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THE MULTI-ARMED BANDIT PROBLEM WITH COVARIATES

BY VIANNEY PERCHET1 AND PHILIPPE RIGOLLET2

Université Paris Diderot and Princeton University

We consider a multi-armed bandit problem in a setting where each arm
produces a noisy reward realization which depends on an observable ran-
dom covariate. As opposed to the traditional static multi-armed bandit prob-
lem, this setting allows for dynamically changing rewards that better describe
applications where side information is available. We adopt a nonparamet-
ric model where the expected rewards are smooth functions of the covariate
and where the hardness of the problem is captured by a margin parameter.
To maximize the expected cumulative reward, we introduce a policy called
Adaptively Binned Successive Elimination (ABSE) that adaptively decom-
poses the global problem into suitably “localized” static bandit problems.
This policy constructs an adaptive partition using a variant of the Successive
Elimination (SE) policy. Our results include sharper regret bounds for the SE

policy in a static bandit problem and minimax optimal regret bounds for the
ABSE policy in the dynamic problem.

1. Introduction. The seminal paper [19] introduced an important class of se-
quential optimization problems, otherwise known as multi-armed bandits. These
models have since been used extensively in such fields as statistics, operations re-
search, engineering, computer science and economics. The traditional multi-armed
bandit problem can be described as follows. Consider K ≥ 2 statistical populations
(arms), where at each point in time it is possible to sample from (pull) only one
of them and receive a random reward dictated by the properties of the sampled
population. The objective is to devise a sampling policy that maximizes expected
cumulative rewards over a finite time horizon. The difference between the perfor-
mance of a given sampling policy and that of an oracle, that repeatedly samples
from the population with the highest mean reward, is called the regret. Thus, one
can re-phrase the objective as minimizing the regret.

When the populations being sampled are homogeneous, that is, when the se-
quential rewards are independent and identically distributed (i.i.d.) in each arm,
the family of upper-confidence-bound (UCB) policies, introduced in [14], incur
a regret of order logn, where n is the length of the time horizon, and no other
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“good” policy can (asymptotically) achieve a smaller regret; see also [4]. The el-
egance of the theory and sharp results developed in [14] hinge to a large extent
on the assumption of homogenous populations and hence identically distributed
rewards. This, however, is clearly too restrictive for many applications of interest.
Often, the decision maker observes further information and based on that, a more
customized allocation can be made. In such settings, rewards may still be assumed
to be independent, but no longer identically distributed in each arm. A particular
way to encode this is to allow for an exogenous variable (a covariate) that affects
the rewards generated by each arm at each point in time when this arm is pulled.

Such a formulation was first introduced in [24] under parametric assumptions
and in a somewhat restricted setting; see [9, 10] and [23] for very different recent
approaches to the study of such bandit problems, as well as references therein for
further links to antecedent literature. The first work to venture outside the realm
of parametric modeling assumptions appeared in [25]. In particular, the mean re-
sponse in each arm, conditionally on the covariate value, was assumed to follow
a general functional form; hence one can view their setting as a nonparametric
bandit problem. They propose a variant of the ε-greedy policy (see, e.g., [4]) and
show that the average regret tends to zero as the time horizon n grows to infin-
ity. However, it is unclear whether this policy satisfies a more refined notion of
optimality, insofar as the magnitude of the regret is concerned, as is the case for
UCB-type policies in traditional bandit problems. Such questions were partially
addressed in [18] where near-optimal bounds on the regret are proved in the case
of a two-armed bandit problem under only two assumptions on the underlying
functional form that governs the arms’ responses. The first is a mild smoothness
condition, and the second is a so-called margin condition that involves a margin
parameter which encodes the “separation” between the functions that describe the
arms’ responses.

The purpose of the present paper is to extend the setup of [18] to the K-armed
bandit problem with covariates when K may be large. This involves a customized
definition of the margin assumption. Moreover, the bounds proved in [18] suffered
two deficiencies. First, they hold only for a limited range of values of the margin
parameter and second, the upper bounds and the lower bounds mismatch by a
logarithmic factor. Improving upon these results requires radically new ideas. To
that end, we introduce three policies:

(1) Successive Elimination (SE) is dedicated to the static bandit case. It is the
cornerstone of the other policies that deal with covariates. During a first phase, this
policy explores the different arms, builds estimates and eliminates sequentially
suboptimal arms; when only one arm remains, it is pulled until the horizon is
reached. A variant of SE was originally introduced in [8]. However, it was not
tuned to minimize the regret as other measures of performance were investigated
in this paper. We prove new regret bounds for this policy that improve upon the
canonical papers [14] and [4].
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(2) Binned Successive Elimination (BSE) follows a simple principle to solve
the problem with covariates. It consists of grouping similar covariates into bins
and then looks only at the average reward over each bin. These bins are viewed
as indexing “local” bandit problems, solved by the aforementioned SE policy. We
prove optimal regret bounds, polynomial in the horizon but only for a restricted
class of difficult problems. For the remaining class of easy problems, the BSE pol-
icy is suboptimal.

(3) Adaptively Binned Successive Elimination (ABSE) overcomes a severe lim-
itation of the naive BSE. Indeed, if the problem is globally easy (this is character-
ized by the margin condition), the BSE policy employs a fixed and too fine dis-
cretization of the covariate space. Instead, the ABSE policy partitions the space
of covariates in a fashion that adapts to the local difficulty of the problem: cells
are smaller when different arms are hard to distinguish and bigger when one arm
dominates the other. This adaptive partitioning allows us to prove optimal regrets
bounds for the whole class of problems.

The optimal polynomial regret bounds that we prove are much larger than the log-
arithmic bounds proved in the static case. Nevertheless, it is important to keep in
mind that they are valid for a much more flexible model that incorporates covari-
ates. In the particular case where K = 2 and the problem is difficult, these bounds
improve upon the results of [18] by removing a logarithmic factor that is idiosyn-
cratic to the exploration vs. exploitation dilemma encountered in bandit problems.
Moreover, it follows immediately from the previous minimax lower bounds of [2]
and [18], that these bounds are optimal in a minimax sense and thus cannot be
further improved. It reveals an interesting and somewhat surprising phenomenon:
the price to pay for the partial information in the bandit problem is dominated by
the price to pay for nonparametric estimation. Indeed the bound on the regret that
we obtain in the bandit setup for K = 2 is of the same order as the best attainable
bound in the full information case, where at each round, the operator receives the
reward from only one arm but observes the rewards of both arms. An important
example of the full information case is sequential binary classification.

Our policies for the problem with covariates fall into the family of “plug-in”
policies as opposed “minimum contrast” policies; a detailed account of the differ-
ences and similarities between these two setups in the full information case can be
found in [2]. Minimum contrast type policies have already received some attention
in the bandit literature with side information, aka contextual bandits, in the papers
[15] and also [13]. A related problem online convex optimization with side infor-
mation was studied in [11], where the authors use a discretization technique similar
to the one employed in this paper. It is worth noting that the cumulative regret in
these papers is defined in a weaker form compared to the traditional bandit litera-
ture, since the cumulative reward of a proposed policy is compared to that of the
best policy in a certain restricted class of policies. Therefore, bounds on the regret
depend, among other things, on the complexity of said class of policies. Plug-in
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type policies have received attention in the context of the continuum armed bandit
problem, where as the name suggests there are uncountably many arms. Notable
entries in that stream of work are [16] and [20], who impose a smoothness condi-
tion both on the space of arms and the space of covariates, obtaining optimal regret
bounds up to logarithmic terms.

2. Improved regret bounds for the static problem. In this section, it will be
convenient for notational purposes, to consider a multi-armed bandit problem with
K + 1 arms.

We revisit the Successive Elimination (SE) policy introduced in [8] in the tradi-
tional setup of multi-armed bandit problems. As opposed to the more popular UCB
policy (see, e.g., [4, 14]), it allows us in the next section, to construct an adaptive
partition that is crucial to attain optimal rates on the regret for the dynamic case
with covariates. In this section, we prove refined regret bounds for the SE policy
that exhibit a better dependence on the expected rewards of the arms compared to
the bounds for UCB that were derived in [4]. Such an improvement was recently
attempted in [5] and also in [1] for modified UCB policies and we compare these
results to ours below.

Let us recall the traditional setup for the static multi-armed bandit problem; see,
for example, [4]. Let I = {1, . . . ,K +1} be a given set of K +1 ≥ 2 arms. Succes-

sive pulls of arm i ∈ I yield rewards Y
(i)
1 , Y

(i)
2 , . . . that are i.i.d. random variables

in [0,1] with expectation given by E[Y (i)
t ] = f (i) ∈ [0,1]. Assume without loss

of generality that f (1) ≤ · · · ≤ f (K+1) so that K + 1 is one of the best arms. For
simplicity, we further assume that the best arm is unique since for the SE policy,
having multiple optimal arms only improves the regret bound. In the analysis, it
is convenient to denote this optimal arm by ∗ := K + 1 and to define the gaps
traditionally denoted by �1 ≥ · · · ≥ �∗ = 0, by �i = f (∗) − f (i) ≥ 0.

A policy π = {πt } is a sequence of random variables πt ∈ {1, . . . ,K + 1} indi-
cating which arm to pull at each time t = 1, . . . , n, and such that πt depends only
on observations strictly anterior to t .

The performance of a policy π is measured by its (cumulative) regret at time n

defined by

Rn(π) :=
n∑

t=1

(
f (∗) − f (πt )

)
.

Note that for a data-driven policy π̂ , this quantity is random and, in the rest of the
paper, we provide upper bounds on ER(π̂). Such bounds are referred to as regret
bounds.

We begin with a high-level description of the SE policy denoted by π̂ . It operates
in rounds that are different from the decision times t = 1, . . . , n. At the beginning
of each round τ , a subset of the arms has been eliminated and only a subset Iτ

remains. During round τ , each arm in Iτ is pulled exactly once (EXPLORATION).
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Policy 1 Successive Elimination (SE)
Input: Set of arms I = {1, . . . ,K}; parameters T ,γ ; horizon n.
Output: (π̂1, τ̂1, Î1), (π̂2, τ̂2, Î2), . . . ∈ I × N × P(I).

τ ← 1, S ← I , t ← 0, Ȳ ← (0, . . . ,0) ∈ [0,1]K
loop

Ȳ max ← max{Ȳ (i) : i ∈ S}
for i ∈ S do

if Ȳ (i) ≥ Ȳ max − γU(τ,T ) then
t ← t + 1
π̂t ← i (observe Y (i)) EXPLORATION

Ît ← S, τ̂t ← τ

Ȳ (i) ← 1
τ
[(τ − 1)Ȳ (i) + Y (i)]

else
S ← S \ {i}. ELIMINATION

end if
end for
τ ← τ + 1.

end loop

At the end of the round, for each remaining arm in Iτ , we decide whether to
eliminate it using a simple statistical hypothesis test: if we conclude that its mean
is significantly smaller than the mean of any remaining arm, then we eliminate
this arm and we keep it otherwise (ELIMINATION). We repeat this procedure until
n pulls have been made. The number of rounds is random but obviously smaller
than n.

The SE policy, which is parameterized by two quantities T ∈ N and γ > 0 and
described in Policy 1, outputs an infinite sequence of arms π̂1, π̂2, . . . without a
prescribed horizon. Of course, it can be truncated at any horizon n. This description
emphasizes the fact that the policy can be implemented without perfect knowledge
of the horizon n and in particular, when the horizon is a random variable with
expected value n; nevertheless, in the static case, it is manifest from our result
that, when the horizon is known to be n, choosing T = n is always the best choice
when possible and that other choices may lead to suboptimal results.

Note that after the exploration phase of each round τ = 1,2, . . . , each remaining
arm i ∈ Iτ has been pulled exactly τ times, generating rewards Y

(i)
1 , . . . , Y

(i)
τ .

Denote by Ȳ (i)(τ ) the average reward collected from arm i ∈ Iτ at round τ that
is defined by Ȳ (i)(τ ) = (1/τ)

∑τ
t=1 Y

(i)
τ , where here and throughout this paper,

we use the convention 1/0 = ∞. In the rest of the paper, log denotes the natural
logarithm and log(x) = log(x) ∨ 1. For any positive integer T , define also

U(τ,T ) = 2

√
2log(T /τ)

τ
,(2.1)
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which is essentially a high probability upper bound on the magnitude of deviations
of Ȳ (j)(τ ) − Ȳ (i)(τ ) from its mean f (j) − f (i).

The SE policy for a K-armed bandit problem can be implemented according to
the pseudo-code of Policy 1. Note that, to ease the presentation of Sections 4 and 5,
the SE policy also returns at each time t , the number of rounds τ̂t completed at time
t and a subset Ît ∈ P(I) of arms that are active at time t , where P(I) denotes the
power set of I .

The following theorem gives a first upper bound on the expected regret of the
SE policy.

THEOREM 2.1. Consider a (K + 1)-armed bandit problem where horizon is
a random variable N of expectation n that is independent of the random rewards.
When implemented with parameters T ,γ ≥ 1, the SE policy π̂ exhibits an expected
regret bounded, for any � ≥ 0, as

E
[
RN(π̂)

]≤ 392γ 2
(

1 + n

T

)
K

�
log

(
T �2

18γ 2

)
+ n�−,

where �− is the largest �j such that �j < � if it exists, otherwise �− = 0.

PROOF. Assume without loss of generality that �j > 0, for j ≥ 1 since arms
j such that j = 0 do not contribute to the regret. Define ετ = U(τ,T ). Moreover,
for any i in the set Iτ of arms that remain active at the beginning of round τ , define
�̂i(τ ) := Ȳ (∗)(τ ) − Ȳ (i)(τ ). Recall that, at round τ , if arms i,∗ ∈ Iτ , then (i) the
optimal arm ∗ eliminates arm i if �̂i(τ ) ≥ γ ετ , and (ii) arm i eliminates arm ∗ if
�̂i(τ ) ≤ −γ ετ .

Since �̂i(τ ) estimates �i , the event in (i) happens approximately, when γ ετ 	
�i , so we introduce the deterministic, but unknown, quantity τ ∗

i (and its approxi-
mation τi = 
τ ∗

i �) defined as the solution of

�i = 3

2
γ ετ∗

i
= 3γ

√
2

τ ∗
i

log
(

T

τ ∗
i

)
so that τi ≤ τ ∗

i + 1 ≤ 18γ 2

�2
i

log
(

T �2
i

18γ 2

)
+ 1.

Note that 1 ≤ τ1 ≤ · · · ≤ τK as well as the bound

τi ≤ 19γ 2

�2
i

log
(

T �2
i

18γ 2

)
.(2.2)

We are going to decompose the regret accumulated by a suboptimal arm i into
three quantities:

– the regret accumulated by pulling this arm at most until round τi : this regret is
smaller than τi�i ;

– the regret accumulated by eliminating the optimal arm ∗ between round τi−1 +1
and τi ;
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– the regret induced if arm i is still present at round τi (and in particular, if it has
not been eliminated by the optimal arm ∗).

We prove that the second and third events happen with small probability, be-
cause of the choice of τi . Formally, define the following good events:

Ai = {the arm ∗ has not been eliminated before round τi};
Bi = {

every arm j ∈ {1, . . . , i} has been eliminated before round τj

}
.

Moreover, define Ci = Ai ∩ Bi and observe that C1 ⊇ C2 ⊇ · · · ⊇ CK . For any
i = 1, . . . ,K , the contribution to the regret incurred after time τi on Ci is at most
N�i+1 since each pull of arm j ≥ i + 1 contributes to the regret by �j ≤ �i+1.
We decompose the underlying sample space denoted by C0 into the disjoint union
(C0 \ C1) ∪ · · · ∪ (CK0−1 \ CK0) ∪ CK0 where K0 ∈ {1, . . . ,K} is chosen later. It
implies the following decomposition of the expected regret:

ERN(π̂) ≤
K0∑
i=1

n�iP(Ci−1 \ Ci ) +
K0∑
i=1

τi�i + n�K0+1.(2.3)

Define by Ac the complement of an event A. Note that the first term on the right-
hand side of the above inequality can be decomposed as follows:

K0∑
i=1

n�iP(Ci−1 \ Ci ) = n

K0∑
i=1

�iP
(

Ac
i ∩ Ci−1

)
(2.4)

+ n

K0∑
i=1

�iP
(

Bc
i ∩ Ai ∩ Bi−1

)
,

where the right-hand side was obtained using the decomposition Cc
i = Ac

i ∪ (Bc
i ∩

Ai ) and the fact that Ai ⊆ Ai−1.
From Hoeffding’s inequality, we have that for every τ ≥ 1,

P
(
�̂i(τ ) < γ ετ

)= P
(
�̂i(τ ) − �i < γ ετ − �i

)
(2.5)

≤ exp
(
−τ(�i − γ ετ )

2

2

)
.

On the event Bc
i ∩ Ai ∩ Bi−1, arm ∗ has not eliminated arm i at τi . Therefore P(Bc

i ∩
Ai ∩ Bi−1) ≤ P(�̂i(τi) < γ ετi

). Together with the above display with τ = τi , it
yields

P
(

Bc
i ∩ Ai ∩ Bi−1

)≤ exp
(
−τiγ

2ε2
τi

8

)
≤
(

1

e
∧ τi

T

)γ 2

≤ τi

T
,(2.6)

where we used the fact that �i ≥ (3/2)γ ετi
.
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It remains to bound the first term in the right-hand side of (2.4). On the event
Ci−1, the optimal arm ∗ has not been eliminated before round τi−1, but every sub-
optimal arm j ≤ i − 1 has. So the probability that there exists an arm j ≥ i that
eliminates ∗ between τi−1 and τi can be bounded as

P
(

Ac
i ∩ Ci−1

) ≤ P
(∃(j, s), i ≤ j ≤ K,τi−1 + 1 ≤ s ≤ τi; �̂j (s) ≤ −γ εs

)

≤
K∑

j=i

P
(∃s, τi−1 + 1 ≤ s ≤ τi; �̂j (s) ≤ −γ εs

)

=
K∑

j=i

[
�j(τi) − �j(τi−1)

]
,

where �j(τ) = P(∃s ≤ τ ; �̂j (s) ≤ −γ εs). Using Lemma A.1, we get �j(τ) ≤
4τ/T . This bound implies that

K0∑
i=1

�iP
(

Ac
i ∩ Ci−1

)

≤
K0∑
i=1

�i

K∑
j=i

[
�j(τi) − �j(τi−1)

]

≤
K∑

j=1

j∧K0−1∑
i=1

�j(τi)(�i − �i+1) +
K∑

j=1

�j∧K0(τj∧K0)�j∧K0

≤ 4

T

K∑
j=1

j∧K0−1∑
i=1

τi(�i − �i+1) + 4

T

K∑
j=1

τj∧K0�j∧K0 .

Using (2.2) and �i+1 ≤ �i , the first sum can be bounded as

K∑
j=1

j∧K0−1∑
i=1

τi(�i − �i+1) ≤ 19γ 2
K∑

j=1

j∧K0−1∑
i=1

log
(

T �2
i

18γ 2

)
�i − �i+1

�2
i

≤ 19γ 2
K∑

j=1

∫ �1

�j∧K0

log
(

T x2

18γ 2

)
dx

x2

≤ 19γ 2
K∑

j=1

1

�j∧K0

[
log

(T �2
j∧K0

18γ 2

)
+ 2

]
.

The previous two displays together with (2.2) yield

K0∑
i=1

�iP
(

Ac
i ∩ Ci−1

)≤ 304γ 2

T

K∑
j=1

1

�j∧K0

log
(T �2

j∧K0

18γ 2

)
.
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Putting together (2.3), (2.4), (2.6) and the above display yield that the expected
regret ERN(π̂)of the SE policy is bounded above by

323γ 2
(

1 + n

T

) K0∑
i=1

1

�i

log
(

n�2
i

18γ 2

)
(2.7)

+ 304
γ 2n

T

K − K0

�K0

log
(

n�2
K0

18γ 2

)
+ n�K0+1.

Fix � ≥ 0 and let K0 be such that �K0+1 = �−. An easy study of the variations
of the function

x �→ φ(x) = 1

x
log

(
nx2

18γ 2

)
, x > 0,

reveals that φ(x) ≤ (2e−1/2)φ(x′) for any x ≥ x′ ≥ 0. Using this bound equation
(2.7) with x′ = �i, i ≤ K0 and x = � completes the proof. �

The following corollary is obtained from a slight variations on the proof of
Theorem 2.1. It allows us to better compare our results to the extant literature.

COROLLARY 2.1. Under the setup of Theorem 2.1, the SE policy π̂ run with
parameter T = n and γ = 1 satisfies for any K0 ≤ K ,

ERN(π̂) ≤ 646
K0∑
i=1

log(n�2
i )

�i

+ 304
K − K0

�K0

log
(
n�2

K0

)+ n�K0+1.(2.8)

In particular,

ERN(π̂) ≤ min

{
646

K∑
i=1

log(n�2
i )

�i

,166
√

nK log(K)

}
.(2.9)

PROOF. Note that (2.8) follows from (2.7). To prove (2.9), take K0 = K in
(2.8) and � = 28

√
K log(784K/18)/n in Theorem 2.1, respectively. �

This corollary is actually closer to the result of [5]. The additional second term
in our bound comes from the fact that we had to take into account the probability
that an optimal arm ∗ can be eliminated by any arm, not just by some suboptimal
arm with index lower than K0; see [5], page 8. It is unclear why it is enough to
look at the elimination by those arms, since if ∗ is eliminated—no matter the arm
that eliminated it—the Hoeffding bound (2.5) no longer holds.

The right-hand side of (2.9) is the minimum of two terms. The first term is
distribution-dependent and shows that the SE policy adapts to the unknown distri-
bution of the rewards. It is very much in the spirit of the original bound of [14] and
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of the more recent finite sample result of [4]. Our bound for the SE policy is smaller
than the aforementioned bounds for the UCB policy by a logarithmic factor. Refer-
ence [14] did not provide the first bounds on the expected regret. Indeed, [22] and
[6] had previously derived what is often called gap-free bound as they hold uni-
formly over the �i ’s. The second term in our bound is such a gap-free bound. It is
of secondary interest in this paper and arise as a byproduct of refined distribution
dependent bound. Nevertheless, it allows us to recover near optimal bounds of the
same order as [12]. They depart from optimal rates by a factor

√
logK as proved

in [1]. Actually, the result of [1] is much stronger than our gap-free bound since it
holds for any sequence of bounded rewards, not necessarily drawn independently.

None of the distribution-dependent bounds in Corollary 2.1 or the one provided
in [1] is stronger than the other. The superiority of one over the other depends on
the set {�1, . . . ,�K}: in some cases (e.g., if all suboptimal arms have the same
expectation) the latter is the best while in other cases (if the �i are spread) our
bounds are better.

3. Bandit with covariates. This section is dedicated to a detailed description
of the nonparametric bandit with covariates.

3.1. Machine and game. A K-armed bandit machine with covariates (with K

an integer greater than 2) is characterized by a sequence(
Xt,Y

(1)
t , . . . , Y

(K)
t

)
, t = 1,2, . . . ,

of independent random vectors, where (Xt)t≥1, is a sequence of i.i.d. covariates in
X = [0,1]d with probability distribution PX , and Y

(i)
t denotes the random reward

yielded by arm i at time t . Throughout the paper, we assume that PX has a density,
with respect to the Lebesgue measure, bounded above and below by some c̄ > 0
and ¯c > 0, respectively. We denote by EX the expectation with respect to PX . We
assume that, for each i ∈ I = {1, . . . ,K}, rewards Y

(i)
t , t = 1, . . . , n, are random

variables in [0,1] with conditional expectation given by

E
[
Y

(i)
t |Xt

]= f (i)(Xt), i = 1, . . . ,K, t = 1,2, . . . ,

where f (i), i = 1, . . . ,K , are unknown functions such that 0 ≤ f (i)(x) ≤ 1, for
any i = 1, . . . ,K,x ∈ X . A natural example is where Y

(i)
t takes values in {0,1}

so that the conditional distribution of Y
(i)
t given Xt is Bernoulli with parameter

f (i)(Xt).
The game takes place sequentially on this machine, pulling one of the arms

at each time t = 1, . . . , n. A policy π = {πt } is a sequence of random functions
πt : X → {1, . . . ,K} indicating to the operator which arm to pull at each time t ,
and such that πt depends only on observations strictly anterior to t . The oracle pol-
icy π	, refers to the strategy that would be run by an omniscient operator with com-
plete knowledge of the functions f (i), i = 1, . . . ,K . Given side information Xt ,
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the oracle policy π	 prescribes to pull any arm with the largest expected reward,
that is,

π	(Xt) ∈ arg max
i=1,...,K

f (i)(Xt)

with ties broken arbitrarily. Note that the function f (π	(x))(x) is equal to the point-
wise maximum of the functions f (i), i = 1, . . . ,K , defined by

f 	(x) = max
{
f (i)(x); i = 1, . . . ,K

}
.

The oracle rule is used to benchmark any proposed policy π and to measure the
performance of the latter via its (cumulative) regret at time n defined by

Rn(π) := E

n∑
t=1

(
Y

(π	(Xt ))
t − Y

(πt (Xt ))
t

)=
n∑

t=1

EX

(
f 	(X) − f (πt (X))(X)

)
.

Without further assumptions on the machine, the game can be arbitrarily diffi-
cult and, as a result, expected regret can be arbitrarily close to n. In the following
subsection, we describe natural regularity conditions under which it is possible to
achieve sublinear growth rate of the expected regret, and characterize policies that
perform in a near-optimal manner.

3.2. Smoothness and margin conditions. As usual in nonparametric estima-
tion we first impose some regularity on the functions f (i), i = 1, . . . ,K . Here and
in what follows we use ‖ · ‖ to denote the Euclidean norm on R

d .

SMOOTHNESS CONDITION. We say that the machine satisfies the smoothness
condition with parameters (β,L) if f (i) is (β,L)-Hölder, that is, if∣∣f (i)(x) − f (i)(x′)∣∣≤ L

∥∥x − x′∥∥β ∀x, x′ ∈ X , i = 1, . . . ,K,

for some β ∈ (0,1] and L > 0.

Now denote the second pointwise maximum of the functions f (i), i = 1, . . . ,K ,
by f �; formally for every x ∈ X such that mini f

(i)(x) �= maxi f
(i)(x) it is defined

by

f �(x) = max
i

{
f (i)(x);f (i)(x) < f 	(x)

}
and by f �(x) = f 	(x) = f (1)(x) otherwise. Notice that a direct consequence
of the smoothness condition is that the function f 	 is (β,L)-Hölder; however,
f � might not even be continuous.

The behavior of the function � := f 	 −f � critically controls the complexity of
the problem and the Hölder regularity gives a local upper bound on this quantity.
The second condition gives a lower bound on this function though in a weaker
global sense. It is closely related to the margin condition employed in classification
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[17, 21], which drives the terminology employed here. It was originally imported
to the bandit setup by [9].

MARGIN CONDITION. We say that the machine satisfies the margin condition
with parameter α > 0 if there exists δ0 ∈ (0,1), C0 > 0 such that

PX

[
0 < f 	(X) − f �(X) ≤ δ

]≤ C0δ
α ∀δ ∈ [0, δ0].

If the marginal PX has a density bounded above and below, the margin con-
dition contains only information about the behavior of the function � and not the
marginal PX itself. This is in contrast with [9] where the margin assumption is used
precisely to control the behavior of the marginal PX while that of the reward func-
tions is fixed. A large value of the parameter α means that the function � either
takes value 0 or is bounded away from 0, except over a set of small PX-probability.
Conversely, for values of α close to 0, the margin condition is essentially void, and
the two functions can be arbitrary close, making it difficult to distinguish them.
This reflects in the bounds on the expected regret derived in the subsequent sec-
tion.

Intuitively, the smoothness condition and the margin condition work in opposite
directions. Indeed, the former ensures that the function � does not “depart from
zero” too fast whereas the latter warrants the opposite. The following proposition
quantifies the extent of this conflict.

PROPOSITION 3.1. Under the smoothness condition with parameters (β,L),
and the margin condition with parameter α, the following hold:

– if αβ > d , then a given arm is either always or never optimal; in the latter case,
it is bounded away from f 	 and one can take α = ∞;

– if αβ ≤ d , then there exist machines with nontrivial oracle policies.

PROOF. This proposition is a straightforward consequences of, respectively,
the first two points of Proposition 3.4 in [3].

For completeness, we provide an example with d = 1, X = [0,1], f (2) = · · · =
f (K) ≡ 0 and f (1)(x) = L sign(x − 0.5)|x − 0.5|1/α . Notice that f (1) is (β,L)-
Hölder if and only if αβ ≤ 1. Any oracle policy is nontrivial, and, for example,
one can define π	(x) = 2 if x ≤ 0.5 and π	(x) = 1 if x > 0.5. Moreover, it can be
easily shown that the machine satisfies the margin condition with parameter α and
with δ0 = C0 = 1. �

We denote by MK
X (α,β,L) the class of K-armed bandit problems with covari-

ates in X = [0,1]d with a machine satisfying the margin condition with parameter
α > 0, the smoothness condition with parameters (β,L) and such that PX has a
density, with respect to the Lebesgue measure, bounded above and below by some
c̄ > 0 and ¯c > 0, respectively.
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3.3. Binning of the covariate space. To design a policy that solves the bandit
problem with covariates described above, one has to inevitably find an estimate
of the functions f (i), i = 1, . . . ,K , at the current point Xt . There exists a wide
variety of nonparametric regression estimators ranging from local polynomials to
wavelet estimators. Both of the policies introduced below are based on estimators
of f (i), i = 1, . . . ,K , that are PX almost surely piecewise constant over a particu-
lar collection of subsets, called bins of the covariate space X .

We define a partition of X in a measure theoretic sense as a collection of mea-
surable sets, hereafter called bins, B1,B2, . . . such that PX(Bj ) > 0,

⋃
j≥1 Bj = X

and Bj ∩ Bk = ∅, j, k ≥ 1, up to sets of null PX probability. For any i ∈
{	,1, . . . ,K} and any bin B , define

f̄
(i)
B = E

[
f (i)(Xt)|Xt ∈ B

]= 1

PX(B)

∫
B

f (i)(x)dPX(x).(3.1)

To define and analyze our policies, it is convenient to reindex the random vectors
(Xt , Y

(1)
t , . . . , Y

(K)
t )t≥1 as follows. Given a bin B , let tB(s) denote the sth time

at which the sequence (Xt)t≥1 is in B and observe that it is a stopping time. It
is a standard exercise to show that, for any bin B and any arm i, the random
variables Y

(i)
tB(s), s ≥ 1 are i.i.d. with expectation given by f̄

(i)
B ∈ [0,1]. As a result,

the random variables Y
(i)
B,1, Y

(i)
B,2, . . . obtained by successive pulls of arm i when

Xt ∈ B form an i.i.d. sequence in [0,1] with expectation given by f̄
(i)
B ∈ [0,1].

Therefore, if we restrict our attention to observations in a given bin B , we are in
the same setup as the static bandit problem studied in the previous section. This
observation leads to the notion of policy on B . More precisely, fix a subset B ⊂ X ,
an integer t0 ≥ 1 and recall that {tB(s) : s ≥ 1, tB(s) ≥ t0} is the set of chronological
times t posterior to t0 at which Xt ∈ B . Fix I ′ ⊂ I and consider the static bandit
problem with arms I ′ defined in Section 2 where successive pulls of arm i ∈ I ′, at
times posterior to t0, yield rewards Y

(i)
B,1, Y

(i)
B,2, . . . , that are i.i.d. in [0,1] with mean

f̄
(i)
B ∈ [0,1]. The SE policy with parameters T ,γ on this static problem is called

SE policy on B initialized at time t0 with initial set of arms I ′ and parameters
T ,γ .

4. Binned Successive Elimination. We first outline a naive policy to operate
the bandit machine described in Section 3. It consists of fixing a partition of X and
for each set B in this partition, to run the SE policy on B initialized at time t0 = 1
with initial set of arms I and parameters T ,γ to be defined below.

The Binned Successive Elimination (BSE) policy π̄ relies on a specific parti-
tion of X . Let BM := {B1, . . . ,BMd } be the regular partition of X = [0,1]d : the
collection of hypercubes defined for k = (k1, . . . , kd) ∈ {1, . . . ,M}d by

Bk =
{
x ∈ X :

k� − 1

M
≤ x� ≤ k�

M
,� = 1, . . . , d

}
.



706 V. PERCHET AND P. RIGOLLET

Policy 2 Binned Successive Elimination (BSE)
Input: Set of arms I = {1, . . . ,K}. Parameters n,M .
Output: π̄1, . . . , π̄n ∈ I .

B ← BM

for B ∈ BM do
Initialize a SE policy π̂B with parameters T = nM−d, γ = 1.
NB ← 0.

end for

for t = 1, . . . , n do
B ← B(Xt ).
NB ← NB + 1.
π̄t ← π̂B,NB

(observe Y
(π̄t )
t ).

end for

In this paper, all sets are defined up to sets of null Lebesgue measure. As mentioned
in Section 3.3, the problem can be decomposed into Md independent static bandit
problems, one for each B ∈ BM .

Denote by π̂B the SE policy on bin B with initial set of arms I and parameters
T = nM−d, γ = 1. For any x ∈ X , let B(x) ∈ BM denote the bin such that x ∈
B(x). Moreover, for any time t ≥ 1, define

NB(t) =
t∑

l=1

1(Xl ∈ B)(4.1)

to be the number of times before t when the covariate fell in bin B . The BSE

policy π̄ is a sequence of functions π̄t : X → I defined by π̄t (x) = π̂B,NB(t), where
B = B(x). It can be implemented according to the pseudo-code of Policy 2.

The following theorem gives an upper bound on the expected regret of the BSE

policy in the case where the problem is difficult, that is, when the margin parameter
α satisfies 0 < α < 1.

THEOREM 4.1. Fix β ∈ (0,1], L > 0 and α ∈ (0,1) and consider a problem
in MK

X (α,β,L). Then the BSE policy π̄ with M = �( n
K log(K)

)1/(2β+d)� has an
expected regret at time n bounded as follows:

ERn(π̄) ≤ Cn

(
K logK

n

)β(α+1)/(2β+d)

,

where C > 0 is a positive constant that does not depend on K .

The case K = 2 was studied in [18] using a similar policy called UCBogram.
Unlike in [18] where suboptimal bounds for the UCB policy are used, we use here
the sharper regret bounds of Theorem 2.1 and the SE policy as a running horse for
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our policy, thus leading to a better bound than [18]. Optimality for the two-armed
case is discussed after Theorem 5.1.

PROOF OF THEOREM 4.1. We assume that BM = {B1, . . . ,BMd } where the
indexing will be made clearer later in the proof. Moreover, to keep track of posi-
tive constants, we number them c1, c2, . . . . For any real valued function f on X
and any measurable A ⊆ X , we use the notation PX(f ∈ A) = PX(f (X) ∈ A).
Moreover, for any i ∈ {	,1, . . . ,K}, we use the notation f̄

(i)
j = f̄

(i)
Bj

.

Define c1 = 2Ldβ/2 + 1, and let n0 ≥ 2 be the largest integer such that
n

β/(2β+d)
0 ≤ 2c1/δ0, where δ0 is the constant appearing in the margin condition.

If n ≤ n0, we have Rn(π̄) ≤ n0 so that the result of the theorem holds when C is
chosen large enough, depending on the constant n0. In the rest of the proof, we
assume that n > n0 so that c1M

−β < δ0.
Recall that the BSE policy π̄ is a collection of functions π̄t (x) = π̂B(x),NB(x)(t)

that are constant on each Bj . Therefore, the regret of π̄ can be decomposed as

Rn(π̄) =∑Md

j=1 Rj (π̄), where

Rj (π̄) =
n∑

t=1

(
f 	(Xt) − f (π̂B,NB(t))(Xt )

)
1(Xt ∈ Bj).

Conditioning on the event {Xt ∈ Bj }, it follows from (3.1) that

ERj (π̄) = E

[
n∑

t=1

(
f̄ 	

j − f̄
(π̄t )
j

)
1(Xt ∈ Bj)

]
= E

[Nj (n)∑
s=1

(
f̄ 	

j − f̄
(π̂Bj ,s )

j

)]
,

where Nj(n) = NBj
(t) is defined in (4.1); it satisfies, by assumption, ¯cnM−d ≤

E[Nj(n)] ≤ c̄nM−d .

Let R̃j (π̄) = ∑Nj (n)

s=1 f ∗
j − f̄

(π̂Bj ,s )

j be the regret associated to a static bandit

problem with arm i yielding reward f̄
(i)
j and where f ∗

j = maxi f̄
(i)
j ≤ f̄ 	

j is the

largest average reward. It follows from the smoothness condition that f̄ 	
j ≤ f ∗

j +
c1M

−β so that

ERj (π̄) ≤ ER̃j (π̄) + c̄nM−d(f̄ 	
j − f ∗

j

)≤ ER̃j (π̄) + c1c̄nM−β−d .(4.2)

Consider well-behaved bins on which the expected reward functions are well
separated. These are bins Bj with indices in J defined by

J := {
j ∈ {

1, . . . ,Md} s.t. ∃x ∈ Bj ,f
	(x) − f �(x) > c1M

−β}.
A bin B that is not well behaved is called strongly ill behaved if there is some
x ∈ B such that f 	(x) = f �(x) = f (i)(x), for all i ∈ I , and weakly ill behaved
otherwise. Strongly and weakly ill behaved bins have indices in

J c
s := {

j ∈ {
1, . . . ,Md} s.t. ∃x ∈ Bj ,f

	(x) = f �(x)
}
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and

J c
w := {

j ∈ {
1, . . . ,Md} s.t. ∀x ∈ Bj ,0 < f 	(x) − f �(x) ≤ c1M

−β},
respectively. Note that for any i ∈ I , the function f 	 − f (i) is (β,2L)-Hölder.
Thus for any j ∈ J c

s and any i = 1, . . . ,K , we have f 	(x)−f (i)(x) ≤ c1M
−β for

all x ∈ Bj so that the inclusion J c
s ⊂ {1, . . . ,Md} \ J indeed holds.

First part: Strongly ill behaved bins in J c
s . Recall that for any j ∈ J c

s , any
arm i ∈ I , and any x ∈ Bj , f 	(x) − f (i)(x) ≤ c1M

−β . Therefore,∑
j∈J c

s

ERj (π̄) ≤ c1nM−βPX

{
0 < f 	(X) − f �(X) ≤ c1M

−β}
(4.3)

≤ c1+α
1 nM−β(1+α),

where we used the fact that the set {x ∈ X :f 	(x) = f �(x)} does not contribute to
the regret.

Second part: Weakly ill behaved bins in J c
w . The numbers of weakly ill be-

haved bins can be bounded using f 	(x) − f �(x) > 0 on such a bin; indeed, the
margin condition implies that∑

j∈J c
w

¯c
Md

≤ PX

{
0 < f 	(X) − f �(X) ≤ c1M

−β}≤ cα
1 M−βα.

It yields |J c
w| ≤ cα

1

¯c
Md−βα . Moreover, we bound the expected regret on weakly ill

behaved bins using Theorem 2.1 with specific values

�− < � :=
√

K log(K)Md/n, γ = 1 and T = nM−d .

Together with (4.2), it yields∑
j∈J c

w

ERj (π̄) ≤ c2
[√

K log(K)Md/2−βα
√

n + nM−β(1+α)].(4.4)

Third part: Well-behaved bins in J . This part is decomposed into two steps.
In the first step, we bound the expected regret in a given bin Bj , j ∈ J ; in the
second step we use the margin condition to control the sum of all these expected
regrets.

Step 1. Fix j ∈ J and recall that there exists xj ∈ Bj such that f 	(xj ) −
f �(xj ) > c1M

−β . Define I 	
j = {i ∈ I :f (i)(xj ) = f 	(xj )} and I 0

j = I \ I 	
j = {i ∈

I :f 	(xj ) − f (i)(xj ) > c1M
−β}. We call I 	

j the set of (almost) optimal arms over

Bj and I 0
j the set of suboptimal arms over Bj . Note that I 0

j �= ∅ for any j ∈ J .

The smoothness condition implies that for any i ∈ I 0
j , x ∈ Bj ,

f 	(x) − f (i)(x) > c1M
−β − 2L‖x − xj‖β ≥ M−β.(4.5)
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Therefore, f 	 − f � > 0 on Bj . Moreover, for any arm i ∈ I 	
j that is not the best

arm at some x �= xj , then necessarily 0 < f 	(x) − f �(x) ≤ f 	(x) − f (i)(x) ≤
c1M

−β . So for any x ∈ Bj and any i ∈ I 	
j , it holds that either f 	(x) = f (i)(x) or

f 	(x) − f (i)(x) ≤ c1M
−β . It yields

f 	(x) − f (i)(x) ≤ c1M
−β1

{
0 < f 	(x) − f �(x) ≤ c1M

−β}.(4.6)

Thus, for any optimal arm i ∈ I 	
j , the reward functions averaged over Bj satisfy

f̄ 	
j − f̄

(i)
j ≤ c1M

−βqj , where

qj := PX

{
0 < f 	 − f � ≤ c1M

−β |X ∈ Bj

}
.

Together with (4.2), it yields ER̃j (π̄) ≤ ERj (π̄)+ c̄c1nM−d−βqj . For any subop-

timal arms i ∈ I 0
j , (4.5) implies that ¯�

(i)
j := f̄ 	

j − f̄
(i)
j > M−β .

Assume now without loss of generality that the average gaps ¯�
(i)
j are ordered

in such a way that ¯�
(1)
j ≥ · · · ≥ ¯�

(K)
j . Define

K0 := arg min
i∈I 0

j
¯�

(i)
j and ¯�j := ¯�

(K0)
j

and observe that if i ∈ J is such that ¯�
(i)
j < ¯�j , then i ∈ I 	

j . Therefore, it follows

from (4.6) that ¯�
(i)
j ≤ c1M

−βqj for such i. Applying Theorem 2.1 with ¯�j as
above and γ = 1, we find that there exists a constant c3 > 0 such that, for any
j ∈ J ,

ER̃j (π̄) ≤ 392(1 + c̄)
K

¯�j

log
(
nM−d

¯�
2
j

)+ c̄c1nM−d−βqj .

Hence,

ERj (π̄) ≤ c3

(
K

¯�j

log
(
nM−d

¯�
2
j

)+ nM−d−βqj

)
.(4.7)

Step 2. We now use the margin condition to provide lower bounds on ¯�j for
each j ∈ J . Assume without loss of generality that the indexing of the bins is such
that J = {1, . . . , j1} and that the gaps are ordered 0 < ¯�1 ≤ ¯�2 ≤ · · · ≤ ¯�j1 . For
any j ∈ J , from the definition of ¯�j , there exists a suboptimal arm i ∈ I 0

j such

that ¯�j = f̄ 	
j − f̄

(i)
j . But since the function f 	 − f (i) satisfies the smoothness

condition with parameters (β,2L), we find that if ¯�j ≤ δ for some δ > 0, then

0 < f 	(x) − f (i)(x) ≤ δ + 2Ldβ/2M−β ∀x ∈ Bj .

Together with the fact that f 	 − f � > 0 over Bj for any j ∈ J (see step 1 above),
it yields

PX

[
0 < f 	 − f � ≤ ¯�j + 2Ldβ/2M−β]≥

j1∑
k=1

pk1(0 < ¯�k ≤ ¯�j) ≥ ¯cj
Md

,
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where we used the fact that pk = PX(Bk) ≥ ¯c/M
d . Define j2 ∈ J to be the largest

integer such that ¯�j2 ≤ δ0/c1. Since for any j ∈ J , we have ¯�j > M−β , the
margin condition yields for any j ∈ {1, . . . , j2} that

PX

[
0 < f 	 − f � ≤ ¯�j + 2Ldβ/2M−β]≤ Cδ(c1 ¯�j)

α,

where we have used the fact that ¯�j + 2Ldβ/2M−β ≤ c1 ¯�j ≤ δ0, for any j ∈
{1, . . . , j2}. The previous two inequalities, together with the fact that ¯�j > M−β

for any j ∈ J , yield

¯�j ≥ c4

(
j

Md

)1/α

∨ M−β =: γj ∀j ∈ {1, . . . , j2}.
Therefore, using the fact that ¯�j ≥ δ0/c1 for j ≥ j2, we get from (4.7) that∑

j∈J
ERj (π̄)

(4.8)

≤ c5

[ j2∑
j=1

K
log(nγ 2

j /Md)

γj

+
j1∑

j=j2+1

K log(n) + ∑
j∈J

nM−d−βqj

]
.

Fourth part: Putting things together. Combining (4.3), (4.4) and (4.8), we
obtain the following bound:

ERn(π̄) ≤ c6

[
nM−β(1+α)

+
√

K log(K)Md/2−αβ
√

n + K

j2∑
j=1

log(nγ 2
j /Md)

γj

(4.9)

+ KMd logn + nM−d−β
∑
j∈J

qj

]
.

We now bound from above the first sum in (4.9) by decomposing it into two
terms. From the definition of γj , there exists an integer j3 satisfying c7M

d−αβ ≤
j3 ≤ 2c7M

d−αβ and such that γj = M−β for j ≤ j3 and γj = c4(jM−d)1/α for
j > j3. It holds

j3∑
j=1

log(nγ 2
j /Md)

γj

≤ c8M
d+β(1−α)log

(
n

M2β+d

)
(4.10)

and
j2∑

j=j3+1

log(nγ 2
j /Md)

γj

≤ c9

Md∑
j=j3+1

(
j

Md

)−1/α

log
(

n

Md

[
j

Md

]2/α)
(4.11)

≤ c10M
d
∫ 1

M−αβ
log

(
n

Md
x2/α

)
x−1/α dx.
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Since α < 1, this integral is bounded by c10M
β(1−α)(1 + log(n/M2β+d)).

The second sum in (4.9) can be bounded as∑
j∈J

qj = ∑
j∈J

P
{
0 < f 	(X) − f �(X) ≤ c1M

−β |X ∈ Bj

}
(4.12)

≤ Md

¯c
P
{
0 < f 	(X) − f �(X) ≤ c1M

−β}≤ cα
1

¯c
Md−βα.

Putting together (4.9)–(4.12), we obtain

ERn(π̄) ≤ c11

[
nM−β(1+α) +

√
K log(K)Md/2−αβ

√
n + KMd+β(1−α)

+ KMd+β(1−α)log
(

n

M2β+d

)
+ KMd logn

]
,

and the result follows by choosing M as prescribed. �

We should point out that the version of the BSE described above specifies the
number of bins M as a function of the horizon n, while in practice one may not
have foreknowledge of this value. This limitation can be easily circumvented by
using the so-called doubling argument (see, e.g., page 17 in [7]) which consists of
“reseting” the game at times 2k, k = 1,2, . . . .

The reader will note that when α = 1 there is a potentially superfluous logn

factor appearing in the upper bound using the same proof. More generally, for any
α ≥ 1, it is possible to minimize the expression in (4.9) with respect to M , but the
optimal value of M would then depend on the value of α. This sheds some light
on a significant limitation of the BSE which surfaces in this parameter regime: for
n large enough, it requires the operator to pull each arm at least once in each bin
and therefore to incur an expected regret of at least order Md . In other words, the
BSE splits the space X in “too many” bins when α ≥ 1. Intuitively this can be
understood as follows. When α ≥ 1, the gap function f 	(x) − f �(x) is bounded
away from zero on a large subset of X . Hence there is no need to carefully esti-
mate it since the optimal arm is the same across the region. As a result, one could
use larger bins in such regions reducing the overall number of bins and therefore
removing the extra logarithmic term alluded to above.

5. Adaptively Binned Successive Elimination. We need the following defi-
nitions. Assume that n ≥ K log(K) and let k0 be the smallest integer such that

2−k0 ≤
(

K log(K)

n

)1/(d+2β)

.(5.1)

For any bin B ∈⋃k0
k=0 B2k , let �B be the smallest integer such that

U
(
�B,n|B|d)≤ 2c0|B|β,(5.2)
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where U is defined in (2.1) and c0 = 2Ldβ/2. This definition implies that

�B ≤ C�|B|−2β log
(
n|B|(2β+d))(5.3)

for C� > 0, because x �→ U(x,n|B|d) is decreasing for x > 0.
The ABSE policy operates akin to the BSE except that instead of fixing a parti-

tion BM , it relies on an adaptive partition that is refined over time. This partition is
better understood using the notion of rooted tree.

Let T ∗ be a tree with root X and maximum depth k0. A node B of T ∗ with
depth k = 0, . . . , k0 − 1 is a set from the regular partition B2k . The children of
node B ∈ B2k are given by burst(B), defined to be the collection of 2d bins in
B2k+1 that forms a partition of B .

Note that the set L of leaves of each subtree T of T ∗ forms a partition of X .
The ABSE policy constructs a sequence of partitions L1, . . . , Ln that are leaves
of subtrees of T ∗. At a given time t = 1, . . . , n, we refer to the elements of the
current partition Lt as live bins. The sequence of partitions is nested in the sense
that if B ∈ Lt , then either B ∈ Lt+1 or burst(B) ⊂ Lt+1. The sequence L1, . . . , Ln

is constructed as follows.
In the initialization step, set L0 = ∅, L1 = X , and the initial set of arms I X =

{1, . . . ,K}. Let t ≤ n be a time such that Lt �= Lt−1, and let Bt be the collection of
sets B such that B ∈ Lt \ Lt−1. We say that the bins B ∈ Bt are born at time t . For
each set B ∈ Bt , assume that we are given a set of active arms IB . Note that t = 1
is such a time with B1 = {X } and active arms I X . For each born bin B ∈ Bt , we
run a SE policy π̂B initialized at time t with initial set of arms IB and parameters
TB = n|B|−d , γ = 2. Such a policy is defined in Section 3.3. Let t (B) denote the
time at which π̂B has reached �B rounds and let

ÑB(t) =
t∑

l=1

1(Xt ∈ B,B ∈ Lt )(5.4)

denote the number of times covariate Xt fell in bin B while B was a live B . At time
t (B) + 1, we replace the node B by its children burst(B) in the current partition.
Namely, Lt (B)+1 = (Lt (B) \ B) ∪ burst(B). Moreover, to each bin B ′ ∈ burst(B),
we assign the set IB ′ = Î

B,ÑB(t (B))
of arms that were left active by policy π̂B on its

parent B at the end of the �B rounds. This procedure is repeated until the horizon
n is reached.

The intuition behind this policy is the following. The parameters of the SE pol-
icy π̂B run at the birth of bin B are chosen exactly such that arms i with aver-
age gap |f̄ 	

B − f̄
(i)
B | ≥ C|B|β are eliminated by the end of �B rounds with high

probability. The smoothness condition ensures that these eliminated arms satisfy
f 	(x) > f (i)(x) for all x ∈ B so that such arms are uniformly suboptimal on bin B .
Among the kept arms, none is uniformly better than another, so bin B is burst and
the process is repeated on the children of B where other arms may be uniformly
suboptimal. The formal definition of the ABSE is given in Policy 3; it satisfies the
following theorem.
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Policy 3 Adaptively Binned Successive Elimination (ABSE)

Input: Set of arms I X = {1, . . . ,K}. Parameters n, c0 = 2Ldβ/2, k0.
Output: π̃1, . . . , π̃n ∈ I .

t ← 0, k ← 0, L ← {X }.
Initialize a SE policy π̂X with parameters T = n,γ = 2 and arms I = I X .
NX ← 0.
for t = 1, . . . , n do

B ← L(Xt).
NB ← NB + 1. /count times Xt ∈ B/

π̃t ← π̂B,NB
(observe Y

(π̃t )
t ). /choose arm from SE policy π̂B/

τB ← τ̂B,NB
/update number of rounds for π̂B/

IB ← ÎB,NB
/update active arms for π̂B/

if τB ≥ �B and |B| ≥ 2−k0+1 and |IB | ≥ 2 /conditions to burst(B)/
then

for B ′ ∈ burst(B) do
IB ′ ← IB /assign remaining arms as initial arms/
Initialize SE policy π̂B ′ with T = n|B ′|d, γ = 2 and arms I = IB ′ .
NB ′ ← 0. /set time to 0 for new SE policy/

end for
L ← L \ B /remove B from current partition/
L ← L ∪ burst(B) /add B’s children to current partition/

end if
end for

THEOREM 5.1. Fix β ∈ (0,1], L > 0, α > 0, assume that n ≥ K log(K) and
consider a problem in MK

X (α,β,L). If α < ∞, then the ABSE policy π̃ has an
expected regret at time n bounded by

ERn(π̃) ≤ Cn

(
K log(K)

n

)β(α+1)/(2β+d)

,

where C > 0 does not depend on K . If α = ∞, then ERn(π̃) ≤ CK log(n).

Note that the bounds given in Theorem 5.1 are optimal in a minimax sense when
K = 2. Indeed, the lower bounds of [2] and [18] imply that the bound on expected
regret cannot be improved as a function of n except for a constant multiplicative
term. The lower bound proved in [2] implies that any policy that received informa-
tion from both arms at each round has a regret bound at least as large as the one
from Theorem 5.1, up to a multiplicative constant. As a result, there is no price to
pay for being in a partial information setup and one could say that the problem of
nonparametric estimation dominates the problem associated to making decisions
sequentially.
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Note also that when α = ∞, Proposition 3.1 implies that there exists a unique
optimal arm over X and that all other arms have reward bounded away from that
of the optimal arm. As a result, given this information, one could operate as if the
problem was static by simply discarding the covariates. Theorem 5.1 implies that
in this case, one recovers the traditional regret bound of the static case without the
knowledge that α = ∞.

PROOF OF THEOREM 5.1. We first consider the case where α < ∞, which
implies that αβ ≤ d; see Proposition 3.1.

We keep track of positive constants by numbering them c1, c2, . . . , yet they
might differ from previous sections. On each newly created bin B , a new SE policy
is initialized, and we denote by Y

(i)
B,1, Y

(i)
B,2, . . . , the rewards obtained by successive

pulls of a remaining arm i. Their average after τ rounds/pulls is denoted by

Ȳ
(i)
B,τ := 1

τ

τ∑
s=1

Y
(i)
B,s .

For any integer s, define εB,s = 2U(s,n|B|d), where U is defined in (2.1).
For any B ∈ T ∗ \ {X }, define the unique parent of B by

p(B) := {
B ′ ∈ T ∗ :B ∈ burst

(
B ′)}

and p(X ) = ∅. Moreover, let p1(B) = p(B) and for any k ≥ 2 define recursively
pk(B) = p(pk−1(B)). Then the set of ancestors of any B ∈ T ∗ is denoted by P(B)

and defined by

P(B) = {
B ′ ∈ T ∗ :B ′ = pk(B) for some k ≥ 1

}
.

Denote by r live
n (B) the regret incurred by the ABSE policy π̃ when covariate Xt

fell in a live bin B ∈ Lt , where we recall that Lt denotes the current partition at
time t . It is defined by

r live
n (B) =

n∑
t=1

[
f 	(Xt) − f (π̃t (Xt ))(Xt )

]
1(Xt ∈ B)1(B ∈ Lt ).

We also define Bt := ⋃
s≤t Ls to be the set of bins that were born at some time

s ≤ t . We denote by rborn
n (B) the regret incurred when covariate Xt fell in such a

bin. It is defined by

rborn
n (B) =

n∑
t=1

[
f 	(Xt) − f (π̃t (Xt ))(Xt )

]
1(Xt ∈ B)1(B ∈ Bt ).

Observe that if we define r̃n := rborn
n (X ), we have ERn(π̃) = Er̃n since X ∈ Bt

and Xt ∈ X for all t . Note that for any B ∈ T ∗,

rborn
n (B) = r live

n (B) + ∑
B ′∈burst(B)

rborn
n

(
B ′).(5.5)
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Denote by IB = ÎB,tB the set of arms left active by the SE policy π̂B on B at the
end of �B rounds. Moreover, define the following reference sets of arms:

¯IB :=
{
i ∈ {1, . . . ,K} : sup

x∈B

f 	(x) − f (i)(x) ≤ c0|B|β
}
,

ĪB :=
{
i ∈ {1, . . . ,K} : sup

x∈B

f 	(x) − f (i)(x) ≤ 8c0|B|β
}
.

Define the event AB := {¯IB ⊆ IB ⊆ ĪB} on which the remaining arms have a gap
of the correct order and observe that (5.5) implies that

rborn
n (B) = rborn

n (B)1
(

Ac
B

)+ r live
n (B)1(AB) + ∑

B ′∈burst(B)

rborn
n

(
B ′)1(AB).

Let L∗ denote the set of leaves of T ∗, that is the set of bins B such that |B| = 2−k0 .
In what follows, we adapt the convention that

∏
B ′∈P(X ) 1(AB ′) = 1.

We are going to treat regret incurred on live nonterminal nodes and live leaves
separately and differently. As a result, the quantity we are interested in is decom-
posed as r̃n = r̃n(T ∗ \ L∗) + r̃n(L∗) where

r̃n
(

T ∗ \ L∗) := ∑
B∈T ∗\L∗

(
rborn
n (B)1

(
Ac

B

)+ r live
n (B)1(AB)

) ∏
B ′∈P(B)

1(AB ′)

is the regret accumulated on live nonterminal nodes, and

r̃n
(

L∗) := ∑
B∈L∗

rborn
n (B)

∏
B ′∈P(B)

1(AB ′) = ∑
B∈L∗

r live
n (B)

∏
B ′∈P(B)

1(AB ′)

is regret accumulated on live leaves. Our proof relies on the following events:
GB :=⋂

B ′∈P(B) AB ′ .

First part: Control of the regret on the nonterminal nodes. Fix B ∈ T ∗ \ L∗.
On GB , we have Ip(B) ⊆ Īp(B) so that any active arm i ∈ Ip(B) satisfies
supx∈p(B) |f 	(x) − f (i)(x)| ≤ 8c0|p(B)|β . Moreover, regret is only incurred at
points where f ∗ − f � > 0, so defining c1 := 23+βc0 and conditioning on events
{Xt ∈ B} yields

E
[
r live
n (B)1(GB ∩ AB)

]≤ E
[
ÑB(n)

]
c1|B|βqB ≤ c1K�B |B|βqB,

where qB = PX(0 < f 	 − f � ≤ c1|B|β |X ∈ B) and ÑB(n) is defined in (5.4).
We can always assume that n is greater than n0 ∈ N, defined by

n0 =
⌈
K log(K)

(
c1

δ0

)(d+2β)/β⌉
so that c12−k0β ≤ δ0,

and let k1 ≤ k0 be the smallest integer such that c12−k1β ≤ δ0. Indeed, if n ≤ n0,
the result is true with a constant large enough.
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Applying the same argument as in (4.12) yields the existence of c2 > 0 such
that, for any k ∈ {0, . . . , k0}, ∑

|B|=2−k

qB ≤ c22k(d−βα).

Indeed, for k ≥ k1 one can define c2 = cα
1 /¯c, and the same equation holds with

c2 = 2dk1 if k ≤ k1. Summing over all depths k ≤ k0 − 1, we obtain

E

[ ∑
B∈T ∗\L∗

r live
n (B)1(GB ∩ AB)

]
(5.6)

≤ c1c2C�K

k0−1∑
k=0

2k(d+β−αβ) log
(
n2−k(2β+d)).

On the other hand, for every bin B ∈ T ∗ \ L∗, one also has

E
[
rborn
n (B)1

(
GB ∩ Ac

B

)]≤ c1n|B|βqBPX(B)P
(

GB ∩ Ac
B

)
.(5.7)

It remains to control the probability of GB ∩ Ac
B ; we define P

GB (·) := P(·∩ GB).
On GB , the event Ac

B can occur in two ways:

(i) By eliminating an arm i ∈ ¯IB at the end of the at most �B rounds played on
bin B . These arms satisfy supx∈B f 	(x) − f (i)(x) < c0|B|β ; this event is denoted
by D1

B .
(ii) By not eliminating an arm i /∈ ĪB within the at most �B rounds played on

bin B . These arms satisfy supx∈B f 	(x)−f (i)(x) ≥ 8c0|B|β ; this event is denoted
by D2

B .

We use the following decomposition:

P
GB
(

Ac
B

)= P
GB
(

D1
B

)+ P
GB
(

D2
B ∩ (

D1
B

)c)
.(5.8)

We first control the probability of making error (i). Note that for any s ≤ �B and
any arms i ∈ ¯IB, i′ ∈ Ip(B), it holds

f̄
(i′)
B − f̄

(i)
B ≤ f̄ 	

B − f̄
(i)
B < c0|B|β ≤ εB,�B

2
.

Therefore, if an arm i ∈ ¯IB is eliminated, that is, if there exists i ′ ∈ Ip(B) such that

Ȳ
(i′)
B,s − Ȳ

(i)
B,s > εB,s for some s ≤ �B , then either f̄

(i)
B or f̄

(i′)
B does not belong to its

respective confidence interval [Ȳ (i)
B,s ± εB,s/4] or [Ȳ (i′)

B,s ± εB,s/4] for some s ≤ �B .

Therefore, since −f̄
(i)
B ≤ Ys − f̄

(i)
B ≤ 1 − f̄

(i)
B ,

P
GB
(

D1
B

)≤ P

{
∃s ≤ �B; ∃i ∈ Ip(B);

∣∣Ȳ (i)
s − f̄

(i)
B

∣∣≥ εB,s

4

}
≤ 2K

�B

n|B|d ,(5.9)

where in the second inequality, we used Lemma A.1.
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Next, we treat error (ii). For any i /∈ ĪB , there exists x(i) such that f 	(x(i)) −
f (i)(x(i)) > 8c0|B|β . Let ı̌ = ı̌(i) ∈ I be any arm such that f 	(x(i)) = f (ı̌)(x(i));
the smoothness condition implies that

f̄
(ı̌)
B ≥ f (ı̌)(x(i))− c0|B|β > f (i)(x(i))+ 7c0|B|β

(5.10)
≥ f̄

(i)
B + 6c0|B|β ≥ f̄

(i)
B + 3

2εB,�B
.

On the event (D1
B)c, no arm in ¯IB , and in particular any of the arms ı̌(i), i ∈

Ip(B) \ ĪB , has been eliminated until round �B . Therefore, the event D2
B ∩ (D1

B)c

occurs if there exists i /∈ ĪB such that Ȳ
(ı̌)
B,�B

− Ȳ
(i)
B,�B

≤ εB,�B
. In view of (5.10) and

(5.2), it implies that there exists i ∈ Ip(B) such that∣∣Ȳ (i)
B,�B

− f̄
(i)
B

∣∣≥ εB,�B

4
.

Hence, the probability of error (ii) can be bounded by

P
GB
(

D2
B ∩ (

D1
B

)c)≤ P

{
∃i ∈ Ip(B) :

∣∣Ȳ (i)
B,�B

− f̄
(i)
B

∣∣≥ εB,�B

4

}
(5.11)

≤ 2K
�B

n|B|d ,

where the second inequality follows from (A.1).
Putting together (5.8), (5.9), (5.11) and (5.3), we get

P
GB
(

Ac
B

)≤ 4K
�B

n|B|d ≤ 4C�

K

n
|B|−(2β+d) log

(
n|B|(2β+d)).

Together with (5.7), it yields for B ∈ T ∗ \ L∗ that

E
[
rborn
n (B)1

(
GB ∩ Ac

B

)]≤ c3K|B|−(β+d) log
(
n|B|(2β+d))qBPX(B).

If k is such that c12−kβ > δ0, then any bin B such that |B| = 2−k satisfies
E[rborn

n (B)1(GB ∩ Ac
B)] ≤ c4K logn. If k is such that c12−kβ ≤ δ0, then the above

display together with the margin condition yield

E

[ ∑
|B|=2−k

rborn
n (B)1

(
GB ∩ Ac

B

)]≤ c5K2k(β+d−αβ) log
(
n2−k(2β+d)).

Summing over all depths k = 0, . . . , k0 − 1 and using (5.6), we obtain

E
[
r̃n
(

T ∗ \ L∗)]≤ c6K

k0−1∑
k=0

2k(β+d−αβ) log
(
n2−k(2β+d)).(5.12)

We now compute an upper bound on the right-hand side of the above inequality.
Fix k = 0, . . . , k0 and define

Sk =
k∑

j=0

2j (d+β−βα) = 2(k+1)(d+β−βα) − 1

2d+β−βα − 1
.
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Observe that

2k(d+β−βα) log
(
n2−k(d+2β))= (Sk − Sk−1) log

(
n[c7Sk + 1]−(d+2β)/(d+β−βα)),

where c7 := 2d+β−βα − 1. Therefore, (5.12) can be rewritten as

E
[
r̃n
(

T ∗ \ L∗)]

≤ c6K

[
k0−1∑
k=1

(Sk − Sk−1) log
(
n[c7Sk + 1]−(d+2β)/(d+β−βα))+ logn

]

≤ c6K

[∫ Sk0−1

0
log

(
n[c7x + 1]−(d+2β)/(d+β−βα))dx + logn

]
(5.13)

≤ c8K
[
2k0(d+β−βα) log

(
n2−k0(d+2β))+ logn

]
≤ c9n

(
n

K log(K)

)−β(1+α)/(d+2β)

,

where we used (5.1) in the last inequality and the fact that log(n) is dominated by
n1−β(1+α)/(d+2β) since αβ ≤ d .

Second part: Control of the regret on the leaves. Recall that the set of leaves
L∗ is composed of bins B such that |B| = 2−k0 . Proceeding in the same way as
in (5.7), we find that for any B ∈ L∗, it holds

E
[
r live
n (B)1(GB)

]≤ c1n|B|βPX

(
0 < f 	 − f � ≤ c1|B|β,X ∈ B

)
.

Since n ≥ n0, then c12−k0β ≤ δ0 and using the margin assumption, we find∑
B∈L∗

E
[
r live
n (B)1(GB)

]≤ c1n2−k0β(1+α)

(5.14)

≤ c1n

(
n

K log(K)

)−β(1+α)/(d+2β)

,

where we used (5.1) in the second inequality.

The theorem follows by summing (5.13) and (5.14). If α = +∞, then the same
proof holds except that log(n) dominates 2k0(β+d−αβ) log(n2−k0(2β+d)) in (5.13).

�

APPENDIX: TECHNICAL LEMMA

The following lemma is central to our proof of Theorem 2.1. We recall that a
process Zt is a martingale difference sequence if E[Zt+1|Z1, . . . ,Zt ] = 0. More-
over, if a ≤ Zt ≤ b and if we denote the sequence of averages by Z̄t = 1

t

∑t
s=1 Zs ,
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then Hoeffding–Azuma’s inequality yields that, for every integer T ≥ 1,

P

{
Z̄T ≥

√
(b − a)2

2T
log

(
1

δ

)}
≤ δ.(A.1)

The following lemma is a generalization of this result:

LEMMA A.1. Let Zt be a martingale difference sequence with a ≤ Zt ≤ b

then, for every δ > 0 and every integer T ≥ 1,

P

{
∃t ≤ T , Z̄t ≥

√
2(b − a)2

t
log

(
4

δ

T

t

)}
≤ δ.

PROOF. Define εt =
√

2(b−a)2

t
log(4

δ
T
t
). Recall first the Hoeffding–Azuma

maximal concentration inequality. For every η > 0 and every integer t ≥ 1,

P{∃s ≤ t, sZ̄s ≥ η} ≤ exp
(
− 2η2

t (b − a)2

)
.

Using a peeling argument, one obtains

P{∃t ≤ T , Z̄t ≥ εt } ≤
�log2(T )�∑

m=1

P

{2m+1−1⋃
t=2m

{Z̄t ≥ εt }
}

≤
�log2(T )�∑

m=1

P

{2m+1⋃
t=2m

{Z̄t ≥ ε2m+1}
}

≤
�log2(T )�∑

m=1

P

{2m+1⋃
t=2m

{
tZ̄t ≥ 2mε2m+1

}}

≤
�log2(T )�∑

m=1

exp
(
− 2(2mε2m+1)2

2m+1(b − a)2

)

=
�log2(T )�∑

m=1

2m+1

T

δ

4
≤ 2log2(T )+2

T

δ

4
≤ δ.

Hence the result. �
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