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This paper applies Le Cam’s asymptotic theory of statistical experiments
to the signal detection problem in high dimension. We consider the problem
of testing the null hypothesis of sphericity of a high-dimensional covariance
matrix against an alternative of (unspecified) multiple symmetry-breaking
directions (multispiked alternatives). Simple analytical expressions for the
Gaussian asymptotic power envelope and the asymptotic powers of previ-
ously proposed tests are derived. Those asymptotic powers remain valid for
non-Gaussian data satisfying mild moment restrictions. They appear to lie
very substantially below the Gaussian power envelope, at least for small val-
ues of the number of symmetry-breaking directions. In contrast, the asymp-
totic power of Gaussian likelihood ratio tests based on the eigenvalues of
the sample covariance matrix are shown to be very close to the envelope.
Although based on Gaussian likelihoods, those tests remain valid under non-
Gaussian densities satisfying mild moment conditions. The results of this pa-
per extend to the case of multispiked alternatives and possibly non-Gaussian
densities, the findings of an earlier study [Ann. Statist. 41 (2013) 1204–1231]
of the single-spiked case. The methods we are using here, however, are en-
tirely new, as the Laplace approximation methods considered in the single-
spiked context do not extend to the multispiked case.

1. Introduction. In a recent paper, Onatski, Moreira and Hallin (2013), here-
after OMH, analyze the asymptotic power of statistical tests for the detection of
a signal in spherical real-valued Gaussian data as the sample size and the dimen-
sion of the observations increase at the same rate. This paper generalizes the OMH
alternatives of a single symmetry-breaking direction (single-spiked alternatives) to
alternatives of multiple symmetry-breaking directions (multispiked alternatives),
which is more relevant for applications.
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Contemporary tests of sphericity in high dimension [see Ledoit and Wolf
(2002), Srivastava (2005), Schott (2006), Bai, Jiang, Yao and Zheng (2009), Chen,
Zhang and Zhong (2010) and Cai and Ma (2013)] consider general alternatives to
the null of sphericity. Our interest in alternatives with only a few contaminating
signals stems from the fact that in many applications (such as speech recognition,
macroeconomics, finance, wireless communication, genetics, physics of mixture
and statistical learning), a few latent variables typically explain a large proportion
of the variation in high-dimensional data; see Baik and Silverstein (2006) for ref-
erences. As a possible explanation of this fact, Johnstone (2001) introduces the
spiked covariance model, where all eigenvalues of the population covariance ma-
trix of high-dimensional data are equal except for a small fixed number of distinct
“spike eigenvalues.” The alternative to the null of sphericity considered in this pa-
per coincides with Johnstone’s model.

The extension from the single-spiked alternatives of OMH to the multi-spiked
alternatives considered here is not straightforward. The difficulty arises because
the extension of the main technical tool in OMH (Lemma 2), which analyzes high-
dimensional spherical integrals, to integrals over high-dimensional real Stiefel
manifolds obtained in Onatski (2014) is not easily amenable to the Laplace ap-
proximation method used in OMH. Therefore, in this paper, we develop a com-
pletely different technique, inspired from the large deviation analysis of spherical
integrals by Guionnet and Maïda (2005), hereafter GM.

Let us describe the setting and main results in more detail. Suppose that the
data consist of np independent observations Xt , t = 1, . . . , np of a p-dimensional
Gaussian vector with mean zero and positive definite covariance matrix �. Let
� = σ 2(Ip + V diag(h)V ′), where Ip is the p-dimensional identity matrix, σ is
a scalar, diag(h) an r × r diagonal matrix with elements hj ≥ 0, j = 1, . . . , r ,
along the diagonal, and V a (p × r)-dimensional parameter normalized so that
V ′V = Ir . We are interested in the asymptotic power of tests of the null hypothesis
H0 :h = 0 against the alternative H1 :h ∈ (R+)r \ {0}, based on the eigenvalues of
the sample covariance matrix when np and p both tend to infinity, in such a way
that p/np → c with 0 < c < ∞, an asymptotic regime which we abbreviate into
np,p →c ∞. The matrix V is an unspecified nuisance parameter, the columns of
which indicate the directions of the perturbations of sphericity. We consider the
cases of known and unknown σ 2. For the sake of simplicity, this introduction only
discusses the case of known σ 2 = 1.

Let λp = (λp1, . . . , λpm), where λpj denotes the j th largest sample covari-
ance eigenvalue and m = min(np,p). We begin our analysis with a study of the
asymptotic properties of the likelihood ratio process {L(τ ;λp); τ ∈ [0, τ̄ ]r}, where
τ̄ ∈ [0,

√
c), and L(τ ;λp) is defined as the ratio of the density of λp under a point

alternative hypothesis h = τ to that under the null hypothesis H0, computed at λp .
An exact formula for L(τ ;λp) involves the integral

∫
O(p) e

tr(AQBQ′)(dQ) over the
orthogonal group O(p), where the p × p matrix A has a deficient rank r . In the
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single-spiked case (r = 1), OMH link this integral to the confluent form of the
Lauricella function, and use this link to establish a representation of the integral
in the form of a contour integral [Wang (2012) and Mo (2012) also obtain this
contour integral representation for r = 1 using different derivations]. The Laplace
approximation to the contour integral is then used to study the asymptotic behavior
of {L(τ ;λp); τ ∈ [0, τ̄ ]r} under the null.

Onatski (2014) generalizes the contour integral representation of L(τ ;λp) to the
multispiked case (r > 1). Such a generalization allows extending the OMH results
to the multispiked context for complex-valued data. Unfortunately, for real-valued
data, this generalization is not straightforwardly amenable to the Laplace approxi-
mation method. Therefore, we consider a totally different approach. For the r = 1
case, GM use large deviation techniques to derive a second-order asymptotic ex-
pansion of

∫
O(p) e

tr(AQBQ′)(dQ) as the nonzero eigenvalues of A diverge to infin-
ity (see their Theorem 3). We extend GM’s second-order expansion to the r > 1
case, and use that extension to derive the asymptotics of {L(τ ;λp); τ ∈ [0, τ̄ ]r}.

We show that, for any τ̄ ∈ [0,
√

c), the sequence of log-likelihood ratio pro-
cesses {lnL(τ ;λp); τ ∈ [0, τ̄ ]r} converges weakly, under the null hypothesis H0
as np,p →c ∞, to a Gaussian process {Lλ(τ ); τ ∈ [0, τ̄ ]r}. The limiting pro-
cess has mean E[Lλ(τ )] = ∑r

i,j=1 ln(1 − τiτj /c)/4 and autocovariance func-
tion Cov(Lλ(τ ),Lλ(τ̃ )) = −∑r

i,j=1 ln(1 − τi τ̃j /c)/2. That convergence entails
the weak convergence of the τ -indexed statistical experiments E(τ ;λp) under
which the eigenvalues λp1, . . . , λpm generated by the parameter value h = τ

are observed, that is, the statistical experiments with log-likelihood process
{lnL(τ ;λp); τ ∈ [0, τ̄ ]r} [see p. 126 of van der Vaart (1998)]. Although Gaussian,
the limiting log-likelihood ratio process {Lλ(τ )} is not that of a Gaussian shift,
and the statistical experiments E(τ ;λp) under study are not locally asymptotically
normal (LAN). As a consequence, the existence of asymptotically optimal proce-
dures remains an open problem. Still, the asymptotic behavior of the log-likelihood
process {lnL(τ ;λp)} has important implications:

(a) it follows from Le Cam’s first lemma [see p. 88 of van der Vaart (1998)] that
the sequences of joint distributions of the sample covariance eigenvalues under the
null (h = 0) and under alternatives (h = τ ∈ [0,

√
c)r ) are mutually contiguous as

np,p →c ∞;
(b) as a consequence, although their existence can be detected, spiked eigen-

values, in this contiguity region, cannot be estimated consistently;
(c) the asymptotic power envelope for α-level λ-based tests for H0 against

H1—namely, the mapping from τ ∈ [0, τ̄ ]r to the maximum asymptotic power
achievable, under Gaussian assumptions, at a point alternative of the form
h = τ—can be constructed by combining the Neyman–Pearson lemma and Le
Cam’s third lemma; this asymptotic power envelope constitutes, pointwise and
under Gaussian assumptions, an upper bound for the asymptotic powers of all
α-level λ-based tests, but also for all tests that are invariant under left orthogonal
transformations of the observations;
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(d) analytic expressions also can be obtained via Le Cam’s third lemma for the
asymptotic powers of the Gaussian likelihood ratio test and several existing tests
of sphericity—we focus on the tests proposed by Ledoit and Wolf (2002), Bai et al.
(2009) and Cai and Ma (2013); we show that those expressions moreover remain
valid under non-Gaussian densities satisfying mild moment restrictions.

These results are stronger than those that can be found in the literature. Baik,
Ben Arous and Péché (2005) and Féral and Péché (2009), for instance, provide
results on the asymptotic behavior of the r largest empirical eigenvalues that pre-
clude, below the phase transition, the existence of any consistent test or estimator
based on these r leading eigenvalues. Instead, we analyze the log-likelihood pro-
cesses and the convergence in the Le Cam sense of the statistical experiments
in which all empirical eigenvalues are observed. Contiguity (a) does not just im-
ply inconsistency of the leading sample eigenvalues; it entails (b) that although
their existence can be detected, no consistent estimation of the population spiked
eigenvalues is possible below the phase transition threshold. That impossibility
property is also in agreement with more recent results by Cai, Ma and Wu (2013).
They show how sparsity assumptions are restoring the consistency of the empirical
eigenvalues. For the estimation of �, they obtain a minimax risk rate (under spec-
tral norm loss function) as a function of a sparsity index k [see their equation (8)];
for k ≈ p (no sparsity), that minimax rate no longer goes to zero.

The asymptotic power results (d) allow for interesting performance compar-
isons. In particular, it appears that the asymptotic powers of the Ledoit and Wolf
(2002), Bai et al. (2009) and Cai and Ma (2013) tests are quite substantially lower
than the corresponding (though unachievable) asymptotic power envelope values,
whereas the asymptotic powers of the likelihood ratio tests are close to the same
values—at least, for small values of r . While performance assessments involving
the power envelope are valid under Gaussian assumptions, the power comparisons
between likelihood ratio tests and other procedures are meaningful under the afore-
mentioned milder moment assumptions.

The rest of the paper is organized as follows. Section 2 establishes the weak
convergence of the log-likelihood ratio process to a Gaussian process. Section 3
analyzes the asymptotic powers of various sphericity tests, derives the asymptotic
power envelope, and proves its validity for general invariant tests. Section 4 con-
cludes. All proofs are given in the Appendix.

2. Asymptotics of likelihood ratio processes.

2.1. Asymptotic representation of the log-likelihood process. Let the data-
generating process be

X = σ
(
Ip + V diag(h)V ′)1/2

ε,(2.1)

where ε is a p ×np matrix with i.i.d. entries with zero mean and unit variance. For
now, we assume that the entries of ε are standard normal:
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ASSUMPTION G. The matrix ε has i.i.d. standard normal entries εij .

Later on, we shall relax that assumption. Denote by λp1 ≥ · · · ≥ λpp the
ordered eigenvalues of XX′/np , and write λp = (λp1, . . . , λpm), where m =
min{np,p}. Similarly, let μpi = λpi/(λp1 + · · · + λpp), i = 1, . . . ,m and μp =
(μp1, . . . ,μp,m−1).

As explained in the Introduction, our goal is to study the asymptotic power,
as np,p →c ∞, of the eigenvalue-based tests of H0 :h = 0 against H1 :h ∈
(R+)r \ {0}. If σ 2 is known, this testing problem is invariant with respect to left
and right orthogonal transformations of X; sufficiency and invariance arguments
(see Appendix A.10 for details) lead to considering tests based on λp only. If σ 2

is unknown, the same problem is invariant with respect to left and right orthogo-
nal transformations of X and multiplications by nonzero scalars; sufficiency and
invariance arguments (see Appendix A.10) lead to considering tests based on μp

only. Note that the sufficiency and invariance arguments eliminate the nuisance
parameter V . Moreover, the distribution of μp does not depend on σ 2, whereas, if
σ 2 is specified, we can always normalize λp dividing it by σ 2. Therefore, without
loss of generality, we henceforth assume that σ 2 = 1.

Let us denote the joint density of λp1, . . . , λpm at x̃ = (x1, . . . , xm) ∈ (R+)m

as fλp(x̃;h), and that of μp1, . . . ,μp,m−1 at ỹ = (y1, . . . , ym−1) ∈ (R+)m−1 as
fμp(ỹ;h). We then have

fλp(x̃;h) = γp(x̃)

r∏
j=1

(1 + hj )
−np/2

∫
O(p)

e−(np/2) tr(	Q′XQ)(dQ),(2.2)

where γp(x̃) depends on np , p and x̃, but not on h; 	 and X are the (p × p)

diagonal matrices

diag
(
(1 + h1)

−1, . . . , (1 + hr)
−1,1, . . . ,1

)
and diag(x1, . . . , xm,0, . . . ,0),

respectively, O(p) is the set of all p × p orthogonal matrices, and (dQ) is the
invariant measure on the orthogonal group O(p), normalized to make the total
measure unity. Formula (2.2) is a special case of the density given in James (1964),
p. 483, for np ≥ p, and follows from Theorems 2 and 6 in Uhlig (1994) for np < p.

Let x = x1 + · · · + xm and yi = xi/x. Note that the Jacobian of the coordi-
nate change from (x1, . . . , xm) to (y1, . . . , ym−1, x) is xm−1. Changing variables
in (2.2) and integrating x out, we obtain

fμp(ỹ;h) = γp(ỹ)

r∏
j=1

(1 + hj )
−np/2

(2.3)
×

∫ ∞
0

x((npp)/2)−1
∫
O(p)

e−(np/2)x tr(	Q′YQ)(dQ)dx,

where Y = diag(y1, . . . , ym,0, . . . ,0) is a (p × p) diagonal matrix.
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Consider the Gaussian likelihood ratios Lp(τ ;λp) = fλp(λp; τ)/fλp(λp;0) and
Lp(τ ;μ) = fμp(μp; τ)/fμp(μp;0), where τ ∈ (R+)r . When ε is non-Gaussian,
these ratios are to be interpreted as pseudo-Gaussian likelihood ratios. Formulae
(2.2) and (2.3) imply the following.

PROPOSITION 1. Define 
p = diag(λp1, . . . , λpp), Sp = λp1 +· · ·+λpp , and
let Dp be the p × p diagonal matrix diag( 1

2cp

τ1
1+τ1

, . . . , 1
2cp

τr
1+τr

,0, . . . ,0), where
cp = p/np . Then

Lp(τ ;λp) =
r∏

j=1

(1 + τj )
−np/2

∫
O(p)

ep tr(DpQ′
pQ)(dQ)(2.4)

and

Lp(τ ;μp)

=
r∏

j=1

(1 + τj )
−np/2 (np/2)((npp)/2)

�((npp)/2)
(2.5)

×
∫ ∞

0
x((npp)/2)−1e−(np/2)x

∫
O(p)

ep(x/Sp) tr(DpQ′
pQ)(dQ)dx.

Note that this proposition about Gaussian likelihood ratios is of a purely analyt-
ical nature, and does not require any distributional assumptions.

In the single-spiked case (r = 1), the rank of the matrix Dp is no larger than
one, and the integrals over the orthogonal group in (2.4) and (2.5) can be rewritten
as integrals over a p-dimensional sphere. OMH show how such spherical inte-
grals can be represented as contour integrals, and apply Laplace approximation
to these contour integrals to establish the asymptotic properties of Lp(τ ;λp) and
Lp(τ ;μp). In the multispiked case (r > 1), the integrals in (2.4) and (2.5) can be
rewritten as integrals over a Stiefel manifold, the set of all orthonormal r-frames
in R

p . Onatski (2014) obtains a generalization of the contour integral representa-
tion from spherical integrals to integrals over Stiefel manifolds. Unfortunately, the
Laplace approximation method does not straightforwardly extend to that general-
ization, and we therefore propose an alternative method of analysis.

The second-order asymptotic behavior of integrals of the form∫
O(p) e

p tr(DQ′
Q)(dQ) as p goes to infinity is analyzed in GM (Theorem 3) for the
particular case where D is a fixed matrix of rank one, 
 a deterministic matrix, and
under the condition that the empirical distribution of 
’s eigenvalues converges to
a distribution function with bounded support. Below, we extend GM’s approach
to cases where D = Dp has rank larger than one, and to the stochastic setting of
this paper. We then use such an extension to derive the asymptotic properties of
Lp(τ ;λp) and Lp(τ ;μp).
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Let F̂ λ
p be the empirical distribution of λp1, . . . , λpp , and denote by F MP

p the
Marchenko–Pastur distribution function with density

f MP
p (x) = 1

2πcpx

√
(bp − x)(x − ap)1{ap ≤ x ≤ bp},(2.6)

where ap = (1 − √
cp)2 and bp = (1 + √

cp)2, and a mass of max(0,1 − c−1
p ) at

zero. Here and throughout the paper, 1{·} denotes the indicator function. As follows
from Theorem 1.1 of Silverstein and Bai (1995), if the entries of ε in (2.1) are (not
necessarily Gaussian) i.i.d. with zero mean and variance one, then the difference
between F̂ λ

p and F MP
p weakly converges to zero a.s. as p,np →c ∞, irrespective

of the true value of h. If, in addition, the entries of ε have finite moment of order
four, then

λp1
a.s.→ (1 + √

c)2 and λpp
a.s.→ (1 − √

c)21{c < 1}
for any h ∈ ((1 − √

c)1{c < 1} − 1,
√

c)r [see Baik and Silverstein (2006)].
Consider the Hilbert transform HMP

p (x) = ∫
(x − λ)−1 dF MP

p (λ) of F MP
p . That

transform is well defined for x outside the support of F MP
p , that is, on the set

R \ supp(F MP
p ). Using (2.6), we get

HMP
p (x) = x + cp − 1 −

√
(x − cp − 1)2 − 4cp

2cpx
,(2.7)

where the sign of the square root is chosen to be the sign of (x − cp − 1). It
is not hard to see that HMP

p (x) is strictly decreasing on R \ supp(F MP
p ). Thus,

on HMP
p (R \ supp(F MP

p )), we can define an inverse function KMP
p , with values

KMP
p (x) = 1/x + 1/(1 − cpx).(2.8)

The so-called R-transform RMP
p of F MP

p takes the form

RMP
p (x) = KMP

p (x) − 1/x = 1/(1 − cpx).

For ω > 0 and η > 0 sufficiently small, consider the subset

�ωη =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[−η−1,0
) ∪

(
0,

1√
c(1 + √

c)
− ω

]
, for c ≥ 1

[
− 1√

c(1 − √
c)

+ ω,0
)

∪
(

0,
1√

c(1 + √
c)

− ω

]
, for c < 1

of R. It is straightforward to verify that �ωη ⊂ HMP
p (R \ supp(F MP

p )) for suffi-
ciently large p as np,p →c ∞, and hence, KMP

p (x) and RMP
p (x) are well defined

for x ∈ �ωη.
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In what follows, we shall consider possibly non-Gaussian ε’s in (2.1). More
specifically, we refer to the following distributional assumptions.

ASSUMPTION nG. ε has i.i.d. entries εij with Eεij = 0, Eε2
ij = 1 and

Eε4
ij < ∞.

ASSUMPTION nG∗ . ε has i.i.d. entries εij with Eεij = 0, Eε2
ij = 1 and

Eε4
ij = 3.

Clearly, Assumption G implies Assumption nG∗, which in turn implies As-
sumption nG. The following result holds under Assumption nG.

PROPOSITION 2. Let {�p} be a sequence of deterministic p × p diago-
nal matrices diag(θp1, . . . , θpr ,0, . . . ,0) such that, for some ω > 0 and η > 0,
2θpj ∈ �ωη for all j = 1, . . . , r and sufficiently large p as np,p →c ∞. Let
vpj = RMP

p (2θpj ). Then, for any h ∈ ((1 −√
c)1{c < 1}− 1,

√
c)r , under Assump-

tion nG, uniformly over all sequences {�p} satisfying the above requirements,
letting 
p = diag(λp1, . . . , λpp),∫

O(p)
ep tr(�pQ′
pQ)(dQ)

= e
p
∑r

j=1[θpj vpj−(1/(2p))
∑p

i=1 ln(1+2θpj vpj −2θpj λpi)](2.9)

×
r∏

j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp

(
1 + oP(1)

)
.

This proposition extends Theorem 3 of GM to cases when rank(�p) > 1, the
θpj ’s depend on p, and 
p is random. When r = 1 and 2θp1 = 2θ ∈ �ωη, it is
straightforward to verify that√

1 − 4θ2
p1v

2
p1cp =

√
4θ2/

√
Z where Z =

∫ (
KMP

p (2θ) − λ
)−2 dF MP

p (λ).

In GM’s Theorem 3, the expression
√

4θ2/
√

Z should be used instead of√
Z − 4θ2/θ

√
Z, which is a typographical error.

Setting r = 1 and θp1 = τ/(2cp(1 + τ)) in Proposition 2, and using for-
mula (2.4) from Proposition 1 yields an expression for Lp(τ ;λp) which is equiva-
lent to formula (4.1) in Theorem 7 of OMH. Theorem 3 below uses Proposition 2
to generalize Theorem 7 of OMH to the multispiked case (r > 1).

Let θpj = τj /(2cp(1 + τj )) and

Hδ =
{ [−1 + δ,0) ∪ (0,

√
c − δ], for c > 1,

[−√
c + δ,0) ∪ (0,

√
c − δ], for c ≤ 1.

(2.10)
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The condition τj ∈ Hδ for some δ > 0 implies that 2θpj ∈ �ωη for some ω > 0,
η > 0 and p sufficiently large. Below, we are only interested in nonnegative values
of τj , and assume that τj ∈ (0,

√
c − δ]. The corresponding θpj thus is positive.

With the above setting for θpj , we have vpj = RMP
p (2θpj ) = 1 + τj and

KMP
p (2θpj ) = (cp + τj )(1 + τj )/τj . As in Theorem 7 of OMH, we denote the

latter expression by zj (τ ). Define

�p

(
zj (τ )

) =
p∑

i=1

ln
(
zj (τ ) − λpi

) − p

∫
ln
(
zj (τ ) − λ

)
dF MP

p (λ).(2.11)

We then have the following asymptotic representation.

THEOREM 3. Let Assumption nG hold, and let δ be a fixed number such that
0 < δ <

√
c. Then, for any h ∈ [0,

√
c − δ]r , we have

Lp(τ ;λp)

(2.12)
=

r∏
j=1

exp

{
−1

2
�p

(
zj (τ )

) + 1

2

j∑
s=1

ln
(

1 − τj τs

cp

)}(
1 + oP(1)

)

and

Lp(τ ;μp)

(2.13)
= Lp(τ ;λp) exp

{
1

4cp

(
r∑

j=1

τj

)2

− Sp − p

2cp

r∑
j=1

τj

}(
1 + oP(1)

)
,

where oP(1) → 0 in probability, uniformly in τ ∈ [0,
√

c − δ]r as np,p →c ∞.

2.2. Weak convergence of the log-likelihood process. Theorem 3 approxi-
mates the pseudo-likelihood ratios by functions of the linear spectral statistics
�p(zj (τ )), j = 1, . . . , r and Sp . Such an approximation allows us to use Bai
and Silverstein’s (2004) Central Limit Theorem (CLT) to study the asymptotics
of Lp(τ ;λp) and Lp(τ ;μp) both under the null H0 and under point alternatives
associated with h ∈ (0,

√
c − δ]r . Let C[0,

√
c − δ]r , where δ ∈ (0,

√
c), denote

the space of real-valued continuous functions on [0,
√

c − δ]r equipped with the
supremum norm. The Bai–Silverstein CLT requires that the elements of ε have
zero excess kurtosis. Hence, we replace Assumption nG by Assumption nG∗ in
the next proposition.

PROPOSITION 4. Suppose that Assumption nG∗ holds. Then, under h = 0,
lnLp(τ ;λp) and lnLp(τ ;μp), viewed as random elements of C[0,

√
c − δ]r , con-

verge weakly to Lλ(τ ) and Lμ(τ) with Gaussian finite-dimensional distributions
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such that, for any τ, τ̃ ∈ [0,
√

c − δ]r ,

E
(
Lλ(τ )

) = −1

2
Var

(
Lλ(τ )

)
, E

(
Lμ(τ)

) = −1

2
Var

(
Lμ(τ)

)
,

Cov
(
Lλ(τ ),Lλ(τ̃ )

) = −1

2

r∑
i,j=1

ln
(

1 − τi τ̃j

c

)
and(2.14)

Cov
(
Lμ(τ),Lμ(τ̃ )

) = −1

2

r∑
i,j=1

(
ln
(

1 − τi τ̃j

c

)
+ τi τ̃j

c

)
.(2.15)

Under Assumption G (Gaussian ε’s), Lp(τ ;λp) and Lp(τ ;μp) are the actual
likelihood (as opposed to pseudo-likelihood) ratios; Proposition 4 and Le Cam’s
first lemma [van der Vaart (1998), p. 88] then imply that the joint distributions
of λp1, . . . , λpm (as well as those of μp1, . . . ,μp,m−1) under the null and under
any alternative of the form h = τ ∈ (0,

√
c)r are mutually contiguous. By applying

Le Cam’s third lemma [van der Vaart (1998), p. 90], we can study the asymptotic
powers of tests detecting signals in noise.

3. Asymptotic power analysis.

3.1. Gaussian power envelope. Denote by LRλ,τ and LRμ,τ , respectively, the
most powerful, under Assumption G, α-level λ- and μ-based tests of H0 :h = 0
against the point alternative h = τ , where τ ∈ [0,

√
c − δ]r . Formally, each test is

a statistic φ with values in [0,1]; it follows from the Neyman–Pearson lemma that

LRλ,τ (λp) = 1
{
lnLp(τ ;λp) > cλ,τ

}
and

LRμ,τ (μp) = 1
{
lnLp(τ ;μp) > cμ,τ

}
,

where cλ,τ and cμ,τ are the 1 − α quantiles of the null distributions of the log-
likelihood ratios lnLp(τ ;λp) and lnLp(τ ;μp), respectively. Let

βλ(τ ) = lim
np,p→c∞ Eτ

[
LRλ,τ (λp)

]
and βμ(τ) = lim

np,p→c∞ Eτ

[
LRμ,τ (μp)

]
,

where expectations are taken under Assumption G and the alternative h = τ . The
functions τ → βλ(τ ) and τ → βμ(τ) are called the (Gaussian) asymptotic power
envelopes at level α. Clearly, βλ(τ ) and βμ(τ) are upper bounds, under Assump-
tion G, for the asymptotic power at h = τ of any λ- or μ-based test of H0.

PROPOSITION 5. Denoting by � the standard normal distribution function,

βλ(τ ) = 1 − �

[
�−1(1 − α) −

√√√√−1

2

r∑
i,j=1

ln
(

1 − τiτj

c

)]
(3.1)
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and

βμ(τ) = 1 − �

[
�−1(1 − α) −

√√√√−1

2

r∑
i,j=1

(
ln
(

1 − τiτj

c

)
+ τiτj

c

)]
.(3.2)

Figure 1 shows the Gaussian asymptotic power envelopes βλ and βμ as func-
tions of τ1/

√
c and τ2/

√
c in the bivariate case τ = (τ1, τ2).

It is important to realize that the asymptotic power envelopes derived in Propo-
sition 5 are valid—that is, provide valid upper bounds for asymptotic powers—not
only for λ- and μ-based tests but also for any test invariant under left orthogonal
transformations of the observations (X → QX, where Q is a p×p orthogonal ma-
trix), and for any test invariant under multiplication by any nonzero constant and
left orthogonal transformations of the observations (X → aQX, where a ∈ R

+
0

and Q is a p × p orthogonal matrix), respectively. Let ‖A‖F = (tr(A′A))1/2

and ‖A‖2 = λ
1/2
1 (A′A) denote the Frobenius norm and the spectral norm, re-

spectively, of a matrix A. Let H0 be the null hypothesis h = 0, and let H1
be any of the following alternatives: H1 :h ∈ (R+)r \ {0}, or H1 :� �= σ 2Ip , or

FIG. 1. The Gaussian power envelopes βλ(τ) (upper panel) and βμ(τ) (lower panel) for α = 0.05,
as functions of τ/

√
c = (τ1, τ2)/

√
c.
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H1 : {� :‖� − σ 2Ip‖F > ωn,p}, or H1 : {� :‖� − σ 2Ip‖2 > ωn,p}, where ωn,p is
a positive constant that may depend on n and p.

PROPOSITION 6. For specified σ 2, consider tests of H0 against H1 that
are invariant with respect to left orthogonal transformations of the data X =
[X1, . . . ,Xn]. For any such test, there exists a λ-measurable test with the same size
and power function. Similarly, for unspecified σ 2, consider tests that, in addition,
are invariant with respect to multiplication of the data X by nonzero constants.
For any such test, there exists a μ-measurable test with the same size and power
function.

Examples of tests that are invariant in the sense of Proposition 6 without being
λ- or μ-measurable are the tests proposed (for specified and/or unspecified σ 2) by
Chen, Zhang and Zhong (2010) and Cai and Ma (2013). It follows from Proposi-
tion 6 that their asymptotic powers, under Assumption G, are uniformly bounded
by the power envelopes βλ (specified σ 2) or βμ (unspecified σ 2).

3.2. Likelihood ratio tests. We now consider λ- and μ-based α-level Gaus-
sian likelihood ratio (LR) tests for H0 :h = 0 against alternatives of the form
H1 :h ∈ ϒ , where ϒ ⊆ (R+)r \ {0}. Those tests are defined as

LRλ,ϒ(λp) = 1
{
sup t∈ϒ lnLp(t;λp) > cλ,ϒ

}
and

LRμ,ϒ(μp) = 1
{
sup t∈ϒ lnLp(t;μp) > cμ,ϒ

}
,

where cλ,ϒ and cμ,ϒ are the (1 − α) quantiles of the (exact or asymptotic) null
distributions of supt∈ϒ lnLp(t;λp) and supt∈ϒ lnLp(t;μp), respectively. In case
ε is not Gaussian, LRλ,ϒ and LRμ,ϒ are to be interpreted as pseudo-Gaussian
likelihood ratio tests.

PROPOSITION 7. Let ϒ = (0, τ̄ ]r , where 0 < τ̄ <
√

c. Then, under Assump-
tion nG∗,

(i) the asymptotic sizes (as np,p →c ∞) of LRλ,ϒ and LRμ,ϒ are α;
(ii) the asymptotic powers (as np,p →c ∞) of LRλ,ϒ and LRμ,ϒ at h = τ ∈

[0, τ̄ ]r are

P
[
sup
t∈ϒ

{
Lλ(t) + Cov

(
Lλ(t),Lλ(τ )

)}
> cλ,ϒ

]
(3.3)

and

P
[
sup
t∈ϒ

{
Lμ(t) + Cov

(
Lμ(t),Lμ(τ)

)}
> cμ,ϒ

]
,(3.4)

respectively.

Note that Proposition 7 does not require ε to be Gaussian: (pseudo)-Gaussian
LR tests are asymptotically valid, and their asymptotic powers remain the same,
under any ε with zero excess kurtosis.
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The asymptotic powers (3.3) and (3.4) depend on the distribution of the supre-
mum over t ∈ (0, τ̄ ]r of a Gaussian process indexed by t . In principle, the dis-
tribution function of such suprema can be represented in the form of converging
Rice series (related with the factorial moments of the number of upcrossings of the
Gaussian process with a particular level); see Theorem 2.1 of Azaïs and Wsche-
bor (2002). This may lead to analytic expressions, for the asymptotic powers of our
tests. These expressions, however, still would involve Rice series, which somewhat
restricts their practical value, and we rather rely here on numerical evaluations. To
compute the critical value corresponding to α = 0.05, we simulate Lλ(t) on a grid
over t ∈ ϒ = (0, τ̄ ]r , and save its maximum. We choose the critical value cλ,ϒ as
the 95% quantile over 100,000 replications. To compute the asymptotic power at
h = τ , we similarly simulate Lλ(t)+Cov(Lλ(t),Lλ(τ )) and record the proportion
of replications for which the maximum of the simulated process lies above cλ,ϒ .
The asymptotic power of the μ-based LR test is computed similarly. Unfortunately,
implementing this procedure becomes increasingly cumbersome as r grows, as we
need to simulate an r-dimensional Gaussian random field.

For r = 2, Figure 2 shows profiles of the asymptotic power of LRλ,ϒ (with
ϒ = (0, τ̄ ]2) corresponding to alternatives (h1, h2) = (τ1, τ2) ∈ (0, τ̄ ]2 with four

FIG. 2. Profiles of the asymptotic power (under Assumption nG∗) of the λ-based LR test (solid
lines) relative to the Gaussian asymptotic power envelope (dotted lines) for several values of τ1
under the alternative h = τ ; α = 0.05.
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FIG. 3. Profiles of the asymptotic power (under Assumption nG∗) of the μ-based LR test (solid
lines) relative to the Gaussian asymptotic power envelope (dotted lines) for different values of τ1
under the alternative h = τ ; α = 0.05.

different values of τ1. We set τ̄ to
√

c(1 − e−36), which is very close to the
boundary

√
c of the contiguity region [0,

√
c). Following OMH, and in order

to enhance readability of the figures, we use a different parameterization τj →
θj = [− ln(1 − τ 2

j /c)]1/2 of the values of hj under various point alternatives. The
asymptotic power profiles are superimposed with those of the Gaussian asymptotic
power envelope (dotted lines). We see that the asymptotic power of LRλ,ϒ is close
to the envelope. Figure 3 shows the same plots for the LRμ,ϒ test.

Figure 4 further explores the relationship between the asymptotic powers of
the λ- and μ-based LR tests and the corresponding Gaussian asymptotic power
envelopes when r = 2. Select all alternatives (h1, h2) = (τ1, τ2) with τ1 ≥ τ2 such
that the Gaussian asymptotic power envelope for λ-based tests is exactly 25, 50,
75 and 90%. We compute and plot the corresponding power of LRλ,ϒ (solid lines)
as a function of the ratio τ2/τ1. The dashed lines show similar graphs for LRμ,ϒ .
The value τ2/τ1 = 0 corresponds to single-spiked alternatives (h1, h2) = (τ1,0)

with τ1 > 0, the value τ2/τ1 = 1 to equispiked alternatives (h1, h2) = (τ, τ ) with
τ > 0. The intermediate values of τ2/τ1 link the two extreme cases. We do not
consider values of τ2/τ1 larger than one, as the power function is symmetric about
the 45-degree line in the (τ1, τ2) space.
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FIG. 4. Power of λ-based (solid lines) and μ-based (dashed lines) LR tests plotted against the ratio
τ2/τ1, where (τ1, τ2) are such that the respective asymptotic power envelopes βλ(τ) and βμ(τ) equal
25, 50, 75 and 90%.

Somewhat surprisingly, the asymptotic power of the LR test along the set of
alternatives (h1, h2) = (τ1, τ2) corresponding to the same values of the Gaussian
asymptotic power envelope is not a monotone function of τ2/τ1. Equispiked al-
ternatives typically seem harder to detect by the LR tests. However, for the set of
alternatives corresponding to a Gaussian asymptotic power envelope value of 90%,
single-spiked alternatives are even harder.

A natural question is: how do the asymptotic powers of the LR tests depend
on the choice of r , that is, how do those tests perform when the actual r does not
coincide with the value the test statistic is based on? For example, a natural way
to proceed in signal detection practice is to start with a LR test of the null hy-
pothesis against single-spiked alternatives (r = 1). If the null is rejected, one then
moves to r = 2, r = 3, etc. How do the asymptotic powers of such tests compare?
Figure 5 reports the asymptotic powers of the λ- and μ-based LR tests designed
against single- and double-spiked (r = 1, dashed line; r = 2, solid line) alterna-
tives computed at equispiked alternatives of the form (h1, h2) = (τ, τ ). As in Fig-
ures 2 and 3, we use the parameterization θ = [− ln(1 − τ 2/c)]1/2. The asymptotic
power of the test incorrectly specifying r = 1 is slightly smaller than that of the
test with correct specification r = 2 for most values of θ (and τ ).
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FIG. 5. Asymptotic power of the λ-based (left panel) and μ-based (right panel) LR tests. Solid line:
power against equispiked alternatives (h1, h2) = (τ, τ ) when r = 2 is correctly assumed. Dashed
line: power when r = 1 is incorrectly assumed.

3.3. Asymptotic power of related tests. The same results on the likelihood pro-
cess as above allow for computing the asymptotic powers of several tests available
in the literature.

EXAMPLE 1 [John’s (1971) test of sphericity—H0 :� = σ 2Ip]. John (1971)
proposes testing sphericity against general alternatives via the test statistic

U = 1

p
tr
[(

�̂

(1/p) tr(�̂)
− Ip

)2]
,(3.5)

where �̂ is the sample covariance matrix. He shows that, when n > p, such
a test is locally most powerful invariant. Ledoit and Wolf (2002) study John’s
test when np,p →c ∞. They prove that, for Gaussian data, under the null,

nU − p
d→ N (1,4). Hence, the test with asymptotic size α (as np,p →c ∞) re-

jects the null hypothesis of sphericity whenever 1
2(nU − p − 1) > �−1(1 − α).

EXAMPLE 2 [The Ledoit and Wolf (2002) test—H0 :� = Ip]. Ledoit and
Wolf (2002) propose the test statistic

W = 1

p
tr
[
(�̂ − Ip)2] − p

n

[
1

p
tr �̂

]2

+ p

n
.(3.6)

They show that, for Gaussian data, under the null, nW − p
d→ N (1,4) as

np,p →c ∞. As in the previous example, H0 is rejected at asymptotic size α

whenever 1
2(nW − p − 1) > �−1(1 − α).



SIGNAL DETECTION IN HIGH DIMENSION 241

EXAMPLE 3 [The Bai et al. (2009) “corrected” LRT—H0 :� = Ip]. When
n > p, Bai et al. (2009) propose to use a corrected version

CLR = tr �̂ − ln det �̂ − p − p

(
1 −

(
1 − n

p

)
ln
(

1 − p

n

))

of the likelihood ratio statistic to test H0 :� = Ip against general alternatives.
Under the null, when the data have zero excess kurtosis (Assumption nG∗),

CLR
d→ N (−1

2 ln(1 − c),−2 ln(1 − c) − 2c) as np,p →c ∞. The null hypoth-
esis is rejected at asymptotic level α whenever CLR + 1

2 ln(1 − c) is larger than
(−2 ln(1 − c) − 2c)1/2�−1(1 − α).

EXAMPLE 4 [The Cai and Ma (2013) minimax test—H0 :� = Ip]. Cai and
Ma (2013) propose the U-statistic

Tn = 2

n(n − 1)

∑
1≤i<j≤n

�(Xi,Xj ),

where �(X1,X2) = (X′
1X2)

2 − (X′
1X1 + X′

2X2) + p, to test the hypothesis that
the population covariance matrix is the unit matrix. For Gaussian data, under the

null, as np,p →c ∞, Tn
d→ N (0,4c2). The null hypothesis is rejected at asymp-

totic level α whenever Tn exceeds 2
√

p(p + 1)/n(n − 1)�−1(1 −α). Cai and Ma
(2013) show that this test is rate-optimal against general alternatives from a mini-
max point of view.

EXAMPLE 5 [Tracy–Widom-type tests—H0 :� = Ip]. Let ϕ(λ1, . . . , λr) be
any function of the r largest eigenvalues increasing in all its arguments. The
asymptotic distribution of ϕ(λ1, . . . , λr) under the null, assuming that the distri-
bution of εij is symmetric and has sub-Gaussian moments, is determined by the
functional form of ϕ(·) and the fact [Péché (2009)] that

(
σn,c(λ1 − νc), . . . , σn,c(λr − νc)

) d→ TW(r),(3.7)

where TW(r) denotes the r-dimensional Tracy–Widom law of the first kind,
σn,c = n2/3c1/6(1+√

c)−4/3 and νc = (1+√
c)2. Call Tracy–Widom-type tests all

tests that reject the null whenever ϕ(λ1, . . . , λr) is larger than the corresponding
asymptotic critical value obtained from (3.7).

Consider the tests described in Examples 1, 2, 3, 4 and 5, and denote by βJ(τ ),
βLW(τ ), βCLR(τ ), βCM(τ ) and βTW(τ ) their respective asymptotic powers against
the point alternative h = τ , at asymptotic level α.

PROPOSITION 8. The following statements hold for any τ ∈ [0,
√

c)r .
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(i) Suppose that Assumption nG∗ holds; then

βJ(τ ) = βLW(τ ) = 1 − �

(
�−1(1 − α) − 1

2

r∑
j=1

τ 2
j

c

)
(3.8)

and

βCLR(τ ) = 1 − �

(
�−1(1 − α) −

r∑
j=1

τj − ln(1 + τj )√−2 ln(1 − c) − 2c

)
.(3.9)

(ii) If Assumption nG∗ is strengthened into Assumption G,

βCM(τ ) = 1 − �

(
�−1(1 − α) − 1

2

r∑
j=1

τ 2
j

c

)
.(3.10)

(iii) Let ε in (2.1) be i.i.d. with symmetric, not necessarily Gaussian, distribu-
tion such that Eε2

ij = 1, with sub-Gaussian moments—that is, such that, for some

δ > 0 and all positive integers k, Eε2k
ij ≤ (δk)k ; then

βTW(τ ) = α.(3.11)

Tracy–Widom-type tests based on μ1, . . . ,μr for the hypothesis of sphericity
H0 :� = σ 2Ip (σ 2 unspecified) could be considered as well; mutatis mutandis,
part (iii) of Proposition 8 similarly holds for such tests. Details are skipped.

To establish (3.8) and (3.9), we use Bai and Silverstein’s (2004) CLT that holds
for ε with zero excess kurtosis. This explains why Assumption nG∗ is needed
in part (i) of Proposition 8. In contrast to the John, Ledoit–Wolf and “corrected”
likelihood ratio statistics, the Cai–Ma test statistic is not asymptotically equiva-
lent to a linear spectral statistic. Hence, in part (ii) of the proposition, we cannot
use the Bai–Silverstein CLT, and make a stronger assumption of Gaussianity to
obtain (3.10). The moment assumptions of part (iii) (which clearly imply Assump-
tion nG) mimic assumptions H1–H3 of Féral and Péché (2009).

The asymptotic power functions of the John, Ledoit–Wolf, “corrected” likeli-
hood ratio and Cai–Ma tests are nontrivial. Figures 6 and 7 compare these power
functions to the corresponding power envelopes for r = 2. Since John’s test is in-
variant with respect to orthogonal transformations and scalings of the data, Fig-
ure 6 compares βJ(τ ) (solid line) to the Gaussian asymptotic power envelope
βμ(τ) (dotted line). The Ledoit–Wolf test, the “corrected” likelihood ratio test
and the Cai–Ma test are invariant only with respect to orthogonal transforma-
tions of the data, and Figure 7 thus compares the asymptotic power functions
βLW(τ ) = βCM(τ ) and βCLR(τ ) (solid and dashed lines, resp.) to the Gaussian
asymptotic power envelope βλ(τ ) (dotted line). Note that βCLR(τ ) depends on c.
As c converges to one, βCLR(τ ) converges to α, which corresponds to the case of
trivial power. As c converges to zero, βCLR(τ ) converges to βLW(τ ) = βCM(τ ). In
Figure 7, we provide the plots of βCLR(τ ) that correspond to c = 0.5.
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FIG. 6. Profiles of the asymptotic power of John’s test (solid lines) relative to the asymptotic power
envelope βμ (dotted lines) for different values of τ1 under the alternative h = τ ; α = 0.05.

These comparisons show that, contrary to our LR tests (see Figures 2 and 3), all
those tests either have trivial power α (the Tracy–Widom ones), or power functions
that increase very slowly with τ1 and τ2, and lie very far below the corresponding
Gaussian power envelope.

4. Conclusion. This paper extends OMH’s study of the power of high-
dimensional sphericity tests to the case of multispiked alternatives. We derive the
asymptotic distribution of the log-likelihood ratio process and use it to obtain sim-
ple analytical expressions for the Gaussian maximal asymptotic power envelope
and for the asymptotic powers of several commonly used tests. These asymptotic
powers turn out to be very substantially below the envelope. We propose the Gaus-
sian likelihood ratio tests based on the data reduced to the eigenvalues of the sam-
ple covariance matrix. We show that those tests remain valid under mild moment
assumptions. Our computations show that their asymptotic power is close to the
envelope.

APPENDIX

This appendix contains the proofs of some of the main results of this paper.
A more complete version can be found in the supplementary material [Onatski,
Moreira and Hallin (2014)], where we refer to for further details. For the sake of
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FIG. 7. Ledoit–Wolf and Cai–Ma tests (solid lines) and the CLR test (dashed lines, for c = 0.5)
relative to the asymptotic power envelope βλ (dotted lines) for different values of τ1 under the alter-
native h = τ ; α = 0.05.

readability and easy reference, though, we are using the same numberings here
as in the complete version, which explains the gaps, for instance, between equa-
tions (A.14) and (A.36), etc.

A.1. Proof of Proposition 2. Let Ip(�p,
p) stand for the integral∫
O(p) e

p tr(�pQ′
pQ)(dQ). As explained in GM, page 454, we can write

Ip(�p,
p) = E
p exp

{
p

r∑
j=1

θpj

g̃(j)′
pg̃(j)

g̃(j)′g̃(j)

}
,(A.1)

where E
p denotes expectation conditional on 
p , and the p-dimensional vec-
tors (g̃(1), . . . , g̃(r)) are obtained from standard Gaussian p-dimensional vectors
(g(1), . . . , g(r)), independent from 
p , by a Schmidt orthogonalization procedure.

More precisely, we have g̃(j) = ∑j
k=1 Ajkg

(k), where Ajj = 1 and

j−1∑
k=1

Ajkg
(k)′g(t) = −g(j)′g(t) for t = 1, . . . , j − 1.(A.2)
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In the spirit of the proof of GM’s Theorem 3, define

γ
(j,s)
p1 = √

p

(
1

p
g(j)′g(s) − δjs

)
and

(A.3)

γ
(j,s)
p2 = √

p

(
1

p
g(j)′
pg(s) − vpj δjs

)
,

where δjs = 1{j = s} stands for the Kronecker symbol. As will be shown below,

γ
(j,s)
p1 and γ

(j,s)
p2 , after an appropriate change of measure, are asymptotically cen-

tered Gaussian. Expressing the exponent in (A.1) as a function of γ
(j,s)
p1 and γ

(j,s)
p2 ,

changing the measure of integration, and using the asymptotic Gaussianity will
establish the proposition.

Let γp = (γ
(1,1)
p , . . . , γ

(r,1)
p , γ

(2,2)
p , . . . , γ

(r,2)
p , . . . , γ

(r,r)
p )′, where γ

(j,s)
p =

(γ
(j,s)
p1 , γ

(j,s)
p2 ). With this notation, using (A.1), (A.2) and (A.3), we obtain

Ip(�p,
p)

(A.4)
=

∫
fp,θ (γp)e

√
p
∑r

j=1 θpj (
√

pvpj +γ
(j,j)
p2 −vpj γ

(j,j)
p1 )

r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
,

where P is the standard Gaussian probability measure and

fp,θ (γp) = exp

{
r∑

j=1

θpj

N1j + · · · + N6j

Dj

}
(A.5)

with

N1j = −γ
(j,j)
p1

(
γ

(j,j)
p2 − vpjγ

(j,j)
p1

)
,

N2j = γ
(j,1 : j−1)′
p1

(
G

(j)
p1 + I

)−1(
G

(j)
p2 + Wpj

)(
G

(j)
p1 + I

)−1
γ

(j,1 : j−1)
p1 ,

N3j = −2γ
(j,1 : j−1)′
p1

(
G

(j)
p1 + I

)−1
γ

(j,1 : j−1)
p2 ,

N4j = vpjγ
(j,1 : j−1)′
p1

(
G

(j)
p1 + I

)−1
γ

(j,1 : j−1)
p1 ,

N5j = p−1/2γ
(j,j)
p2 γ

(j,1 : j−1)′
p1

(
G

(j)
p1 + I

)−1
γ

(j,1 : j−1)
p1 ,

N6j = −p−1/2vpjγ
(1 : j−1,j)′
p1

(
G

(j)
p1 + I

)−1
γ

(1 : j−1,j)
p1 γ

(j,j)
p1 and

Dj = 1 + p−1/2γ
(j,j)
p1 − p−1γ

(j,1 : j−1)′
p1

(
G

(j)
p1 + I

)−1
γ

(j,1 : j−1)
p1 ,

where G
(j)
pi is a (j − 1)× (j − 1) matrix with (k, s)th element p−1/2γ

(k,s)
pi , Wpj =

diag(vp1, . . . , vp,j−1) and γ
(j,1 : j−1)
pi = (γ

(j,1)
pi , . . . , γ

(j,j−1)
pi )′.

Next, define the event

BM,M ′ = {∣∣γ (j,s)
p1

∣∣ ≤ M and
∣∣γ (j,s)

p2

∣∣ ≤ M ′ for all j, s = 1, . . . , r
}
,
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where M and M ′ are positive parameters to be specified later. With a slight abuse of
notation, we shall also refer to BM,M ′ as a rectangular region in R

r2+r that consists
of vectors with odd coordinates in (−M,M) and even coordinates in (−M ′,M ′).
Let

IM,M ′
p (�p,
p)

=
∫

1{BM,M ′ }fp,θ (γp)e
√

p
∑r

j=1 θpj (
√

pvpj+γ
(j,j)
p2 −vpj γ

(j,j)
p1 )

r∏
j=1

p∏
i=1

dP
(
g

(j)
i

)
.

Below, we establish the asymptotic behavior of IM,M ′
p (�p,
p) as first p, and

then M and M ′, diverge to infinity. We then show that the asymptotics of
IM,M ′
p (�p,
p) and Ip(�p,
p) coincide.

Consider infinite arrays {P(j)
pi , p = 1,2, . . . ; i = 1, . . . , p}, j = 1, . . . , r , of ran-

dom centered Gaussian measures

dP(j)
pi (x) =

√
1 + 2θpjvpj − 2θpjλpi

2π
e−(1/2)(1+2θpj vpj −2θpj λpi)x

2
dx.(A.6)

Since vpj = RMP
p (2θpj ) = 1/(1−2θpj cp) and 2θpj ∈ �ωη, there exists ω̂ > 0 such

that, for sufficiently large p,

vpj + 1/(2θpj ) > (1 + √
c)2 + ω̂ when θpj > 0

and

vpj + 1/(2θpj ) < (1 − √
c)21{c < 1} − ω̂ when θpj < 0.

Recall that λpp → (1 − √
c)21{c < 1} and λp1 → (1 + √

c)2 a.s. as np,p →c ∞
[Baik and Silverstein (2006)]. Therefore, vpj + 1/(2θpj ) > λp1 when θpj > 0,
and vpj + 1/(2θpj ) < λpp when θpj < 0 a.s., for sufficiently large p. Hence, the

measures P
(j)
pi are a.s. well defined for sufficiently large p. Whenever P(j)

pi is not
well defined, we redefine it arbitrarily.

We have

IM,M ′
p (�p,
p)

(A.7)
= e

p
∑r

j=1[θpj vpj−(1/(2p))
∑p

i=1 ln(1+2θpj vpj −2θpj λpi)]JM,M ′
p ,

where

JM,M ′
p =

∫
1{BM,M ′ }fp,θ (γp)

r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
.(A.8)

Section A.2 of the complete version of this appendix contains a proof of the fol-
lowing lemma.
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LEMMA 9. For any a > 0, there exist Ma and M ′
a such that, for any M > Ma

and M ′ > M ′
a , ∣∣∣∣∣JM,M ′

p −
r∏

j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp

∣∣∣∣∣ < a,(A.9)

uniformly over {2θpk ∈ �ωη, k ≤ r}, with probability arbitrarily close to one, for
sufficiently large p.

Lemma 9 and equation (A.7) imply that IM,M ′
p (�p,
p) behaves as the right-

hand side of equation (2.9), as first p, and then M and M ′, diverge to infinity. Now,
let us show that the asymptotics of IM,M ′

p (�p,
p) and Ip(�p,
p) coincide. Let

BM be the event {|γ (j,s)
p1 | ≤ M for all j, s ≤ r} and define

IM
p (�p,
p) = E
p

(
1{BM} exp

{
p

r∑
j=1

θpj

g̃(j)′
pg̃(j)

g̃(j)′g̃(j)

})
.

The following lemma is established in Section A.3 of the complete version of this
appendix.

LEMMA 10. Under the assumptions of Proposition 2,

Ip(�p,
p) ≥ IM
p (�p,
p) ≥ (

1 − 2r2e−M2/16)Ip(�p,
p)(A.10)

for sufficiently large p, uniformly over {2θpk ∈ �ωη, k ≤ r}.

Similarly to IM,M ′
p (�p,
p), IM

p (�p,
p) can be represented in the form

IM
p (�p,
p) = e

p
∑r

j=1[θpj vpj −(1/(2p))
∑p

i=1 ln(1+2θpj vpj−2θpj λpi)]JM
p ,(A.11)

where

JM
p =

∫
1{BM}fp,θ (γp)

r∏
j=1

p∏
i=1

dP(j)
pi

(
g

(j)
i

)
.

The following lemma shows that the difference JM,M ′,∞
p = JM

p − JM,M ′
p is small.

It is proven in Section A.4 of the complete version of this appendix.

LEMMA 11. Under the assumptions of Proposition 2, there exist positive con-
stants β0 and β1 such that, for any positive M and M ′ that satisfy inequality
M ′/(4β2

0 ) > Mr2β1,

JM,M ′,∞
p ≤ 4r2e−(M ′)2/(16β2

0 )+β1r
2MM ′

(A.12)

for sufficiently large p, uniformly over {2θpk ∈ �ωη, k ≤ r}.
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Combining (A.10), (A.11) and (A.12), we obtain

JM,M ′
p ≤ Jp ≤ JM,M ′

p + 4r2e−M ′2/16β2
0+β1r

2MM ′

1 − 2r2e−M2/16
.(A.13)

Let ϕ > 0 be an arbitrarily small number. Let us choose M > Mϕ/4 and M ′ > M ′
ϕ/4

(where Ma and M ′
a are as in Lemma 9) so that(

1 − 2r2e−M2/16)−1
< 2,(

1 − 2r2e−M2/16)−14r2e−(M ′)2/(16β2
0 )+β1r

2MM ′
< ϕ/4

and

[(
1 − 2r2e−M2/16)−1 − 1

]
sup

{2θpk∈�ωη,k≤r}

r∏
j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp < ϕ/4

for all sufficiently large p, a.s. Then, (A.13) implies that∣∣∣∣∣Jp −
r∏

j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp

∣∣∣∣∣ < ϕ(A.14)

with probability arbitrarily close to one, for all sufficiently large p, uniformly
over {2θpk ∈ �ωη, k ≤ r}. Since ϕ can be chosen arbitrarily, we have, from (A.11)
and (A.14),

Ip(�p,
p) = e
p
∑r

j=1[θpj vpj −(1/(2p))
∑p

i=1 ln(1+2θpj vpj−2θpj λpi)]

×
(

r∏
j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp + oP(1)

)
,

where the oP(1) term is uniform, as np,p →c ∞, in {2θpk ∈ �ωη, k ≤ r}. Propo-
sition 2 follows from this, and the fact that 1 − 4θpjvpj θpsvpscp is bounded away
from zero for sufficiently large p, uniformly in {2θpk ∈ �ωη, k ≤ r}.

A.2–A.4. Proofs of Lemmas 9, 10 and 11. See the supplementary material
[Onatski, Moreira and Hallin (2014)].

A.5. Proof of Theorem 3. First, we prove equation (2.12).
For θpj = 1

2cp

τj

1+τj
, we have vpj = 1 + τj , θpjvpj = τj /2cp and

ln(1 + 2θpjvpj − 2θpjλpi) = ln
(

1

cp

τj

1 + τj

)
+ ln

(
zj (τ ) − λpi

)
.

Further, by Lemma 11 and formula (3.3) of OMH,∫
ln
(
zj (τ ) − λ

)
dF MP

p (λ) = τj

cp

− 1

cp

ln(1 + τj ) + ln
(1 + τj )cp

τj
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a.s. for sufficiently large p. With these auxiliary results, equation (2.12) is
a straightforward consequence of equation (2.4) and Proposition 2.

Turning to the proof of (2.13), consider the integrals

I(k1, k2) =
∫ k2

k1

x((npp)/2)−1e−(np/2)x
∫
O(p)

ep(x/Sp) tr(DpQ′
pQ)(dQ)dx,

k1 < k2 ∈ R.

In what follows, we omit the subscript p in np to simplify notation. Note that
I(0,∞) is the integral appearing in expression (2.5) for Lp(τ ;μp). Section A.6
of the complete version of this appendix contains a proof of the following lemma.

LEMMA 12. There exists a constant α > 0 such that

I(0,∞) = I(p − α
√

p,p + α
√

p)
(
1 + oP(1)

)
,(A.36)

where oP(1) is uniform in τ ∈ [0,
√

c − δ]r .

Now, letting θ̃pj = x
Sp

θpj = x
Sp

1
2cp

τj

1+τj
, note that there exist ω > 0 and η > 0

such that {2θ̃pj : τj ∈ [0,
√

c − δ] and x ∈ [p − α
√

p,p + α
√

p]} ⊆ �ωη with
probability arbitrarily close to one for sufficiently large p. Hence, by (A.36) and
Proposition 2,

I(0,∞) =
∫ p+α

√
p

p−α
√

p
x((np)/2)−1

× e−(n/2)xe
p
∑r

j=1[θ̃pj ṽpj −(1/(2p))
∑p

i=1 ln(1+2θ̃pj ṽpj −2θ̃pj λpi)](A.37)

×
(

r∏
j=1

j∏
s=1

√
1 − 4(θ̃pj ṽpj )(θ̃ps ṽps)cp + oP(1)

)
dx,

where ṽpj = (1−2θ̃pj cp)−1 and the oP(1) term is uniform in h ∈ [0,
√

c− δ]r and
x ∈ [p − α

√
p,p + α

√
p].

Expanding θ̃pj ṽpj − 1
2p

∑p
i=1 ln(1 + 2θ̃pj ṽpj − 2θ̃pjλpi) and (θ̃pj ṽpj )(θ̃ps ṽps)

into power series of x/p − 1, we get

I(0,∞) =
∫ p+α

√
p

p−α
√

p
x((np)/2)−1e−(n/2)x

× ep(B0+B1(x/p−1)+B2(x/p−1)2)(A.38)

×
(

r∏
j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp + oP(1)

)
dx,

where B0,B1 and B2 are OP(1) uniformly in τ ∈ [0,
√

c − δ]r . The following
lemma simplifies the above expression. Its proof is given in Section A.7 of the
complete version of this appendix.
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LEMMA 13. The quadratic term B2(x/p + 1)2 can be omitted from the
exponent in the right-hand side of (A.38) without affecting (A.38)’s validity.
That is,

I(0,∞) =
∫ p+α

√
p

p−α
√

p
x((np)/2)−1e−(n/2)xep(B0+B1((x/p)−1))

×
(

r∏
j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp + oP(1)

)
dx.

Lemma 13 shows that only the constant and linear terms in the expansion of
θ̃pj ṽpj − 1

2p

∑p
i=1 ln(1 + 2θ̃pj ṽpj − 2θ̃pjλpi) into power series of x/p − 1 matter

for the evaluation of I(0,∞). Let us find these terms.
As in the proof of Lemma 9, let F̂ λε

p (λ) be the empirical distribution of the
eigenvalues of σ 2εε′/n, and let [x1p, x2p] be the smallest interval that includes
both the support of F̂ λ

p and the support of F̂ λε
p . By Theorem 1.1 of Bai and Silver-

stein (2004), p
∫

λdF̂ λε
p (λ) − p = OP(1). On the other hand,∣∣∣∣Sp − p

∫
λdF̂ λε

p (λ)

∣∣∣∣ = p

∣∣∣∣
∫

λd
(
F̂ λ

p (λ) − F̂ λε
p (λ)

)∣∣∣∣
= p

∣∣∣∣
∫ (

F̂ λ
p (λ) − F̂ λε

p (λ)
)

dλ

∣∣∣∣
≤ r(x2p − x1p),

where the last inequality follows from the fact, established in the proof of
Lemma 9, that supλ |F̂ λ

p (λ) − F̂ λε
p (λ)| ≤ r/p. Since x2p − x1p = OP(1) [Baik and

Silverstein (2006)], |Sp − p
∫

λdF̂ λε
p (λ)| = OP(1) and

Sp − p = Sp − p

∫
λdF̂ λε

p (λ) + p

∫
λdF̂ λε

p (λ) − p = OP(1).

The latter equality implies that x/Sp − 1 = x/p − Sp/p + OP(p−1) uniformly in
x ∈ [p − α

√
p,p + α

√
p]. Using this fact, we obtain

θ̃pj ṽpj = θpjvpj + θpjv
2
pj (x/p − Sp/p) + OP

(
(x/p − 1)2),

ln(2θ̃pj ) = ln(2θpj ) + (x/p − Sp/p) + OP
(
(x/p − 1)2)

and
p∑

i=1

ln
(
KMP

p (2θ̃pj ) − λpi

)

=
p∑

i=1

ln
(
KMP

p (2θpj ) − λpi

) − p
(
1 − 4cpθ2

pjv
2
pj

)
(x/p − Sp/p)

+ OP
(
(x/p − 1)2).
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It follows that

I(0,∞) =
∫ p+α

√
p

p−α
√

p
x((np)/2)−1

× e−(n/2)xe
p
∑r

j=1[θpj vpj−(1/(2p))
∑p

i=1 ln(1+2θpj vpj −2θpj λpi)]

× e
∑r

j=1 θpj vpj (x−Sp)

×
(

r∏
j=1

j∏
s=1

√
1 − 4(θpjvpj )(θpsvps)cp + oP(1)

)
dx.

This equality, together with (2.4) and Proposition 2, implies that

I(0,∞) =
r∏

j=1

(1 + τj )
(np/2)Lp(τ ;λp)

×
∫ p+α

√
p

p−α
√

p
x((np)/2)−1(A.39)

× e−(n/2)xe
∑r

j=1 θpj vpj (x−Sp) dx
(
1 + oP(1)

)
.

Equations (A.39), (2.5) and the fact that∫ p+α
√

p

p−α
√

p
x((np)/2)−1e−(n/2)xe

∑r
j=1 θpj vpj (x−Sp) dx

= e
∑r

j=1 −Spτj /(2cp)

(
n/2 −

r∑
j=1

τj /(2cp)

)−(np)/2

�(np/2)
(
1 + o(1)

)

entail

Lp(τ ;μp) = Lp(τ ;λp)e
∑r

j=1 −(τj /(2cp))Sp

(
1 −

r∑
j=1

τj /ncp

)−(np)/2(
1 + oP(1)

)

= Lp(τ ;λp)e
−((Sp−p)/(2cp))

∑r
j=1 τj+(1/(4cp))(

∑r
j=1 τj )2(

1 + oP(1)
)
,

which establishes (2.13).

A.6–A.7. Proofs of Lemmas 12 and 13. See the supplementary material
[Onatski, Moreira and Hallin (2014)].

A.8. Proof of Proposition 4. Proposition 4 follows from Theorem 3. To-
gether with Lemma 12 of OMH, equations (2.12) and (2.13) imply the convergence
of the finite-dimensional distributions of{

lnLp(τ ;λp); τ ∈ [0,
√

c − δ]r} and
(A.43) {

lnLp(τ ;μp); τ ∈ [0,
√

c − δ]r}
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to those of {Lλ(τ ); τ ∈ [0,
√

c − δ]r} and {Lμ(τ); τ ∈ [0,
√

c − δ]r}, respectively.
Note that Lemma 12 of OMH is derived as a corollary to Theorem 1.1 of Bai and
Silverstein (2004). Since all statements there hold for non-Gaussian ε with i.i.d.
standardized entries having zero excess kurtosis, Lemma 12 of OMH holds under
that condition, too. Finally, the weak convergence in C[0,

√
c − δ]r follows from

the tightness of the se quences of processes (A.43), which is implied by (2.12)
and (2.13), and by the fact that �p(zj (τ )), j = 1, . . . , r are OP(1) uniformly in
τ ∈ [0,

√
c − δ]r .

A.9. Proof of Proposition 5. To save space, we only derive the Gaussian
asymptotic power envelope for the relatively more difficult case of real-valued
data and μ-based tests. It follows from Proposition 4 that the point-optimal test
LRμ,τ (μp) = 1{lnLp(τ ;μp) > cμ,τ } has asymptotic size α if and only if

cμ,τ = √
W(τ)�−1(1 − α) + m(τ),(A.44)

where

m(τ) = 1

4

r∑
i,j=1

(
ln
(

1 − τiτj

c

)
+ τiτj

c

)

and

W(τ) = −1

2

r∑
i,j=1

(
ln
(

1 − τiτj

c

)
+ τiτj

c

)
.

Now, Le Cam’s third lemma and Proposition 4 entail that, under h = τ ,

lnLp(τ ;μp)
d→ N (m(τ) + W(τ),W(τ)). Proposition 5 follows.

A.10. Invariant tests. See the supplementary material [Onatski, Moreira and
Hallin (2014)].

A.11–A.13. Proofs of Propositions 6, 7 and 8. See the supplementary mate-
rial [Onatski, Moreira and Hallin (2014)].

SUPPLEMENTARY MATERIAL

Appendix to “Signal detection in high dimension: The multispiked case”
(DOI: 10.1214/13-AOS1181SUPP; .pdf). This supplement [Onatski, Moreira and
Hallin (2014)] provides an extended version of the mathematical appendix above,
including Sections A.2–A.4, A.6–A.7 and A.10–A.13.
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