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HIGH-DIMENSIONAL INFLUENCE MEASURE

BY JUNLONG ZHAO1, CHENLEI LENG2, LEXIN LI3 AND HANSHENG WANG4

Beihang University, University of Warwick and National University of Singapore,
North Carolina State University and Peking University

Influence diagnosis is important since presence of influential observa-
tions could lead to distorted analysis and misleading interpretations. For high-
dimensional data, it is particularly so, as the increased dimensionality and
complexity may amplify both the chance of an observation being influential,
and its potential impact on the analysis. In this article, we propose a novel
high-dimensional influence measure for regressions with the number of pre-
dictors far exceeding the sample size. Our proposal can be viewed as a high-
dimensional counterpart to the classical Cook’s distance. However, whereas
the Cook’s distance quantifies the individual observation’s influence on the
least squares regression coefficient estimate, our new diagnosis measure cap-
tures the influence on the marginal correlations, which in turn exerts serious
influence on downstream analysis including coefficient estimation, variable
selection and screening. Moreover, we establish the asymptotic distribution
of the proposed influence measure by letting the predictor dimension go to
infinity. Availability of this asymptotic distribution leads to a principled rule
to determine the critical value for influential observation detection. Both sim-
ulations and real data analysis demonstrate usefulness of the new influence
diagnosis measure.

1. Introduction. An observation is flagged influential if some important fea-
tures of the analysis are substantially altered after this observation is removed [13].
Presence of influential observations would possibly lead to distorted analysis and
misleading results [18], and therefore it is important to be alert to influential ob-
servations and take them into consideration when interpreting the results. In the
classical normal linear model setup, regression coefficient estimate was chosen,
naturally, as the feature whose substantial change defines influential observations.
Toward that end, [12] proposed a difference measure between the OLS estimate
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on the full data and that on the subset of data without the observation in ques-
tion. This measure, which is later on referred in the statistical literature as the
Cook’s distance, quantifies the contribution, or influence, of individual data obser-
vation on the regression coefficient estimate. Consequently an observation with a
large Cook’s distance is deemed as influential. Since its introduction, the Cook’s
distance has been routinely employed in regression analysis, due to its clear inter-
pretation from the case deletion point of view, and its easy computation without
having to re-estimate the model for each removed observation. The topic is covered
in most standard regression textbooks, and it is implemented in popular statistical
software such as R and SAS.

The problem of influence diagnosis has since attracted considerable attention
and been systematically investigated for various models and analyses. Examples
include linear regression models [9, 12, 14], categorical data analyses [1], gen-
eralized linear models [16, 33, 38], generalized estimation equations [30], linear
mixed models [2, 3, 11], generalized linear mixed models [39], semiparametric
mixed models [25], growth curve models [29], incomplete data analysis [44], per-
turbation theory [15, 42, 43], among others. For an excellent review on the latest
developments in the field of influence diagnosis, we refer to [42].

Thanks to the aforementioned works, substantial insights have been gained on
influence diagnosis. However, it is important to note that, all existing diagnosis
approaches have been developed under the assumption that the number of pre-
dictors in regression is fixed. As such, none is immediately applicable to high-
dimensional regression analysis, where the number of predictors p far exceeds
the sample size n. On the other hand, nowadays prevailing in both science and
business are data with unprecedented size and dimensionality, calling for the de-
velopment of high-dimensional influence diagnosis. Detection of influential ob-
servations in high-dimensional data analysis, in our opinion, is equally, or to some
extent, even more important than in a classical setup. This is partly because the
increased dimensionality and complexity of the data may amplify both the chance
of an observation being influential as well as its potential impact on the analy-
sis. Moreover, the peculiar data observations themselves may be of practical im-
portance in addition to data modeling. The diagnosis task, nevertheless, is more
challenging in high-dimensional data analysis, and is far from a direct extension
of existing diagnosis approaches. To the best of our knowledge, influence diag-
nosis in a high-dimensional setting has received little attention despite its evident
importance.

The first challenge is the definition of influential observation. In other words,
which feature of the analysis should one choose such that its substantial alterna-
tion defines an influential observation? In the classical setup, an observation is
deemed influential if it incurs serious change in regression coefficient estimate.
In high-dimensional regression where p > n, the ordinary least squares estima-
tor is highly unstable as the gram matrix is not invertible. On the other hand,
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we recognize that variable selection and variable screening are of particular im-
portance in high-dimensional regression analysis. There has been a vast litera-
ture on variable selection in recent years, including the LASSO [34], the adaptive
LASSO [36, 40, 45], the SCAD [21], the bridge estimator [24, 26], the LARS al-
gorithm [19], the Dantzig selector [8], the sure independence screening rule [22],
SIS, the forward regression [35], FR, among many others. Underlying all those
selection methods, one statistic plays a critical role and, that is, the marginal co-
variance, or equivalently, marginal correlation between the response and the in-
dividual covariates. To clarify, we note that, SIS is directly defined based on this
statistic, whereas the first step of the forward regression hinges on the estimated
marginal covariance too. In addition, the sample marginal covariance, in addition
to the Gram matrix, is an important input for the well celebrated LARS algorithm,
as well as the LASSO, the adaptive LASSO and the Dantzig selector.

Motivated by this vital observation, we choose the marginal correlation as the
feature that defines influential observation. We propose a new influence diagnosis
measure, which continues to utilize the leave-one-out idea of the classical Cook’s
distance, but is based on the combined marginal correlations between the response
and all predictors. The new measure is applicable to high-dimensional setting
where p > n, and is very fast and easy to compute. Unlike the classical Cook’s
distance that quantifies the individual observation’s influence on the least squares
coefficient estimate, the new measure captures the influence on the marginal cor-
relation, which in turn exerts serious impact on variable selection and other down-
stream analysis. The choice of the marginal correlation as the defining feature of
our influence diagnosis does not imply that the marginal correlation is our ulti-
mate goal of interest. Instead, it reflects influence on important analysis features
including parameter estimation, variable selection and screening. This definition
of influential observation in a high-dimensional setting can be viewed as our first
contribution.

Our second contribution is that the explicit asymptotic distribution for the pro-
posed influence measure is derived. Availability of this asymptotic theory offers
a principled guidance to determine the critical value for the influence measure.
Subsequently, we propose a false discovery rate based procedure for that purpose
[5, 6]. We remark that, in the classical setup where p is fixed, a standard Taylor’s
expansion type analysis [12] revealed that the classical Cook’s distance’s major
variability is due to the observation under investigation and its sample size is only
one. This rules out the possibility of establishing a standard asymptotic theory for
the classical Cook’s distance. To determine an appropriate threshold value for the
classical Cook’s distance, its distribution can be obtained by bootstrap if the true
model is a parametric linear model. However, such a bootstrap procedure requires
a parametric model assumption and can be computationally expensive especially
for high-dimensional data. By contrast, the asymptotic distribution of the proposed
influence measure is attainable in our setup, since the predictor dimension goes to
infinity along with the sample size, and the threshold is easy to obtain.
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When facing high-dimensional data diagnosis, an intuitive solution is to con-
tinue using the classical Cook’s distance but to replace the OLS coefficient esti-
mate with a regularized estimate, for instance, a LASSO estimate. This modified
Cook’s distance approach could be particularly useful when data perturbation con-
centrates on the nonzero coefficients, as it avoids unnecessary variability caused
by irrelevant covariates. However, it also has several limitations. First, this solution
interweaves influence diagnosis with variable selection, which can be flawed if the
influence is reflected on variable selection itself. For instance, an influential obser-
vation may substantially alter the chosen tuning parameter of the LASSO, resulting
in a totally different regularized coefficient estimate, which in turn affects the mod-
ified Cook’s distance. Second, the tuning parameter of the LASSO, in principle,
should be updated for every reduced data set, and this re-estimation requirement
can be very expensive computationally, especially when the regression dimension
p is large. Third, the asymptotic properties of the modified Cook’s distance seem
intractable analytically, which makes the thresholding of influential data difficult,
whereas a bootstrap alternative to choose the thresholding value is again computa-
tionally expensive. Moreover, while there exist many competing variable selection
methods, it is unclear which selection method is the best choice in the context of
influence diagnosis. By contrast, our influence measure is not constrained by any
particular variable selection method, and this flexibility could benefit downstream
analysis. In Section 3, we carry out an intensive numerical study to compare this
modified Cook’s distance with our proposal, and this detailed comparison can be
viewed as the third contribution of this article.

Before we proceed, we quickly show a simulated example to illustrate two
points: first, how various aspects of a high-dimensional regression analysis,
including regression coefficient estimation, variable selection and variable screen-
ing, can be seriously affected by influential observations, and second, how our pro-
posed measure can help limit such influence. The data was generated from a linear
model with p = 1000 predictors, n = 100 observations, among which 10 observa-
tions were influential. The magnitude of the influence was dictated by a scalar κ

with a larger value indicating a larger influence. More details can be found in the
setup of model 1 in Section 3. Evaluations include error in coefficient estimation,
error in variable selection after applying the LASSO [34], and error in variable
screening after applying the SIS [22]. The results are averaged over 200 simula-
tion replicates, and are reported in Figure 1. It is clearly seen from the plot that,
influential observations could have drastic effects on various features for high-
dimensional data analysis. Meanwhile, our marginal correlation based diagnosis
could greatly help control the adverse effects after detecting and removing those
influential data points.

The rest of the artlicle is organized as follows. Section 2 begins with a review
of the classical Cook’s distance, then presents our new high-dimensional influence
measure, along with a comparison with the Cook’s distance, the asymptotic prop-
erties and a power study. Section 3 includes an intensive simulation study and a
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FIG. 1. Effect of influential points on parameter estimation (a), variable selection (b) and variable
screening (c), as the perturbation parameter κ varies. “Before HIM” denotes the analysis on the
full data, and “After HIM” denotes the analysis on the reduced data after removing the influential
observations flagged by our proposed high-dimensional measure (HIM).

microarray data analysis. Section 4 presents a generalization of our proposal from
the normal linear model to the generalized linear model. Section 5 concludes the
paper with a discussion. All technical proofs are given in the Appendix and the
supplementary material [41].

2. High-dimensional influence measure.

2.1. Linear models and classical Cook’s distance. In this article, we focus on
influence diagnosis in the context of the classical linear regression model. Mean-
while, we note that the proposed idea can be readily extended to a much broader
class of regression models, and we will discuss one such extension in Section 4.
Consider the following model:

Yi = β0 + X�
i β1 + εi,(2.1)

where the pair (Yi,Xi), 1 ≤ i ≤ n, denote the observation of the ith subject,
Yi ∈ R is the response variable, Xi = (Xi1, . . . ,Xip)� ∈ R

p is the associated
p-dimensional predictor vector, and εi ∈ R is a mean zero normally distributed
random noise. Let β = (β0,β

�
1 )� denote the coefficient vector. Under the clas-

sical setup of n > p, the OLS estimate of β is obtained by minimizing the ob-
jective function

∑n
i=1(Yi − β0 − X�

i β1)
2, and the solution is β̂ = (X�X)−1X�Y,

where Y = (Y1, . . . , Yn)
� denotes the n × 1 response vector, and X denotes the

n×(p+1) design matrix with the ith row being p+1 dimensional vector (1,X�
i ),

i = 1, . . . , n.
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To quantify the influence of the kth observation on regression, 1 ≤ k ≤ n, [12]
employed the leave-one-out idea by studying the OLS estimate of β while the
kth observation is excluded from estimation. That is, one minimizes the modified
objective function

∑n
i=1,i �=k(Yi − β0 − X�

i β1)
2. The new estimate is of the form

β̂(k) = (X�
(k)X(k))

−1X�
(k)Y(k), where Y(k) is the (n − 1) × 1 response vector with

Yk removed, and X(k) is the (n − 1) × (p + 1) design matrix with the kth row
Xk removed. Cook [12] naturally chose the estimate of β to define influence, and
intuitively, if an observation is influential, the difference between β̂ and β̂(k) is
expected to be large. This leads to the following discrepancy measure, that is, the
Cook’s distance:

Dk = {β̂(k) − β̂}�X�X{β̂(k) − β̂}
(p + 1)σ̂ 2 ,(2.2)

where σ̂ 2 = (n − p − 1)−1 ∑n
i=1(Yi − β̂0 − X�

i β̂)2.
In the high-dimensional regression setting, the classical Cook’s distance (2.2)

encounters some difficulties. When p is close to n, the OLS estimate is known
to be unstable, which would in turn cause Dk to be unstable. When p > n, the
classical Cook’s distance is not directly computable, because the OLS estimator
β̂ becomes unstable. For those reasons, the regression coefficient estimate may no
longer be the best choice to define influence in high-dimensional analysis. This
motivates us to consider an alternative influence measure for high-dimensional
data.

2.2. High-dimensional influence measure. In high-dimensional regression
analysis where p ≈ n or p > n, variable selection (screening) plays a central role,
whereas marginal covariance or correlation is crucial to the majority of variable
selection approaches. Motivated by this observation, for high-dimensional data
influence diagnosis, we choose marginal correlation, instead of regression coef-
ficient, as the feature that defines influence. Individual observation’s influence on
marginal correlation is to transmit to various features of downstream analysis, such
as variable selection and coefficient estimation.

More specifically, we first define the marginal correlation as ρj = E{(Xj −
μxj )(Y − μy)}/(σxjσy), where μxj = E(Xj ), μy = E(Y ), σ 2

xj = var(Xj ) and

σ 2
y = var(Y ). We then obtain the sample estimate, ρ̂j = {∑n

i=1(Xij − μ̂xj )(Yi −
μ̂y)}/{nσ̂xj σ̂y}, for j = 1, . . . , p, where μ̂xj , μ̂y, σ̂xj and σ̂y are the sample esti-
mates of μxj , μy , σxj and σy , respectively. Next, we continue to use the leave-one-
out principle as in the classical Cook’s distance case, and compute the marginal
correlation with the kth observation removed as

ρ̂
(k)
j =

∑n
i=1,i �=k(Xij − μ̂

(k)
xj )(Yi − μ̂

(k)
y )

(n − 1)σ̂
(k)
xj σ̂

(k)
y

, j = 1, . . . , p, k = 1, . . . , n,
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where μ̂
(k)
xj , μ̂

(k)
y , σ̂

(k)
xj and σ̂

(k)
y are the corresponding sample estimates with the

kth observation removed. Finally, we define the influence measure based on the
marginal correlation as

Dk = 1

p

p∑
j=1

(
ρ̂j − ρ̂

(k)
j

)2
.(2.3)

We refer to Dk as the high-dimensional influence measure, or HIM for brevity.
We make a few remarks. First, we note that the marginal correlation can be eas-
ily computed regardless of the predictor dimension, and such computational ad-
vantage is practically very useful for high-dimensional data analysis. Second, the
proposed influence measure is built upon the marginal correlation coefficient, and
is effectively scale invariant. However, it does not imply that marginal correlation
is the ultimate feature of interest in our influence diagnosis. Instead, a substan-
tial change on the marginal correlation caused by a data point is to exert influ-
ence on important features such as variable selection and parameter estimation,
as we have seen in Figure 1. As such, for an estimation method to be robust
to unexpected perturbation [15, 42, 43], the sample marginal correlation should
be sufficiently robust. This is an important and necessary condition, although not
necessarily sufficient. Finally, use of the marginal correlation to define the influ-
ence measure does not imply that we assume a marginal model. Instead, we still
assume the joint model (2.1). As it may seem unclear how a marginal measure
can capture the influence for a joint model, we will demonstrate through a sim-
ple joint model later in Section 2.5 that, the newly defined Dk can indeed identify
the influential observation with probability one. This use of marginal correlation
is also similar in spirit to the sure independence screening procedure for a joint
normal model [22], but is in a different context. Fan and Lv [22] use marginal
correlation for the variable screening purpose, while we use it for influence diag-
nosis.

The proposed high-dimensional influence measure also shares some similarity
as the classical Cook’s distance. Note that the Cook’s distance can be reformu-
lated as

Dk = ε̂2
k

pσ̂ 2

hkk

(1 − hkk)2 , k = 1, . . . , n,(2.4)

where ε̂k = Ŷk − Yk is the residual and hkk = X�
k (X�X)−1Xk , k = 1, . . . , n is the

(k)th diagonal element of the hat matrix X(X�X)−1X�. Clearly, Dk is an increas-
ing function of both |ε̂k| and hkk . As such, an observation has a large value in
Cook’s distance, if it has a large residual or it is a high leverage point in terms
of hkk . Our proposed information measure shares a similar spirit. In Section 2.3,
we will derive a decomposition of our influence measure Dk under some condi-
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tions, and will show that Dk is mainly dominated by a term called B2, which is of
the form

B2 = (n − 2)

pn(n − 1)2

p∑
j=1

Y 2
k X2

kj = (n − 2)

pn(n − 1)2 Y 2
k ‖Xk‖2.

Consequently the kth data point (Xk, Yk) is more likely to be marked influential,
if it has a large response and a large value of ‖Xk‖2. Here ‖Xk‖2 plays a sim-
ilar role as hkk in the classical Cook’s distance, for detecting influential points
induced mainly by covariates, whereas Yk plays a similar role as the residual in
the Cook’s distance, for detecting the influential point induced by abnormal re-
sponses.

2.3. Theoretical properties. We next establish the asymptotic distribution of
the proposed high-dimensional influence measure Dk as both the sample size n

and the dimensionality p go to infinity. Toward that end, we impose the following
conditions.

(C.1) For any fixed j = 1, . . . , p, ρj is constant and does not change as p in-
creases.

(C.2) For the covariance matrix � = cov(X), with the eigen-decomposition
� = ∑p

j=1 λj uj u�
j , it is assumed that lp = ∑p

j=1 λ2
j = O(pr) for some 0 ≤ r < 2.

(C.3) The predictor Xi follows a multivariate normal distribution and the ran-
dom noise εi follows a normal distribution.

Condition (C.1) is very general, since it only requires that for any fixed j , ρj is
a constant independent of p. A sufficient condition for condition (C.2) to hold
is that all eigenvalues of � are finite. This condition also permits eigenvalues of
� to diverge to infinity but at a slower rate compared to the dimensionality. The
normality assumption on X is mainly for convenience, and can be relaxed, for in-
stance, to distributions with sub-Gaussian tails, at the expense of more lengthy
proofs. In addition, since the error term is assumed normal, Y is normally dis-
tributed.

Next, we derive a decomposition of Dk , that is, to serve as a basis for its
asymptotic distribution. The result is presented in a way such that μy , μxj are
assumed to be 0 and σxj , σy are 1 for 1 ≤ j ≤ p. This leads to simplified es-

timates ρ̂j = n−1 ∑
1≤i≤n XijYi and ρ̂

(k)
j = n−1 ∑

i �=k XijYi . On the other hand,
we note that this standardization is only for the purpose of simplifying the pre-
sentation and it loses no generality. As we will show later in Proposition 2,
replacing the unknown quantities μxj , μy , σxj and σy with their consistent sam-
ple estimates would not alter Dk’s asymptotic distribution. For t, s = 1, . . . , n, let
Kp,ts = ∑

j XtjXsj /p and cp = max1≤j≤p λj . After some algebraic computation,
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we obtain that

Dk = 1

p

p∑
j=1

{
1

n(n − 1)

t �=k∑
1≤t≤n

YtXtj − 1

n
YkXkj

}2

= 1

{n(n − 1)}2

n∑
t=1

Y 2
t Kp,tt + (n − 2)

n(n − 1)2 Y 2
k Kp,kk

(2.5)

+ 1

[n(n − 1)]2

∑
t �=s

YtYsKp,ts − 2

n(n − 1)2

n∑
t=1,t �=k

YkYtKp,tk

:= B1 + B2 + B3 − 2B4.

Then we have the following result on the expectation of Dk along with the variance
of its decomposition in terms of B’s.

PROPOSITION 1. Suppose that (Xi , Yi) are i.i.d. observations and that
(C.1) and (C.3) hold. Then it holds that

E(Dk) = [
n(n − 1)

]−1
E

(
Y 2

k

)
E(Kp,kk) + O

(
n−2p−1l1/2

p

)
.

In addition, var(B1) = O(n−7), var(B2) = O(n−4), var(B3) = O(c2
pn−5p−2) +

O(p−2n−6) and var(B4) = O(lpp−2n−5) + O(c2
pp−2n−4).

Now we return to the asymptotic distribution of Dk . Proposition 1 helps to de-
rive the asymptotic distribution of Dk . We first present the result assuming μxj ,
μy , σxj and σy are all known. Then we obtain the asymptotic distribution when
μxj , μy , σxj and σy are replaced by their sample estimates.

THEOREM 1. Suppose that (C.1)–(C.3) hold. When there is no influential
point and min{n,p} −→ ∞, we have

n2Dk −→ χ2(1),

where χ2(1) is the chi-square distribution with one degrees of freedom.

Next, we consider the asymptotic distribution of Dk when μxj , μy , σj and σy

are unknown. A natural choice is to replace them by their corresponding sample
moment estimates as μ̂y = ∑

i Yi/n, μ̂xj = ∑
i Xij /n, σ̂ 2

xj = ∑
i (Xij − μ̂xj )

2/

(n − 1) and σ̂ 2
y = ∑

i (Yi − μ̂y)
2/(n − 1). Another choice is to employ robust

estimators, for example, the median in place of the mean, and the median absolute
deviation in place of the standard deviation. The following proposition shows that
the conclusion of Theorem 1 continues to hold as long as uxj , uy , σxj and σy are
replaced by

√
n-consistent estimates under certain moment assumptions. Let Ẏt =

(Yt −μy)/σy , Ẋtj = (Xtj −utj )/σtj , t = 1, . . . , n, j = 1, . . . , p and (Qxj ,Rxj ) =
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((μ̂xj − μxj )/σxj , σxj /σ̂xj ) and (Qy,Ry) are defined similarly. Furthermore, let
SQx = lim supn→∞ E(n1/2Qx1)

8, SRx = lim supn→∞ E[n1/2(Rx1 − 1)]8, SQy =
lim supn→∞ E(n1/2Qy)

8 and SRy = lim supn→∞ E[n1/2(Ry − 1)]8. We make the
following additional assumption.

(C.4) For all 1 ≤ j ≤ p, (Qxj ,Rxj ) are the same symmetric function of {Ẋtj ,
for t = 1, . . . , n}; and (Qy,Ry) are also the same symmetric function of Ẏt for
t = 1, . . . , n. We assume that SQx , SRx , SQy and SRy are finite.

Condition (C.4) indicates that, for all 1 ≤ j ≤ p, ((μ̂xj − μxj )/σxj , σ̂xj /σxj )

= f (Ẋ1j , . . . , Ẋnj ), where f (x1, . . . , xp) = (f1(x1, . . . , xp), f2(x1, . . . , xp)) and
f1 and f2 are symmetric functions. Condition (C.4) is a mild condition. Recall that
(Xi , Yi), i = 1, . . . , n are i.i.d. normal in Theorem 1. When μ̂xj , σ̂xj are the mo-
ment estimates, we have Qxj = n−1 ∑

1≤t≤n Ẋtj ∼ N(0,1/n) and consequently
SQx is finite. Moreover, we have Rxj = 1/Snj where S2

nj is the sample variance of

{Ẋtj , t = 1, . . . , n}. Since S2
n1 ∼ χ2

n−1/(n − 1), it is easy to verify that SRx is also
finite. Similarly, SQy and SRy are also finite with moment estimates μ̂y and σ̂y .
Under the normality of (X, Y ), (C.4) also holds for some robust estimates.

PROPOSITION 2. Assume that μ̂xj , σ̂xj , μ̂y, σ̂y are
√

n-consistent and sat-
isfy (C.4). Substituting μxj ,μy, σj , σy with their corresponding estimates in Dk ,
Theorem 1 continues to hold under the same conditions.

We remark that the asymptotic distribution of the high-dimensional influence
measure Dk is obtained as the number of predictor p goes to infinity. This is dif-
ferent from the case of classical Cook’s distance Dk where p is fixed, for which
a standard asymptotic distribution is not attainable. We view this as a blessing of
dimensionality in contrast to the usually conceived curse of dimensionality. For
more examples of blessing of dimensionality, see [17] and [28].

2.4. Influence diagnosis. An important implication of Theorem 1 is that we
can now obtain a p-value for influence diagnosis. Specifically, for the hypoth-
esis that the kth observation is not influential versus its alternative, the p-value
is P(χ2(1) > n2Dk). Given that the number of predictors p is usually large and
multiple hypotheses are tested simultaneously, we employ the false discovery rate
based multiple testing procedure of [5] to determine which hypothesis should be
rejected while controlling the family-wise error. Denote ninfl as the number of in-
fluential observations among the n observations, ntp and nfp as the number of the
observations that are correctly rejected and incorrectly rejected, respectively, and
r as the total number of rejections in the n hypotheses testing. Then the power and
the false discovery rate are denoted as Power = ntp/ninfl and FDR = nfp/r , respec-
tively. We will set FDR level being small, such as 0.05, and report the power and
other quantities in the numerical study section. We also remark that more sophisti-
cated alternative multiple testing procedure, for example, in [6], [20] and [32], can
be used in conjunction with our approach, but, that is, not the focus of this article.
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2.5. A power comparison of two influence measures. We next study the power
property of both the new diagnosis measure and the Cook’s distance via a simple
model. This study serves two purposes. First, we can gain insight about difference
between the two diagnosis measures. Second, it offers evidence that the marginal
correlation based measure is capable of detecting influential observation in a joint
model with a large probability.

More specifically, we consider the model (2.1), but drop the intercept for sim-
plicity. The predictors Xi , i = 1, . . . , n, are i.i.d. observations from a multivariate
normal distribution Np(0,�) where � is a p × p covariance matrix with all its
diagonal elements σjj = 1. The error term εi is of the structure εi = ei + ci , where
ei follows a standard normal distribution and ci is constant, c2 = · · · = cn = 0.
Under this setup, the first observation is an influential point as long as c1 �= 0,
and we aim to establish the power of both the classical and our proposed high-
dimensional influence measure in identifying this influential observation. Let Di

be the Cook’s distance defined in (2.2) for the ith observation, D(c)
i be the proposed

high-dimensional measure in (2.3), and T (c)
i = n2D(c)

i be the statistic defined in
Theorem 1. Moreover, consider the following condition:

(C.5) All eigenvalues of � are positive and bounded.

Then the next theorem states that, both the classical and the high-dimensional
Cook’s distance have the power of detecting the influential observation approach-
ing one under appropriate yet different conditions.

THEOREM 2. Consider the model stated above.

1. Suppose that (C.1) and (C.5) hold. If max{n−1p6, |c1|−1n2/3} → 0, then we
have that for the Cook’s distance Di , P(nD1 − max2≤i≤n nDi > M) → 1 for
any M > 0, when n → ∞.

2. Suppose that (C.1) and (C.2) hold. If max{|c1|−1(logn)1/2, lpp−2c−4
1 n} → 0,

then we have that for the proposed high-dimensional influence measure D(c)
i ,

P(T (c)
1 − max2≤i≤n T (c)

i > M) → 1 for any M > 0, when min(n,p) → ∞.

The proof is given in the supplementary material [41]. Here we compare the
two sets of conditions to gain some insight about the difference of the two di-
agnosis measures. First, we examine the condition max{n−1p6, |c1|−1n2/3} → 0,
that is, required by the Cook’s distance. The condition |c1|−1n2/3 → 0 here is
to ensure that the influence of the first observation does not vanish as n goes to
infinity. Moreover, in terms of the predictor dimension p, the classical Cook’s dis-
tance is defined when p < n. Consequently, the condition n−1p6 → 0, or equiv-
alently, p = o(n1/6), constrains the growing rate of p with n at a much slower
rate. We note that although this rate may not be the optimal one, the condition
p = o(n) is clearly necessary for the classical Cook’s distance to be feasible.
Next, we examine the condition max{|c1|−1(logn)1/2, lpp−2c−4

1 n} → 0, that is,
required by our new influence measure. For illustration, we consider a simple case
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with all the eigenvalues of 
 bounded and p > n. We know immediately that
both lp/p and n/p are bounded. Accordingly, we should have lpp−2c−4

1 n → 0
as long as c1 → ∞. As logn → ∞ when n → ∞, then a sufficient condition for
max{|c1|−1(logn)1/2, lpp−2c−4

1 n} → 0 is that (logn)1/2/|c1| → 0. This suggests
that the influence point can be consistently detected, as long as c1 diverges to in-
finity at a speed faster than (logn)1/2. This is clearly a rate much slower than n2/3.
Finally, the bounded eigenvalue condition (C.5) is commonly used in the literature
for estimating covariance matrices [7]. Here it is assumed for the Cook’s distance
case. For the new diagnosis measure, (C.2) is required instead, which is weaker
than (C.5).

3. Numerical studies. We have carried out an intensive simulation study,
along with a microarray data analysis, to examine the empirical performance of
our proposed high-dimensional influence measure. Since the classical Cook’s dis-
tance depends on both leverage points and outliers, in our simulation study, we
consider three different scenarios where there exist outliers only (model 1), lever-
age points only (model 2), or mixed leverage points and outliers (model 3). For the
scenarios with leverage points (models 2 and 3), we further consider sub-scenarios
where important covariates contribute to leverage observations, or noisy covariates
contribute to leverage observations. Below we present the summary of the analysis.

3.1. Simulation models. For all simulations, we set the sample size n = 100,
and the number of predictors p = 1000. We set 10% of total observations as influ-
ential, so that ñ = 10. We consider the model

Yi = X�
i β + εi, i = 1, . . . , n,

where Xi is multivariate normal with cov(Xij ,Xij ′) = 0.5|i−j |, εi follows the
standard normal distribution, and β = (3,1.5,0,0,2,0, . . . ,0)�. We simulated
n = 100 i.i.d. observations from this model. Next, we reset the first ñ = 10 data
observations as coming from another model,

Ỹi = X̃�
i β̃ + εi, i = 1, . . . , ñ,

where perturbations are to be introduced on the regression coefficient, the covari-
ates and their combination. In particular, we have considered three perturbation
models of generating influential points.

Model 1. The perturbation was introduced on the response. That is, for i =
1, . . . , ñ, X̃i = Xi , and β̃ = (3,1.5, κ, κ,2, κ, . . . , κ)�. In other words, the in-
fluential observations are generated according to Ỹi = X�

i β + κZi + εi , where
Zi = X�

i γ and γ = (0,0,1,1,0,1,1, . . . ,1)�. In this case, the responses of the
influential observations are contaminated by a random perturbation κZi . Conse-
quently, the corresponding responses admit a different pattern, whereas the predic-
tors of influential observations follow the same distribution as the rest.

Model 2. The perturbation was introduced on the predictors and keep the re-
sponse uncontaminated. That is, for i = 1, . . . , ñ, Ỹi = Yi and X̃ij = Xij +
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30κI{j∈S}, j = 1, . . . , p. In other words, a set S of predictors admit a different pat-
tern, and its magnitude is controlled by the scalar κ . We examined three choices
of S: S1 = {1, . . . ,100}, and in this case, the influenced predictors overlap with
those truly relevant ones {1,2,5} in β; S2 = {p − 100, . . . , p}, and as such there
is no overlap; and S3 = {1, . . . , p}, and in this case, all predictors are subjected to
potential influence.

Model 3. The perturbation was introduced on both the response and the pre-
dictors. That is, β̃ = (3,1.5, κ, κ,2, κ, . . . , κ)� and X̃ij = Xij + 30κI{j∈S},
j = 1, . . . , p. Again, we considered three sets of S as described earlier.

It is clear that κ is the parameter that dictates the magnitude of the influential
points. When κ = 0, there is no influential point. We used κ = 0, 0.4, 0.8, 1.2
and 1.6 in our experiment.

3.2. Performance evaluation. We evaluate and compare our proposed influ-
ence measure in several ways. First, we study the potential impact of influen-
tial data and how the proposed diagnosis measure could help limit such impact.
Toward that end, we first applied the LASSO or SIS to the full data. Then we
computed the proposed high-dimensional influence measure, evaluated the corre-
sponding p-value, and applied the multiple testing procedure of [5], with the false
discovery rate fixed at α = 5%. We then obtained a reduced data set by removing
those flagged influential points and applied the LASSO or SIS to the reduced data
set. We evaluated the impact of influential data in terms of coefficient estimation,
variable selection, and variable screening. For coefficient estimation, we report the
error between the estimated and true β , ERR = ‖β̂ − β true‖2; for variable selec-
tion, we report the false positive rate, FPR = #False Positive/#True Negative; and
for variable screening, we report the coverage probability CP. In addition, we also
report the empirical power of our influence identification procedure.

Second, we compare our method to two potentially competing solutions in high-
dimensional influence diagnosis. One is a modified Cook’s distance based on the
LASSO. That is, we continue to employ the classical Cook’s distance, but esti-
mate the regression coefficient β under a LASSO penalty and as such avoid the
difficulty of the OLS estimate when p > n. This seems a very natural solution. We
compare it with our proposal in terms of estimation accuracy, selection accuracy
and power. On the other hand, we note the lack of asymptotic theory for this mod-
ified Cook’s distance. To determine the threshold for influential data, one may use
bootstrap. However, in our comparison, we simply label the observations with the
largest ñ modified Cook’s distance as influential. This is not feasible in practice,
but provides a useful benchmark for comparison. The other competing solution is
the penalized least absolute deviation via the LASSO penalty (LAD + LASSO)
[4, 37]. Due to the use of the least absolute deviation as the loss function, this
method is designed to handle heavy tailed errors in linear regression, and as such
a potentially useful way to limit impact of the influence observations.
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TABLE 1
Simulation results for perturbation model 1. HIM denotes our proposed high-dimensional diagnosis

measure, and CD denotes the classical Cook’s distance

κ

Method Criterion 0 0.4 0.8 1.2 1.6

SIS CP 1 0.25 0 0 0

SIS + HIM CP 1 1 1 1 1

LASSO ERR 0.510 4.917 9.553 14.636 18.478
FPR 0.002 0.094 0.103 0.107 0.106

LASSO + HIM ERR 0.519 1.296 1.020 0.872 0.769
FPR 0.002 0.045 0.029 0.015 0.012

Power – 0.6 0.765 0.865 0.865

LASSO + CD ERR 0.535 1.136 2.176 2.565 4.182
FPR 0.003 0.034 0.066 0.072 0.076

Power – 0.630 0.670 0.700 0.660

LAD + LASSO ERR 0.642 1.920 2.073 2.406 1.769

3.3. The results. The averages of a total of 200 random replications are re-
ported in Tables 1–3. We make the following observations.

(1) First, the presence of influential points significantly affects variable selec-
tion and screening accuracy. This can be seen by comparing the results between
SIS and SIS+HIM in terms of CP. Consider, for example, Table 1. As κ increases,
the coverage probability of the SIS method deteriorates quickly from 1 with κ = 0
to 0 with κ = 1.6. This confirms that influential observations do affect variable
screening consistency. Meanwhile, the performance of SIS + HIM is quite encour-
aging as its CP values maintains at 1 for every κ value considered. This suggests
that the proposed HIM method helps SIS in removing the influential observations.

(2) Second, the presence of influential observations does affect estimation ac-
curacy seriously. This can be seen clearly by comparing the results of LASSO and
LASSO+HIM in terms of ERR values. For instance, the ERR values in Table 3 for
LASSO with S1 increases quickly from 0.446 with κ = 0 to 14.498 with κ = 1.6.
This confirms that influential observations do affect the accuracy of the LASSO es-
timate in a negative way. However, we find that the ERR values of LASSO + HIM
are always well controlled with ERR < 1.5. In fact, as κ increases, the power for
HIM to detect influential observation increases. Thus, those influential observa-
tions are more likely to be detected and eliminated from the data analysis. This
makes the ERR values of LASSO + HIM eventually converges to a level around
ERR ≈ 0.5, as κ increases. This confirms the usefulness of the HIM method for
LASSO estimation, even though its definition only involves marginal correlation
coefficients.
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TABLE 2
Simulation results for perturbation model 2. HIM denotes our proposed high-dimensional diagnosis

measure, and CD denotes the classical Cook’s distance

κ

Subset Method Criterion 0 0.4 0.8 1.2 1.6

S1 SIS CP 1 0.05 0 0 0
SIS + HIM CP 1 0.05 0.1 0.3 0.25

LASSO ERR 0.439 4.917 4.972 4.971 4.954
FPR 0.002 0.086 0.090 0.089 0.089

LASSO + HIM ERR 0.455 4.803 4.591 3.055 3.136
FPR 0.002 0.080 0.060 0.055 0.044

Power – 0.620 0.775 0.892 0.930

LASSO + CD ERR 0.513 4.566 4.568 4.603 4.533
FPR 0.004 0.073 0.073 0.070 0.070

Power – 0.095 0.085 0.105 0.115
LAD + LASSO ERR 0.642 1.339 1.303 1.320 1.330

S2 SIS CP 1 1 1 1 1
SIS + HIM CP 1 1 1 1 1

LASSO ERR 0.509 0.456 0.439 0.450 0.469
FPR 0.001 0.001 0.001 0.002 0.002

LASSO + HIM ERR 0.521 0.494 0.493 0.494 0.506
FPR 0.001 0.001 0.001 0.002 0.002

Power – 0.695 0.8 0.85 0.895

LASSO + CD ERR 0.548 0.523 0.532 0.556 0.551
FPR 0.001 0.002 0.002 0.002 0.002

Power – 0.065 0.085 0.135 0.115
LAD + LASSO ERR 0.642 0.650 0.645 0.647 0.634

S3 SIS CP 1 0.35 0.45 0.30 0.25
SIS + HIM CP 1 0.50 0.60 0.62 0.65

LASSO ERR 0.473 1.567 1.545 1.598 1.609
FPR 0.003 0.051 0.053 0.051 0.055

LASSO + HIM ERR 0.490 1.517 1.456 1.221 1.115
FPR 0.003 0.034 0.031 0.023 0.033

Power – 0.735 0.86 0.95 0.95

LASSO + CD ERR 0.560 1.751 1.700 1.743 1.871
FPR 0.003 0.047 0.042 0.042 0.048

Power – 0.115 0.085 0.115 0.110
LAD + LASSO ERR 0.642 0.608 0.573 0.580 0.581

(3) Third, the performance of LASSO + CD is mixed. If the perturbation is
due to the response only as in Table 1, it does yield much better performance
than LASSO with much smaller ERR values. This suggests that LASSO + CD
can perform well to limit the effect of influential points. However, even for this
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TABLE 3
Simulation results for perturbation model 3. HIM denotes our proposed high-dimensional diagnosis

measure, and CD denotes the classical Cook’s distance

κ

Subset Method Criterion 0 0.4 0.8 1.2 1.6

S1 SIS CP 1 1 0.65 0.10 0.05
SIS + HIM CP 1 0.90 1 1 1

LASSO ERR 0.446 1.559 5.308 9.628 14.498
FPR 0.002 0.062 0.093 0.099 0.098

LASSO + HIM ERR 0.447 1.278 0.771 0.499 0.542
FPR 0.002 0.046 0.027 0.003 0.002

Power – 0.185 0.94 1 1

LASSO + CD ERR 0.559 0.686 2.149 5.623 10.926
FPR 0.002 0.009 0.063 0.084 0.090

Power – 0.555 0.720 0.675 0.585
LAD + LASSO ERR 0.642 1.416 4.367 8.740 13.252

S2 SIS CP 1 1 0.05 0 0
SIS + HIM CP 1 1 1 1 1

LASSO ERR 0.479 2.090 6.619 11.997 17.279
FPR 0.002 0.072 0.095 0.101 0.101

LASSO + HIM ERR 0.494 1.836 0.696 0.475 0.501
FPR 0.002 0.062 0.009 0.002 0.002

Power – 0.145 0.955 1 1

LASSO + CD ERR 0.501 0.769 3.702 7.676 14.585
FPR 0.003 0.016 0.078 0.087 0.091

Power – 0.605 0.680 0.685 0.520
LAD + LASSO ERR 0.642 1.859 5.855 10.829 16.157

S3 SIS CP 1 1 0.1 0 0
SIS + HIM CP 1 1 1 1 1

LASSO ERR 0.464 1.682 5.720 10.943 17.384
FPR 0.002 0.065 0.098 0.103 0.105

LASSO + HIM ERR 0.484 1.479 1.262 0.557 0.515
FPR 0.002 0.057 0.034 0.003 0.002

Power – 0.1 0.87 1 1

LASSO + CD ERR 0.586 0.726 1.874 4.504 7.566
FPR 0.002 0.013 0.055 0.074 0.087

Power – 0.465 0.765 0.810 0.855
LAD + LASSO ERR 0.642 1.635 5.264 10.662 17.023

example, it is still outperformed by LASSO + HIM. However, the story changes
if the perturbation is due to the predictors as in Table 2. This is to be expected
because, with contaminated predictors, LASSO is no longer a stable method for
variable selection. If predictors are selected incorrectly, the subsequent modified
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Cook’s distance cannot be calculated appropriately. This makes the performance
of LASSO + CD unsatisfactory.

(4) Fourth, as a robust regression method, we find that LAD+LASSO performs
quite well. Its ERR values are smaller than those of the LASSO estimates in all the
tables. However, in most cases, it is still outperformed by LASSO + HIM as seen
from Tables 1 and 3.

(5) Lastly, we find that for most cases, the reported FPR values are well con-
trolled. Furthermore, as κ increases, the corresponding empirical power increases
toward 100%. These findings are consistent with the theoretical claims in Theo-
rems 1 and 2.

To summarize, our simulation experiments confirm that the proposed HIM method
is useful in controlling the effects of the influential observations in terms of param-
eter estimation and variable screening.

3.4. A real data example. We applied our proposed influence diagnosis ap-
proach to a microarray data of [31], and noted that the analysis results become
substantially different when the detected influential observations are removed. For
this dataset, F1 animals were intercrossed and then 120 twelve-week-old male off-
spring were selected for tissue harvesting from the eyes and for microarray anal-
ysis. The Affymetrix microarrays that were used to analyze the RNA from the
eyes of those F2 animals contain over 31,042 different probe sets. Among them,
one probe is for gene TRIM32, which was recently found to cause Bardet–Biedl
syndrome [10], a genetically heterogeneous disease of multiple organ systems in-
cluding the retina. One goal of interest of this data analysis is to find genes whose
expressions are correlated with that of gene TRIM32. We first followed [27] to ex-
clude probes that were not expressed in the eye or that lacked sufficient variation,
which results in 18,975 probes as regressors. We then followed [22] to retain the
top 1000 probes that are mostly correlated with the probe of TRIM32. The result-
ing analysis has p = 1000 predictors and a sample size n = 120. As a standard
procedure [27], all the probes are standardized to have mean zero and standard
deviation one.

We next applied our method with FDR rate α = 0.10 to the data, and identified
a total of 5 influential observations. Their corresponding p-values were 0, 0.0004,
0.0011, 0.0029 and 0.0033, respectively. We also show the logarithm of p-values
versus the indices for all 120 observations in Figure 2. To assess the influence of the
detected points, we again compared the LASSO estimate with and without those
points. Since we used ten-fold cross-validation to select the tuning parameter and
every run is random, we repeated this analysis 100 times and report the average
results.

We summarize the difference of the estimates in the following aspects: the spar-
sity, the norm difference and the angle between the two estimates. First, by re-
moving the identified influential observations, the resulting LASSO estimate is
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FIG. 2. The logarithm of the p-value for each observation: the detected influential points are de-
noted by solid circles.

considerably more sparse. The average model size with the full data is 63. By
contrast, the average model size without the influential observations reduces to
27 on the average. The existence of the potential influential points clearly shows
a significant effect on the model size. Besides that, the average number of the
commonly selected predictors by fitting the full data and the reduced data, re-
spectively, is only 8.67, which again shows clear discrepancy of the two estimates.
Consequently, the influential points identified by our approach seem to have signif-
icant effect for subsequent analysis. Second, denote d0 = ‖β̂full‖2, d1 = ‖β̂redu‖2

and d2 = ‖β̂redu − β̂full‖2, where β̂full is the LASSO estimate using all the ob-

servations and β̂redu is the estimate after removing the influential points identified
by HIM. We observe that the average of (d0 − d1)/d0 is 0.532 and that of d2/d0
is 0.972. Both show that the estimates without influential points are quite different
in terms of the 
2 norm. In addition, the angle between β̂full and β̂redu, which is
defined as β̂�

fullβ̂redu/d0d1, equals 0.262, averaged over 100 times. These numbers
again indicate that the estimates change substantially after removing the influential
observations. In summary, this analysis illustrates the importance of influence di-
agnosis, and the identified influential observations should be treated with extreme
care.

4. Extension to generalized linear models. The main idea of the high-
dimensional influence measure can be extended to a broad class of regression
models. Here we briefly discuss one such extension to generalized linear mod-
els (GLM). Assume that the data (Xi , Yi) follow an exponential distribution with
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the canonical probability density function, f (y; θ) = exp{yθ − b(θ) + c(y)}, and
the conditional mean is of the form

E(Yi | Xi ) = b′(θ(Xi)
) = g−1(

β0 + X�
i β1

)
,

where g is a known link function. For the purpose of feature screening in ultra
high-dimensional regressions, [23] introduced a marginal utility measure, the max-
imum marginal likelihood estimator, as

β̂j = (β̂j,0, β̂j ) = arg minEnl(Y,βj0 + βjXj ),

where l(Y ; θ) = −Yθ + b(θ) + log c(Y )] and Enf (X,Y ) = n−1 ∑n
i=1 f (Xi, Yi).

That is, β̂j is the maximum likelihood estimator of fitting a GLM model of Y on
the j th predictor Xj alone plus an intercept. As remarked by [23], this measure
can be rapidly computed.

In the context of high-dimensional diagnosis, we define the high-dimensional
influence measure for generalized linear models for the kth observation,
k = 1, . . . , n, as

Dglm
k = 1

p

p∑
j=1

∥∥β̂j − β̂
(k)
j

∥∥2
2,(4.1)

where β̂
(k)
j denotes the maximum marginal likelihood estimator but with the kth

observation removed. For GLM, the estimator β̂j and β̂
(k)
j may not have a closed-

form solution. Consequently, the exact distribution of the proposed statistic Dglm
k

is complicated and some approximation is necessary. The detailed derivation, how-
ever, is beyond the scope of this paper. In practice, one can always sort the values
of {Dglm

k , k = 1, . . . , n} and remove those observations associated with large val-

ues of Dglm
k .

We have conducted a small simulation study to examine the empirical perfor-
mance of this measure for GLM. The simulation setup is similar to that of model 1
in Section 3.1, except that this time we adopt a binary response model, P(Yi =
1 | Xi ) = 1/[1 + exp{−(2 + X�

i β)}], where β = β true = (5,5,0, . . . ,0)�, and the
outliers are generated from the model β = β infl = (5,5,0, . . . ,0,−κ, . . . ,−κ)�
with p/2 many κ’s. We set n = 100, with 10% influential observations, that is,
ninfl = 10, and we set p = 50 or 100. Since the asymptotic distribution of Dglm

k

is not available for the logistic regression, we flag the 10 observations with the
largest p-values of Dglm

k as influential. For a binary response, one is often inter-
ested in classification. As such we compare the misclassification error rate for the
full data as Efull and for the reduced data as Eredu without the detected influential
points. We also report the empirical power. The results out of 200 data replications
are summarized in Table 4.

From Table 4, we note that the proposed method has some power for a logistic
model, but it is lower than that in a linear model. This is probably due to the fact
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TABLE 4
Simulation results for the logistic model

κ

p Criterion 0 0.4 0.8 1.2 1.6

50 Power – 0.220 0.472 0.422 0.254
Efull 0.037 0.062 0.088 0.083 0.064
Eredu 0.018 0.022 0.031 0.049 0.033

100 Power – 0.332 0.386 0.220 0.152
Efull 0.047 0.069 0.065 0.045 0.029
Eredu 0.020 0.042 0.028 0.018 0.019

that a binary response contains much less information, and thus detecting influ-
ential observations in a logistic model is much more challenging, especially in a
high-dimensional setting. On the other hand, we also observe from Table 4 that
removing those points with the largest values of Dglm

k improves the classification
accuracy by a large margin. This again suggests that the usefulness of influence di-
agnosis. Meanwhile, we remark that further investigation into both theoretical and
empirical properties of high-dimensional influence measure in GLM is warranted.

5. Conclusion. We perceive several future avenues to extend the proposed
work in this article. First, we have employed the leave-one-out principle when
quantifying influence of individual observations. We expect that our high-
dimensional influence measure can also be generalized to the cases of leaving out
pairs of observations, or triplets or more. Such a strategy can be useful when those
observations conceal one another [18]. Second, we have focused on the classical
linear model in our development, while extension to more sophisticated models,
such as the generalized linear model, that is, briefly examined in Section 4, sur-
vival models, and semiparametric additive models, deserve further investigations.
Finally, our proposal deals with the cross sectional data with i.i.d. observations. It
is interesting to extend the proposed influence measure to complex correlated data
such as longitudinal data where dependence among observations needs to be taken
into consideration in influence diagnosis [42].

APPENDIX

We outline the main idea of the proof for the asymptotic distribution of Dk in
Theorem 1. First, we decompose Dk as Dk = B1 + B2 + B3 − 2B4 as given in
Section 2.3. Then we compute the mean and variance of Bi , i = 1, . . . ,4 as pre-
sented in Proposition 1. This step builds on the assumption of normality of the
predictors and benefits from the fact that the predictor dimension goes to infin-



HIGH-DIMENSIONAL INFLUENCE MEASURE 2659

ity. Comparing the orders of the variance of Bi , we find that B2 is the leading
term. We then study the asymptotic distribution of B2, which turns out to follow
a χ2(1) distribution. Recall in Section 2.3, we defined Kp,tl = p−1 ∑p

j=1 XtjXlj ,

for t, l = 1, . . . , n, lp = ∑p
j=1 λ2

j = O(pr) and cp = max1≤j≤p λj , where λj ’s are

the eigenvalues of the covariance matrix �. Furthermore, we define ap = ∑p
j=1 λ4

j ,

C1 = E(YtYlKp,tl)
2 and C2 = E[Y 2

t (
∑p

j=1 ρjXtj /p)2] for any t �= l.

PROOF OF PROPOSITION 1. We break the proof into three parts: first, we
obtain an expansion of Dk ; second, we derive E(Dk); and finally, we derive the
asymptotic behavior of the components in the expansion of Dk .

Step 1. First, we have the following expansion for Dk , k = 1, . . . , n:

Dk = 1

p

p∑
j=1

(
1

n − 1

n∑
t=1,t �=k

YtXtj − 1

n

n∑
t=1

YtXtj

)2

= 1

p

p∑
j=1

{
1

n(n − 1)

n∑
t=1,t �=k

YtXtj − 1

n
YkXkj

}2

= 1

p

p∑
j=1

{
1

n(n − 1)

n∑
t=1,t �=k

YtXtj

}2

+ 1

pn2 Y 2
k

p∑
j=1

X2
kj

− 2

pn2(n − 1)

n∑
t=1,t �=k

YtYk

{ p∑
j=1

XtjXkj

}

= 1

p{n(n − 1)}2

n∑
t=1,t �=k

Y 2
t

{ p∑
j=1

X2
tj

}
+ 1

pn2 Y 2
k

{ p∑
j=1

X2
kj

}

+ 1

p{n(n − 1)}2

∑
t �=s,t,s �=k

YtYs

{ p∑
j=1

XtjXsj

}

− 2

pn2(n − 1)

n∑
t=1,t �=k

YkYt

{ p∑
j=1

XtjXkj

}

= 1

{n(n − 1)}2

n∑
t=1

Y 2
t Kp,tt +

[
1

n2 − 1

{n(n − 1)}2

]
Y 2

k Kp,kk

+ 1

{n(n − 1)}2

∑
t �=s

YtYsKp,ts

−
[

2

{n(n − 1)}2 + 2

n2(n − 1)

] n∑
t=1,t �=k

YkYtKp,tk
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= 1

{n(n − 1)}2

n∑
t=1

Y 2
t Kp,tt + (n − 2)

n(n − 1)2 Y 2
k Kp,kk

+ 1

{n(n − 1)}2

∑
t �=s

YtYsKp,ts − 2

n(n − 1)2

n∑
t=1,t �=k

YkYtKp,tk

:= B1 + B2 + B3 − 2B4.

Step 2. Next, we derive the expectation of Dk . It is easy to see that

E(B1) = 1

pn(n − 1)2

p∑
j=1

E(Y 2
k X2

kj ),

E(B2) = n − 2

pn(n − 1)2

p∑
j=1

E(Y 2
k X2

kj ),

E(B3) = 1

pn(n − 1)

p∑
j=1

ρ2
j , E(B4) = 1

pn(n − 1)

p∑
j=1

ρ2
j .

Therefore, we have

E(Dk) = E(B1 + B2 + B3 − 2B4) = 1

pn(n − 1)

p∑
j=1

var(YkXkj ).

By Lemmas 1 and 3, we have

E
{
Y 2

k

(
Kp,kk − E(Kp,kk)

)} ≤ E1/2(
Y 4

k

)
E1/2[{

Kp,kk − E(Kp,kk)
}2]

= O
(
p−1l1/2

p

)
and

p−1
p∑

j=1

E2(YkXkj ) = p−1
p∑

j=1

ρ2
j = O

(
p−1cp

)
.

In addition, noting that c2
p ≤ lp , we have

p−1
p∑

j=1

var(YkXkj )

= p−1
p∑

j=1

{
E

(
Y 2

k X2
kj

) − E2(YkXkj )
}

= E
(
Y 2

k

)
E(Kp,kk) + E

{
Y 2

k

(
Kp,kk − E(Kp,kk)

)} − p−1
p∑

j=1

ρ2
j

= E
(
Y 2

k

)
E(Kp,kk) + O

(
p−1l1/2

p

)
.
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Consequently, we have

E(Dk) = 1

{pn(n − 1)}E
(
Y 2

k

) p∑
j=1

E
(
X2

kj

) + O
(
n−2p−1l1/2

p

)
.

Step 3. Next, we derive the asymptotic behavior of Bi, i = 1, . . . ,4.

Step 3.1. We start with the variance of B1. Note that

var(B1) = n

n4(n − 1)4 var
(
Y 2

t Kp,tt

)
and that E(Y 4

t K2
p,tt ) ≤ E1/2(Y 8

t )E1/2(K4
p,tt ). Furthermore,

E(Kp,tt )
4 = p−4E

(
Z�

t �Zt

)4 = p−4E

[ p∑
j=1

λj

(
Z�

t uj

)2
]4

≤ p−4E
[(

Z�
t uj

)8]( p∑
j=1

λj

)4

≤ E
(
Z�

t uj

)8
.

The last equation holds because tr(
) = ∑p
j=1 λj = p. As a result, we have

var(B1) = O
(
n−7)

.

Step 3.2. Next, we consider the variance of B4. By Lemma 3, we have

E(B4) = 1

pn(n − 1)

p∑
j=1

ρ2
j = O

(
cp · p−1n−2)

.

In addition, it is easy to see

E
(
B2

4
) = 1

n2(n − 1)4

{
n∑

t=1,t �=k

E
(
Y 2

k Y 2
t K2

p,tk

) +
t,s �=k∑
t �=s

E
(
Y 2

k YtYsKp,tkKp,sk

)}

= 1

n2(n − 1)4

[
(n − 1)E

(
Y 2

k Y 2
t K2

p,tk

)

+ (n − 1)(n − 2)E

{
Y 2

k

( p∑
j=1

ρjXkj/p

)2}]

= 1

n2(n − 1)3 E
(
Y 2

k Y 2
t K2

p,tk

) + (n − 2)

n2(n − 1)3 E

{
Y 2

k

( p∑
j=1

ρjXkj/p

)2}

= 1

n2(n − 1)3 C1 + (n − 2)

n2(n − 1)3 C2,
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where C1, C2 are defined as in (1.1) and (1.2) in the supplementary material [41],
respectively. From the proof of Lemma 2, we know C2 = O(c2

pp−2) and C1 =
C11 + C12, with C11 = O(p−2a

1/2
p ) and C12 = lpp−2E2(Y 2

t ). Therefore, we have

E
(
B2

4
) = lp

p2n2(n − 1)3 E2(
Y 2

t

) + O
(
n−5p−2a1/2

p

) + O
(
c2
pp−2n−4)

= O
(
lpp−2n−5) + O

(
c2
pp−2n−4)

.

Consequently, we have

var(B4) = E
(
B2

4
) − E2(B4) = O

(
lpp−2n−5) + O

(
c2
pp−2n−4)

.

Step 3.3. Next, we aim at var(B3). First, we have

B3 = 1

p{n(n − 1)}2

∑
t �=s

YtYs

( p∑
j=1

XsjXtj

)

= 1

pn(n − 1)

∑
t �=s

φ(Yt , Ys,Xs,Xt )/
{
(n − 1)n

} := 1

pn(n − 1)
B̄3,

where φ(Yt , Ys,Xs,Xt ) = ∑
t �=s YtYs(

∑p
j=1 XsjXtj ). Let

φ1(Yt ,Xt ) = E
{
φ(Yt , Ys,Xs,Xt ) − E(φ(Yt , Ys,Xs,Xt ) | Yt ,Xt

}
= Yt

p∑
j=1

Xtjρj −
p∑

j=1

ρ2
j .

Noting that B̄3 is an U -statistic, and by the properties of the U -statistic, we have

var(B3) = 1

{pn(n − 1)}2 var(B̄3)

= 1

{pn(n − 1)}2

[
4

n
var

{
φ1(Yt ,Xt )

} + o
(
n−2)]

(A.1)

= 4

p2n3(n − 1)2 var

{
Yt

p∑
j=1

Xtjρj

}
+ o

(
p−2n−4(n − 1)−2)

.

Furthermore, we have

p−2 var

(
Yt

p∑
j=1

Xtjρj

)

= E

{
Y 2

t

( p∑
j=1

Xtjρj/p

)2}
−

( p∑
j=1

ρ2
j /p

)2

(A.2)

≤ E1/2(
Y 4

t

)
E1/2

{( p∑
j=1

Xtjρj/p

)4}
−

( p∑
j=1

ρ2
j /p

)2

.
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In addition, we show in the proof of Lemma 2 that

E

{( p∑
j=1

Xtjρj/p

)4}
= O

(
c4
pp−4)

(A.3)

and in Lemma 3 that
p∑

j=1

ρ2
j /p = O

(
cp · p−1)

.(A.4)

Combining (A.1)–(A.4), we have

var(B3) = O
(
c2
pn−5p−2) + O

(
p−2n−6)

.

Step 3.4. Finally we turn to B2, which can be written as

B2 = (n − 2)

n(n − 1)2 Y 2
k Kp,kk

= (n − 2)

n(n − 1)2

[
Y 2

k

{
Kp,kk − E(Kp,kk)

} + Y 2
k E(Kp,kk)

]
:= B21 + B22.

By Lemma 1, we have

E
(
Y 4

k

{
Kp,kk − E(Kp,kk)

}2) ≤ E1/2(
Y 8

k

)
E1/2({

Kp,kk − E(Kp,kk)
}4)

= O
(
p−2lp

)
,

E
(
Y 2

k

{
Kp,kk − E(Kp,kk)

}) ≤ E1/2(
Y 4

k

)
E1/2({

Kp,kk − E(Kp,kk)
}2)

= O
(
l1/2
p p−1)

.

Therefore, we have

var(B21) =
{

(n − 2)

n(n − 1)2

}2

var
(
Y 2

k

[
Kp,kk − E(Kp,kk)

]) = O
(
n−4p−2lp

)
,

var(B22) = O
(
n−4)

.

This completes the proof. �

PROOF OF THEOREM 1. Consider the behavior of Kp,kk , k = 1, . . . , n, for
a sufficient large p

Kp,kk =
p∑

j=1

X2
kj /p = X�

k Xk/p = Z�
k �Zk =

p∑
j=1

λj

(
Z�

k uj

)2
/p.
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Its variance is var(Kp,kk) = 2
∑p

j=1 λ2
j /p

2 = 2p−2lp . Under the assumption lp =
O(pr) with 0 ≤ r < 2, we have Kp,kk = E(Kp,kk) + Op(pr/2−1), and conse-
quently,

Y 2
k Kp,kk = Y 2

k

[
E(Kp,kk) + Op

(
pr/2−1)]

.

In addition, noting that E[Y 2
k (Kp,kk − E(Kp,kk))] ≤ E1/2(Y 4

k )(var(Kp,kk))
1/2 =

O(pr/2−1), we have

E
(
Y 2

k Kp,kk

) = E
(
Y 2

k

)
E(Kp,kk) + E

[
Y 2

k

(
Kp,kk − E(Kp,kk)

)]
= E

(
Y 2

k

)
E(Kp,kk) + O

(
pr/2−1)

.

Therefore, we have

Y 2
k Kp,kk − E

(
Y 2

k Kp,kk

) = [
Y 2

k − E
(
Y 2

k

)]
E(Kp,kk) + Op

(
pr/2−1)

.

As a result, it holds that

B2 − E(B2) = n − 2

n(n − 1)2

{[
Y 2

k − E
(
Y 2

k

)]
E(Kp,kk) + Op

(
pr/2−1)}

.(A.5)

Note that c2
p ≤ lp = O(pr) under (C.2). Combined with Proposition 1, we have

B1 − E(B1) = Op

(
n−7/2)

,

B3 − E(B3) = Op

(
n−5/2pr/2−1)

,

B4 − E(B4) = Op

(
pr/2−1n−2)

.

Consequently, we have

n(n − 1)2

(n − 2)

{ ∑
i=1,3

[
Bi − E(Bi)

] − 2
(
B4 − E(B4)

)}
(A.6)

= Op

(
n−3/2) + Op

(
pr/2−1)

.

Furthermore, by the results on E(Dk) in step 2 of the proof of Proposition 1, we
have

E(Dk) = 1

n(n − 1)
E

(
Y 2

k

)
E(Kp,kk) + O

(
n−2p−1l1/2

p

)
.

Consequently, by lp = O(pr), we have

n(n − 1)2

(n − 2)
E(Dk) = n − 1

n − 2
E

(
Y 2

k

)
E(Kp,kk) + O

(
pr/2−1)

.(A.7)
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Combining (A.5)–(A.7), we have

n(n − 1)2

(n − 2)
Dk

= n(n − 1)2

(n − 2)
E(Dk) + n(n − 1)2

(n − 2)

[
Dk − E(Dk)

]

= n(n − 1)2

(n − 2)
E(Dk) + n(n − 1)2

(n − 2)

( ∑
i=1,2,3

[
Bi − E(Bi)

] − 2
(
B4 − E(B4)

))

= n − 1

n − 2
E

(
Y 2

k

)
E(Kp,kk) + {

Y 2
k − E

(
Y 2

k

)}
E(Kp,kk)

+ Op

(
pr/2−1) + Op

(
n−3/2)

= Y 2
k E(Kp,kk) + 1

n − 2
E

(
Y 2

k

)
E(Kp,kk) + Op

(
pr/2−1) + Op

(
n−3/2)

= Y 2
k + op(1),

where the last equation is from the fact that E(X2
kj ) = 1, j = 1, . . . , p and

E(Y 2
k ) = 1. Since Y ∼ N(0,1), we have n(n−1)2

(n−2)
Dk ∼ χ2(1); that is, n2Dk ∼

χ2(1). �
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SUPPLEMENTARY MATERIAL

Further proofs (DOI: 10.1214/13-AOS1165SUPP; .pdf). The supplementary
file contains the proofs of four additional lemmas, Proposition 2 and Theorem 2.
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