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ORACALLY EFFICIENT ESTIMATION OF AUTOREGRESSIVE
ERROR DISTRIBUTION WITH SIMULTANEOUS

CONFIDENCE BAND1
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and Soochow University and Michigan State University

We propose kernel estimator for the distribution function of unobserved
errors in autoregressive time series, based on residuals computed by estimat-
ing the autoregressive coefficients with the Yule–Walker method. Under mild
assumptions, we establish oracle efficiency of the proposed estimator, that
is, it is asymptotically as efficient as the kernel estimator of the distribution
function based on the unobserved error sequence itself. Applying the result
of Wang, Cheng and Yang [J. Nonparametr. Stat. 25 (2013) 395–407], the
proposed estimator is also asymptotically indistinguishable from the empir-
ical distribution function based on the unobserved errors. A smooth simul-
taneous confidence band (SCB) is then constructed based on the proposed
smooth distribution estimator and Kolmogorov distribution. Simulation ex-
amples support the asymptotic theory.

1. Introduction. Consider an AR(p) process {Xt }∞t=−∞ that satisfies

Xt = φ1Xt−1 + · · · + φpXt−p + Zt

in which {Zt }∞t=−∞ are i.i.d. noises, called errors, EZt = 0,EZ2
t = σ 2, with prob-

ability density function (p.d.f.) f (z) and cumulative distribution function (c.d.f.)
F(z) = ∫ z

−∞ f (u)du. For a positive integer k, the k-step ahead linear predictor

X̂n+k of Xn+k , based on a length n+p realization {Xt }nt=1−p up to time n, is well
studied in Chapters 5 and 9 of [7]. While efficient methods are given to compute
X̂n+k and its mean squared error, prediction intervals are unavailable unless the
process is Gaussian; see Section 5.4 of [7].

If F(z) were known, all possible sample paths of the future observation Xn+1
could be generated, and P [F−1(α1) ≤ Xn+1 − X̂n+1 ≤ F−1(α2)] = α2 − α1 for
0 < α1 < α2 < 1. An efficient estimator F̂ (z) of F(z) can be used to construct a
prediction interval [X̂n+1 + F̂−1(α1), X̂n+1 + F̂−1(α2)] for Xn+1, with confidence
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level α2 − α1. It is also pointed out in [3] that knowledge of the c.d.f. F(z) can
improve related bootstrapping procedures.

While asymptotically normal estimators of the error density f (z) have been
studied in [1, 15] and [9], consistent estimator for error distribution F(z) does
not exist for the AR(p) model. On the other hand, such estimator has been pro-
posed for nonparametric regression in [8], and uniformly

√
n-consistent estimator

of error distribution for the nonparametric AR(1)–ARCH(1) model in [21] and
nonparametric regression model in [10] and [14]. It has been used for symmetry
testing in parametric nonlinear time series by [3], and in nonparametric regression
by [19], as well as a test of parameter constancy in [2]. Other applications of er-
ror distribution estimation include functional estimation: [17]; testing parametric
form of distribution and variance functions: [20] and [11]; testing for change-point
in distribution: [22] and testing for additivity in regression: [23] and [18].

Assume for the sake of discussion that a sequence {Zt }nt=1 of the errors were
actually observed, [12, 16, 29] and more recently [27] propose a kernel distribution
estimator (KDE) of F(z) as

F̃ (z) =
∫ z

−∞
f̃ (u) du = n−1

n∑
t=1

∫ z

−∞
Kh(u − Zt) du, z ∈R(1.1)

in which K is a kernel function, with Kh(u) = h−1K(u/h), and h = hn > 0 is
called bandwidth. It has been established in [12] for Lipschitz continuous F , and
for Hölder continuous F in [27] that F̃ (z) is uniformly close to the empirical c.d.f.
Fn(z) at a rate of op(n−1/2), thus inheriting all asymptotic properties of the latter.
The general kernel smoothing results based on empirical process in [26] require
that F ∈ C(2)(R), thus excluding distributions such as the double exponential dis-
tribution in our simulation study.

Unfortunately, F̃ (z) is infeasible, as one observes only {Xt }nt=1−p , not {Zt }nt=1.

Denote by φ̂ the Yule–Walker estimator of φ = (φ1, . . . , φp)T , then

φ̂ = �̂
−1
p γ̂ p, �̂p = {

γ̂ (i − j)
}p
i,j=1, γ̂ p = (

γ̂ (1), . . . , γ̂ (p)
)T

,
(1.2)

γ̂ (l) = n−1
n−|l|∑

i=1−p

XiXi+l , l = 0,±1, . . . ,±p.

We propose to estimate F(z) by a two-step plug-in estimator

F̂ (z) =
∫ z

−∞
f̂ (u) du = n−1

n∑
t=1

∫ z

−∞
Kh(u − Ẑt ) du, z ∈R(1.3)

in which residuals Ẑt = Xt − φ̂1Xt−1 − · · · − φ̂pXt−p,1 ≤ t ≤ n.
Denote the empirical c.d.f.’s based respectively on Ẑt and Zt as

F̂n(z) = n−1
n∑

t=1

I {Ẑt ≤ z}, Fn(z) = n−1
n∑

t=1

I {Zt ≤ z}.(1.4)
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While F̂n(z) is used for estimating F(z), for example, in [2, 3, 8, 10, 11, 14, 17–
23], it is consistently shown to be less efficient than Fn(z), as one referee observes;
see also Section 4.1. Our unique innovation is proving that the smooth estimator
F̂ (z) based on residuals is asymptotically equivalent to, not less efficient than, the
smooth estimator F̃ (z) based on errors. As the Associate Editor points out, this
result depends crucially on the independence of Zt with Xt−r for r ≥ 1, ensured
by the causal representation of the Xt (proof of Lemma A.4). We have also learned
from a referee that our result is related to the orthogonality between innovation
density f (z) and coefficient parameter φ; see, for example, [13].

Oracle efficiency of F̂ (z) has powerful implications, as simultaneous confi-
dence band (SCB) can be constructed for F(z) over the entire real line, a natu-
ral tool for statistical inference on the global shape of F(z), which does not exist
in previous works. Working with a smooth estimator based on residuals can be
adopted to other settings such as nonparametric regression/autoregression, additive
regression, functional autoregression (FAR), etc., the present paper thus serves as
a first step in this direction.

Denote the distance between distribution functions as

d(F1,F2) = ‖F1 − F2‖∞ = sup
z∈R

∣∣F1(z) − F2(z)
∣∣,(1.5)

Dn(Fn) = d(Fn,F ), Dn(F̂ ) = d(F̂ ,F ), Dn(F̃ ) = d(F̃ ,F ).(1.6)

According to [27], d(Fn, F̃ ) = op(n−1/2), while it is well known that

P
{√

nDn(Fn) ≤ Q
} → L(Q) as n → ∞,(1.7)

where L(Q) is the classic Kolmogorov distribution function, defined as

L(Q) ≡ 1 − 2
∞∑

j=1

(−1)j−1 exp
(−2j2Q2)

, Q > 0.(1.8)

Table 1 displays the percentiles of Dn(Fn) (n ≥ 50), L−1(1 − α)/
√

n, critical
values for the two-sided Kolmogorov–Smirnov test.

Theorem 2 entails that d(F̂ , F̃ ) = op(n−1/2), which together with [27], lead to
|√n{Dn(F̂ )−Dn(Fn)}| ≤ √

n{d(F̂ , F̃ )+ d(Fn, F̃ )} = op(1). Applying Slutzky’s
theorem produces a smooth asymptotic SCB by replacing

√
nDn(Fn) in (1.7) with√

nDn(F̂ ).

TABLE 1
Critical values of Kolmogorov–Smirnov test

n α = 0.01 α = 0.05 α = 0.1 α = 0.2

≥ 50 1.63/
√

n 1.36/
√

n 1.22/
√

n 1.07/
√

n
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The rest of the paper is organized as follows. Main theoretical results on uniform
asymptotics are given in Section 2. Data-driven implementation of procedure is
described in Section 3, with simulation results presented in Section 4. Technical
proofs are in the Appendix and the supplemental article [28].

2. Asymptotic results. In this section, we prove uniform closeness of estima-
tors F̂ (z) and F̃ (z) under Hölder continuity assumption on F . For integer ν ≥ 0
and β ∈ (0,1], denote by C(ν,β)(R) the space of functions whose νth derivative
satisfies Hölder condition of order β ,

C(ν,β)(R) =
{
φ :R →R

∣∣∣ sup
x,y∈R

|φ(ν)(x) − φ(ν)(y)|
|x − y|β < +∞

}
.(2.1)

We list some basic assumptions, where it is assumed that β ∈ (1/3,1].
(C1) The cumulative distribution function F ∈ C(1,β)(R), 0 < f (z) ≤ Cf ,∀z ∈

R, where Cf is a positive constant.
(C2) The process {Xt }∞t=−∞ is strictly stationary with {Zt }∞t=−∞ ∼ IID(0, σ 2).

{Xt }∞t=−∞ is causal, that is, inf|z|≤1 |1 − φ1z − · · · − φpzp| > 0.
(C3) The univariate kernel function K(·) is a symmetric probability density,

supported on [−1,1] and K ∈ C(2)(R).
(C4) As n → ∞, n−3/8 � h = hn � n−{2(1+β)}−1

.
(C5) E|Zt |6+3η < ∞, for some η ∈ (6/5,+∞).

Conditions (C2), (C5) are typical for time series. Conditions (C1), (C3), (C4)
are similar to those in [27]. In particular, condition (C4) on bandwidth h is rather
different from those for constructing SCB in [4].

The infinite moving average expansion Xt = ∑∞
j=0 ψjZt−j , t ∈ Z and equa-

tion (3.3.6) of [7] ensure that there exist Cψ > 0,0 < ρψ < 1, such that |ψj | ≤
Cψρ

j
ψ, j ∈N. In particular,

{
E|Xt |6+3η}1/(6+3η) ≤

∞∑
j=0

|ψj |{E|Zt−j |6+3η}1/(6+3η)
< ∞.

In addition, the infinite moving average expansion and [24] ensure that there
exist positive constants Cρ and ρ ∈ (0,1) such that α(k) ≤ Cρρk holds for all k,
where the kth order strong mixing coefficient of the strictly stationary process
{Xs}∞s=−∞ is defined as

α(k) = sup
B∈σ {Xs,s≤t},C∈σ {Xs,s≥t+k}

∣∣P(B ∩ C) − P(B)P (C)
∣∣, k ≥ 1.

Our first result concerns asymptotic uniform oracle efficiency of F̂ given in (1.3)
over intervals that grow to infinity with sample size.
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THEOREM 1. Under conditions (C1)–(C5), the oracle estimator F̂ (z) is
asymptotically as efficient as the infeasible estimator F̃ (z) over z ∈ [−an, an]
where the sequence an > 0, an → ∞, an ≤ C1n

C2 for some C1,C2 > 0, that is,
as n → ∞, supz∈[−an,an] |F̂ (z) − F̃ (z)| = op(n−1/2).

The above oracle efficiency of F̂ extends to entire R provided that the extreme
value of {|Xt |}nt=1 has a mild growth bound. Denote

Mn = max
(|X1|, |X2|, . . . , |Xn|)(2.2)

(C6) There exists some γ > 0, such that Mn = Op(nγ ).

Condition (C6) is satisfied, for instance, if the innovations {Zt }∞t=−∞ have ex-
ponential tails. Denote by Z a random variable with the same distribution as the
Zt ’s, the following assumptions are as in A.1 and B.3 of [25].

(C5′) There exist constants σz > 0 and λ > 0, such that one of the following
conditions holds: (1) 0 < λ ≤ 1 and for constants Cz > 0, cz ∈ R,

P
(|σzZ| > z

) ∼ Czz
cz exp

(−zλ)
, z → +∞;(2.3)

(2) λ > 1 and for constants Cz,+,Cz,− > 0, cz,+, cz,− ∈ R,

σ−1
z f

(
σ−1

z z
) ∼ Cz,+zcz,+ exp

(−zλ)
, z → +∞,

σ−1
z f

(
σ−1

z z
) ∼ Cz,−(−z)cz,− exp

(−(−z)λ
)
, z → −∞.

For D(z) = σ−1
z f (σ−1

z z) exp(|z|λ) and its derivative D′(z),
D(z) ∼ Cz,+zcz,+, z → +∞, D(z) ∼ Cz,−(−z)cz,−, z → −∞,

lim sup
|z|→∞

∣∣zD′(z)/D(z)
∣∣ < ∞.

Clearly the exponential tail condition (C5′) implies condition (C5), while the
next lemma establishes that it also entails condition (C6).

LEMMA 1. Conditions (C2), (C5′) imply Mn = Op((logn)1/λ).

The next Theorem 2 extends Theorem 1 with the additional condition (C6) in
general, or (C5′) in particular. As pointed out by the associate editor, future works
may lead to weaker conditions than (C5′) that ensure (C6), aided by more pow-
erful extreme value results than in [25]. We conjecture that Theorem 2 holds for
functional autoregression model (FAR) as well.

THEOREM 2. Under conditions (C1)–(C6), the oracle estimator F̂ (z) is
asymptotically as efficient as the infeasible estimator F̃ (z) over z ∈ R, that is,
as n → ∞, d(F̂ , F̃ ) = supz∈R |F̂ (z) − F̃ (z)| = op(n−1/2). Especially, the above
holds under conditions (C1)–(C4), (C5′).
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By [5], as n → ∞,
√

n(Fn(z)−F(z)) →d B(F (z)), where B denotes the Brow-
nian bridge. It is established in [27] that d(Fn, F̃ ) = op(n−1/2), and hence Theo-
rem 2 provides that d(F̂ ,Fn) = op(n−1/2), and the following.

COROLLARY 1. Under the conditions of Theorem 2, as n → ∞,
√

n
(
F̂ (z) − F(z)

) →d B
(
F(z)

)
.

For any α ∈ (0,1), limn→∞ P {F(z) ∈ F̂ (z) ± L1−α/
√

n, z ∈ R} = 1 − α, and a
smooth SCB for F(z) is[

max
(
0, F̂ (z) − L1−α/

√
n
)
,min

(
1, F̂ (z) + L1−α/

√
n
)]

, z ∈R.(2.4)

3. Implementation. We now describe steps to construct the smooth SCB
in (2.4). For n ≥ 50, the following critical values from Table 1 are used:

L1−0.01 = 1.63, L1−0.05 = 1.36, L1−0.1 = 1.22, L1−0.2 = 1.07.

To compute F̂ (z) in (1.3), we use the quartic kernel K(u) = 15(1−u2)2I {|u| ≤
1}/16 and a data-driven bandwidth h = IQR×n−1/3, with IQR denoting the sam-
ple inter-quartile range of {Ẑt }nt=1. This bandwidth satisfies condition (C4) as long
as the Hölder order β > 1/2. It is also similar to the robust and simple one in [27].

4. Simulation examples. In this section, we compare the performance of the
estimator F̂ with the benchmark infeasible estimator F̃ .

For sample sizes n = 50,100,500,1000, a total of 1000 samples {Zt }nt=1 are
generated, from the standard normal distribution and the standard double expo-
nential distribution, both of which ∈ C(1,1)(R),

F(z) =
∫ z

−∞
(2π)−1/2e−u2/2 du or F(z) =

{
1 − 1/2 exp(−z), z ≥ 0,

1/2 exp(z), z < 0,

hence one would expect the data-driven bandwidth described in Section 3 to per-
form well. We present results only for case 1: standard normal distribution with the
AR(1) model, and case 2: standard double exponential distribution with the AR(2)

model. Other combinations of error distributions and AR models have yielded sim-
ilar results which are omitted to save space.

4.1. Global errors. In this subsection, we examine the global errors of F̃

and F̂ , measured by the maximal deviations Dn(F̂ ),Dn(F̃ ) defined in (1.6), and
the Mean Integrated Squared Error (MISE) defined as

MISE(F̂ ) = E
∫ {

F̂ (z) − F(z)
}2

dz,

(4.1)
MISE(F̃ ) = E

∫ {
F̃ (z) − F(z)

}2
dz.
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TABLE 2
Comparing F̂ and F̃ : standard normal distribution errors in AR(1)

φ n Dn(F̂ ) Dn(F̂ )/Dn(F̃ ) MISE(F̂ ) MISE(F̂ )/MISE(F̃ )

−0.8 50 0.0857 1.0012 0.0028 0.9881
100 0.0649 1.0034 0.0015 0.9927
500 0.0306 0.9966 0.0003 0.9983

1000 0.0228 1.0022 0.0002 1.0012

−0.2 50 0.0865 1.0105 0.0029 1.0213
100 0.0646 0.9985 0.0015 0.9927
500 0.0307 0.9997 0.0003 1.0020

1000 0.0228 1.0027 0.0002 1.0048

0.2 50 0.0879 1.0266 0.0030 1.0769
100 0.0648 1.0016 0.0015 1.0112
500 0.0308 1.0001 0.0003 1.0052

1000 0.0228 1.0016 0.0002 1.0071

0.8 50 0.0977 1.1418 0.0046 1.6205
100 0.0688 1.0631 0.0019 1.2780
500 0.0311 1.0122 0.0003 1.0615

1000 0.0230 1.0094 0.0002 1.0333

Of interests are the means D̄n(F̂ ) and D̄n(F̃ ) of Dn(F̂ ) and Dn(F̃ ) over the
1000 replications, and similar means for MISE(F̂ ) and MISE(F̃ ) for case 1.
Table 2 contains these values, while Figure 1 is created based on the ra-
tios Dn(F̂ )/Dn(F̃ ) with four sets of coefficients. Both show that as n in-
creases, both deterministic ratios D̄n(F̂ )/D̄n(F̃ ) and MISE(F̂ )/MISE(F̃ ) →
1, while the random ratio Dn(F̂ )/Dn(F̃ ) →p 1, all consistent with Theo-
rem 2.

Table 4 in Section 2 of the supplemental article [28] contains D̄n(F̂ ),

D̄n(F̂n),MISE(F̂ ),MISE(F̂n) with F̂n defined in (1.4). Clearly, F̂ outperforms
F̂n as we have commented on page 3.

4.2. Smooth SCBs. In this subsection, we compare the SCBs based on
smooth F̂ , and the infeasible F̃ and Fn for case 2, and 1 − α = 0.99,0.95,0.90,

0.80. Table 3 contains the coverage frequencies over 1000 replications of the
SCBs. The smooth SCB is always conservative, the infeasible one more than the
data-based one in all cases except a few. The nonsmooth SCB based on Fn has
coverage frequencies closest to the nominal levels.

Figure 2 depicts the true F (thick), the infeasible F̃ (solid), the data-based
F̂ with its 90% SCB (solid) and Fn (dashed), for a data of size n = 100.
The three estimators are very close, with F̂ practically distinguishable from F̃ ,
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FIG. 1. Boxplot of the ratios Dn(F̂ )/Dn(F̃ ) for AR(1) model with standard normal errors. The
AR coefficients of (a)–(d) are −0.8, −0.2, 0.2, 0.8, respectively.

consistent with our asymptotic theory. Similar patterns have been observed for
larger n.

APPENDIX: PROOFS

A.1. Preliminaries. In this appendix, C (or c) denote any positive constants,
Up (or up) sequences of random variables uniformly O (or o) of certain order and
by Oa.s. (or oa.s.) almost surely O (or o), etc.

The next two lemmas are used in the proof of Theorem 1.
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TABLE 3
Coverage frequencies for AR(2) model with double exponential errors: left of parentheses-F̂ ; right

of parentheses-F̃ ; inside the parentheses-Fn

φ n α = 0.01 α = 0.05 α = 0.1 α = 0.2

50 0.998 (0.995) 1.000 0.992 (0.973) 0.991 0.976 (0.929) 0.980 0.944 (0.858) 0.950
(−0.8, 100 0.998 (0.992) 0.997 0.987 (0.963) 0.990 0.972 (0.924) 0.977 0.928 (0.858) 0.936
−0.4) 500 1.000 (0.997) 1.000 0.987 (0.965) 0.984 0.969 (0.927) 0.965 0.917 (0.830) 0.923

1000 0.995 (0.992) 0.995 0.985 (0.951) 0.982 0.954 (0.904) 0.949 0.889 (0.814) 0.901

50 0.994 (0.995) 1.000 0.981 (0.973) 0.991 0.956 (0.929) 0.980 0.928 (0.858) 0.950
(0.8, 100 0.997 (0.992) 0.997 0.983 (0.963) 0.990 0.961 (0.924) 0.977 0.923 (0.858) 0.936
−0.4) 500 1.000 (0.997) 1.000 0.982 (0.965) 0.984 0.966 (0.927) 0.965 0.914 (0.830) 0.923

1000 0.995 (0.992) 0.995 0.981 (0.951) 0.982 0.950 (0.904) 0.949 0.888 (0.814) 0.901

50 0.993 (0.995) 1.000 0.984 (0.973) 0.991 0.965 (0.929) 0.980 0.930 (0.858) 0.950
(0.2, 100 0.998 (0.992) 0.997 0.983 (0.963) 0.990 0.961 (0.924) 0.977 0.915 (0.858) 0.936
−0.1) 500 0.999 (0.997) 1.000 0.986 (0.965) 0.984 0.966 (0.927) 0.965 0.914 (0.830) 0.923

1000 0.995 (0.992) 0.995 0.982 (0.951) 0.982 0.952 (0.904) 0.949 0.896 (0.814) 0.901

50 0.991 (0.995) 1.000 0.979 (0.973) 0.991 0.958 (0.929) 0.980 0.919 (0.858) 0.950
(0.2, 100 0.997 (0.992) 0.997 0.978 (0.963) 0.990 0.951 (0.924) 0.977 0.915 (0.858) 0.936

0.1) 500 0.999 (0.997) 1.000 0.985 (0.965) 0.984 0.964 (0.927) 0.965 0.910 (0.830) 0.923
1000 0.995 (0.992) 0.995 0.983 (0.951) 0.982 0.951 (0.904) 0.949 0.894 (0.814) 0.901

LEMMA A.1 ([6], Theorem 1.4). Let {ξt } be a zero mean real valued pro-
cess. Suppose that there exists c > 0 such that for i = 1, . . . , n, k ≥ 3, E|ξi |k ≤
ck−2k!Eξ2

i < +∞, mr = max1≤i≤N ‖ξi‖r , r ≥ 2. Then for each n > 1, integer
q ∈ [1, n/2], each εn > 0 and k ≥ 3,

P

{∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣ > nεn

}

≤ a1 exp
(
− qε2

n

25m2
2 + 5cεn

)
+ a2(k)α

([
n

q + 1

])2k/(2k+1)

,

where a1 = 2n
q

+ 2(1 + ε2
n

25m2
2+5cεn

), a2(k) = 11n(1 + 5m
2k/(2k+1)
k

εn
).

LEMMA A.2 ([7], Theorem 8.1.1). The Yule–Walker estimator φ̂ = (φ̂1, . . . ,

φ̂p)T of φ = (φ1, . . . , φp)T satisfies n1/2(φ̂ − φ) → N(0, σ 2�−1
p ), where �p is

the covariance matrix [γ (i − j)]pi,j=1 with γ (h) = cov(Xt ,Xt+h) for the causal
AR(p) process {Xt }.
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FIG. 2. Plots of the true c.d.f. F (thick), the infeasible estimator F̃ (solid), the data-based estimator
F̂ together with its smooth 90% SCB (solid) and Fn (dashed) for AR(2) model with n = 100 standard
double exponential errors. The AR coefficients of (a)–(d) are (−0.8,−0.4), (0.8,−0.4), (0.2,−0.1),
(0.2,0.1), respectively.

A.2. Proof of Theorem 1.

LEMMA A.3. Under conditions (C4) and (C5), there exists an a > 0, such
that the following are fulfilled for the sequence {Dn} = {na}

∞∑
n=1

D−(2+η)
n < ∞, D−(1+η)

n n1/2h1/2 → 0,

(A.1)
Dnn

−1/2h−1/2(logn) → 0.
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LEMMA A.4. Under conditions (C1)–(C5), for any 1 ≤ r , s, v ≤ p,

sup
|z|≤an

∣∣∣∣∣n−1
n∑

t=1

Kh(z − Zt)Xt−r

∣∣∣∣∣ = Oa.s.
(
n−1/2h−1/2 logn

)
.(A.2)

LEMMA A.5. Under conditions (C1)–(C5), for any 1 ≤ r, s, v ≤ p,

sup
|z|≤an

∣∣∣∣∣n−1
n∑

t=1

K ′
h(z − Zt)Xt−rXt−s

∣∣∣∣∣ = Op(1),(A.3)

sup
|z|≤an

∣∣∣∣∣n−1
n∑

t=1

K ′′
h(z − Zt)Xt−rXt−sXt−v

∣∣∣∣∣ = Op(1).(A.4)

LEMMA A.6. Under conditions (C1)–(C5), as n → ∞,

n−1
n∑

t=1

|Xt−rXt−sXt−vXt−w| = Op(1), 1 ≤ r, s, v,w ≤ p.

The proofs of Lemmas A.3–A.6 are in the supplemental article [28].

PROOF OF THEOREM 1. Recall the definition of Ẑt and Zt in the Introduction;
one has

F̂ (z) − F̃ (z) = n−1
n∑

t=1

∫ (z−Ẑt )/h

(z−Zt )/h
K(v) dv

(A.5)

= n−1
n∑

t=1

{
G

(
z − Ẑt

h

)
− G

(
z − Zt

h

)}
,

where G(z) = ∫ z
−∞ K(u)du. The right-hand side of equation (A.5) is

1

n

n∑
t=1

{
G′

(
z − Zt

h

)
Ẑt − Zt

h
+ 1

2
G′′

(
z − Zt

h

)(
Ẑt − Zt

h

)2

+ 1

6
G(3)

(
z − Zt

h

)(
Ẑt − Zt

h

)3

+ Rt

}
.

Therefore, F̂ (z) − F̃ (z) = I1 + I2 + I3 + I4, where

I1 = n−1
n∑

t=1

K

(
z − Zt

h

)
Ẑt − Zt

h
,

I2 = (2n)−1
n∑

t=1

K ′
(

z − Zt

h

)(
Ẑt − Zt

h

)2

,(A.6)

I3 = (6n)−1
n∑

t=1

K ′′
(

z − Zt

h

)(
Ẑt − Zt

h

)3

, I4 = n−1
n∑

t=1

Rt .
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We now bound the four parts in (A.6).
Combining (A.6), Lemmas A.2 and A.4, for 1 ≤ r ≤ p,

sup
|z|≤an

|I1| = sup
|z|≤an

n−1

∣∣∣∣∣
n∑

t=1

K
{
(z − Zt)/h

}{
(Ẑt − Zt)/h

}∣∣∣∣∣
(A.7)

= Op

(
n−1/2)

Oa.s.
(
n−1/2h−1/2 logn

) = op

(
n−1/2)

.

From (A.6), by applying Lemmas A.2 and A.5, for 1 ≤ r, s, v ≤ p,

sup
|z|≤an

|I2| = op

(
n−1/2)

, sup
|z|≤an

|I3| = op

(
n−1/2)

.(A.8)

According to (A.6), one has |I4| ≤ n−1 ∑n
t=1 C|(Ẑt − Zt)/h|4. Thus,

sup
z∈R

|I4| ≤ C sup
1≤t≤n

∣∣(Ẑt − Zt)/h
∣∣4

≤ h−4p4(
max |φr − φ̂r |)4 supn−1

n∑
t=1

|Xt−rXt−sXt−vXt−w|(A.9)

= Op

(
n−2h−4) × Op(1) = op

(
n−1/2)

, 1 ≤ r, s, v,w ≤ p,

which holds by using Lemmas A.2 and A.6 simultaneously.
Since sup|z|≤an

|F̂ (z) − F̃ (z)| ≤ sup|z|≤an
(|I1| + |I2| + |I3| + |I4|), Theorem 1

follows by (A.7), (A.8) and (A.9) automatically. �

A.3. Proof of Lemma 1. Condition (C2) provides the infinite moving aver-
age expansion Xt = ∑∞

j=0 ψjZt−j , t ∈ Z. Define X̃t = ∑∞
j=0 |ψj ||Zt−j |, so that

|Xt | ≤ X̃t , t ∈ Z. It is obvious that

Mn ≤ max(X̃1, X̃2, . . . , X̃n).(A.10)

If 0 < λ ≤ 1, then Cψρ
j
ψ = O(j−θ ), for some θ > 1, j ∈ N and |ψj | ≥ 0

according to condition (C5′), thus condition A.1 of [25] is fulfilled, so Theo-
rems 7.4 and 8.5 of [25] imply that max(X̃1, X̃2, . . . , X̃n) = Op((logn)1/λ). Thus,
Mn = Op((logn)1/λ) by (A.10).

If λ > 1, then Cψρ
j
ψ = O(j−θ ), for some θ > max{1,2(1 − 1/λ)−1}, j ∈ N ac-

cording to condition (C5′), thus condition B.3 of [25] is fulfilled. Theorem 6.1
in [25] implies that max(X1, . . . ,Xn,−X1, . . . ,−Xn) = Op((logn)1/λ), hence
Mn = Op((logn)1/λ).

Summarizing both scenarios, one concludes that under conditions (C2), (C5′),
Mn = Op((logn)1/λ), which completes the proof.
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A.4. Proof of Theorem 2. As in Theorem 1, equation (A.5) implies

sup
z∈R

∣∣F̂ (z) − F̃ (z)
∣∣ ≤ sup

z∈R

(|I1| + |I2| + |I3| + |I4|),
where the four parts at the right-hand side are different from Theorem 1 except
sup

z∈R |I4|. So it remains to give the proof of parts I1, I2 and I3 under conditions
(C1)–(C6). The proof of next lemma is in the supplemental article [28], where
constants η and γ are given in conditions (C5) and (C6).

LEMMA A.7. Under conditions (C1)–(C6), for any 1 ≤ r, s, v ≤ p,an = h +
nδ , where δ > (7/4 + 6γ )(6 + 3η)−1

sup
|z|>an

∣∣∣∣∣n−1
n∑

t=1

Kh(z − Zt)Xt−r

∣∣∣∣∣ = Op

(
n−1)

,(A.11)

sup
|z|>an

n−1

∣∣∣∣∣
n∑

t=1

K ′
h(z − Zt)Xt−rXt−s

∣∣∣∣∣ = Op

(
n−1)

,(A.12)

sup
|z|>an

n−1

∣∣∣∣∣
n∑

t=1

K ′′
h(z − Zt)Xt−rXt−sXt−v

∣∣∣∣∣ = Op

(
n−1)

.(A.13)

Theorem 2 is proved by combining Lemmas A.4, A.5, A.6 and A.7.
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SUPPLEMENTARY MATERIAL

Supplement to “Oracally efficient estimation of autoregressive error distri-
bution with simultaneous confidence band” (DOI: 10.1214/13-AOS1197SUPP;
.pdf). This supplement contains additional technical proofs and some supporting
numerical results.
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