure 2(b), we have the following:

H(G) = {{0}, {1}, {2}, {3}, {4}, {0,1}, {0,2}, {1,4}, {2,3},
{0,1,2}, {0,1,4}, {0,2,3}, {0,3,4}}.

Notice that although they are contained within a single district, the sets {0,1,2,4},
{0,1,2,3} and {0,1,2,3,4} do not form heads because they are not barren. Also
observe that {0,3,4} does form a head, even though the induced subgraph G{0,3,4}
is not connected [because {0,3,4} is a subset of a single district in Gan({0,3,4}), as
required].

DEFINITION 4.4 (Tail). For any head H , the tail of H is the set

tailG(H) ≡ (
disan(H)(H) \ H

) ∪ pa
(
disan(H)(H)

)
.

If the context makes it clear which head we are referring to, we will sometimes
denote a tail simply by T .

Note that the tail is a subset of the ancestors of the head. An intuitive inter-
pretation is that a head H is a set within which no independence relations hold
without marginalizing some elements of H , and the tail is the Markov blanket
for H within the set anG(H). We can therefore factorize ancestral sets into heads
conditional upon their tail sets; see Remark 4.14 below.

EXAMPLE 4.5. In the special case of a DAG, the heads are precisely all single-
ton vertices {v}, and the tails are the sets of parents paG(v). In a purely bidirected
graph, the heads are just the connected sets, and the tails are all empty.

EXAMPLE 4.6. The graph L in Figure 1(a) has the following head–tail pairs:

H {1} {2} {3} {2,3} {4} {3,4}
T ∅ {1} ∅ {1} {2} {1,2}

Note that the set {2,3,4} is not a head, because it is not barren.

In general, it is not possible to order the vertices in an acyclic directed mixed
graph such that, for each head H , all the vertices in paG(H) precede all the vertices
in H . A counterexample is given in Figure 2(a), which is taken from Richardson
(2009). The head {1,4} has parent 2, and the head {2,3} has parent 1, so whichever
way we order the vertices 1 and 2, the condition will be violated.

However, there is a well-defined partial ordering on heads which will be useful
to us, and satisfies the essential property of partition-suitability from Section 3.

DEFINITION 4.7. For two distinct heads Hi and Hj in an ADMG G, say that
Hi ≺ Hj if Hi ⊆ anG(Hj ).
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LEMMA 4.8. The (strict) partial ordering ≺ is well defined.

PROOF. We need to verify that ≺ is irreflexive, asymmetric and transitive; ir-
reflexivity is by definition. Asymmetry amounts to Hi ≺ Hj �⇒ Hj ⊀ Hi ; sup-
pose not for contradiction, so that there exist distinct heads Hi and Hj with
Hi ≺ Hj and Hj ≺ Hi . Since Hi and Hj are distinct, there exists a vertex v which
is in one of these heads but not the other; assume without loss of generality that
v ∈ Hj \ Hi .

Since Hj ⊆ anG(Hi), we can find a directed path π1 from v to some vertex
w ∈ Hi ; the path is nonempty because v /∈ Hi . However, since we also have Hi ⊆
anG(Hj ), we can find a (possibly empty) directed path π2 from w to some x ∈ Hj .
Now, the concatenation of π1 and π2 is also a path, because any repeated vertices
would imply a directed cycle in the graph. Call this new path π .

But π is a nonempty directed path between two vertices in Hj , which violates
the requirement that heads are barren. Hence, asymmetry holds.

For transitivity, if Hi ≺ Hj and Hj ≺ Hk , then clearly we can find a directed
path from any element v ∈ Hi to some element of Hk , simply by concatenating
paths from v ∈ Hi to some w ∈ Hj and from w to Hk . Hence, Hi ⊆ anG(Hk), and
so Hi ≺ Hk . �

LEMMA 4.9. The partial ordering ≺ on the heads H(G) of an ADMG G is
partition-suitable.

PROOF SKETCH (SEE THE APPENDIX FOR DETAILS). If two heads H1,H2
are distinct and H1 ∩ H2 �= ∅, then H ∗ = barrenG(H1 ∪ H2) is a head, H1 
 H ∗
and H2 
 H ∗. �

Note that in general H ∗ may be a strict subset of H1 ∪ H2. For example, con-
sider the graph shown in Figure 2(b), and let H1 = {0,1,4} and H2 = {0,2,3}
so that H1,H2 ∈ H(G) and H1 ∩ H2 = {0}. However, H ∗ = barrenG(H1 ∪ H2) =
{0,3,4}� H1 ∪ H2.

Denote the relevant functions from Section 3 defined by this partial ordering
by �G , ψG and [·]G , respectively. This partitioning function allows us to factorize
probabilities for ADMGs into expressions based upon heads and tails.

EXAMPLE 4.10. For the graph L in Figure 1(a), we have

H {1} {2} {3} {2,3} {4} {3,4}
anG(H) {1} {1,2} {3} {1,2,3} {1,2,4} {1,2,3,4}

so that

{1} ≺ {2} ≺ {2,3} ≺ {3,4},
{2} ≺ {4} ≺ {3,4}, {3} ≺ {2,3}.
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Then, for example, �L({2,3,4}) = {{3,4}}, and �L({2}) = {{2}}, giving
[{2,3,4}]L = {{3,4}, {2}}.

EXAMPLE 4.11. For the graph in Figure 2(a), we have

H {1} {2} {3} {4} {1,4} {2,3}
anG(H) {1} {2} {1,3} {2,4} {1,2,4} {1,2,3}

Thus {1} ≺ {3} ≺ {2,3} � {2} and {2} ≺ {4} ≺ {1,4} � {1}.

Now we can provide a factorization criterion for acyclic directed mixed graphs.

THEOREM 4.12. Let G be an ADMG, and P a probability distribution on XV

with density fV . P obeys the global Markov property with respect to G if and only
if for every ancestral set A ∈ A(G), and μ-almost all xA ∈XA.

fA(xA) = ∏
H∈[A]G

fH |T (xH |xT ).(1)

A formal proof of this result is given in the Appendix; a sketch proof is given in
Richardson (2009), Theorem 4.

EXAMPLE 4.13. For the graph in Figure 2(a), observe that the global Markov
property implies precisely that X3 ⊥⊥ X4|X12, and X1 ⊥⊥ X2. Applying the parti-
tion function to the relevant sets of vertices yields

[{1,2,3,4}] = {{1,4}, {2,3}},
so Theorem 4.12 gives us the factorization from the Introduction:

f1234(x1, x2, x3, x4) = f23|1(x2, x3 | x1) · f14|2(x1, x4 | x2)

for all xi ∈ Xi , i = 1, . . . ,4. The expression may appear slightly strange, since the
first factor is the density for {X2,X3} given X1, while the second is for {X1,X4}
given X2; nevertheless this factorization does indeed imply that X3 ⊥⊥ X4|X12.
Further, integrating out x3 and x4 gives

f12(x1, x2) = f2|1(x2|x1) · f1|2(x1|x2), x1 ∈ X1, x2 ∈X2,

which implies that X1 ⊥⊥ X2.

REMARK 4.14. It follows from Theorem 4.12 that if H is a head, tailG(H)

is the Markov blanket for H in the set anG(H), in the sense that under the global
Markov property,

H ⊥⊥ anG(H) \ (
H ∪ tailG(H)

) | tailG(H).
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REMARK 4.15. A different, incorrect definition of �G (and, therefore, ψG ,
[·]G) was given in Richardson (2009) and Evans and Richardson (2010). The er-
roneous definition coincides with that given here when W is ancestral, so equa-
tion (1) holds for both. However, equation (2) below does not hold for the incorrect
partitioning function in general.

5. Toward a parameterization of the discrete Markov model for an ADMG.
The factorizations in Theorem 4.12 can be used to produce a parameterization of
ADMG models when XV is a finite set, and thus the relevant random variables are
discrete. For simplicity of exposition, we will henceforth assume that the random
variables are binary, so XV = {0,1}|V |. Extension to the general finite discrete case
is easy but notationally challenging; this is done in the special case of ADMGs with
chain graph structure by Drton (2009).

In the following result, and throughout the paper, empty products are assumed
to equal 1.

THEOREM 5.1. Let G be an ADMG, and P a probability distribution on
{0,1}|V |. Then P obeys the global Markov property with respect to G if and only if
for every ancestral set A and xA ∈XA,

P(XA = xA) = ∑
C : O⊆C⊆A

(−1)|C\O| ∏
H∈[C]G

P(XH = 0|XT = xT ),(2)

where O ≡ {v ∈ A|xv = 0}.

Theorem 5.1 shows that conditional probabilities of the form P(XH = 0|XT =
xT ) are sufficient to form a parameterization of the binary ADMG model; it re-
mains to show that they are nonredundant, which is proved in Section 6.

Note that the sets C in (2) may not be ancestral, which hinders proof by induc-
tion. In order to facilitate the proof, we define the following quantity which will be
needed in the intermediate steps of the induction.

DEFINITION 5.2. Let A be an ancestral set in an ADMG G, and consider a
particular assignment xA to XA; write O ≡ {v ∈ A|xv = 0}. For any sets B , W

such that B ⊆ W ⊆ (A \ O), define the following quantity:

gxA
(B,W) ≡ (−1)|B| ∏

H∈[O∪W ]G
P(XH∩(O∪B) = 0,XH\(O∪B) = 1 | XT = xT ).

Note that if B = ∅ then the right-hand side has factors of the form P(XH =
xH |XT = xT ), and looks much like (1); however, if B = W the expression is a
product of the form P(XH = 0|XT = xT ), just like each term of (2).

The interpretation is that W is the set of nonzero vertices being partitioned,
and which need to have their values on the left-hand side of any conditioning bars
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“flipped” from 1 to 0 in order to get an expression of the form (2). The set B

consists of those vertices for which this “flipping” has already taken place, and
those in W \ B have yet to be flipped.

The induction starts with the single term (B,W) = (∅,A \ O), given via The-
orem 4.12. At each step a term is “reduced” into a sum of two further pieces by
flipping a single vertex, until the procedure finishes with a sum containing the set
of terms {

gxA
(B,W) : (B,W) = (C,C), where C ⊆ A \ O

}
,

and thus corresponds to an expression of the form (2).

DEFINITION 5.3. Take a triple (xA,B,W), where B � W ⊆ (A \O) for O ≡
{v ∈ A|xv = 0}. We say that (xA,B,W) is reducible if for each H ∈ [O ∪ W ]G
such that H ∩ (W \ B) �= ∅, it holds that disan(H)(H) \ H ⊆ O ∪ (W \ B).

In words, given a set W in which not all vertices are flipped, so W \ B �= ∅,
the condition requires that any head H which is in the partition and has not yet
been fully “flipped,” has the part of its tail which is from the same district [i.e.,
disan(H)(H) \ H ] consists solely of vertices that are either in W or not yet flipped.

The following technical lemma provides the necessary piece for the induction
step.

LEMMA 5.4. Let A be an ancestral set, and P a distribution obeying the
global Markov property with respect to G. If (xA,B,W) is reducible in GA, then
there is some w ∈ W \ B such that

gxA
(B,W) = gxA

(
B,W \ {w}) + gxA

(
B ∪ {w},W )

,(3)

and, in addition, either B = W \ {w} (so B ∪ {w} = W ), or both (xA,B,W \ {w})
and (xA,B ∪ {w},W) are also reducible.

PROOF. See the Appendix. �

Here, w is a vertex that is given the value 1 in every head in gxV
(B,W), but is

“flipped” so it is set equal to 0 in gxV
(B ∪ {w},W) and is removed from the par-

tition in gxV
(B,W \ {w}). A major difficulty in the overall proof of Theorem 5.1

stems from the fact that, though each gxA
produced after a reduction is itself re-

ducible or of the form gxA
(C,C), we will not generally be able to flip the same

vertex in each term.

PROOF OF THEOREM 5.1. By Theorem 4.12, the global Markov property
holds if and only if for each ancestral A and xA,

P(XA = xA) = ∏
H∈[A]G

P(XH = xH |XT = xT )

= gxA
(∅,A \ O)
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using the definition of gxV
. It is easy to check from Definition 5.3 that either

A = O , in which case there is nothing to prove, or (xA,∅,A \ O) is reducible.
Then from repeated application of Lemma 5.4 this is just

= ∑
C⊆A\O

gxA
(C,C)

= ∑
C⊆A\O

(−1)|C| ∏
H∈[O∪C]G

P(XH = 0|XT = xT )

which, by inspection, gives the required result. Conversely, suppose (2) holds, and
that v ∈ barrenG(A) has district D1 = disA(v); let D2 ≡ A \ D1 and for C ⊆ A,
let Ci ≡ C ∩Di and Oi ≡ O ∩ Di , i = 1,2. Then C \ O = (C1 \ O1) ∪̇ (C2 \ O2),
and from Proposition 3.6 get [C]G = [C1]G ∪ [C2]G . Hence,

P(XA = xA) = ∑
C : O⊆C⊆A

(−1)|C\O| ∏
H∈[C]G

P(XH = 0 | XT = xT )

= ∑
C1 : O1⊆C1⊆D1
C2 : O2⊆C2⊆D2

(−1)|C1\O1|+|C2\O2|

× ∏
H∈[C1]G∪[C2]G

P(XH = 0 | XT = xT )

= ∑
C1 : O1⊆C1⊆D1

(−1)|C1\O1| ∏
H∈[C1]G

P(XH = 0 | XT = xT )

× ∑
C2 : O2⊆C2⊆D2

(−1)|C2\O2| ∏
H∈[C2]G

P(XH = 0 | XT = xT )

= h(xD1, xpaG(D1)) · k(xD2, xpaG(D2))

for some functions h, k. In particular, k does not involve xv , so it follows that
v ⊥⊥ A \ (D1 ∪ paG(D1)) | (D1 \ {v}) ∪ paG(D1) which, by the definition of the
Markov blanket of v in A, is equivalent to

v ⊥⊥ A \ (
mbG(v,A) ∪ {v}) | mbG(v,A).

It follows that the ordered local Markov property holds (for any topological order-
ing); hence, by Proposition 2.6 so does the global Markov property. �

6. Model smoothness. Let PG ⊆ �2n−1 denote the set of strictly positive bi-
nary probability distributions which obey the global Markov property with respect
to an ADMG G, where �k is the strictly positive k-dimensional probability sim-
plex and n is the number of vertices in G. We call PG the model defined by G on
a binary state-space. In this section, such models are shown to be smooth, in the
sense that they are curved exponential families of distributions, and we prove that
the conditional probabilities used in Theorem 5.1 constitute a parameterization.
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FIG. 3. A chain graph representing a non-smooth discrete model under the Alternative Markov
Property. (Note that this is not an acyclic directed mixed graph nor a summary graph.)

Models induced by patterns of conditional independence may be non-smooth,
and determining which are smooth in general is a difficult open problem [Drton and
Xiao (2010)]. Non-smoothness can occur even if the conditional independences
arise from a Markov property applied to a graph, as in the following example.

EXAMPLE 6.1. Consider the chain graph given in Figure 3, which mixes di-
rected and undirected edges. Under the Alternative Markov Property (AMP) for
chain graphs, this graph represents distributions for which X2 ⊥⊥ X4|X1,X3 and
X1 ⊥⊥ X2,X4 [Andersson, Madigan and Perlman (2001)]. This is shown by Drton
(2009) to represent a non-smooth model for discrete random variables.

It follows from Theorem 5.1 that for an ADMG G, the collection of probabilities
of the form

P(XH = 0 | XT = xT ), xT ∈ XT ,H ∈H(G),

is sufficient to recover the joint distribution under the model PG . However, it is not
immediately clear that each of these probabilities is necessary, or more specifically
that the map in (2) is smooth and of full rank everywhere.

For brevity, we write qH (xT ) ≡ P(XH = 0|XT = xT ), and the vector of all such
probabilities by

q ≡ (
qH (xT )|H ∈ H(G), xT ∈ XT

)
.(4)

For p ∈ PG , we—in a mild abuse of notation—let q(p) be the vector of the form (4)
determined by calculating the appropriate conditional probabilities from p. Since
this only involves adding and dividing strictly positive numbers, the map q is
smooth (infinitely differentiable). Let QG ≡ q(PG) be the image of q over PG ;
we call QG the set of derived parameter values. We will prove that the map in (2)
provides a smooth inverse to q. The first result shows that the set of vectors q that
are derived parameters corresponds exactly to those which give strictly positive
probabilities under the inverse map.

THEOREM 6.2. For an ADMG G, a vector q is derived (i.e., q ∈ QG) if and
only if for each xV ∈ XV , we have

pxV
(q) ≡ ∑

C : x−1
V (0)⊆C⊆V

(−1)|C\x−1
V (0)| ∏

H∈[C]G
qH (xT ) > 0,(5)



1468 R. J. EVANS AND T. S. RICHARDSON

where x−1
V (0) ≡ {v ∈ V |xv = 0}.

REMARK 6.3. The boundary of QG is the set of q such that pxV
(q) ≥ 0 for

all xV ∈ XV , with equality holding in at least one case.
The definition of pxV

(q) in (5) is of the same form as the expression given for
P(XV = xV ) in (2) and so the result might at first seem trivial; clearly probabilities
must be nonnegative. However, it is not immediately obvious that this condition
is sufficient for parameters to be in the image set QG ≡ q(PG). If we take some
q† /∈ QG and apply to it the nonlinear functional form in (5) to obtain p(q†), with-
out this result there is no apparent reason why p(q†) should not be a probability
distribution, nor indeed in PG .

To prove Theorem 6.2, we need the following lemma.

LEMMA 6.4. Let A be an ancestral set in G, and let xA ∈ XA. Then for any
real vector q (not necessarily in QG), the map in (5) satisfies

∑
yV : yA=xA

pyV
(q) = ∑

C : x−1
A (0)⊆C⊆A

(−1)|C\x−1
A (0)| ∏

H∈[C]G
qH (xT ),

where x−1
A (0) ≡ {v ∈ A|xv = 0}. In particular, taking A = ∅,

∑
yV

pyV
(q) = 1.

Recall that empty products are assumed equal to 1.

PROOF OF LEMMA 6.4. If A = V the result is trivial. If not, pick some
v ∈ barrenG(V ) \ A; this is possible because if A ⊇ barrenG(V ) then A = V by
ancestrality of A. So

∑
yV :

yA=xA

pyV
(q) = ∑

yV :
yA=xA

∑
y−1
V (0)⊆C⊆V

(−1)|C\y−1
V (0)| ∏

H∈[C]G
qH (yT )

= ∑
yV \{v} :
yA=xA

∑
yv

∑
y−1
V (0)⊆C⊆V

(−1)|C\y−1
V (0)| ∏

H∈[C]G
qH (yT )

= ∑
yV \{v} :
yA=xA

( ∑
y−1
V \{v}(0)⊆C⊆V

(−1)
|C\y−1

V \{v}(0)| ∏
H∈[C]G

qH (yT )

+ ∑
y−1
V \{v}(0)∪{v}⊆C⊆V

(−1)
|C\(y−1

V \{v}(0)∪{v})| ∏
H∈[C]G

qH (yT )

)
.
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The last equation simply breaks the sum into cases where yv = 1 and yv = 0,
respectively, which takes this form because v does not appear in any tail sets. The
first inner sum in the last expression can be further divided into the cases where C

contains v, and those where it does not, giving

∑
yV :

yA=xA

pyV
(q) = ∑

yV \{v} :
yA=xA

( ∑
y−1
V \{v}(0)⊆C⊆V \{v}

(−1)
|C\y−1

V \{v}(0)| ∏
H∈[C]G

qH (yT )

+ ∑
y−1
V \{v}(0)∪{v}⊆C⊆V

(−1)
|C\y−1

V \{v}(0)| ∏
H∈[C]G

qH (yT )

+ ∑
y−1
V \{v}(0)∪{v}⊆C⊆V

(−1)
|C\(y−1

V \{v}(0)∪{v})| ∏
H∈[C]G

qH (yT )

)
.

The second and third terms differ only by a factor of −1, and so cancel leaving

∑
yV :

yA=xA

pyV
(q) = ∑

yV \{v} :
yA=xA

( ∑
y−1
V \{v}(0)⊆C⊆V \{v}

(−1)
|C\y−1

V \{v}(0)| ∏
H∈[C]G

qH (yT )

)
.

Repeating this until no vertices outside A are left gives
∑
yV :

yA=xA

pyV
(q) = ∑

y−1
A (0)⊆C⊆A

(−1)|C\y−1
A (0)| ∏

H∈[C]G
qH (yT ).

In the special case A = ∅, we end up with an empty product∑
yV

pyV
(q) = (−1)|∅| ∏

H∈[∅]G
qH (yT ) = 1.

�

PROOF OF THEOREM 6.2. The “only if” part of the statement follows from
Theorem 5.1 by the fact that if the parameters are derived then pxV

(q) = P(XV =
xV ), and these are therefore positive by definition of PG .

For the converse, suppose that the inequalities hold; we will show that we can
retrieve the parameters simply by calculating the appropriate conditional probabil-
ities. Lemma 6.4 ensures that

∑
xV

pxV
(q) = 1, and that therefore this is a proba-

bility distribution.
Choose some H ∗ ∈ H(G), with T ∗ = tailG(H ∗) and A = anG(H ∗); also set

xH ∗ = 0 and pick xT ∗ ∈ {0,1}|T ∗|. By Lemma 6.4,
∑

yV : yA=xA

pyV
(q) = ∑

y−1
A (0)⊆C⊆A

(−1)|C\y−1
A (0)| ∏

H∈[C]G
qH (yT ).

Now clearly H ∗ ∈ �G(A), so applying Lemma 3.4 and the fact that H ∗ ⊆
x−1
A (0) = y−1

A (0) shows H ∗ ∈ [C]G for all terms C in the sum and, therefore,
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we can apply Proposition 3.5 to factor out the parameter associated with H ∗:

= qH ∗(yT ∗)
∑

y−1
A (0)⊆C⊆A

(−1)|C\y−1
A (0)| ∏

H∈[C\H ∗]G
qH (yT )

= qH ∗(yT ∗)
∑

y−1
A\H∗ (0)⊆C⊆A\H ∗

(−1)
|C\y−1

A\H∗ (0)| ∏
H∈[C]G

qH (yT ).

But note that A \ H ∗ is also an ancestral set, and thus using Lemma 6.4 again,

∑
yV : yA\H∗=xA\H∗

pyV
(q) = ∑

y−1
A\H∗ (0)⊆C⊆A\H ∗

(−1)
|C\y−1

A\H∗ (0)| ∏
H∈[C]G

qH (yT ).

Hence,
∑

yV \A pxV
(q)∑

yV \(A\H∗)
pxV

(q)
= qH ∗(xT ∗),

and we can recover the original parameters from the probability distribution p in
the manner we would expect; that p satisfies the global Markov property for G then
follows from Theorem 5.1. Thus, p ∈ PG and q = q(p) ∈ QG . �

THEOREM 6.5. For an ADMG G, the model PG of strictly positive binary
probability distributions satisfying the global Markov property with respect to G is
smoothly parameterized by q ∈ QG .

Consequently, the model PG is a curved exponential family of dimension

d = ∑
H∈H(G)

|Xtail(H)| =
∑

H∈H(G)

2| tail(H)|.

PROOF. By Theorem 6.2, the set QG ⊆ Rd is open. The map p(q) :QG → PG
is multilinear and, therefore, infinitely differentiable. Its inverse q :PG → QG is
also infinitely differentiable on PG .

The composition q◦p is the identity function on QG and, therefore, its Jacobian
is the identity matrix Id . However, the Jacobian of a composition of differentiable
functions is the product of the Jacobians, so

Id = ∂q
∂p

∂p
∂q

.

But this implies that each of the Jacobians has full rank d and, therefore, the map
q is a smooth parameterization of PG . See Kass and Vos (1997), Corollary A.3.

�
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7. Discussion. We remark that it is easy to extend the results of Sections 5
and 6 from the binary case to a general finite discrete state-space; we have avoided
this only for notational simplicity. It is also a simple matter to extend the results
from ADMGs to the summary graphs of Wermuth (2011) which incorporate three
types of edge: directed (→), undirected ( ), and dashed ( ); the dashed edges
are equivalent to bidirected (↔) edges [Sadeghi and Lauritzen (2014)]. The undi-
rected component of a summary graph can be dealt with using standard methods
for undirected graphs [Lauritzen (1996)], and the remaining parameterization done
as for an ADMG, conditional on the undirected component.

APPENDIX: TECHNICAL PROOFS

PROOF OF LEMMA 4.9. Suppose that two heads H1,H2 are distinct and
H1 ∩ H2 �= ∅. We will show that they are dominated by H ∗ ≡ barrenG(H1 ∪ H2);
clearly H ∗ ⊆ H1 ∪ H2 and H1,H2 ⊆ anG(H ∗), so if H ∗ is a head then ≺ satisfies
the requirements for partition-suitability.

Clearly H ∗ is barren, so we need to prove that it is contained within a single
district in anG(H ∗). By definition, anG(H ∗) ⊇ H1 ∪ H2; we need to find a bidi-
rected path between any v,w ∈ H ∗ ⊆ H1 ∪ H2. If v and w are either both in H1
or both in H2, then the existence of such a path follows from the fact that these are
heads. If v ∈ H1 and w ∈ H2, then construct a bidirected path in anG(H1) from v

to some vertex x ∈ H1 ∩ H2, and a bidirected path in anG(H2) from x to w; these
paths can then be concatenated into a new path meeting the requirements, short-
ening the resulting sequence of edges if necessary to avoid repetition of vertices.
Hence, H ∗ is a head.

Since H1,H2 ⊆ anG(H ∗) we have Hi 
 H ∗ for each i = 1,2, and therefore ≺
is partition-suitable. �

Proof of factorization.

PROPOSITION A.1. Let ≺ and ≺′ be two partition-suitable partial orderings
for H, such that for every H ∈ H and W ⊆ V , H is maximal in W under ≺
whenever this is so under ≺′. Then [·]≺ = [·]≺′

.

PROOF. We again proceed by induction on the size of W . Recall that for
all v ∈ V , we have {v} ∈ H by the definition of partition-suitability, so [{v}]≺ =
[{v}]≺′ = {{v}}. Now take a general W ⊆ V , and suppose that H is maximal under
≺′ in W ; then by Proposition 3.5

[W ]≺′ = {H } ∪ [W \ H ]≺′

= {H } ∪ [W \ H ]≺
= [W ]≺
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by applying the induction hypothesis to W \ H , and using the fact that H ∈ [W ]≺
because it is also maximal under ≺ in W . �

Define a partial ordering ≺∗ on heads in an ADMG by H1 ≺∗ H2 if and only
if both H1 ≺ H2, and H1 and H2 are contained in the same district in anG(H1 ∪
H2); note that this is a weaker ordering than ≺, since strictly fewer pairs of sets
are comparable. It is easy to see that ≺∗ is partition-suitable for heads H(G) by
repeating the proof of Lemma 4.9. In addition, sets which are maximal under ≺
will also be maximal under ≺∗, so the partitions defined by these two orderings
are the same by Proposition A.1.

This weaker partial ordering leads us to a class of sets which play a role sim-
ilar to that of ancestral set: a set with “ancestrally closed districts” is one whose
districts are ancestrally closed (rather than the whole set).

DEFINITION A.2. Let G be an ADMG, and W be a subset of its vertices. We
say W has ancestrally closed districts if disan(W)(W) = W .

Equivalently, W has ancestrally closed districts if W is not connected to
anG(W) \ W by any bidirected edges. This definition is important because the
partitioning function [·]G will act upon sets with ancestrally closed districts “sepa-
rately” within the relevant ancestral set: that is, for such sets,[

anG(W)
]
G = [W ]G ∪ [

anG(W) \ W
]
G .

Note that if D = D1 ∪̇D2 has ancestrally closed districts, and D1 and D2 are
not joined by any bidirected edges, then D1 and D2 themselves have ancestrally
closed districts (here ∪̇ indicates a disjoint union). If for every v,w ∈ D there is
a bidirected path from v to w such that all the vertices on the path are contained
within D, then D cannot be partitioned in this manner, and we say it is bidirected-
connected.

DEFINITION A.3. Let C ⊆ V . We say that an ordering < on the vertices of
C is (C,≺∗)-consistent if for any H1,H2 ∈ [C]G such that H1 ≺∗ H2, we have
v1 < v2 for all v1 ∈ H1, v2 ∈ H2.

LEMMA A.4. Let D = D1 ∪̇D2 have ancestrally closed districts and be such
that D1 is not connected to D2 by any bidirected edges. Let <1 and <2 be order-
ings on D1 and D2 (resp.). If for i = 1,2, <i is (Di,≺∗)-consistent, then every ex-
tension of <1 and <2 to an ordering < on D is also a (D,≺∗)-consistent ordering.

PROOF. Orderings between vertices v1, v2 ∈ Di are specified by <i . Further,
if v1 ∈ D1 and v2 ∈ D2 then since v1 and v2 are in different districts in anG(D),
it follows from the definition of ≺∗ that v1 and v2 can be ordered in any way to
achieve a (D,≺∗) consistent ordering. �
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A total ordering <i on a set Di will be said to be topological in G if no vertex
d ∈ Di precedes any of its proper ancestors in G that are in Di .

LEMMA A.5. Let D1 and D2 be disjoint subsets in G. Let <1 and <2 be
topological orderings on D1 and D2 (resp.). Then there exists an extension of <1
and <2 to a topological ordering < on D1 ∪ D2.

PROOF. We construct a topological ordering iteratively as follows: let
〈d1, . . . , dk−1〉 be the first k − 1 vertices in D1 ∪ D2 already ordered under <;
let Ek = (D1 ∪D2) \ {d1, . . . , dk−1} be the set of vertices remaining to be ordered.
Further, let Qk = {d | d ∈ Ek, anG(d)∩Ek = {d}} be those vertices in Ek that have
no proper ancestors in Ek ; Qk �= ∅ since V is finite and G is acyclic. Finally, if
Qk ∩ D1 �= ∅, define dk to be the first element in Qk under <1, otherwise define
dk to be the first element in Qk under <2. That the ordering is topological follows
from the definition of Qk . �

LEMMA A.6. Let D have ancestrally closed districts, and suppose C ⊆
barrenG(D). Then D \ C has ancestrally closed districts.

PROOF. Let D′ ≡ D \ C. Since C ⊆ barrenG(D), anG(D \ C) ⊆ anG(D) \ C,
so

disan(D′)
(
D′) ⊆ disan(D)

(
D′) \ C ⊆ disan(D)(D) \ C = D \ C = D′.

Since D′ ⊆ disan(D′)(D′), the result holds. �

LEMMA A.7. Let C ∪ W have ancestrally closed districts, with W ⊆
barrenG(C ∪ W) and W ∩ C = ∅. Then any ordering on W may be extended
to a topological ordering of the vertices in C ∪ W which is both (C,≺∗) and
(C ∪ W,≺∗)-consistent.

PROOF. Note that C has ancestrally closed districts by Lemma A.6. We pro-
ceed by induction on the size of C ∪ W ; if |C ∪ W | = 0 or 1 then the result is
trivial.

If C ∪ W contains two components which are not connected by bidirected
edges, then we can split it into two smaller sets C1 ∪ W1 and C2 ∪ W2, each
with ancestrally closed districts, where C = C1 ∪̇C2 and W = W1 ∪̇W2. Clearly,
Wi ∈ barren(Ci ∪ Wi) for each i, so using the induction hypothesis, we can find
topological orderings <i on the vertices of Ci ∪ Wi which are both (Ci ∪ Wi,≺∗)
and (Ci,≺∗) consistent. It then follows from Lemma A.5, taking Di = (Ci ∪ Wi),
that there exists a topological ordering < on C ∪ W that extends <1 and <2. It
further follows from two applications of Lemma A.4 that < is both (C,≺∗) and
(C ∪ W,≺∗)-consistent.
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Since, by assumption, C ∪ W has ancestrally closed districts, if this set does
not contain two components then C ∪ W is a single district in anG(C ∪ W). Let
H = barrenG(C ∪ W); this is clearly a head and maximal under ≺∗ in C ∪ W .
Further, W ⊆ H so applying Proposition 3.5 gives

[C ∪ W ]G = {H } ∪ [
(C ∪ W) \ H

]
G

= {H } ∪ [
C \ (H \ W)

]
G,

since W ∩ C = ∅. Since H \ W ⊆ barrenG(C), Lemma A.6 shows that C \
(H \ W) also has ancestrally closed districts; applying the induction hypothesis,
we can find a topological ordering of C which is both (C \ (H \ W),≺∗) and
(C,≺∗)-consistent [possibly C \ (H \ W) = C in which case this is trivial]. This
ordering may be combined with an arbitrary ordering on W by simply concatenat-
ing the orderings so that everything in W comes after everything in C. This gives
an ordering which is (C ∪ W,≺∗)-consistent, because H ⊇ W is maximal; since
W is barren in C ∪ W , the ordering is also topological. �

COROLLARY A.8. If D ∪ {w} has ancestrally closed districts with w ∈
barrenG(D ∪ {w}), then there exists an ordering < which is both (D,≺∗) and
(D ∪ {w},≺∗)-consistent, and such that w is the maximal vertex under <.

PROOF. The claim is trivial if w ∈ D. Otherwise, {w} is barren in D ∪ {w}, so
we apply the previous lemma. �

Note that the previous lemma and this corollary do not generalize to adding
two vertices: there exist graphs with ancestral sets A, A ∪ {w1} and A ∪
{w1,w2}, such that no topological ordering is (A,≺∗)-, (A ∪ {w1},≺∗)- and
(A ∪ {w1,w2},≺∗)-consistent. See Richardson (2009) for such an example.

Given a path, π , and two vertices v,w on π , the subpath π(v,w) is the sequence
of edges which lie between v and w on π . As with a path, we allow a single vertex
(and no edges) to be a degenerate case of a subpath.

LEMMA A.9. Suppose π is a path from a to b, and is not blocked by C. Then
every vertex v on π is contained in anG({a, b} ∪ C).

PROOF. Suppose w is on π and is an ancestor of neither a nor b. Then on each
of the subpaths π(a,w) and π(w,b), there is at least one edge with an arrowhead
pointing towards w along the subpath. Let vaw and vwb be the vertices at which
such arrowheads occur that are closest to w on the respective subpaths. There are
now three cases: (1) if w �= vwb then π(w,vwb) is a directed path from w to vwb.
It further follows that vwb is a collider on π , and since the path is not blocked by
vwb, it is an ancestor of C. Hence, w ∈ anG(C). (2) If w �= vaw , then a symmetric
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argument holds. (3) If vaw = w = vwb, then w is a collider on π , hence again an
ancestor of C. �

The next two lemmas are used to establish necessary results about Markov blan-
kets:

LEMMA A.10. Let H1,H2 ∈ [D]G with H1 �= H2. Then at least one of the
following holds:

(i) H1 ≺ H2;
(ii) H2 ≺ H1; or

(iii) there is no bidirected path between any h1 ∈ H1 and h2 ∈ H2 contained
within anG(H1 ∪ H2).

PROOF. Suppose H1,H2 ∈ [D]G , and that (iii) fails. Then let H ∗ ≡
barrenG(H1 ∪ H2). Since, H1,H2 are heads and since (iii) fails, H ∗ is a barren
set which is connected by bidirected paths in anG(H ∗) = anG(H1 ∪ H2); hence, it
is a head. In addition, H ∗ ⊆ H1 ∪ H2 ⊆ D, and H ∗ � H1,H2.

It follows that H ∗ ∈ [D]G , which means that either H ∗ = H1, in which case (ii)
holds, or H ∗ = H2, in which case (i) holds. �

LEMMA A.11. Let D be bidirected-connected with ancestrally closed dis-
tricts, and let D′ ≡ D \ {w} for some w ∈ barrenG(D). Let < be a total order that
is (D,≺∗)- and (D′,≺∗)-consistent, and under which w is maximal. For a given
v ∈ D′ define H,H ′ to be the heads such that v ∈ H ∈ [D]G and v ∈ H ′ ∈ [D′]G ,
respectively, and T ,T ′ the corresponding tails. Let

B ≡ (
dispre<(v)(v) \ {v}) ∪ paG

(
dispre<(v)(v)

)
,

C ≡ (
H ∩ pre<(v)

) ∪ T and

C′ ≡ (
H ′ ∩ pre<(v)

) ∪ T ′.

Then B ⊆ C and B ⊆ C′, and B m-separates v from both C \ B and C ′ \ B .

PROOF. Let S ≡ dispre<(v)(v) ⊆ D; we claim that S ⊆ anG(H). If not then
there is a bidirected path π from v to some s ∈ S \ anG(H); let this path be mini-
mal, so that s is adjacent on π to some t ∈ anG(H). Then s lies in some different
head H ∗ ∈ [D]G , and we have constructed a bidirected path from H to H ∗ within
anG(H ∪ H ∗); it follows from Lemma A.10 that either H ≺ H ∗ or H ∗ ≺ H , but
the former is ruled out by the existence of π and the (D,≺∗)-consistency of <.
Hence, H ∗ ⊆ anG(H), and in particular s ∈ anG(H), so we reach a contradiction.

Thus, S ⊆ anG(H) and, therefore, S ≡ dispre<(v)(v) ⊆ disan(H)(v), so

S ∪ paG(S) ⊆ disan(H)(v) ∪ pa
(
disan(H)(v)

) ⊆ H ∪ T .
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Finally, using S ⊆ pre<(v), we have

B = (
S \ {v}) ∪ paG(S) ⊆ (

H ∩ pre<(v)
) ∪ T = C.

It follows from Lemma A.6 and the fact that w ∈ barrenG(D), that D′ also has
ancestrally closed districts, and the same argument as above shows that B ⊆ C′.

Now, let π be a path from v to some c ∈ C \ B , and assume without loss of
generality that π does not intersect C \ B other than at c. We will show that π is
blocked by B .

Note that B ⊆ C ⊆ pre<(v); thus if π includes any vertex s > v then it is
blocked by Lemma A.9, because s is not an ancestor of any element of C. Con-
sequently, we may assume that the edge on π adjacent to v is of the form v ↔ or
v ←.

We claim that π contains at least one non-collider; suppose not for a contradic-
tion: then π is of the form

v ↔ t1 ↔ ·· · ↔ tp ↔ c, v ↔ t1 ↔ ·· · ↔ tp ← c or v ← c,

with every node ti an ancestor of B and hence of D. Since D has ancestrally closed
districts, it follows that every ti ∈ D and hence ti ∈ dispre<(v)(v) \ {v}, so ti ∈ B .
But then c ∈ B , which is a contradiction, since we assumed c ∈ C \ B .

It follows that π contains at least one non-collider; let d be the non-collider
closest to v on the path. But then repeating the argument above (replacing c with d)
shows that d ∈ B and, therefore, π is blocked by B .

Similarly, all paths π ′ from v to some c′ in C′ \ B are blocked by B . �

The next lemma is the crux of the induction used in the proof of Theorem 4.12.

LEMMA A.12. Let D have ancestrally closed districts, and w ∈ barrenG(D).
Then for any fV obeying the global Markov property with respect to G, we have∏

H∈[D]G
fH |T (xH |xT ) = fw| an(D)\{w}(xw|xan(D)\{w})

∏
H∈[D\{w}]G

fH |T (xH |xT )

μ-almost everywhere.

PROOF. Note that we need only prove the case where D forms a single district,
from which the general result will follow because by Proposition 3.6 the factors
not involving disD(w) are the same on both sides. Assume therefore that D =
disD(w), and thus D is bidirected-connected.

Define D′ = D \ {w}, and let < be a topological total ordering which is (D,≺∗)
and (D′,≺∗) consistent, which exists by Corollary A.8. Further, we can choose w

to be the maximal element in D.
For any v ∈ H ∈ [D]G , let Hv = H ∩pre<(v), and similarly for v ∈ H ′ ∈ [D′]G ,

let H ′
v = H ′ ∩ pre<(v). In addition, let

Bv ≡ (
dispre<(v)(v) \ {v}) ∪ paG

(
dispre<(v)(v)

)
.
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Then ∏
H∈[D]G

fH |T (xH |xT ) = ∏
H∈[D]G

∏
v∈H

fv|Hv∪T (xv|xHv , xT )

= ∏
H∈[D]G

∏
v∈H

fv|Bv(xv|xBv)

= ∏
v∈D

fv|Bv(xv|xBv),

where the first equality follows from the elementary properties of conditional prob-
abilities, and the second from applying Lemma A.11 to see that Bv m-separates v

from (Hv ∪ T ) \ Bv .
But Bv also m-separates v from (H ′

v ∪T ′) \Bv , so reversing the argument gives∏
v∈D

fv|Bv(xv|xBv) = fw|Bw(xw|xBw)
∏

v∈D\{w}
fv|Bv(xv|xBv)

= fw|Bw(xw|xBw)
∏

H ′∈[D\{w}]G

∏
v∈H ′

fv|Bv(xv|xBv)

= fw|Bw(xw|xBw)
∏

H ′∈[D\{w}]G

∏
v∈H ′

fv|H ′
v∪T ′(xv|xH ′

v
, xT ′)

= fw|Bw(xw|xBw)
∏

H ′∈[D\{w}]G
fH ′|T ′(xH ′ |xT ′).

In addition, note that Bw = Hw ∪ T , so it is the Markov blanket for w in anG(D)

using the ordered local Markov property. Thus,

fw|Bw(xw|xBw) = fw| an(D)\{w}(xw|xan(D)\{w}),

which gives the result. �

PROOF OF THEOREM 4.12. We proceed by induction on |A|. Clearly, the re-
sult holds if |A| = 1.

If |A| > 1, then let w ∈ barrenG(A); thus A′ ≡ A\{w} is also ancestral. Suppose
that the global Markov property holds; then by elementary laws of probability and
the induction hypothesis,

fA(xA) = fw|A′(xw|xA′) · fA′(xA′)

= fw|A′(xw|xA′)
∏

H ′∈[A′]G
fH ′|T ′(xH ′ |xT ′)

and by Lemma A.12, this is just

= ∏
H∈[A]G

fH |T (xH |xT ).
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Conversely, suppose that (1) holds and let < be a topological ordering of the an-
cestral set A. By the induction hypothesis, the ordered local Markov property is
satisfied for < and all suitable pairs (v,A′) such that A′ ⊂ A. Let w ∈ barrenG(A)

be the maximal vertex under < in A, with H such that w ∈ H ∈ [A]G ; the factor-
ization implies that H ⊥⊥ A \ (H ∪ T ) | T . Note that H = barrenG(disA(w)), so

mbG(w,A) ≡ (
disA(w) \ {w}) ∪ paG

(
disA(w)

)
= (

H \ {w}) ∪ T .

This then implies w ⊥⊥ A\(mbG(w)∪{w})|mbG(w) by the weak union property of
conditional independence. Hence, the ordered local Markov property is satisfied.

�

Proof of parameterization.

PROPOSITION A.13. If H ∈ [W ]G and D = disan(H)(H) ∩ W then [W ]G =
[W \ D]G ∪ [D]G .

PROOF. Note that since H ∈ [W ]G , H ⊆ disan(H)(H) ∩ W = D. The proof is
by induction on |W \ D|. If W \ D = ∅, the claim is trivial. Suppose H ∗ ∈ [W ]G
and H ∗ ∩ D �= ∅. Applying Lemma A.10 to H,H ∗ ∈ [W ]G we see that either
H ∗ = H or H ∗ ≺ H , so H ∗ ⊆ D. Thus, every head in [W ]G is either a subset
of D or W \ D. Consequently, there exists H † ∈ [W ]G with H † ⊆ W \ D; let
W † ≡ W \ H †. By Proposition 3.5, [W ]G = {H †} ∪ [W †]G . Since D ⊆ W † and
H ∈ [W †]G , the conclusion follows from the inductive hypothesis applied to W †.

�

PROOF OF LEMMA 5.4. It suffices to prove the result for A = V , from which
the general case follows by applying it to the subgraphs GA.

Since (xV ,B,W) is reducible, W \ B �= ∅; let H ∗ be a maximal head such that
both H ∗ ∈ [O ∪ W ]G and H ∗ ∩ (W \ B) �= ∅, further take w ∈ H ∗ ∩ (W \ B).
Let D∗ ≡ disan(H ∗)(H ∗) be the associated district within the ancestors of H ∗. By
construction, D∗ has ancestrally closed districts and is bidirected-connected.

Define yB ≡ 0, yV \B ≡ xV \B ; then

gxV
(B,W)

≡ (−1)|B| ∏
H∈[O∪W ]G

P(XH = yH |XT = xT )

= (−1)|B| ∏
H∈[(O∪W)\H ∗]G

P(XH = yH |XT = xT )

× {
P(Xw = 1,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)

+ P(Xw = 0,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)

− P(Xw = 0,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)
}
.
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The last term after distributing the product is just gxV
(B ∪{w},W), so to prove (3)

we need to show that

gxV

(
B,W \ {w})

≡ (−1)|B| ∏
H∈[(O∪W)\{w}]G

P(XH = yH |XT = xT )

= (−1)|B|
(6)

× ∏
H∈[(O∪W)\H ∗]G

P(XH = yH |XT = xT )

× {
P(Xw = 1,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)

+ P(Xw = 0,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)
}
.

Note that by the definition of reducibility, D∗ \ H ∗ ⊆ O ∪ (W \ B), so D∗ \
H ∗ does not contain any “flipped” vertices; hence, D∗ ∩ B ⊆ H ∗. Further,
D∗ ⊆ O ∪ W .

By Proposition A.13, applied to H ∗, D∗ and O ∪ W , [O ∪ W ]G = [(O ∪ W) \
D∗]G ∪ [D∗]G . Thus, every head H † ∈ [O ∪ W ]G which contains a vertex in
D∗ \ H ∗ is such that H † ⊆ D∗. Hence, by applying Lemma A.10 to D∗, it fol-
lows that H † ≺ H ∗ [since H † ⊆ D∗ \ H ∗ ⊆ anG(H ∗) rules out H ∗ ≺ H †, while
H ∗,H † ⊆ D∗ rules out (iii)]. Thus, D∗ is made up of H ∗ and the heads which
precede it under ≺, and hence also under ≺∗.

Suppose we replace [O ∪ W ]G with [(O ∪ W) \ S]G for some S ⊆ H ∗; from
Lemma 3.4, it is clear that only heads which precede H ∗ under ≺∗ will be affected,
so in particular:

[
(O ∪ W) \ H ∗]

G = [
(O ∪ W) \ D∗]

G ∪ [
D∗ \ H ∗]

G and
(7) [

(O ∪ W) \ {w}]G = [
(O ∪ W) \ D∗]

G ∪ [
D∗ \ {w}]G .

It follows that to establish (6) it suffices to show:
∏

H∈[D∗\{w}]G
P(XH = yH |XT = xT )

= {
P(Xw = 0,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)

(8)
+ P(Xw = 1,XH ∗\{w} = yH ∗\{w}|XT ∗ = xT ∗)

}

× ∏
H∈[D∗\H ∗]G

P(XH = yH |XT = xT ).
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Let zD∗\{w} ≡ yD∗\{w} and zV \D∗ ≡ xV \D∗ (with zw remaining free). Since D∗ ∩
B ⊆ H ∗, applying Lemma A.12 to D∗ and w using the values of zV gives

P(Xw = zw|X(H ∗∪T ∗)\{w} = z(H ∗∪T ∗)\{w})
∏

H∈[D∗\{w}]G
P(XH = zH |XT = zT )

= ∏
H∈[D∗]G

P(XH = zH |XT = zT )

= P(XH ∗ = zH ∗ |XT ∗ = zT ∗)
∏

H∈[D∗\H ∗]G
P(XH = zH |XT = zT ).

Summing both sides of the equation over zw yields (8). Thus, (3) holds.
It remains to demonstrate that if B ∪{w} �= W , the triples (xV ,B ∪{w},W) and

(xV ,B,W \ {w}) are also reducible.
For the first, consider H ∈ [O ∪ W ]G with H ∩ (W \ (B ∪ {w})) �= ∅. Let

D ≡ disan(H)(H) ⊆ O ∪ W ; by construction D has ancestrally closed districts.
Since H ∩ (W \B) ⊇ H ∩ (W \ (B ∪{w})) �= ∅, by the reducibility of (xV ,B,W),
D \ H ⊆ O ∪ (W \ B). It is sufficient to show that w /∈ D \ H . Since by Proposi-
tion A.13, [O ∪ W ]G = [(O ∪ W) \ D]G ∪ [D]G , if w ∈ D ∩ H ∗ then H ∗ ∈ [D]G .
If H = H ∗, then w /∈ D \ H . If H �= H ∗, then applying Lemma A.10 we have
H ∗ ≺ H (by the same argument as above). But this contradicts that H ∗ is a maxi-
mal head in [O ∪ W ]G such that H ∗ ∩ (W \ B) �= ∅. Hence, (xV ,B ∪ {w},W) is
reducible.

We now consider (xV ,B,W \ {w}). Let H ∈ [O ∪ (W \ {w})], with H ∩ ((W \
{w}) \ B) �=∅. Again, let D ≡ disan(H)(H).

First suppose H ∈ [(O ∪ W) \ D∗]G then, by (7), H ∈ [O ∪ W ]G . We showed
above that if H ∈ [O ∪ W ]G and H ∩ (W \ (B ∪ {w})) �= ∅ then D \ H ⊆ (W \
(B ∪ {w})). This is sufficient since W \ (B ∪ {w}) = (W \ {w}) \ B .

If H /∈ [(O ∪W) \D∗]G then (7) implies H ∈ [D∗ \ {w}]G . Lemma A.6 applied
to D∗ implies that D∗ \ {w} has ancestrally closed districts, so D ⊆ D∗ \ {w}.
Since D ⊆ D∗, if a vertex v is not barren in D then v /∈ barrenG(D∗) = H ∗. Hence,
H ∗ ∩ D ⊆ barrenG(D) = H . Thus,

D \ H ⊆ D \ H ∗ ⊆ D∗ \ H ∗ ⊆ O ∪ (W \ B),

where the third inclusion follows from the reducibility of (xV ,B,W) and the
choice of H ∗. But since D ⊆ D∗ \ {w}, we have D \ H ⊆ O ∪ ((W \ {w}) \ B) as
required. �
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