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The generalized likelihood ratio (GLR) test proposed by Fan, Zhang and
Zhang [Ann. Statist. 29 (2001) 153–193] and Fan and Yao [Nonlinear Time
Series: Nonparametric and Parametric Methods (2003) Springer] is a gen-
erally applicable nonparametric inference procedure. In this paper, we show
that although it inherits many advantages of the parametric maximum like-
lihood ratio (LR) test, the GLR test does not have the optimal power prop-
erty. We propose a generally applicable test based on loss functions, which
measure discrepancies between the null and nonparametric alternative mod-
els and are more relevant to decision-making under uncertainty. The new test
is asymptotically more powerful than the GLR test in terms of Pitman’s effi-
ciency criterion. This efficiency gain holds no matter what smoothing param-
eter and kernel function are used and even when the true likelihood function
is available for the GLR test.

1. Introduction. The likelihood ratio (LR) principle is a generally applicable
approach to parametric hypothesis testing [e.g., Vuong (1989)]. The maximum
LR test compares the best explanation of data under the alternative with the best
explanation under the null hypothesis. It is well known from the Neyman–Pearson
lemma that the maximum LR test has asymptotically optimal power. Moreover,
the LR statistic follows an asymptotic null χ2 distribution with a known number
of degrees of freedom, enjoying the so-called Wilks phenomena that its asymptotic
distribution is free of nuisance parameters.

In parametric hypothesis testing, however, it is implicitly assumed that the fam-
ily of alternative likelihood models contains the true model. When this is not the
case, one may fail to reject the null hypothesis erroneously. In many testing prob-
lems in practice, while the null hypothesis is well formulated, the alternative is
vague. Over the last two decades or so, there has been a growing interest in non-
parametric inference, namely, inference for hypotheses on parametric, semipara-
metric and nonparametric models against a nonparametric alternative. The non-
parametric alternative is very useful when there is no prior information about the
true model. Because the nonparametric alternative contains the true model at least
for large samples, it ensures the consistency of a test. Nevertheless, there have been
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few generally applicable nonparametric inference principles. One naive extension
would be to develop a nonparametric maximum LR test similar to the paramet-
ric maximum LR test. However, the nonparametric maximum likelihood estimator
(MLE) usually does not exist, due to the well-known infinite dimensional parame-
ter problem [Bahadur (1958), Le Cam (1990)]. Even if it exists, it may be difficult
to compute, and the resulting nonparametric maximum LR test is not asymptot-
ically optimal. This is because the nonparametric MLE chooses the smoothing
parameter automatically, which limits the choice of the smoothing parameter and
renders it impossible for the test to be optimal.

Fan, Zhang and Zhang (2001) and Fan and Yao (2003) proposed a generalized
likelihood ratio (GLR) test by replacing the nonparametric MLE with a reasonable
nonparametric estimator, attenuating the difficulty of the nonparametric maximum
LR test and enhancing the flexibility of the test by allowing for a range of smooth-
ing parameters. The GLR test maintains the intuitive feature of the parametric LR
test because it is based on the likelihoods of generating the observed sample under
the null and alternative hypotheses. It is generally applicable to various hypothe-
ses involving a parametric, semiparametric or nonparametric null model against
a nonparametric alternative. By a proper choice of the smoothing parameter, the
GLR test can achieve the asymptotically optimal rate of convergence in the sense
of Ingster (1993a, 1993b, 1993c) and Lepski and Spokoiny (1999). Moreover, it
enjoys the appealing Wilks phenomena that its asymptotic null distribution is free
of nuisance parameters and nuisance functions.

The GLR test is a nonparametric inference procedure based on the empirical
Kullback–Leibler information criterion (KLIC) between the null model and a non-
parametric alternative model. This measure can capture any discrepancy between
the null and alternative models, ensuring the consistency of the GLR test. As Fan,
Zhang and Zhang (2001) and Fan and Jiang (2007) point out, it holds an advan-
tage over many discrepancy measures such as the L2 and L∞ measures commonly
used in the literature because for the latter the choices of measures and weight
functions are often arbitrary, and the null distributions of the test statistics are
unknown and generally depend on nuisance parameters. We note that Robinson
(1991) developed a nonparametric KLIC test for serial independence and White
[(1982), page 17] also suggested a nonparametric KLIC test for parametric likeli-
hood models.

The GLR test assumes that stochastic errors follows some parametric distribu-
tion which need not contain the true distribution. It is essentially a nonparamet-
ric pseudo LR test. Azzalini, Bowman and Härdle (1989), Azzalini and Bowman
(1990) and Cai, Fan and Yao (2000) also proposed a nonparametric pseudo-LR
test for the validity of parametric regression models.

In this paper, we show that despite its general nature and appealing features, the
GLR test does not have the optimal power property of the classical LR test. We first
propose a generally applicable nonparametric inference procedure based on loss
functions and show that it is asymptotically more powerful than the GLR test in
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terms of Pitman’s efficiency criterion. Loss functions are often used in estimation,
model selection and prediction [e.g., Zellner (1986), Phillips (1996), Weiss (1996),
Christoffersen and Diebold (1997), Giacomini and White (2006)], but not in test-
ing. A loss function compares the models under the null and alternative hypotheses
by specifying a penalty for the discrepancy between the two models. The use of a
loss function is often more relevant to decision-making under uncertainty because
one can choose a loss function to mimic the objective of the decision maker. In
inflation forecasting, for example, central banks may have asymmetric preferences
which affect their optimal policies [Peel and Nobay (1998)]. They may be more
concerned with underprediction than overprediction of inflation rates. In financial
risk management, regulators may be more concerned with the left-tailed distribu-
tion of portfolio returns than the rest of the distribution. In these circumstances,
it is more appropriate to choose an asymmetric loss function to validate an infla-
tion rate model and an asset return distribution model. The admissible class of loss
functions for our approach is large, including quadratic, truncated quadratic and
asymmetric linex loss functions [Varian (1975), Zellner (1986)]. They do not re-
quire any knowledge of the true likelihood, do not involve any choice of weights,
and enjoy the Wilks phenomena that its asymptotic distribution is free of nui-
sance parameters and nuisance functions. Most importantly, the loss function test
is asymptotically more powerful than the GLR test in terms of Pitman’s efficiency
criterion, regardless of the choice of the smoothing parameter and the kernel func-
tion. This efficiency gain holds even when the true likelihood function is available
for the GLR test. Interestingly, all admissible loss functions are asymptotically
equally efficient under a general class of local alternatives.

The paper is planned as follows. Section 2 introduces the framework and the
GLR principle. Section 3 proposes a class of loss function-based tests. For con-
creteness, we focus on specification testing for time series regression models, al-
though our approach is applicable to other nonparametric testing problems. Sec-
tion 4 derives the asymptotic distributions of the loss function test and the GLR
test. Section 5 compares their relative efficiency under a class of local alternatives.
In Section 6, a simulation study compares the performance between two compet-
ing tests in finite samples. Section 7 concludes the paper. All mathematical proofs
are collected in an Appendix and supplementary material [Hong and Lee (2013)].

2. Generalized likelihood ratio test. Maximum LR tests are a generally ap-
plicable and powerful inference method for most parametric testing problems.
However, the classical LR principle implicitly assumes that the alternative model
contains the true data generating process (DGP). This is not always the case in
practice. To ensure that the alternative model contains the true DGP, one can use a
nonparametric alternative model.

Recognizing the fact that the nonparametric MLE may not exist and so cannot
be a generally applicable method, Fan, Zhang and Zhang (2001) and Fan and Yao
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(2003) proposed the GLR principle as a generally applicable method for nonpara-
metric inference. The idea is to compare a suitable nonparametric estimator with a
restricted estimator under the null hypothesis via a LR statistic. Specifically, sup-
pose one is interested in whether a parametric likelihood model fθ is correctly
specified for the unknown density f of the DGP, where θ is a finite-dimensional
parameter. The null hypothesis of interest is

H0 :f = fθ0 for some θ0 ∈ �,(2.1)

where � is a parameter space. The alternative hypothesis is

HA :f �= fθ for all θ ∈ �.(2.2)

In testing H0 versus HA, a nonparametric model for f can be used as an alter-
native, as also suggested in White [(1982), page 17]. Suppose the log-likelihood
function of a random sample is l̂(f, η), where η is a nuisance parameter. Under
H0, one can obtain the MLE (θ̂0, η̂0) by maximizing the model likelihood l̂(fθ , η).
Under the alternative HA, given η, one can obtain a reasonable smoothed nonpara-
metric estimator f̂η of f . The nuisance parameter η can then be estimated by the
profile likelihood; that is, to find η to maximize l(f̂η, η). This gives the maximum
profile likelihood l(f̂η̂, η̂). The GLR test statistic is then defined as

λn = l(f̂η̂, η̂) − l(f
θ̂0

, η̂0).(2.3)

This is the difference of the log-likelihoods of generating the observed sample
under the alternative and null models. A large value of λn is evidence against H0
since the alternative family of nonparametric models is far more likely to generate
the observed data.

The GLR test does not require knowing the true likelihood. This is appealing
since nonparametric testing problems do not assume that the underlying distribu-
tion is known. For example, in a regression setting one usually does not know
the error distribution. Here, one can estimate model parameters by using a quasi-
likelihood function q(fθ , η). The resulting GLR test statistic is then defined as

λn = q(f̂η̂, η̂) − q(f
θ̂0,

η̂0).(2.4)

The GLR approach is also applicable to the cases with unknown nuisance func-
tions. This can arise (e.g.) when one is interested in testing whether a function has
an additive form which itself is still nonparametric. In this case, one can replace
f

θ̂0
by a nonparametric estimator under the null hypothesis of additivity. Robinson

(1991) considers such a case in testing serial independence.
As a generally applicable nonparametric inference procedure, the GLR prin-

ciple has been used to test a variety of models, including univariate regression
models [Fan, Zhang and Zhang (2001)], functional coefficient regression mod-
els [Cai, Fan and Yao (2000)], spectral density models [Fan and Zhang (2004)],
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varying-coefficient partly linear regression models [Fan and Huang (2005)], ad-
ditive models [Fan and Jiang (2005)], diffusion models [Fan and Zhang (2003)]
and partly linear additive models [Fan and Yao (2003)]. Analogous to the classical
LR test statistic which follows an asymptotic null χ2 distribution with a known
number of degrees of freedom, the asymptotic distribution of the GLR statistic λn

is also a χ2 with a known large number of degrees of freedom, in the sense that

rλn � χ2
μn

as a sequence of constants μn → ∞ and some constant r > 0; namely,

rλn − μn√
2μn

d→ N(0,1),

where μn and r are free of nuisance parameters and nuisance functions, although
they may depend on the methods of nonparametric estimation and smoothing pa-
rameters. Therefore, the asymptotic distribution of λn is free of nuisance parame-
ters and nuisance functions. One can use λn to make inference based on the known
distribution of N(μn,2μn) or χ2

μn
in large samples. Alternatively, one can sim-

ulate the null distribution of λn by setting nuisance parameters at any reasonable
values, such as the MLE η̂0 or the maximum profile likelihood estimator η̂ in (2.3).

The GLR test is powerful under a class of contiguous local alternatives,

Han :f = fθ0 + n−γ gn,

where γ > 0 is a constant and gn is an unspecified sequence of smooth functions in
a large class of function space. It has been shown [Fan, Zhang and Zhang (2001)]
that when a local linear smoother is used to estimate f and the bandwidth is of
order n−2/9, the GLR test can detect local alternatives with rate γ = 4/9, which is
optimal according to Ingster (1993a, 1993b, 1993c).

3. A loss function approach. In this paper, we will show that while the GLR
test enjoys many appealing features of the classical LR test, it does not have the
optimal power property of the classical LR test. We will propose a class of loss
function-based tests and show that they are asymptotically more powerful than
the GLR test under a class of local alternatives. Loss functions measure discrep-
ancies between the null and alternative models and are more relevant to decision
making under uncertainty, because the loss function can be chosen to mimic the
objective function of the decision maker. The admissible loss functions include
but are not restricted to quadratic, truncated quadratic and asymmetric linex loss
functions. Like the GLR test, our tests are generally applicable to various nonpara-
metric inference problems, do not involve choosing any weight function and their
null asymptotic distributions do not depend on nuisance parameters and nuisance
functions.

For concreteness, we focus on specification testing for time series regression
models. Regression modeling is one of the most important statistical problems, and
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has been exhaustively studied, particularly in the i.i.d. contexts [e.g., Härdle and
Mammen (1993)]. Focusing on testing regression models will provide deep insight
into our approach and allow us to provide primitive regularity conditions for formal
results. Extension to time series contexts also allows us to expand the scope of
applicability of our tests and the GLR test. We emphasize that our approach is
applicable to many other nonparametric test problems, such as testing parametric
density models.

Suppose {Xt,Yt } ∈ R
p+1 is a stationary time series with finite second moments,

where Yt is a scalar, p ∈ N is the dimension of vector Xt and Xt may contain
exogenous and/or lagged dependent variables. Then we can write

Yt = g0(Xt) + εt ,(3.1)

where g0(Xt) = E(Yt |Xt) and E(εt |Xt) = 0. The fact that E(εt |Xt) = 0 does not
imply that {εt } is a martingale difference sequence. In a time series context, εt

is often assumed to be i.i.d. (0, σ 2) and independent of Xt [e.g., Gao and Gijbels
(2008)]. This implies E(εt |Xt) = 0 but not vice versa, and so it is overly restrictive
from a practical point of view. For example, εt may display volatility clustering
[e.g., Engle (1982)],

εt = zt

√
ht ,

where ht = α0 + α1ε
2
t−1. Here, we have E(εt |Xt) = 0 but {εt } is not i.i.d. We

will allow such an important feature, which is an empirical stylized fact for high-
frequency financial time series.

In practice, a parametric model is often used to approximate the unknown func-
tion g0(Xt). We are interested in testing validity of a parametric model g(Xt , θ),
where g(·, ·) has a known functional form, and θ ∈ � is an unknown finite dimen-
sional parameter. The null hypothesis is

H0 : Pr
[
g0(Xt) = g(Xt , θ0)

] = 1 for some θ0 ∈ �

versus the alternative hypothesis

HA : Pr
[
g0(Xt) �= g(Xt , θ)

]
< 1 for all θ ∈ �.

An important example is a linear time series model

g(Xt , θ) = X′
t θ.

This is called linearity testing in the time series literature [Granger and Teräsvirta
(1993)]. Under HA, there exists neglected nonlinearity in the conditional mean. For
discussion on testing linearity in a time series context, see Granger and Teräsvirta
(1993), Lee, White and Granger (1993), Hansen (1999), Hjellvik and Tjøstheim
(1996) and Hong and Lee (2005).

Because there are many possibilities for departures from a specific functional
form, and practitioners usually have no information about the true alternative, it is
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desirable to construct a test of H0 against a nonparametric alternative, which con-
tains the true function g0(·) and thus ensures the consistency of the test against HA.
For this reason, the GLR test is attractive.

Suppose we have a random sample {Yt ,Xt }nt=1 of size n ∈ N. Assuming that the
error εt is i.i.d. N(0, σ 2), we obtain the conditional quasi-log-likelihood function
of Yt given Xt as follows:

l̂
(
g,σ 2) = −n

2
ln
(
2πσ 2) − 1

2σ 2

n∑
t=1

[
Yt − g(Xt)

]2
.(3.2)

Let ĝ(x) be a consistent local smoother for g0(x). Examples of ĝ(x) include the
Nadaraya–Watson estimator [Härdle (1990), Li and Racine (2007), Pagan and Ul-
lah (1999)] and local linear estimator [Fan and Yao (2003)]. Substituting ĝ(Xt )

into (3.2), one obtains the likelihood of generating the observed sample {Yt ,Xt }nt=1
under HA,

l̂
(
ĝ, σ 2) = −n

2
ln
(
2πσ 2) − 1

2σ 2 SSR1,(3.3)

where SSR1 is the sum of squared residuals of the nonparametric model; namely,

SSR1 =
n∑

t=1

[
Yt − ĝ(Xt )

]2
.

Maximizing the likelihood in (3.3) with respect to nuisance parameter σ 2 yields
σ̂ 2 = n−1 SSR1. Substituting this estimator in (3.3) yields the following likelihood:

l̂
(
ĝ, σ̂ 2) = −n

2
ln(SSR1) − n

2

[
1 + ln(2π/n)

]
.(3.4)

Using a similar argument and maximizing the model quasi-likelihood function
with respect to θ and σ 2 simultaneously, we can obtain the parametric maximum
quasi-likelihood under H0,

l̂
(
ĝ

θ̂0
, σ̂ 2

0
) = −n

2
ln SSR0 −n

2
ln
[
1 + ln(2π/n)

]
,(3.5)

where (θ̂0, σ̂
2
0 ) are the MLE under H0, and SSR0 is the sum of squared residuals

of the parametric regression model, namely,

SSR0 =
n∑

t=1

[
Yt − g0(Xt , θ̂0)

]2
.

Given the i.i.d. N(0, σ 2) assumption for εt , θ̂0 is the least squares estimator that
minimizes SSR0.

Thus, the GLR statistic is defined as

λn = l̂
(
ĝ, σ̂ 2) − l̂

(
ĝ

θ̂0
, σ̂ 2

0
) = n

2
ln(SSR0 /SSR1).(3.6)
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Under the i.i.d. N(0, σ 2) assumption for εt , λn is asymptotically equivalent to
the F test statistic

F = SSR0 −SSR1

SSR1
.(3.7)

The latter has been proposed by Azzalini, Bowman and Härdle (1989), Azzalini
and Bowman (1993), Hong and White (1995) and Fan and Li (2002) in i.i.d. con-
texts. The asymptotic equivalence between the GLR and F tests can be seen from
a Taylor series expansion of λn,

λn = n

2
· F + Remainder.

We now propose an alternative approach to testing H0 versus HA by comparing
the null and alternative models via a loss function D : R2 → R, which measures
the discrepancy between the fitted values ĝ(Xt ) and g(Xt , θ̂0),

Qn =
n∑

t=1

D
[
ĝ(Xt ), g0(Xt , θ̂0)

]
.(3.8)

Intuitively, the loss function gives a penalty whenever the parametric model over-
estimates or underestimates the true model. The latter is consistently estimated by
a nonparametric method.

A specific class of loss functions D(·, ·) is given by D(u,v) = d(u − v),
where d(z) has a unique minimum at 0, and is monotonically nondecreasing as
|z| increases. Suppose d(·) is twice continuously differentiable at 0 with d(0) =
0, d ′(0) = 0 and 0 < d ′′(0) < ∞. The condition of d ′(0) = 0 implies that the first-
order term in the Taylor expansion of d(·) around 0 vanishes to 0 identically. This
class of loss functions d(·) has been called a generalized cost-of-error function
in the literature [e.g., Pesaran and Skouras (2001), Granger (1999), Christoffersen
and Diebold (1997), Granger and Pesaran (2000), Weiss (1996)]. The loss function
is closely related to decision-based evaluation, which assesses the economic value
of forecasts to a particular decision maker or group of decision makers. For exam-
ple, in risk management the extreme values of portfolio returns are of particular
interest to regulators, while in macroeconomic management the values of inflation
or output growth, in the middle of the distribution, may be of concern to central
banks. A suitable choice of loss function can mimic the objective of the decision
maker.

Infinitely many loss functions d(·) satisfy the aforementioned conditions, al-
though they may have quite different shapes. To illustrate the scope of this class of
loss functions, we consider some examples. The first example of d(·) is the popular
quadratic loss function

d(z) = z2.(3.9)
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This delivers a statistic based on the sum of squared differences between the fitted
values of the null and alternative models,

L̂2
n =

n∑
t=1

[
ĝ(Xt ) − g0(Xt , θ̂0)

]2
.(3.10)

This statistic is used in Hong and White (1995) and Horowitz and Spokoiny (2001)
in an i.i.d. setup. It is also closely related to the statistics proposed by Härdle and
Mammen (1993) and Pan, Wang and Yao (2007) but different from their statistics,
L̂2

n in (3.10) does not involve any weighting which suffers from the undesirable
feature as pointed out in Fan and Jiang (2007).

A second example of d(·) is the truncated quadratic loss function

d(z) =
{ 1

2z2, if |z| ≤ c,

c|z| − 1
2c2, if |z| > c,

(3.11)

where c is a prespecified constant. This loss function is used in robust M-
estimation. It is expected to deliver a test robust to outliers that may cause extreme
discrepancies between two estimators.

The quadratic and truncated quadratic loss functions give equal penalty to over-
estimation and underestimation of same magnitude. They cannot capture asym-
metric loss features that may arise in practice. For example, central banks may be
more concerned with underprediction than overprediction of inflation rates. For
another example, in providing an estimate of the market value of a property of the
owner, a real estate agent’s underestimation and overestimation may have different
consequences. If the valuation is in preparation for a future sale, underestimation
may lead to the owner losing money and overestimation to market resistance [Var-
ian (1975)].

The above examples motivate using an asymmetric loss function for model val-
idation. Examples of asymmetric loss functions are a class of so-called linex func-
tions

d(z) = β

α2

[
exp(αz) − (1 + αz)

]
.(3.12)

For each pair of parameters (α,β), d(z) is an asymmetric loss function. Here, β is
a scale factor, and α is a shape parameter. The magnitude of α controls the degree
of asymmetry, and the sign of α reflects the direction of asymmetry. When α < 0,
d(z) increases almost exponentially if z < 0, and almost linearly if z > 0, and
conversely when α > 0. Thus, for this loss function, underestimation is more costly
than overestimation when α < 0, and the reverse is true when α > 0. For small
values of |α|, d(z) is almost symmetric and not far from a quadratic loss function.
Indeed, if α → 0, the linex loss function becomes a quadratic loss function

d(z) → β

2
z2.
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However, when |α| assumes appreciable values, the linex loss function d(z) will be
quite different from a quadratic loss function. Thus, the linex loss function can be
viewed as a generalization of the quadratic loss function allowing for asymmetry.
This function was first introduced by Varian (1975) for real estate assessment.
Zellner (1986) employs it in the analysis of several central statistical estimation
and prediction problems in a Bayesian framework. Granger and Pesaran (1999)
also use it to evaluate density forecasts, and Christoffersen and Diebold (1997)
analyze the optimal prediction problem under this loss function. Figure 1 shows
the shapes of the linex function for a variety of choices of (α,β).

Our loss function approach is by no means only applicable to regression func-
tions. For example, in such contexts as probability density and spectral density
estimation, one may compare two nonnegative density estimators, say f

θ̂
and f̂ ,

using the Hellinger loss function

D(f
θ̂
, f̂ ) = (1 −

√
f

θ̂
/f̂ )2.(3.13)

This is expected to deliver a consistent robust test for H0 of (2.1). Our approach
covers this loss function as well, because when f

θ̂
and f̂ are close under H0

of (2.1), we have

D(f
θ̂
, f̂ ) = 1

4

(
f

θ̂
− f̂

f̂

)2

+ Remainder,

where the first-order term in the Taylor expansion vanishes to 0 identically. Inter-
estingly, our approach does not apply to the KLIC loss function

D(f
θ̂
, f̂ ) = − ln(f

θ̂
/f̂ ),(3.14)

which delivers the GLR λn in (2.3). This is because the Taylor expansion of (3.14)
yields

D(f
θ̂
, f̂ ) = −

(
f

θ̂
− f̂

f̂

)
+ 1

2

(
f

θ̂
− f̂

f̂

)2

+ Remainder,(3.15)

where the first-order term in the Taylor expansion does not vanish to 0 identically.
Hence, the first two terms in (3.15) jointly determine the asymptotic distribution of
the GLR statistic λn. As will be seen below, the presence of the first-order term in
the Taylor expansion of the KLIC loss function in (3.14) leads to an efficiency loss
compared to our loss function approach for which the first-order term of a Taylor
expansion is identically 0 under the null.

4. Asymptotic null distribution. Using a local fit with kernel K : R → R and
bandwidth h ≡ h(n), one could obtain a nonparametric regression estimator ĝ(·)
and compare it to the parametric model g(·, θ̂0) via a loss function, where θ̂0 is a
consistent estimator for θ0 under H0. To avoid undersmoothing [i.e., to choose h
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FIG. 1. The LINEX loss function d(z) = β

α2 [exp(αz) − (1 + αz)].

such that the squared bias of ĝ(·) vanishes to 0 faster than the variance of ĝ(·)], we
estimate the conditional mean of the estimated parametric residual

ε̂t = Yt − g(Xt , θ̂0),
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and compare it to a zero function E(εt |Xt) = 0 (implied by H0) via a loss function
criterion

Q̂n =
n∑

t=1

D
[
m̂h(Xt),0

] =
n∑

t=1

d
[
m̂h(Xt) − 0

] =
n∑

t=1

d
[
m̂h(Xt)

]
,(4.1)

where m̂h(Xt) is a nonparametric estimator for E(εt |Xt). This is essentially a
bias-reduction device. It is proposed in Härdle and Mammen (1993) and also used
in Fan and Jiang (2007) for the GLR test. This device helps remove the bias of
nonparametric estimation because there is no bias under H0 when we estimate the
conditional mean of the estimated model residuals. We note that the bias-reduction
device does not lead to any efficiency gain of the loss function test. The same effi-
ciency gain of the loss function approach over the GLR approach is obtained even
when we compare estimators for E(Yt |Xt). In the latter case, however, more re-
strictive conditions on the bandwidth h are required to ensure that the bias vanishes
sufficiently fast under H0.

For simplicity, we use the Nadaraya–Watson estimator

m̂h(x) = n−1 ∑n
t=1 ε̂tKh(x − Xt)

n−1 ∑n
t=1 Kh(x − Xt)

,(4.2)

where Xt = (X1t , . . . ,Xpt )
′, x = (x1, . . . , xp)′, and

Kh(x − Xt) = h−p
p∏

i=1

K
[
h−1(xi − Xit )

]
.

We note that a local polynomial estimator could also be used, with the same asymp-
totic results.

To derive the null limit distributions of the loss function test based on Q̂n in (4.1)
and the GLR statistic λn in a time series context, we provide the following regu-
larity conditions:

ASSUMPTION A.1. (i) For each n ∈ N, {(Yt ,X
′
t )

′ ∈ R
p+1, t = 1, . . . , n}, p ∈

N, is a stationary and absolutely regular mixing process with mixing coefficient
β(j) ≤ Cρj for all j ≥ 0, where ρ ∈ (0,1), and C ∈ (0,∞); (ii) E|Yt |8+δ < C

for some δ ∈ (0,∞); (iii) Xt has a compact support G ⊂ R
p with marginal

probability density C−1 ≤ f (x) ≤ C for all x in G, and f (·) is twice con-
tinuously differentiable on G; (iv) the joint probability density of (Xt ,Xt−j ),
fj (x, y) ≤ C for all j > 0 and all x, y ∈ G, where C ∈ (0,∞) does not depend

on j ; (v) E(X
4(1+η)
it ) ≤ C for some η ∈ (0,∞), 1 ≤ i ≤ p; (vi) var(εt ) = σ 2 and

σ 2(x) = E(ε2
t |Xt = x) is continuous on G.

ASSUMPTION A.2. (i) For each θ ∈ �, g(·, θ) is a measurable function of Xt ;
(ii) with probability one, g(Xt , ·) is twice continuously differentiable with respect
to θ ∈ �, with E supθ∈�0

‖ ∂
∂θ

g(Xt , θ)‖4+δ ≤ C and E supθ∈�0
‖ ∂

∂θ ∂θ ′ g(Xt , θ)‖4 ≤
C, where �0 is a small neighborhood of θ0 in �.
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ASSUMPTION A.3. There exists a sequence of constants θ∗
n ∈ int(�) such

that n1/2(θ̂0 − θ∗
n ) = Op(1), where θ∗

n = θ0 under H0 for all n ≥ 1.

ASSUMPTION A.4. The kernel K : R → [0,1] is a prespecified bounded sym-
metric probability density which satisfies the Lipschitz condition.

ASSUMPTION A.5. d : R → R
+ has a unique minimum at 0 and d(z) is

monotonically nondecreasing as |z| → ∞. Furthermore, d(z) is twice contin-
uously differentiable at 0 with d(0) = 0, d ′(0) = 0,D ≡ 1

2d ′′(0) ∈ (0,∞) and
|d ′′(z) − d ′′(0)| ≤ C|z| for any z near 0.

Assumptions A.1 and A.2 are conditions on the DGP. For each t , we allow
(Xt , Yt ) to depend on the sample size n. This facilitates local power analysis. For
notational simplicity, we have suppressed the dependence of (Xt , Yt ) on n. We
also allow time series data with weak serial dependence. For the β-mixing con-
dition, see, for example, Doukhan (1994). The compact support for regressor Xt

is assumed in Fan, Zhang and Zhang (2001) for the GLR test to avoid the awk-
ward problem of tackling the KLIC function. This assumption allows us to focus
on essentials while maintaining a relatively simple treatment. It could be relaxed
in several ways. For example, we could impose a weight function 1(|Xt | < Cn) in
constructing Qn and λn, where 1(·) is the indicator function, and Cn can be either
fixed or grow at a suitable rate as the sample size n → ∞.

Assumption A.3 requires a
√

n-consistent estimator θ̂0 under H0, which need
not be asymptotically most efficient. It can be the conditional least squares or
quasi-MLE. Also, we do not need to know the asymptotic expansion structure of
θ̂0 because the sampling variation in θ̂0 does not affect the limit distribution of Q̂n.
We can estimate θ̂0 and proceed as if it were equal to θ0. The replacement of θ̂0
with θ0 has no impact on the limit distribution of Q̂n.

We first derive the limit distribution of the loss function test statistic.

THEOREM 1 (Loss function test). Suppose Assumptions A.1–A.5 hold, h ∝
n−ω for ω ∈ (0,1/2p) and p < 4. Define qn = Q̂n/σ̂

2
n where Q̂n is given in (4.1)

and σ̂ 2
n = n−1 SSR1 = n−1 ∑n

t=1[ε̂t − m̂h(Xt)]2. Then (i) under H0, s(K)qn
d�

χ2
νn

as n → ∞, in the sense that

s(K)qn − νn√
2νn

d−→ N(0,1),

where s(K) = σ 2a(K)
∫

σ 2(x) dx/[Db(K)
∫

σ 4(x) dx], νn = a2(K) ×
[∫ σ 2(x) dx]2/[hpb(K)

∫
σ 4(x) dx], a(K) = ∫

K2(u) du, b(K) = ∫ [∫ K(u +
v)K(v) dv]2 du, K(u) = ∏p

i=1 K(ui),u = (u1, . . . , up)′.
(ii) Suppose in addition var(εt |Xt) = σ 2 almost surely. Then s(K) = a(K)/

[Db(K)] and νn = �a2(K)/[hpb(K)], where � is the Lebesgue’s measure of the
support of Xt .
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Theorem 1 shows that under (and only under) conditional homoskedasticity, the
factors s(K) and νn do not depend on nuisance parameters and nuisance functions.
In this case, the loss function test statistic qn, like the GLR statistic λn, also enjoys
the Wilks phenomena that its asymptotic distribution does not depend on nuisance
parameters and nuisance functions. This offers great convenience in implementing
the loss function test.

We note that the condition on the bandwidth h is relatively mild. In particular,
no undersmoothing is required. This occurs because we estimate the conditional
mean of the residuals of the parametric model g(Xt , θ). If we directly compared
a nonparametric estimator of E(Yt |Xt) with g(Xt , θ), we could obtain the same
asymptotic distribution for qn, but under a more restrictive condition on h in order
to remove the effect of the bias. For simplicity, we consider the case with p < 4.
A higher dimension p for Xt could be allowed by suitably modifying factors s(K)

and νn, but with more tedious expressions.
Theorem 1 also holds for the statistic q0

n = Q̂n/σ̂
2
n,0, where σ̂ 2

n,0 = n−1 SSR0,
which is expected to have better sizes than qn in finite samples under H0 when us-
ing asymptotic theory. However, qn may have better power than q0

n because SSR0
may be substantially larger than SSR1 under HA.

To compare the qn and GLR tests, we have to derive the asymptotic distribution
of the GLR statistic λn in a time series context, a formal result not available in
the previous literature, although the GLR test has been widely applied in the time
series context [Fan and Yao (2003)].

THEOREM 2 (GLR test in time series). Suppose Assumptions A.1–A.5 hold,
p < 4, and h ∝ n−ω for ω ∈ (0,1/2p), and p < 4. Define λn as in (3.6), where
SSR1 = ∑n

t=1[ε̂t − m̂h(Xt)]2, SSR0 = ∑n
t=1 ε̂2

t and ε̂t = Yt − m(Xt, θ̂). Then

(i) under H0, r(K)λn
d� χ2

μn
as n → ∞, in the sense that

r(K)λn − μn√
2μn

d−→ N(0,1),

where r(K) = σ 2c(K)
∫

σ 2(x) dx/[d(K)
∫

σ 4(x) dx], μn = [c(K)
∫

σ 2(x) dx]2/

[hp d(K)
∫

σ 4(x) dx], c(K) = K(0)− 1
2

∫
K2(u) du, d(K) = ∫ [K(u)− 1

2

∫
K(u+

v)K(v) dv]2 du, K(u) = ∏p
i=1 K(ui), u = (u1, . . . , up)′.

(ii) Suppose in addition var(εt |Xt) = σ 2 almost surely. Then r(K) = c(K)/d(K)

and μn = �c2(K)/[hpd(K)], where � is the Lebesgue’s measure of the support
of Xt .

Theorem 2 extends the results of Fan, Zhang and Zhang (2001). We allow Xt

to be a vector and allow time series data. We do not assume that the error εt is
independent of Xt or the past history of {Xt,Yt } so conditional heteroskedasticity
in a time series context is allowed. This is consistent with the empirical stylized
fact of volatility clustering for high frequency financial time series. We note that
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the proof of the asymptotic normality of the GLR test in a time series context is
much more involved than in an i.i.d. context. It is interesting to observe that the
Wilks phenomena do not hold under conditional heteroskedasticity because the
factors r(K) and μn involve the nuisance function σ 2(Xt) = var(εt |Xt), which is
unknown under H0. Conditional homoskedasticity is required to ensure the Wilks
phenomena. In this case, r(K) and μn are free of nuisance functions.

Like the qn test, we also consider the case of p < 4. A higher dimension p could
be allowed by suitably modifying factors r(K) and μn, which would depend on
the unknown density f (x) of Xt and thus are not free of nuisance functions, even
under conditional homoskedasticity.

5. Relative efficiency. We now compare the relative efficiency between the
loss function test qn and the GLR test λn under the class of local alternatives

Hn(an) :g0(Xt) = g(Xt , θ0) + anδ(Xt),(5.1)

where δ : R → R is an unknown continuous function with E[δ4(Xt)] ≤ C. The
term anδ(Xt) characterizes the departure of the model g(Xt , θ0) from the true
function g0(Xt) and the rate an is the speed at which the departure vanishes to
0 as the sample size n → ∞. For notational simplicity, we have suppressed the
dependence of g0(Xt) on n here. Without loss of generality, we assume that δ(Xt)

is uncorrelated with Xt , namely E[δ(Xt)Xt ] = 0.

THEOREM 3 (Local power). Suppose Assumptions A.1–A.5 hold, h ∝ n−ω for
ω ∈ (0,1/2p), and p < 4. Then (i) under Hn(an) with an = n−1/2h−p/4, we have

s(K)qn − νn√
2νn

d−→ N(ψ,1) as n → ∞,

where ψ = σ 2E[δ2(Xt)]/
√

2b(K)
∫

σ 4(x) dx, and s(K) and νn are as in Theo-

rem 1. Suppose in addition var(εt |Xt) = σ 2 almost surely. Then ψ = E[δ2(Xt)]/√
2b(K)�.
(ii) under Hn(an) with an = n−1/2h−p/4, we have

r(K)λn − μn√
2μn

d−→ N(ξ,1) as n → ∞,

where ξ = σ 2E[δ2(Xt)]/[2
√

2d(K)
∫

σ 4(x) dx], and r(K) and μn are as in The-

orem 2. Suppose in addition var(εt |Xt) = σ 2 almost surely. Then ξ = E[δ2(Xt)]/
[2√

2d(K)�].

When Xt is a scalar (i.e., p = 1) and h = n−2/9, the factor an = n−1/2h−p/4 =
n−4/9 achieves the optimal rate in the sense of Ingster (1993a, 1993b, 1993c). Fol-
lowing a similar reasoning to Fan, Zhang and Zhang (2001), we can show that
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the qn test can also detect local alternatives with the optimal rate n−2k/(4k+p)

in the sense of Ingster (1993a, 1993b, 1993c), for the function space Fk = {δ ∈
L2 :

∫
δ(k)(x)2 dx ≤ C}. For p = 1 and k = 2, this is achieved by setting h = n−2/9.

It is interesting to note that the noncentrality parameter ψ of the qn test is inde-
pendent of the curvature parameter D = d ′′(0)/2 of the loss function d(·). This im-
plies that all loss functions satisfying Assumption A.5 are asymptotically equally
efficient under Hn(an) in terms of Pitman’s efficiency criterion [Pitman (1979),
Chapter 7], although their shapes may be different.

While the qn and λn tests achieve the same optimal rate of convergence in
the sense of Ingster (1993a, 1993b, 1993c), Theorem 4 below shows that under
the same set of regularity conditions [including the same bandwidth h and the
same kernel K(·) for both tests], qn is asymptotically more efficient than λn under
Hn(an).

THEOREM 4 (Relative efficiency). Suppose Assumptions A.1–A.5 hold, h ∝
n−ω for ω ∈ (0,1/2p) and p < 4. Then Pitman’s relative efficiency of the qn test
over the GLR λn test under Hn(an) with an = n−1/2h−p/4 is given by

ARE(qn :λn) =
{∫ [2K(u) − ∫

K(u + v)K(v) dv]2 du∫ [∫ K(u + v)K(v) dv]2 du

}1/(2−pω)

,(5.2)

where K(u) = ∏p
i=1 K(ui),u = (u1, . . . , up)′. The asymptotic relative efficiency

ARE(qn :λn) is larger than 1 for any kernel satisfying Assumption A.4 and the
condition of K(·) ≤ 1.

Theorem 4 holds under both conditional heteroskedasticity and conditional ho-
moskedasticity. It suggests that although the GLR λn test is a natural extension of
the classical parametric LR test and is a generally applicable nonparametric infer-
ence procedure with many appealing features, it does not have the optimal power
property of the classical LR test. In particular, the GLR test is always asymptot-
ically less efficient than the loss function test under Hn(an) whenever they use
the same kernel K(·) and the same bandwidth h, including the optimal kernel
and the optimal bandwidth (if any) for the GLR test. The relative efficiency gain
of the loss function test over the GLR test holds even if the GLR test λn uses
the true likelihood function. This result is in sharp contrast to the classical LR
test in a parametric setup, which is asymptotically most powerful according to the
Neyman–Pearson lemma.

Insight into the relative efficiency between qn and λn can be obtained by a Tay-
lor expansion of the λn statistic,

λn = 1

2

SSR0 −SSR1

(SSR1 /n)
+ Remainder,(5.3)
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where the remainder term is an asymptotically negligible higher order term under
Hn(an). This is equivalent to use of the loss function

D(g,gθ ) = [
Yt − g(Xt , θ)

]2 − [
Yt − g(Xt)

]2
.(5.4)

When g(Xt) is close to g(Xt , θ0), the first-order term in a Taylor expansion of
D(g,gθ ) around gθ0 does not vanish to 0 under H0. More specifically, the asymp-
totic distribution of λn is determined by the dominant term,

1

2
[SSR0 −SSR1] = 1

2

[
n∑

t=1

ε̂2
t −

n∑
t=1

[
ε̂t − m̂h(Xt)

]2
]

(5.5)

=
n∑

t=1

ε̂t m̂h(Xt) − 1

2

n∑
t=1

m̂2
h(Xt).

The first term in (5.5) corresponds to the first-order term of a Taylor expansion
of (5.4). It is a second-order V -statistic [Serfling (1980)], and after demeaning, it
can be approximated as a second-order degenerate U -statistic. The second term
in (5.5) corresponds to the second-order term of a Taylor expansion of (5.4). It is
a third-order V -statistic and can be approximated by a second-order degenerate
U -statistic after demeaning. These two degenerate U -statistics are of the same
order of magnitude and jointly determine the asymptotic distribution of λn. In
particular, the asymptotic variance of λn is determined by the variances of these
two U -statistics and their covariance. In contrast, under Assumption A.5, a Taylor
expansion suggests that the asymptotic distribution of the qn statistic is determined
by

Q̂n = D

n∑
t=1

m̂2
h(Xt) + Remainder,(5.6)

which corresponds to the second term in the expansion of SSR0 −SSR1 in (5.5).
As it turns out, the asymptotic variance of this term alone is always smaller than the
variance of the difference of the two terms in (5.5). This leads to a more efficient
test than the GLR test, as is shown in Theorem 4. We note that the first term in (5.5),
which causes an efficiency loss for the GLR test relative to the qn test, is always
present no matter whether we use the bias-reduction device (i.e., estimating the
conditional mean of the estimated model residuals).

To assess the magnitude of the relative efficiency gain of the qn test over the
λn test, we consider a few commonly used multiweight kernels: the uniform,
Epanechnikov, biweight and triweight kernels; see Table 1 below. Suppose the
bandwidth rate parameter ω = 1/5, 2/9, respectively, in the univariate case (i.e.,
p = 1). The rate of ω = 1/5 gives the optimal bandwidth rate for estimating g0(·),
and the rate of ω = 2/9 achieves the optimal convergence rate in the sense of
Ingster (1993a, 1993b, 1993c). Table 1 reports Pitman’s asymptotic relative effi-
ciencies (ARE). The efficiency gain of using the qn test is substantial, no matter if
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TABLE 1
Asymptotic relative efficiency of the loss function test over the GLR test

Uniform Epanechnikov Biweight Triweight

K(u) 1
2 1(|u| ≤ 1) 3

4
[
1 − u2]1(|u| ≤ 1) 15

16
[
1 − u2]21(|u| ≤ 1) 35

32
[
1 − u2]31(|u| ≤ 1)

ARE1 2.80 2.04 1.99 1.98
ARE2 2.84 2.06 2.01 1.99

Note: ARE denotes Pitman’s asymptotic relative efficiency of the loss function qn test to the GLR

λn test. ARE1 is for h = cn−1/5 and ARE2 is for h = cn−2/9, for 0 < c < ∞.

the bandwidth h is of the order of n−1/5 or n−2/9. Furthermore, there is little dif-
ference in the asymptotic relative efficiency between the two choices of h. These
are confirmed in our simulation study below.

We emphasize that Theorem 4 does not imply that the GLR test should be aban-
doned. Indeed, it is a natural extension of the classical LR test and has many ap-
pealing features. It will remain as a useful, general nonparametric inference pro-
cedure in practice.

While the relative efficiency of the loss function qn test over the GLR λn test
holds whenever the same bandwdith h and the same kernel K(·) are used, the
choice of an optimal bandwidth remains an important issue for each test. Theo-
rems 1–4 allow for a wide range of the choices of h, but they do not provide a
practical guidance on how to choose h. In practice, a simple rule of thumb is to
choose h = SXn−1/5 or h = SXn−2/9, where S2

X is the sample variance of {Xt }nt=1.
One could also choose a data-driven bandwidth using a cross-validation procedure,
that is, choose h = arg minc1n

−1/(p+4)≤h≤c1n
−1/(p+4)

∑n
t=1[ε̂t − m̂h,t (Xt)]2 for some

prespecified constants 0 < c1 < c2 < ∞, where for each given t , m̂h,t (Xt ) is the
leave-one-out estimator that is based on the sample {ε̂s ,Xs}ns=1,s �=t . The band-
width based on cross-validation is asymptotically optimal for estimation in terms
of mean squared errors, but it may not be optimal for the qn and λn tests. For
testing problems, the central concern is the Type I error or Type II error, or both.
Based on the Edgeworth expansion of the asymptotic distribution of a test statistic,
Gao and Gijbels (2008) show that the choice of h affects both Type I and Type II
errors of a closely related nonparametric test, and usually there exists a tradeoff
between Type I and Type II errors when choosing h. A sensible optimal rule is
to choose h to maximize the power of a test given a significance level. Gao and
Gijbels (2008) derive the leading terms of the size and power functions of their test
statistic, and then choose a bandwidth to maximize the power under a class of local
alternatives similar to (5.1) under a controlled significance level, that is, to choose
h = maxh∈Bn(α) βn(h), where Bn(α) = {h :α − cmin < αn(h) < α + cmin} for some
prespecified small constant cmin ∈ (0, α), and αn(h) and βn(h) are the size and
power functions of the nonparametric test. They then propose a data-driven band-
width in combination with a bootstrap and show that it works well in finite sam-
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ples. Unfortunately, Gao and Gijbels’s (2008) results cannot be directly applied to
either the qn or λn test, because the higher order terms of αn(h) and βn(h) depend
on the form of test statistic, the DGP, the kernel K and the bandwidth h, among
many other things. However, it is possible to extend their approach to the qn and λn

tests to obain their optimal banwidths, respectively. As the associated technicality
is quite involved, we leave this important problem for subsequent work. We note
that Sun, Phillips and Jin (2008), in a different context, also consider a data-driven
bandwidth by minimizing a weighted average of the Type I and Type II errors of
a test, namely choose h = arg minh(

wn

1+wn
eI
n + 1

1+wn
eII
n ), where eI

n and eII
n are the

Type I and Type II errors, respectively, and wn is a weight function that reflects the
relative importance of eI

n and eII
n .

6. Monte Carlo evidence. We now compare the finite sample performance
of the loss function qn test and the GLR λn test. To examine the sizes of the tests,
we consider the following null linear regression model in a time series context:

DGP 0 (Linear regression).⎧⎨⎩
Yt = 1 + Xt + εt ,

Xt = 0.5Xt−1 + vt ,

vt ∼ i.i.d. N(0,1).

Here, Xt is truncated within its two standard deviations. To examine robust-
ness of the tests, we consider a variety of distributions for the error εt : (i) εt ∼
i.i.d. N(0,1), (ii) εt ∼ i.i.d. Student-t5, (iii) εt ∼ i.i.d. U [0,1], (iv) εt ∼
i.i.d. lnN(0,1) and (v) εt ∼ i.i.d. χ2

1 , where the εt in (iii)–(v) have been scaled to
have mean 0 and variance 1.

Because the asymptotic normal approximation for the qn and λn tests might not
perform well in finite samples, we also use a conditional bootstrap procedure based
on the Wilks phenomena:

Step 1: Obtain the parameter estimator θ̂0 (e.g., OLS) of the null linear regres-
sion model, and the nonparametric estimator ĝ(Xt ).

Step 2: Compute the qn statistic and the residual ε̂t = Yt − ĝ(Xt ) from the non-
parametric model.

Step 3: Conditionally on each Xt , draw a bootstrap error ε∗
t from the centered

empirical distribution of ε̂t and compute Y ∗
t = X′

t θ̂
∗
0 + ε̂∗

t . This forms a conditional
bootstrap sample {Xt,Y

∗
t }nt=1.

Step 4: Use the conditional bootstrap sample {Xt,Y
∗
t }nt=1 to compute a bootstrap

statistic q∗
n , using the same kernel K(·) and the same bandwidth h as in step 2.

Step 5: Repeat steps 3 and 4 for a total of B times, where B is a large number.
We then obtain a collection of bootstrap test statistics, {q∗

nl}Bl=1.
Step 6: Compute the bootstrap P value P ∗ = B−1 ∑B

l=1 1(qn < q∗
nl). Reject H0

at a prespecified significance level α if and only if P ∗ < α.
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When conditional heteroskedasticity exists, we can modify step 2 by using a
wild bootstrap for {ε̂∗

t }. If Xt contains lagged dependent variables, we can use
a recursive simulation method; see, for example, Franke, Kreiss and Mammen
(2002). For space, we do not justify the validity of the bootstrap here. Fan and
Jiang [(2007), Theorem 7] show the consistency of the bootstrap for the GLR test
in an i.i.d. context. We could establish the consistency of the bootstrap for our loss
function test by following the approaches of Fan and Jiang (2007) and Gao and
Gijbels (2008).

We consider two versions of the loss function test, one is to standardize Q̂n by
σ̂ 2

n = n−1 SSR1, where SSR1 is the sum of squared residuals of the nonparametric
regression estimates. This is denoted as qn. The other version is to standardize Q̂n

by σ̂ 2
n,0 = n−1 SSR0, where SSR0 is the sum of squared residuals of the null linear

model. This is denoted as q0
n . It is expected that qn may be more powerful than

q0
n in finite samples under HA, because SSR0 is expected to be significantly larger

than SSR1 under HA. To construct the qn and q0
n tests, we choose the family of

linex loss functions in (3.12), with (α,β) = (0,1), (0.2,1), (0.5,1) and (1,1), re-
spectively; see Figure 1 for their shapes. The choice of (α,β) = (0,1) corresponds
to the symmetric quadratic loss function, while the degree of asymmetry of the loss
function increases as α increases (the choice of β has no impact on the qn tests).
Various choices of (α,β) thus allow us to examine sensitivity of the power of the
qn tests to the choices of the loss function. Rather conveniently, when using the
bootstrap procedure, there is no need to compute the centering and scaling factors
for the qn and q0

n tests; it suffices to compare the statistic qn or q0
n with their boot-

strap counterparts. We choose B = 99. The same bootstrap is used for the GLR
test λn.

To examine the power of the tests, we consider three nonlinear DGP’s:

DGP 1 (Quadratic regression).

Yt = 1 + Xt + θX2
t + εt .

DGP 2 (Threshold regression).

Yt = 1 + Xt1(Xt > 0) + (1 + θ)Xt1(Xt ≤ 0) + εt .

DGP 3 (Smooth transition regression).

Yt = 1 + Xt + [
1 − θF (Xt)

]
Xt + εt ,

where F(Xt) = [1 + exp(−Xt)]−1.

We consider various values for θ in each DGP to examine how the power of the
tests changes as the value of θ changes.

To examine sensitivity of all tests to the choices of h, we consider h = SXn−ω

for ω = 2
9 and 1

5 , respectively, where SX is the sample standard deviation of
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{Xt }nt=1. These correspond to the optimal rate of convergence in the sense of In-
gster (1993a, 1993b, 1993c) and the optimal rate of estimation in terms of mean
squared errors, respectively. The results are similar. Here, we focus our discus-
sion on the results with h = SXn−2/9, as reported in Tables 2–6. The results with
h = SXn−1/5 are reported in Tables S.1–S.5 of the supplementary material. We use
the uniform kernel K(z) = 1

21(|z| ≤ 1) for all tests. We have also used the biweight
kernel, and the results are very similar (so, not reported here).

Tables 2 and 3 report the empirical rejection rates of the tests under H0 (DGP 0)
at the 10% and 5% levels, using both asymptotic and bootstrap critical values, re-
spectively. We first examine the size of the tests using asymptotic critical values,
with n = 100,250 and 500, respectively. Table 2 shows that all tests, λn, qn and
q0
n , have reasonable sizes in finite samples, and they are robust to various error

distributions, but they all show some underrejection, particularly at the 10% level.
The qn and λn tests have similar sizes in most cases, whereas q0

n shows a bit more
underrejection. Overall, the sizes of the qn, q

0
n and λn tests display some underre-

jections in most cases in finite samples, but they are not unreasonable.
Next, we examine the size of the tests based on the bootstrap. Table 3 shows

that overall, the rejection rates of all tests based on the bootstrap are close to the
significance levels (10% and 5%), indicating the gain of using the bootstrap in
finite samples. The sizes of all tests are robust to a variety of error distributions,
confirming the Wilks phenomena that the asymptotic distribution of both the qn

and λn tests are distribution free. For the loss function tests qn and q0
n , the sizes are

very similar for different choices of parameters (α,β) governing the shape of the
linex loss function. We note that when asymptotic critical values are used, the sizes
of the tests with h = SXn−2/9 are slightly better than with h = SXn−1/5. When
bootstrap critical values are used, however, the sizes of all tests with h = SXn−2/9

and h = SXn−1/5, respectively, are very similar.
Next, we turn to the powers of the tests under HA. Since the sizes of the tests

using asymptotic critical values are different in finite samples, we use the bootstrap
procedure only, which delivers similar sizes close to significance levels and thus
provides a fair ground for comparison. Tables 4–6 report the empirical rejection
rates of the tests under DGP 1 (quadratic regression), DGP 2 (threshold regression)
and DGP 3 (smooth transition regression), respectively. For all DGPs, the loss
function tests qn and q0

n are more powerful than the GLR test, confirming our
asymptotic efficiency analysis. Interestingly, for the two loss function tests, qn,
which is standardized by the nonparametric SSR1, is roughly equally powerful to
q0
n , which is standardized by the parametric SSR0, although asymptotic analysis

suggests that qn should be more powerful than q0
n under HA, because SSR0 is

significantly larger than SSR1 under HA. Obviously, this is due to the use of the
bootstrap. Since the bootstrap statistics q∗

n and q0∗
n are standardized by SSR∗

0 and
SSR∗

1, respectively, where SSR∗
1 < SSR∗

0, the ranking between qn and q∗
n remains

more or less similar to the ranking between q0
n and q0∗

n , and therefore q∗
n and q0∗

n
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TABLE 2
Empirical sizes of tests using asymptotic critical values

n = 100 n = 250 n = 500

qn q0
n GLR qn q0

n GLR qn q0
n GLR

(a,β) 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP S.1: i.i.d. normal errors
(0.0,1.0) 7.7 5.0 4.5 2.9 7.4 5.1 6.0 3.6 4.6 2.6 7.3 4.5 6.8 4.8 6.3 4.0 7.2 3.8
(0.2,1.0) 8.1 5.2 4.5 3.0 7.4 5.1 6.1 3.8 4.7 2.5 7.3 4.5 6.6 4.9 6.2 4.1 7.2 3.8
(0.5,1.0) 8.4 5.2 4.9 3.5 7.4 5.1 6.6 3.7 4.8 2.6 7.3 4.5 6.6 4.8 6.1 4.5 7.2 3.8
(1.0,1.0) 9.4 5.8 5.7 4.3 7.4 5.1 6.8 4.3 5.2 3.0 7.3 4.5 6.9 5.0 6.0 4.6 7.2 3.8

DGP S.2: i.i.d. Student-t5 errors
(0.0,1.0) 6.8 4.3 4.0 2.5 6.4 3.4 6.0 3.3 4.4 2.4 4.9 2.7 5.4 3.1 4.3 2.4 7.7 4.5
(0.2,1.0) 6.7 4.3 4.1 2.6 6.4 3.4 5.8 3.8 4.4 2.4 4.9 2.7 5.4 3.2 4.6 2.5 7.7 4.5
(0.5,1.0) 6.9 4.5 4.3 2.6 6.4 3.4 5.9 3.9 4.3 2.7 4.9 2.7 5.6 3.3 4.8 2.6 7.7 4.5
(1.0,1.0) 8.5 5.1 5.0 3.0 6.4 3.4 6.4 4.4 5.0 3.4 4.9 2.7 6.2 3.5 5.1 3.0 7.7 4.5

DGP S.3: i.i.d. uniform errors
(0.0,1.0) 7.1 5.2 4.3 2.7 6.2 3.5 6.8 4.2 5.5 2.9 6.6 4.0 6.4 4.2 5.6 3.5 6.3 3.2
(0.2,1.0) 7.1 5.4 4.5 2.5 6.2 3.5 6.8 4.4 5.4 2.9 6.6 4.0 6.2 4.2 5.3 3.5 6.3 3.2
(0.5,1.0) 7.4 5.4 4.9 2.7 6.2 3.5 7.0 4.5 5.6 3.1 6.6 4.0 6.2 4.5 5.5 3.6 6.3 3.2
(1.0,1.0) 9.0 6.0 5.7 3.7 6.2 3.5 7.1 5.1 5.9 3.4 6.6 4.0 6.7 4.6 6.1 3.7 6.3 3.2

DGP S.4: i.i.d. log-normal errors
(0.0,1.0) 9.4 7.2 6.8 4.3 8.5 6.6 6.1 4.2 4.8 2.8 6.7 3.6 6.9 5.1 6.3 4.4 6.9 4.1
(0.2,1.0) 9.9 7.9 7.6 5.2 8.5 6.6 6.5 4.7 4.9 3.3 6.7 3.6 7.5 5.6 6.6 4.5 6.9 4.1
(0.5,1.0) 10.4 8.7 8.2 6.5 8.5 6.6 8.1 4.8 5.9 4.3 6.7 3.6 7.9 5.9 7.1 5.3 6.9 4.1
(1.0,1.0) 12.4 10.2 9.5 7.9 8.5 6.6 9.2 6.9 7.6 5.5 6.7 3.6 9.5 7.1 8.3 6.2 6.9 4.1

DGP S.5: i.i.d. chi-square errors
(0.0,1.0) 7.6 5.9 5.6 3.5 7.3 5.2 6.3 4.0 4.6 2.8 6.3 3.1 5.2 3.5 4.4 2.8 5.4 2.9
(0.2,1.0) 8.1 6.3 6.0 3.8 7.3 5.2 6.5 4.2 5.1 3.0 6.3 3.1 5.2 3.7 4.9 3.1 5.4 2.9
(0.5,1.0) 8.8 7.2 7.0 4.6 7.3 5.2 7.0 4.8 5.6 3.7 6.3 3.1 5.5 3.9 5.3 3.3 5.4 2.9
(1.0,1.0) 10.8 9.2 8.9 6.2 7.3 5.2 7.8 5.6 6.3 4.8 6.3 3.1 6.3 4.6 5.9 4.1 5.4 2.9

Notes: (i) 1000 iterations; (ii) GLR, the generalized likelihood ratio test, qn and q0
n , loss function-based tests; (iii) qn is standardized by SSR1, the sum of squared residuals of the nonparametric

regression estimates, and q0
n is standardized by SSR0, the sum of squared residuals of the null linear model; (iv) The uniform kernel is used for GLR, qn and q0

n ; the bandwidth h = SXn−2/9,

where SX is the sample standard deviation of {Xt }nt=1; (v) The qn tests are based on the linex loss function: d(z) = β

α2 [exp(αz) − 1 − αz]; (vi) Yt = 1 + Xt + εt , Xt = 0.5Xt−1 + vt ,

vt ∼ i.i.d. N(0,1), where DGP S.1: εi ∼ i.i.d. N(0,1); DGP S.2: εi ∼ i.i.d. Student-t5; DGP S.3: εi ∼ i.i.d. U [0,1]; DGP S.4: εi ∼ i.i.d. logN(0,1); DGP S.5: εi ∼ i.i.d. χ2
1 .
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TABLE 3
Empirical sizes of tests using bootstrap critical values

n = 100 n = 250 n = 500

qn q0
n GLR qn q0

n GLR qn q0
n GLR

(a,β) 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP S.1: i.i.d. normal errors
(0.0,1.0) 10.0 5.4 10.0 5.3 10.4 4.4 11.1 6.1 11.8 5.9 11.5 5.0 11.4 6.1 11.6 6.1 10.9 6.5
(0.2,1.0) 10.0 5.4 10.0 5.6 10.4 4.4 11.8 6.2 12.1 6.3 11.5 5.0 11.4 6.1 11.4 6.0 10.9 6.5
(0.5,1.0) 9.4 4.9 9.7 4.9 10.4 4.4 11.4 5.9 11.7 5.8 11.5 5.0 11.4 6.4 11.6 6.2 10.9 6.5
(1.0,1.0) 9.2 4.6 9.7 4.5 10.4 4.4 11.3 5.8 11.2 5.5 11.5 5.0 11.7 6.4 12.2 6.1 10.9 6.5

DGP S.2: i.i.d. Student-t5 errors
(0.0,1.0) 9.1 4.1 8.8 4.4 9.5 3.8 8.8 4.3 8.9 4.5 9.3 3.9 10.1 4.7 10.7 5.2 11.5 5.7
(0.2,1.0) 8.8 4.2 8.7 4.2 9.5 3.8 8.8 4.3 9.0 4.6 9.3 3.9 10.6 5.0 10.8 4.8 11.5 5.7
(0.5,1.0) 9.4 4.0 8.7 4.4 9.5 3.8 9.1 4.5 8.8 4.5 9.3 3.9 10.5 5.1 10.3 5.0 11.5 5.7
(1.0,1.0) 9.8 3.9 10.2 4.5 9.5 3.8 8.8 5.0 9.2 4.7 9.3 3.9 10.6 5.4 10.5 5.2 11.5 5.7

DGP S.3: i.i.d. uniform errors
(0.0,1.0) 10.3 5.0 10.1 5.3 9.1 4.2 11.1 5.8 11.2 5.8 10.9 6.5 9.6 6.0 9.5 6.1 10.6 5.3
(0.2,1.0) 10.3 5.1 10.3 5.5 9.1 4.2 11.1 5.8 10.9 5.7 10.9 6.5 9.6 6.0 9.5 6.0 10.6 5.3
(0.5,1.0) 10.8 5.1 10.7 5.4 9.1 4.2 11.2 5.6 11.2 5.7 10.9 6.5 9.4 6.0 9.4 6.0 10.6 5.3
(1.0,1.0) 10.3 5.5 10.6 5.2 9.1 4.2 10.7 5.7 11.0 5.8 10.9 6.5 9.5 6.0 9.4 6.2 10.6 5.3

DGP S.4: i.i.d. log-normal errors
(0.0,1.0) 11.0 5.8 10.9 6.1 10.2 5.5 9.7 4.6 9.6 5.1 10.8 4.5 10.3 5.3 10.4 5.4 11.0 5.9
(0.2,1.0) 10.7 5.9 10.6 6.0 10.2 5.5 10.0 4.7 9.5 4.9 10.8 4.5 9.9 5.3 10.3 5.4 11.0 5.9
(0.5,1.0) 10.9 5.8 10.8 5.6 10.2 5.5 9.5 4.7 9.4 4.7 10.8 4.5 9.9 5.6 10.0 5.4 11.0 5.9
(1.0,1.0) 10.7 5.8 11.0 5.9 10.2 5.5 9.7 4.5 9.5 4.4 10.8 4.5 10.1 5.6 10.4 5.4 11.0 5.9

DGP S.5: i.i.d. chi-square errors
(0.0,1.0) 9.4 4.4 9.2 4.4 9.7 5.3 10.2 4.8 10.2 4.9 9.3 4.6 7.9 3.7 8.2 3.7 9.0 4.1
(0.2,1.0) 9.3 4.5 9.0 4.3 9.7 5.3 10.2 4.9 10.0 4.9 9.3 4.6 7.7 3.7 8.0 3.7 9.0 4.1
(0.5,1.0) 9.2 4.9 9.1 4.8 9.7 5.3 10.2 4.7 10.2 4.9 9.3 4.6 7.8 3.7 7.9 3.7 9.0 4.1
(1.0,1.0) 8.7 5.2 8.5 4.8 9.7 5.3 10.3 3.7 9.9 3.6 9.3 4.6 7.8 3.6 7.7 3.7 9.0 4.1

Notes: (i) 1000 iterations; (ii) GLR, the generalized likelihood ratio test, qn and q0
n , loss function-based tests; (iii) qn is standardized by SSR1, the sum of squared residuals of the nonparametric

regression estimates, and q0
n is standardized by SSR0, the sum of squared residuals of the null linear model; (iv) The uniform kernel is used for GLR, qn and q0

n ; the bandwidth h = SXn−2/9,

where SX is the sample standard deviation of {Xt }nt=1; (v) The qn tests are based on the linex loss function: d(z) = β

α2 [exp(αz) − 1 − αz]; (vi) Yt = 1 + Xt + εt , Xt = 0.5Xt−1 + vt ,

vt ∼ i.i.d. N(0,1), where DGP S.1: εi ∼ i.i.d. N(0,1); DGP S.2: εi ∼ i.i.d. Student-t5; DGP S.3: εi ∼ i.i.d. U [0,1]; DGP S.4: εi ∼ i.i.d. logN(0,1); DGP S.5: εi ∼ i.i.d. χ2
1 .
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TABLE 4
Empirical powers of tests using bootstrap critical values

n = 100 n = 250 n = 500

qn q0
n GLR qn q0

n GLR qn q0
n GLR

(a,β) θ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.1: Quadratic regression
(0.0,1.0) 0.1 22.6 12.8 23.0 12.4 20.2 12.4 38.4 27.2 39.2 27.8 29.4 20.4 62.0 50.6 62.2 50.8 47.4 33.6

0.2 53.2 39.8 53.6 39.6 45.2 34.8 90.6 83.4 91.0 83.4 80.4 70.6 99.4 99.0 99.4 99.0 97.4 95.6
0.3 85.2 77.0 85.2 77.2 76.8 65.8 99.6 99.2 99.6 99.2 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.4 98.4 99.4 98.8 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(0.2,1.0) 0.1 23.4 13.6 23.6 13.0 20.2 12.4 39.8 28.0 40.0 28.4 29.4 20.4 63.8 51.8 64.0 52.0 47.4 33.6
0.2 55.8 41.2 55.8 41.0 45.2 34.8 91.0 84.0 91.4 83.8 80.4 70.6 99.4 99.2 99.4 99.2 97.4 95.6
0.3 86.2 78.4 86. 78.6 76.8 65.8 99.8 99.2 99.6 99.2 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.4 98.6 99.4 99.2 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(0.5,1.0) 0.1 24.8 14.4 24.2 14.6 20.2 12.4 42.6 30.0 41.4 29.2 29.4 20.4 64.8 53.4 64.6 53.6 47.4 33.6
0.2 58.0 43.8 59.0 43.4 45.2 34.8 91.4 85.2 92.0 85.8 80.4 70.6 99.6 99.4 99.6 99.4 97.4 95.6
0.3 87.0 80.0 86.6 80.2 76.8 65.8 99.8 99.4 99.6 99.4 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.4 98.8 99.4 99.2 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(1.0,1.0) 0.1 27.6 16.2 26.2 18.0 20.2 12.4 44.6 32.4 45.2 31.4 29.4 20.4 66.4 66.0 66.0 56.6 47.4 33.6
0.2 60.8 46.4 62.2 46.4 45.2 34.8 92.2 87.0 92.6 88.2 80.4 70.6 99.6 99.4 99.8 99.4 97.4 95.6
0.3 88.8 81.6 88.4 80.6 76.8 65.8 99.8 99.6 99.6 97.2 98.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
0.5 99.6 99.0 99.6 99.2 98.6 96.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: (i) 1000 iterations; (ii) GLR, the generalized likelihood ratio test, qn and q0
n , loss function-based tests; (iii) qn is standardized by SSR1, the sum

of squared residuals of the nonparametric regression estimates, and q0
n is standardized by SSR0, the sum of squared residuals of the null linear model;

(iv) The uniform kernel is used for GLR, qn and q0
n ; the bandwidth h = SXn−2/9, where SX is the sample standard deviation of {Xt }nt=1; (v) The qn

tests are based on the linex loss function: d(z) = β

α2 [exp(αz) − 1 − αz]; (vi) DGP P.1, Yt = 1 + Xt + θX2
t + εt , where {εi} ∼ i.i.d. N(0,1).
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TABLE 5
Empirical powers of tests using bootstrap critical values

n = 100 n = 250 n = 500

qn q0
n GLR qn q0

n GLR qn q0
n GLR

(a,β) θ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.2: Threshold regression
(0.0,1.0) −1.0 73.0 60.2 73.2 61.4 60.8 46.4 98.8 96.2 98.8 96.4 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0

−0.5 28.0 18.0 28.4 18.4 24.2 15.6 51.8 38.2 52.6 39.8 39.2 28.6 81.6 69.0 81.8 69.4 62.6 51.6
−0.2 13.4 7.2 13.4 7.2 13.0 7.8 17.0 8.8 16.4 8.8 13.4 6.8 24.8 15.4 25.2 15.6 18.6 12.2

0.2 11.0 5.8 11.4 6.4 12.6 5.8 14.6 8.0 15.0 8.4 12.6 7.2 23.2 14.6 23.4 14.4 18.6 11.0
0.5 25.0 15.6 25.2 14.4 21.0 11.8 50.4 36.8 50.4 37.0 37.2 25.4 79.2 69.6 79.0 69.4 64.8 51.8
1.0 71.4 59.0 72.2 58.6 60.2 43.4 97.6 94.6 97.6 94.6 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

(0.2,1.0) −1.0 74.0 61.6 74.8 62.2 60.8 46.4 99.0 96.8 98.8 96.8 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0
−0.5 29.4 18.2 29.8 18.6 24.2 15.6 53.0 40.2 53.6 39.8 39.2 28.6 81.0 70.4 81.8 69.8 62.6 51.6
−0.2 14.0 7.4 13.8 7.2 13.0 7.8 17.6 8.4 17.2 8.2 13.4 6.8 25.2 15.2 25.2 15.6 18.6 12.2

0.2 10.8 6.2 11.2 6.0 12.6 5.8 14.0 7.6 14.2 7.8 12.6 7.2 23.4 14.8 23.4 14.2 18.6 11.0
0.5 24.0 13.8 23.8 12.8 21.0 11.8 49.0 36.6 49.2 36.2 37.2 25.4 78.6 68.6 78.4 69.0 64.8 51.8
1.0 70.2 56.8 70.4 56.4 60.2 43.4 97.2 94.2 97.4 94.6 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

(0.5,1.0) −1.0 76.2 62.2 76.8 63.0 60.8 46.4 99.0 96.8 98.8 97.0 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0
−0.5 30.4 19.2 31.2 19.8 24.2 15.6 55.0 41.2 56.4 40.4 39.2 28.6 81.4 71.6 81.8 71.4 62.6 51.6
−0.2 14.0 7.8 14.0 8.2 13.0 7.8 18.0 9.4 18.4 10.0 13.4 6.8 26.2 16.2 25.6 15.8 18.6 12.2

0.2 9.4 6.0 9.6 5.8 12.6 5.8 13.0 6.8 13.8 7.0 12.6 7.2 23.0 14.0 22.4 14.0 18.6 11.0
0.5 21.4 12.4 21.0 12.0 21.0 11.8 48.8 35.2 48.6 35.0 37.2 25.4 78.4 66.8 78.0 66.8 64.8 51.8
1.0 68.8 54.6 67.8 52.8 60.2 43.4 96.8 94.0 97.0 94.0 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

(1.0,1.0) −1.0 77.0 63.6 77.8 64.2 60.8 46.4 99.0 96.8 99.0 96.8 95.0 90.8 100.0 100.0 100.0 100.0 100.0 100.0
−0.5 31.2 21.4 32.4 22.0 24.2 15.6 57.6 44.0 57.8 44.0 39.2 28.6 82.6 74.2 83.2 73.8 62.6 51.6
−0.2 14.0 8.0 14.8 8.2 13.0 7.8 18.6 11.0 19.6 10.8 13.4 6.8 26.0 16.0 26.6 17.0 18.6 12.2

0.2 9.2 6.0 9.4 6.0 12.6 5.8 12.2 6.4 12.4 6.8 12.6 7.2 21.4 12.6 21.0 13.0 18.6 11.0
0.5 19.2 10.0 18.4 9.6 21.0 11.8 47.2 31.6 46.8 32.2 37.2 25.4 76.4 64.0 75.8 65.2 64.8 51.8
1.0 63.8 48.2 62.2 46.2 60.2 43.4 95.8 92.8 96.0 93.0 92.6 87.2 100.0 100.0 100.0 100.0 100.0 100.0

Notes: (i) 1000 iterations; (ii) GLR the generalized likelihood ratio test, qn and q0
n loss function-based tests; (iii) qn is standardized by SSR1, the sum of squared residuals of the nonparametric

regression estimates, and q0
n is standardized by SSR0, the sum of squared residuals of the null linear model; (iv) The uniform kernel is used for GLR, qn and q0

n ; the bandwidth h = SXn−2/9,

where SX is the sample standard deviation of {Xt }nt=1; (v) The qn tests are based on the linex loss function: d(z) = β

α2 [exp(αz) − 1 − αz]; (vi) DGP P.2, Yt = 1 + Xt 1(Xt > 0) + (1 +
θ)Xt 1(Xt ≤ 0) + εt , where {εi } ∼ i.i.d. N(0,1).
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TABLE 6
Empirical powers of tests

n = 100 n = 250 n = 500

qn q0
n GLR qn q0

n GLR qn q0
n GLR

(a,β) θ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

DGP P.3: Smooth transition regression
(0.0,1.0) −1.0 53.2 40.0 54.0 41.6 43.8 33.6 90.2 84.6 90.2 84.2 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8

−0.5 22.6 13.0 22.8 13.8 20.8 11.8 37.8 27.2 38.8 27.4 27.8 20.4 61.2 49.2 60.2 49.8 47.6 35.2
0.5 20.6 10.4 19.8 11.4 16.6 9.6 36.2 25.0 35.6 26.2 29.2 17.0 60.8 49.4 60.2 50.6 46.8 35.0
1.0 52.2 38.2 51.4 37.6 44.0 29.8 87.4 79.6 86.8 79.8 78.2 69.0 99.4 98.6 99.4 98.6 98.4 96.0
1.5 85.6 75.2 86.6 77.0 75.6 65.6 99.6 99.4 99.6 99.2 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

(0.2,1.0) −1.0 55.0 40.4 56.0 42.6 43.8 33.6 90.6 85.0 90.4 85.6 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8
−0.5 23.8 14.0 23.0 14.2 20.8 11.8 39.4 28.4 40.2 28.2 27.8 20.4 61.6 49.8 60.8 51.0 47.6 35.2

0.5 19.4 10.2 19.4 10.4 16.6 9.6 35.4 24.4 35.2 25.2 29.2 17.0 59.2 48.8 59.0 49.2 46.8 35.0
1.0 50.4 37.2 49.8 36.2 44.0 29.8 86.8 79.0 85.6 78.4 78.2 69.0 99.4 98.6 99.4 98.6 98.4 96.0
1.5 84.6 74.2 85.0 75.2 75.6 65.6 99.4 99.4 99.6 99.0 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

(0.5,1.0) −1.0 56.6 43.0 57.6 44.0 43.8 33.6 86.2 63.6 86.0 64.6 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8
−0.5 25.0 14.4 24.0 14.4 20.8 11.8 40.4 29.4 40.6 29.2 27.8 20.4 62.4 51.4 61.4 51.8 47.6 35.2

0.5 18.4 9.4 18.4 8.8 16.6 9.6 34.6 23.0 34.0 23.2 29.2 17.0 58.0 47.4 57.8 48.0 46.8 35.0
1.0 48.8 34.0 47.6 33.2 44.0 29.8 85.0 77.6 85.0 77.8 78.2 69.0 99.2 98.2 99.4 98.4 98.4 96.0
1.5 83.0 70.2 82.6 72.0 75.6 65.6 99.4 98.8 99.6 99.0 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

(1.0,1.0) −1.0 58.4 46.4 58.8 46.0 43.8 33.6 92.0 87.4 91.8 86.8 78.8 69.8 99.6 99.2 99.6 99.2 97.8 95.8
−0.5 26.2 16.2 26.2 16.4 20.8 11.8 43.6 30.8 43.8 30.6 27.8 20.4 64.6 52.4 64.0 52.2 47.6 35.2

0.5 14.6 7.4 15.0 7.6 16.6 9.6 31.0 20.2 31.8 20.6 29.2 17.0 56.8 44.4 56.6 45.2 46.8 35.0
1.0 44.0 27.8 43.2 29.0 44.0 29.8 83.0 75.4 82.8 75.8 78.2 69.0 99.2 97.6 99.2 97.8 98.4 96.0
1.5 78.2 62.8 79.4 64.8 75.6 65.6 99.4 98.4 99.4 98.6 98.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0

Notes: (i) 1000 iterations; (ii) GLR the generalized likelihood ratio test, qn and q0
n , loss function-based tests; (iii) qn is standardized by SSR1, the sum of squared residuals of

the nonparametric regression estimates, and q0
n is standardized by SSR0, the sum of squared residuals of the null linear model; (iv) The uniform kernel is used for GLR, qn and

q0
n ; the bandwidth h = SXn−2/9, where SX is the sample standard deviation of {Xt }nt=1; (v) The qn tests are based on the linex loss function: d(z) = β

α2 [exp(αz)− 1 −αz];
(vi) DGP P.3, Yt = 1 + Xt + [1 − F(Xt )θ]Xt + εt , F(Xt ) = 1

1+exp(−Xt )
, where {εi } ∼ i.i.d. N(0,1).
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have similar power. Under DGP 1, the powers of qn and q0
n increase as the degree

of asymmetry of the linex loss function, which is indexed by α, increases. When
α = 1, the powers of qn and q0

n are substantially higher than the GLR test. Under
DGP 2, there is some tendency that the powers of qn and q0

n increase in α for
θ < 0, whereas they decrease in α for θ > 0. When θ is close to 0, qn and q0

n have
similar power to the GLR test, but as |θ | > 0 increases, they are more powerful
than the GLR test. Similarly, under DGP 3, the powers of qn and q0

n increase in
α for θ < 0, whereas they decrease in α for θ > 0. Nevertheless, by and large,
the powers of both qn and q0

n do not change much across the different choices
of parameters (α,β) governing the shape of the linex loss function. Although the
shape of the loss function changes dramatically when α changes from 0 to 1, the
powers of qn and q0

n remain relatively robust.
All tests become more powerful as the departures from linearity increases (as

characterized by the value of θ in each DGP), and as the sample size n increases.

7. Conclusion. The GLR test has been proposed as a generally applicable
method for nonparametric testing problems. It inherits many advantages of the
maximum LR test for parametric models. In this paper, we have shown that de-
spite its general nature and many appealing features, the GLR test does not have
the optimal power property of the classical LR test. We propose a loss function
test in a time series context. The new test enjoys the same appealing features as the
GLR test, but is more powerful in terms of Pitman’s asymptotic efficiency. This
holds no matter what kernel and bandwidth are used, and even when the true like-
lihood function is available for the GLR test. The efficiency gain, together with
more relevance to decision making under uncertainty of using a loss function, sug-
gests that the loss function approach can be a generally applicable and powerful
nonparametric inference procedure alternative to the GLR principle.

MATHEMATICAL APPENDIX

Throughout the appendix, we let m̃h(x) be defined in the same way as m̂h(x)

in (4.2) with {εt = Yt − g0(Xt)}nt=1 replacing {ε̂t = Yt − g(Xt , θ̂0)}nt=1. Also, C ∈
(1,∞) denotes a generic bounded constant. This appendix provides the structure
of our proof strategy. We leave the detailed proofs of most technical lemmas and
propositions to the supplementary material.

PROOF OF THEOREM 1. Theorem 1 follows as a special case of Theorem 3(i)
with δ(Xt) = 0. �

PROOF OF THEOREM 2. Theorem 2 follows as a special case of Theorem 3(ii)
with δ(Xt) = 0. �

PROOF OF THEOREM 3(i). We shall first derive the asymptotic distribution of
qn under Hn(an). From Lemmas A.1 and A.2 and Propositions A.1 and A.2 below,
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we can obtain

hp/2D−1qn − h−p/2σ−2 ∫ K2(u) du
∫

σ 2(x) dx√
2σ−4

∫ [∫ K(u)K(u + v) du]2 dv
∫

σ 4(x) dx

d−→ N(ψ,1).

The desired result of Theorem 3(i) then follows immediately. �

LEMMA A.1. Under the conditions of Theorem 3, Q̂n = D
∑n

t=1 m̂2
h(Xt) +

op(h−p/2).

LEMMA A.2. Under the conditions of Theorem 3,
∑n

t=1 m̂2
h(Xt) = n ×∫

m̂2
h(x)f (x) dx + op(h−p/2).

PROPOSITION A.1. Under the conditions of Theorem 3, n
∫

m̂2
h(x)f (x) dx =

n
∫

m̃2
h(x)f (x) dx + h−p/2E[δ2(Xt)] + op(h−p/2).

PROPOSITION A.2. Under the conditions of Theorem 3, and Hn(an) with
an = n−1/2h−p/4,[

nhp/2
∫

m̃2
h(x)f (x) dx − h−p/2a(K)

∫
σ 2(x) dx

]/√
2b(K)

∫
σ 4(x) dx

d−→ N(ψ,1).

PROOF OF LEMMA A.1. Given in the supplementary material. �

PROOF OF LEMMA A.2. Given in the supplementary material. �

PROOF OF PROPOSITION A.1. Given in the supplementary material. �

PROOF OF PROPOSITION A.2. Proposition A.2 follows from Lemmas A.3
and A.4 below. �

LEMMA A.3. Put Ĥq = n−1 ∑n
t=2

∑t−1
s=1 Hn(Zt ,Zs), where Zt = (εt ,X

′
t )

′,
Hn(Zt ,Zs) = 2εtεsWh(Xt ,Xs), and

Wh(Xt ,Xs) =
∫ Kh(Xt − x)Kh(Xs − x)

f (x)
dx.

Suppose Assumptions A.1 and A.4 hold, h ∝ n−ω for ω ∈ (0,1/2p) and p < 4.
Then

n

∫
m̂2

h(x)g(x) dx = h−p
∫

K2(u) du
∫

σ 2(x) dx + Ĥq + op

(
h−p/2).
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LEMMA A.4. Suppose Assumptions A.1 and A.4 hold, and h ∝ n−ω for ω ∈
(0,1/2p). Define Vq = 2

∫ [∫ K(v)K(u + v) dv]2 du
∫

σ 4(x) dx. Then V
−1/2
q ×

hp/2Ĥq
d−→ N(ψ,1).

Since Lemmas A.3 and A.4 are the key results for deriving the asymptotic dis-
tributions of the proposed qn statistic when {εt } may not be an i.i.d. sequence nor
martingale difference sequence, we provide detailed proofs for them below.

PROOF OF LEMMA A.3. Let F̂n(x) be the empirical distribution function of
{Xt }nt=1. We have

n

∫
m̃2

h(x)f (x) dx

= n

∫ [n−1 ∑n
s=1 εsKh(Xt − Xs)]2

f (x)
dx

+
∫ [

n−1
n∑

s=1

εsKh(Xt − Xs)

]2[
1

f̂ 2(x)
− 1

f 2(x)

]
f (x) dx

= n−1
n∑

t=1

n∑
s=1

εtεs

∫ Kh(Xt − x)Kh(Xs − x)

f (x)
dx

(A.1)
+ Op

(
n−1h−p)Op

(
n−1/2h−p/2 lnn + h2)

= n−1
n∑

t=1

ε2
t

∫ K2
h(Xt − x)

f (x)
dx

+ n−1
n∑

1≤s≤t≤n

2εtεs

∫ Kh(Xt − x)Kh(Xs − x)

f (x)
+ op

(
h−p/2)

= Ĉq + Ĥq + oP

(
h−p/2),

where we have made use of the fact that supx∈G |f̂ (x) − f (x)| = Op(n−1/2 ×
h−p/2 lnn + h2) given Assumption A.2, and h ∝ n−ω for ω ∈ (0,1/2p).

By change of variable, the law of iterated expectations, and Assumption A.1,
we can obtain

E(Ĉq) =
∫∫

σ 2(x)
K2

h(y − x)

f (x)
f (y) dx dy

(A.2)
= h−p

∫
K2(u) du

∫
σ 2(x) dx

[
1 + O

(
h2)].
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On the other hand, by Chebyshev’s inequality and the fact that E(Ĉq − EĈq)2 =
Op(n−1h−2p) given Assumption A.1, we have

Ĉq = E(Ĉq) + Op

(
n−1/2h−p).(A.3)

Combining (A.1)–(A.3) and p < 4 then yields the desired result of Lemma A.3.
�

PROOF OF LEMMA A.4. Because E[Hn(Zt , z)] = E[Hn(z
′,Zs)] = 0 for all

z, z′, Ĥq ≡ n−1 ∑
1≤s<t≤n Hn(Zt ,Zs) is a degenerate U -statistic. Following Ten-

reiro’s (1997) central limit theorem for degenerate U -statistics of a time series con-

text process, we have [n−2 ∑
1≤s<t≤n E[hpH 2

n (Zt ,Zs)]]−1/2hp/2Ĥq
d→ N(0,1)

as n → ∞ if the following conditions are satisfied: For some constants δ0 >

0, γ0 < 1
2 and γ1 > 0, (i) un(4+δ0) = O(nγ0), (ii) vn(2) = o(1), (iii) wn(2+ δ0

2 ) =
o(n1/2) and (iv) zn(2)nγ1 = O(1), where

un(r) = hp/2 max
{

max
1≤t≤n

∥∥Hn(Zt ,Z0)
∥∥
r ,

∥∥Hn(Z0, Z̄0)
∥∥
r

}
,

vn(r) = hp max
{

max
1≤t≤n

∥∥Gn0(Zt ,Z0)
∥∥
r ,

∥∥Gn0(Z0, Z̄0)
∥∥
r

}
,

wn(r) = hp
∥∥Gn0(Z0,Z0)

∥∥
r ,

zn(r) = hp max
0≤t≤n,1≤s≤n

max
{∥∥Gns(Zt ,Z0)

∥∥
r ,

∥∥Gns(Z0,Zt )
∥∥
r ,

∥∥Gns(Z0, Z̄0)
∥∥
r

}
,

Gns(u, v) = E[Hn(Zs,u)Hn(Z0, v)] for s ∈ N and u, v ∈ R
p , Z̄0 is an indepen-

dent copy of Z0, and ‖ξ‖r = E1/r |ξ |r .
We first show n−2 ∑

1≤s<t≤n hpE[H 2
n (Zt ,Zs)] → Vq as n → ∞. By change of

variables and Assumption A.1, it is straightforward to calculate

n−2
∑

1≤s<t≤n

hpE
[
H 2

n (Zt ,Zs)
]

= 4hpn−2
∑

1≤s<t≤n

E
[
ε2
t ε

2
s W

2
h (Xt ,Xs)

]
(A.4)

→ 2
∫ [∫

K(v)K(u + v) dv

]2

du

∫
σ 4(x) dx ≡ Vq.

We now verify conditions (i)–(iv). We first consider condition (i). By the
Cauchy–Schwarz inequality and change of variables, we have for all t ≥ 0,

E
∣∣hp/2Hn(Zt ,Z0)

∣∣r = 2γ h(p/2)rE
∣∣εr

t ε
r
0W

r
h(Xt ,X0)

∣∣
≤ 2γ h(p/2)r(Eε2cr

0
)1/c(

E
∣∣Wh(Xt ,X0)

∣∣cr)1/c
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≤ Ch(p/2)r

[∫ ∣∣Wh(x, x0)
∣∣crfXt ,X0(x, x0) dx dx0

]1/c

≤ Ch(p/2)r(h−pcrhp)1/c ≤ Ch−(r/2)p+(p/c)

for all c > 1, and given E(ε8+δ
t ) ≤ C. We obtain ‖hp/2Hn(Zt ,Z0)‖r =

(Ch−(r/2)p+(p/c))1/r ≤ Ch−p/2+p/(cr). Given h ∝ n−ω for ω ∈ (0,1/2p), we
have ‖hp/2Hn(Zt ,Z0)‖r ≤ Cnωp(1/2−2/(8+δ)), with c = 8+δ

2r
and if r < 4 + δ

2 .By
a similar argument and replacing fXt ,X0(x, x0) with f (x)f (x0), we can ob-
tain the same order of magnitude for ‖hp/2Hn(Z0, Z̄0)‖r . Hence, we obtain
un(r) ≤ Cnωp(1/2−2/(8+δ)), and condition (i) holds by setting γ0 = ωp(1

2 − 2
8+δ

).
Now we verify condition (ii). Note that for all s ≥ 0, we have

Gns

(
z, z′) = E

[
Hn(Zs, z)Hn

(
Z0, z

′)]
= 4E

[
εtεWh(Xs, x)ε0ε

′Wh

(
X0, x

′)]
= 4ε · ε′E

[
εsε0Wh(Xs, x)Wh

(
X0, x

′)],
where z = (ε, x) and z′ = (ε′, x′). To compute the order of magnitude for vn(r),
we first consider the case of s = 0. We have

Gn0
(
z, z′) = 4εε′E0

[
ε̄2

0Wh(X̄0, x)Wh

(
X̄0, x

′)]
= 4εε′E0

[
σ 2(X̄0)Wh(X̄0, x)Wh

(
X̄0, x

′)],
where E0(·) is an expectation taken over (X̄0, ε̄0). By the Cauchy–Schwarz in-
equality and change of variables, we have

E
∣∣hpGn0(Zt ,Z0)

∣∣2
= 16E

∣∣h2pε2
t ε

2
0E

2
0
[
σ 2(X̄0)Wh(X̄0,Xt)Wh(X̄0,X0)

]∣∣
≤ 16h2pE

∣∣ε2
t ε

2
0
[
E0σ

2c(X̄0)
]2/c[

E0W
c
h(X̄0,Xt)W

c
h(X̄0,X0)

]2/c∣∣
≤ 16h2pC

[
E
∣∣ε4

t ε
4
0
∣∣]1/2{

E
∣∣E0

(
Wc

h(X̄0,Xt)W
c
h(X̄0,X0)

)∣∣4/c}1/2

≤ Ch2p{E∣∣h−2cp+pAc,h(Xt ,X0)
∣∣4/c}1/2

= O
(
h2p[h(−2cp+p)(4/c)zhp]1/2) = O

(
h(2/c−3/2)p)

for any c > 1, where

E0
[
Wc

h(X̄0,Xt)W
c
h(X̄0,X0)

] = h−2cp+p
∫

Wc
h(x̄0,Xt)W

c
h(x̄0,X0)f (x̄0) dx̄0

= h−2cp+pAc,h(Xt ,X0)

by change of variable, where Ac,h(Xt ,X0) is a function similar to Kh(Xt − X0).
Thus, we obtain ‖hpGn0(Zt ,Z0)‖2 ≤ Ch(1/c−3/4)p . By a similar argument, we
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obtain the same order of magnitude for ‖hpGn0(Zt , Z̄0)‖2. Thus, we have vn(r) ≤
Ch(1/c−3/4)p , and condition (ii) holds, that is, vn(2) = o(1), with 1 < c < 4

3 .
Next, to verify condition (iii), we shall evaluate ‖hpGn0(Z0, Z̄0)‖r for r < 2 +

δ0
4 . By the Cauchy–Schwarz inequality and change of variables, we have

E
∣∣hpGn0(Z0,Z0)

∣∣r = 4γ E
∣∣hrpεr

0ε
r
0E

r
0
[
σ 2(X̄0)Wh(X̄0,X0)Wh(X̄0,X0)

]∣∣
≤ 4γ h2pE

∣∣ε2r
0 σ 2c(X̄0)

r/c[E0W
2c
h (X̄0,X0)

]r/c∣∣
≤ Chrp(Eε4r

0
)1/2[

E
∣∣E0W

2c
h (X̄0,X0)

∣∣2r/c]1/2

= O
(
hrp[h(1−2c)p·2r/c]1/2) = O

(
hrp(1/c−1)),

where E0[W 2
h (X̄0,X0)] = ∫

W 2c
h (x̄0,X0)fX̄0

(x̄0) dx̄0 = O(h(1−2c)p) by change of

variable. Thus, we obtain ‖hpGn0(Z0,Z0)‖r ≤ Chp(1/c−1) = Cnωp(1−1/c) given
h ∝ n−ω. Thus condition (iii) holds by choosing c sufficiently small subject to the
constraint of c > 1.

Finally, we verify condition (iv). We first consider the case with t = 0 and s �= 0.
We have, by the Cauchy–Schwarz inequality and change of variables,

E
∣∣hpGns(Z0,Z0)

∣∣2 = 16E
∣∣h2pε2

0ε
2
0E

2
0
[
ε̄s ε̄0Wh(X̄s,X0)Wh(X̄0,X0)

]∣∣
≤ 16h2pE

∣∣ε4
0
(
E0ε̄

c
s ε̄

c
0
)2/c[

E0W
c
h(X̄s,X0)W

c
h(X̄0,X0)

]2/c∣∣
≤ 16h2p(E|ε0|8)1/2[

E
∣∣E4/c

0 Wc
h(X̄s,X0)W

c
h(X̄0,X0)

∣∣]1/2

= O
(
h2p[h2(1−c)p·(4/c)]1/2) = O

(
h2(2/c−1)p),

where E0[Wc
h(X̄s,X0)W

c
h(X̄0,X0)] = ∫

Wc
h(x̄,X0)W

c
h(x̄0,X0)fX̄sX̄0

(x̄,

x̄0) dx̄ dx̄0 = O(h2(1−c)p) by change of variable. Thus, we have ‖hpGns(Z0,

Z0)‖2 ≤ [Ch2(2/c−1)p]1/2 = Ch(2/c−1)p , and so nγ1‖hpGns(Z0,Z0)‖2 =
n(1−2/c)ωp+γ1 if h = O(n−ω). Therefore, we obtain ‖hpGns(Z0,Z0)‖2 = O(n−γ1)

with γ1 = ( c
2 − 1)ωp, if we choose c small enough for 1 < c < 2. For the case

with t �= 0 and s �= 0, by a similar argument, we have ‖hpGns(Zt ,Z0)‖2 ≤
[Ch2(2/c−1)p]1/2 = O(h(2/c−1)p). Thus, condition (iv) holds with γ1 = ( c

2 −1)ωp,
provided we choose c small enough with 1 < c < 2. Since all conditions (i)–(iv)

hold, we have V
−1/2
q hp/2Ĥq

d−→ N(0,1) by Tenreiro’s (1997) central limit theo-
rem. �

PROOF OF THEOREM 3(ii). We shall now derive the asymptotic distribution
of λn under Hn(an). From Lemmas A.5 and A.6 and Propositions A.3 and A.4
below, we have under Hn(an),[

λn − h−pσ−2c(K)

∫
σ 2(x) dx

]/√
2σ−4d(K)

∫
σ 4(x) dx

d−→ N(ξ,1). �
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LEMMA A.5. Under the conditions of Theorem 3, λn = n
2

SSR0 −SSR1
SSR1

+
op(h−p/2) under Hn(an) with an = n−1/2h−p/4.

LEMMA A.6. Under the conditions of Theorem 3, σ̂ 2
n ≡ n−1 SSR1 = σ 2 +

Op(n−1/2) under Hn(an) with an = n−1/2h−p/4.

PROPOSITION A.3. Let S̃SR0 and S̃SR1 be defined in the same way as SSR0
and SSR1, respectively, with {εt }nt=1 replacing {ε̂t }nt=1. Then under the conditions

of Theorem 3, SSR0 −SSR1 = S̃SR0 − S̃SR1 + h−p/2E[δ2(Xt)] + op(h−p/2) un-
der Hn(an) with an = n−1/2h−p/4.

PROPOSITION A.4. Under the conditions of Theorem 3 and Hn(an) with an =
n−1/2h−p/4,[

S̃SR0 − S̃SR1

2σ 2 − h−pσ−2c(K)

∫
σ 2(x) dx

]/√
2σ−4d(K)

∫
σ 4(x) dx

d−→ N(ξ,1).

PROOF OF LEMMA A.5. Given in the supplementary material. �

PROOF OF LEMMA A.6. Given in the supplementary material. �

PROOF OF PROPOSITION A.3. Given in the supplementary material. �

PROOF OF PROPOSITION A.4. Proposition A.4 follows from Lemmas A.7
and A.8 below. �

LEMMA A.7. Put Ĥλ = n−1 ∑n
t=2

∑t−1
s=1 Hn(Zt ,Zs), where Zt = (εt ,X

′
t )

′,
Hn(Zt ,Zs) = εtεsWh(Xt ,Xs) and

Wh(Xt ,Xs) =
[

1

f (Xt)
+ 1

f (Xs)

]
Kh(Xt − Xs) −

∫ Kh(Xt − x)Kh(Xs − x)

f (x)
dx.

Suppose Assumptions A.1 and A.4 hold, h ∝ n−ω for ω ∈ (0,1/2p) and p < 4.
Then

S̃SR0 − S̃SR1 = h−p

[
2K(0) −

∫
K2(u) du

]∫
σ 2(x) dx + Ĥλ + op

(
h−p/2).

LEMMA A.8. Suppose Assumptions A.1 and A.4 hold, and h ∝ n−ω for ω ∈
(0,1/2p). Define

Vλ = 2
∫ [

K(u) − 1

2

∫
K(v)K(u + v) dv

]2

du

∫
σ 4(x) dx.

Then V
−1/2
λ hp/2Ĥλ

d−→ N(ξ,1).



LOSS FUNCTION APPROACH 1199

PROOF OF LEMMA A.7. Given in the supplementary material. �

PROOF OF LEMMA A.8. Given in the supplementary material. �

PROOF OF THEOREM 4. Pitman’s asymptotic relative efficiency of the qn test
over the λn test is the limit of the ratio of the sample sizes required by the two tests
to have the same asymptotic power at the same significance level, under the same
local alternative; see Pitman (1979), Chapter 7. Supposed n1 and n2 are the sam-
ple sizes required for the qn and λn tests, respectively. Then Pitman’s asymptotic
relative efficiency of qn to λn is defined as

ARE(qn :λn) = lim
n1,n2→∞

n1

n2
(A.5)

under the condition that λn and qn have the same asymptotic power under the same
local alternatives n

−1/2
1 h

−p/4
1 δ1(x) ∼ n

1/2
2 h

−p/4
2 δ2(x) in the sense that

lim
n1,n2→∞

n
−1/2
1 h

−p/4
1 δ1(x)

n
1/2
2 h

−p/4
2 δ2(x)

= 1.

Given hi = cn−ω
i , i = 1,2, we have n

−2γ
1 E[δ2

1(Xt)] ∼ n
−2γ
2 E[δ2

2(Xt)], where γ =
2−ωp

4 . Hence,

lim
n1,n2→∞

(
n1

n2

)2γ

= E[δ2
2(Xt)]

E[δ2
1(Xt)] .(A.6)

On the other hand, from Theorem 3(ii), we have

γ (K)λn1 − μn1√
2μn1

d→ N(ξ,1),

under Hn1(an1) :g0(Xt) = g(Xt , θ0) + n
−1/2
1 h

−1/4
1 δ1(Xt), where ξ = E[δ2

1(Xt)]/
[2σ−2

√
2d(K)

∫
σ 4(x) dx]. Also, from Theorem 3(i), we have

qn2 − νn2√
2νn2

d→ N(ψ,1)

under Hn2(an2) :g0(Xt) = g(Xt , θ0) + n
−1/2
2 h

−1/4
2 δ2(Xt), where ψ = E[δ2

2(Xt)]/
σ−2

√
2b(K)

∫
σ 4(x) dx. To have the same asymptotic power, the noncentrality

parameters must be equal; namely ξ = ψ , or

E[δ2
1(Xt)]

2
√

2d(K)
∫

σ 4(x) dx
= E[δ2

2(Xt)]√
2b(K)

∫
σ 4(x) dx

.(A.7)
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Combining (A.5)–(A.7) yields

ARE(qn, λn) =
[

2
√

d(K)√
b(K)

]1/(2γ )

=
[

4d(K)

b(K)

]1/(4γ )

=
[∫

(2K(u) − ∫
K(u)K(u + v) du)2 dv∫

(
∫

K(u)K(u + v) du)2 dv

]1/(2−ωp)

.

Finally, we show ARE(qn :λn) ≥ 1 for any positive kernels with K(·) ≤ 1. For this
purpose, it suffices to show∫ [

2K(u) −
∫

K(u)K(u + v) du

]2

dv ≥
∫ [∫

K(u)K(u + v) du

]2

dv

or equivalently, ∫
K2(v) dv ≥

∫∫
K(u)K(v)K(u + v) dudv.

This last inequality follows from Zhang and Dette [(2004), Lemma 2]. This com-
pletes the proof. �
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SUPPLEMENTARY MATERIAL

Supplementary material for a loss function approach to model specifica-
tion testing and its relative efficiency (DOI: 10.1214/13-AOS1099SUPP; .pdf).
In this supplement, we present the detailed proofs of Theorems 1–4 and report the
simulation results with the bandwidth h = SXn−1/5.
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