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DISCUSSION: “A SIGNIFICANCE TEST FOR THE LASSO”1

BY JINCHI LV AND ZEMIN ZHENG

University of Southern California

Professors Lockhart, Taylor, Tibshirani and Tibshirani are to be congratulated
for their innovative and valuable contribution to the important and timely prob-
lem of testing the significance of covariates for the Lasso. Since the invention of
the Lasso in Tibshirani (1996) for variable selection, there has been a huge grow-
ing literature devoted to its theory and implementation, its extensions to various
model settings and different variants and developing more general regularization
methods. Most of existing studies have focused on the prediction, estimation and
variable selection properties ranging from consistency in prediction and estima-
tion to consistency in model selection in terms of recovery of the true underlying
sparse model. The problem of deriving the asymptotic distributions for regularized
estimators, as the global or computable solutions, in high dimensions is relatively
less well studied.

How to develop efficient significance testing procedures for the regularization
methods is particularly important since in real applications one would like to as-
sess the significance of selected covariates with their p-values. Such p-values are
also crucial for multiple comparisons in testing the significance of a large num-
ber of covariates simultaneously. In contrast to the use of some resampling or data
splitting techniques for evaluating the significance, in the present paper Lockhart,
Taylor, Tibshirani and Tibshirani propose a novel powerful yet simple covariance
test statistic Tk for testing the significance of the covariate Xj that enters the model
at the kth step of the piecewise linear Lasso solution path in the linear regression
model setting. Such a test statistic is shown to have an exact Exp(1) asymptotic
null distribution in the case of orthonormal design matrix and the case of k = 1
(i.e., the global null with zero true regression coefficient vector) for general design
matrix. In the general case, the Exp(1) distribution provides a conservative asymp-
totic null distribution. The significance test for the Lasso proposed in the paper is
elegant thanks to its simplicity and theoretical guarantees in high dimensions.

We appreciate the opportunity to comment on several aspects of this paper. In
particular, our discussion will focus on four issues: (1) alternative test statistics,
(2) the event B and generalized irrepresentable conditions, (3) model misspecifi-
cation, and (4) more general regularization methods.
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1. Alternative test statistics. The covariance test statistic Tk associated with
covariate Xj is defined as the covariance between the response vector y and the net
contribution of covariate Xj toward the mean vector Xβ at the (k +1)th step of the
Lasso solution path with regularization parameter λ = λk+1, scaled by the inverse
of the error variance σ 2. Since the Lasso solution is gauged by the regularization
parameter λ, a key ingredient in the definition of Tk is a refitting of the Lasso on
the previous support at the kth step right before the inclusion of covariate Xj with
the reduced regularization parameter λ = λk+1. This alignment of the regulariza-
tion parameter yields a more accurate account of the contribution of covariate Xj

conditional on previously selected covariates before the next step occurs (either an
addition or a deletion of a covariate).

In view of the geometrical representation of the Lasso solution path, the choice
of a common regularization parameter amounts to that of a common correlation
in magnitude between selected covariates and the residual vector, provided that all
covariate vectors are aligned to a common scale. In this sense, the covariance test
statistic Tk bears some similarity to the conventional chi-squared test statistic, in
terms of the reduction of the residual sum of squares, for evaluating the signif-
icance of the contribution of a newly added covariate. A main difference is that
the above correlation is constrained as a fixed number zero in the latter, while it is
adaptively determined at the (k + 1)th step in the Lasso.

From the estimation point of view, it seems appealing to impose a smaller reg-
ularization to reduce the bias issue incurred by shrinkage. The bias issue can also
affect the significance of relatively weak covariates. Therefore, a natural extension
of the covariance test statistic Tk can be

Tk,c = (〈
y,Xβ̂(cλk+1)

〉 − 〈
y,XAβ̃A(cλk+1)

〉)
/σ 2(1)

for some constant 0 ≤ c ≤ 1, where β̂(cλk+1) and β̃A(cλk+1) are the Lasso estima-
tors with regularization parameter cλk+1 constrained on sets of covariates A ∪ {j}
and A, respectively. Clearly, Tk,c with c = 1 reduces to Tk . An interesting question
is whether a suitable choice of the constant c may lead to an exact Exp(1) asymp-
totic null distribution for the test statistic Tk,c in the case of general design matrix,
as opposed to a conservative exponential limit for Tk .

The significance test with the covariance test statistic Tk is a sequential pro-
cedure which evaluates the significance of any newly selected covariate in the
current Lasso model. It would also be appealing to test the significance of each
active covariate X� conditional on the set of all remaining active covariates
A� = (A ∪ {j}) \ {�}, since some previously significant covariates may no longer
be significant as new covariates enter the model. A natural procedure seems to be
applying the covariance test statistic Tk or Tk,c to each covariate X� with set A

replaced by A�. This may also be used to test the significance of covariates in a
general Lasso model given by a prespecified regularization parameter λ.
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2. The event B and generalized irrepresentable conditions. There seem to
be two key conditions for establishing the conservative exponential limit for the
covariance test statistic Tk in the case of general design matrix: the event B and
generalized irrepresentable conditions. It would be appealing to verify whether
these conditions hold for a given design matrix. The event B condition assumes
that there exist an integer k0 ≥ 0 and a fixed set A0 of covariates containing the set
A∗ = supp(β∗) of all true active covariates such that with asymptotic probability
one, the Lasso model A at step k0 of the Lasso solution path is identical to A0.
In other words, this condition requires the sure screening property to hold for the
Lasso.

To provide some insights into the event B condition, let us consider the setting
of linear regression model

y = Xβ∗ + ε(2)

as in Lv and Fan (2009). Set p = 1000 with true regression coefficient vector
β∗ = (1,−0.5,0.7,−1.2,−0.9,0.3,0.55,0, . . . ,0)T , sample the rows of the de-
sign matrix X as i.i.d. copies from N(0,�) with � = (0.5|i−j |)i,j=1,...,p , and gen-
erate error vector ε independently from N(0, σ 2In) with σ = 0.15 or 0.3. Note
that the minimum signal strength is the same as or twice the error standard devia-
tion. We generated 200 data sets from this model with sample size n ranging from
80 to 120 and applied the Lasso with the LARS algorithm [Efron et al. (2004)] to
generate the solution path. Figure 1 depicts the sure screening probability curves
as a function of sparse model size for Lasso with different sample size and error
level. The sure screening probability provides an upper bound on the probability
of event B . We see that both the signal strength (in terms of the sample size and
error level) and sparse model size are crucial for the sure screening property of
the Lasso estimator. As the sparse model size and sample size become larger, the

FIG. 1. Sure screening probability curves as a function of sparse model size for Lasso with n = 80
(thin solid), 90 (dashed), 100 (dotted), 110 (dash–dot) and 120 (thick solid). Left panel for σ = 0.15
and right panel for σ = 0.3.
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Lasso can have significant sure screening probability. Such a probability can drop
as the noise level increases. It would be interesting to provide some theoretical
understandings on the impacts of these factors on both sure screening probability
and the probability of event B for Lasso.

The generalized irrepresentable condition introduced in the paper extends the
irrepresentable condition [Zhao and Yu (2006)] for characterizing the model selec-
tion consistency of the Lasso, which means that the true underlying sparse model
A∗ is exactly recovered with asymptotic probability one. It involves the fixed set
A0 ⊃ A∗ introduced in the event B condition. Intuitively, this condition puts some
constraint on the correlation between the noise covariates and true ones. See, for
example, Lv and Fan (2009) and Fan and Lv (2011), for examples, and more dis-
cussions on these types of conditions for characterizing the model selection con-
sistency of a wide class of regularization methods including Lasso.

3. Model misspecification. The event B condition makes an implicit assump-
tion on the minimum signal strength. It would be interesting to investigate the more
general case of strong and weak covariates, in which some covariates may have
relatively weak contributions to the response. In such a case, the true underlying
sparse model may no long be contained somewhere on the solution path given by
a regularization method. In other words, the true model may not be included in
the sequence of sparse candidate models, leading to model misspecification. Apart
from missing some true covariates, model misspecification can generally occur
when one misspecifies the family of distributions. Since model misspecification is
unavoidable in practice, it would be helpful to understand its impact on statistical
inference. For example, Lv and Liu (2014) recently revealed that the covariance
contrast matrix between the covariance structures in the misspecified model and in
the true model plays a pivotal role in characterizing the impact of model misspec-
ification on the problem of model selection. It would be interesting to study the
effects of model misspecification in the context of significance testing.

4. More general regularization methods. A key ingredient that makes the
covariance test statistic Tk admit the nice Exp(1) asymptotic null distribution is
the shrinkage effect induced by the L1-penalty in Lasso which offsets the inflated
stochastic variability due to the adaptivity in variable selection. Many other regu-
larization methods, including concave ones such as the SCAD [Fan and Li (2001)],
MCP [Zhang (2010)] and SICA [Lv and Fan (2009)], have been proposed for vari-
able selection. A natural and important question is whether a similar test statis-
tic can be constructed for testing the significance of covariates for the class of
concave regularization methods. Since these methods are generally nonconvex, it
would be crucial to study the regularized estimate as the global or computable
solution. Consider a fixed regularization parameter λ associated with a penalty
function pλ(t) defined on [0,∞). One possible test statistic is to extend Tk or Tk,c

by replacing the constrained Lasso estimators with the corresponding constrained
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regularized estimators with the same regularization parameter. An interesting open
question is whether such a generalized covariance test statistic would have a sim-
ilar asymptotic null distribution as for Lasso or a different asymptotic limit may
appear.

To gain some insights into these questions, let us consider a natural extension of
the Lasso, the combined L1 and concave regularization method introduced in Fan
and Lv (2014) and defined as the following regularization problem:

min
β∈Rp

{
(2n)−1‖y − Xβ‖2

2 + λ0‖β‖1 + ∥∥pλ(β)
∥∥

1

}
,(3)

where λ0 = c̃{(logp)/n}1/2 for some positive constant c̃, pλ(β) is a compact no-
tation denoting pλ(|β|) = (pλ(|β1|), . . . , pλ(|βp|))T with |β| = (|β1|, . . . , |βp|)T ,
and pλ(t), t ∈ [0,∞), is a penalty function indexed by the regularization parameter
λ ≥ 0. This approach combines the strengths of both Lasso and concave methods
in prediction and variable selection and has enhanced stability compared with us-
ing concave methods alone. They proved that under mild regularity conditions,
the global and computable solutions can enjoy oracle inequalities under various
prediction and estimation losses in parallel to those in Bickel, Ritov and Tsy-
bakov (2009) established for Lasso and Dantzig selector [Candes and Tao (2007)],
but with improved sparsity. In particular, the combined regularization method ad-
mits an explicit bound on the false sign rate, which can be asymptotically vanish-
ing.

Consider the same example as in Section 2, with n = 100 and σ = 0.3, and use
the SICA penalty pλ(t) = λ(a+1)t/(a+ t), t ∈ [0,∞), with a small shape param-
eter a for the concave component. For each data set, we applied the combined L1
and SICA method to generate a sequence of sparse candidate models with positive
constant c̃ = c0σ and c0 chosen to be 0.1, 0.25 and 0.6. With tighter control of the
false sign rate, the sure screening property can hold for this method with smaller
sparse model size. Since the true underlying sparse model has seven variables, we
are interested in testing the significance of the eighth covariate to enter the model.
To this end, we used the generalized covariance test statistics Tk and Tk,c (with
a slight abuse of notation) as suggested before, where Tk,c with c = 1 reduces to
Tk and both cλ0 and cλ are used in place of λ0 and λ in the constrained refittings
for Tk,c. The cases of c = 1 and 0.1 were considered.

Figures 2 and 3 compare the distributions of the generalized covariance test
statistic Tk,c with the Exp(1) distribution or chi-squared distribution with 1 df over
different combinations of c0 and c. Note that as c0 increases, the combined regular-
ization becomes closer to the Lasso, which is reflected in Figure 2. The top panel
of Figure 2 for the case of c0 = 0.6 shows that Exp(1) fits the distributions of Tk,c

well and the bottom panel for the case of c0 = 0.25 suggests that Exp(1) is a con-
servative fit. It is interesting to observe that the choice of c = 0.1 seems to make
the distribution of Tk,c closer to the Exp(1) distribution compared to that of c = 1
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FIG. 2. Quantile–quantile plots of the covariance test statistic Tk,c with c = 1 and 0.1 versus
the Exp(1) distribution for the combined L1 and concave regularization with c0 = 0.6 and 0.25,
respectively.

in the latter. In the case of c0 = 0.1, the combined regularization becomes closer to
concave regularization. We observe an interesting transition phenomenon for the
distribution of the generalized covariance test statistic Tk,c. As demonstrated in
Figure 3, it is now more light-tailed than the Exp(1) distribution and interestingly
the chi-squared distribution with 1 df provides a nice fit. It would be interesting to
provide theoretical understandings on such a phenomenon.

5. Concluding remarks. The covariance test statistic proposed in this paper
provides a new general framework for testing the significance of covariates for the
Lasso and related sparse modeling methods in high dimensions. There are many in-
teresting and important questions that remain to be answered in high-dimensional
inference. This paper initiates a new area and will definitely stimulate new ideas
and developments in the future. We thank the authors for their clear and imagina-
tive work.

Acknowledgment. We sincerely thank the Co-Editor, Professor Peter Hall,
for his kind invitation to comment on this discussion paper.



DISCUSSION 499

FIG. 3. Quantile–quantile plots of the covariance test statistic Tk,c with c = 1 and 0.1 for the
combined L1 and concave regularization with c0 = 0.1. Top panel is versus the Exp(1) distribution
and bottom panel is versus the chi-squared distribution with 1 df.
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