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WEIGHTED LIKELIHOOD ESTIMATION UNDER
TWO-PHASE SAMPLING

BY TAKUMI SAEGUSA1 AND JON A. WELLNER2

University of Washington

We develop asymptotic theory for weighted likelihood estimators (WLE)
under two-phase stratified sampling without replacement. We also consider
several variants of WLEs involving estimated weights and calibration. A set
of empirical process tools are developed including a Glivenko–Cantelli the-
orem, a theorem for rates of convergence of M-estimators, and a Donsker
theorem for the inverse probability weighted empirical processes under two-
phase sampling and sampling without replacement at the second phase. Us-
ing these general results, we derive asymptotic distributions of the WLE of
a finite-dimensional parameter in a general semiparametric model where an
estimator of a nuisance parameter is estimable either at regular or nonregular
rates. We illustrate these results and methods in the Cox model with right cen-
soring and interval censoring. We compare the methods via their asymptotic
variances under both sampling without replacement and the more usual (and
easier to analyze) assumption of Bernoulli sampling at the second phase.

1. Introduction. Two-phase sampling is a sampling technique that aims at
cost reduction and improved efficiency of estimation. At phase I, a large sample is
drawn from a population, and information on variables that are easier to measure
is collected. These phase I variables may be important variables such as exposure
in a regression model, or simply may be auxiliary variables that are correlated with
unavailable variables at phase I. The sample space is then stratified based on these
phase I variables. At phase II, a subsample is drawn without replacement from each
stratum to obtain phase II variables that are costly or difficult to measure. Strata
formation seeks either to oversample subjects with important phase I variables, or
to effectively sample subjects with targeted phase II variables, or both. This way,
two-phase sampling achieves effective access to important variables with less cost.

While two-phase sampling was originally introduced in survey sampling by
Neyman [20] for estimation of the “finite population mean” of some variable, it
has become increasingly important in a variety of areas of statistics, biostatistics
and epidemiology, especially since [22, 33] and [27].
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The setting treated here is as follows:
• We begin with a semiparametric model P for a vector of variables X with

values in X . [The prime examples which we treat in detail in Section 4 are the Cox
proportional hazards regression model with (a) right censoring, and (b) interval
censoring.]

• Let W = (X,U) ∈ X × U ≡ W where U is a vector of “auxiliary variables,”
not involved in the model P . Suppose that W ∼ P̃0 and X ∼ P0. Now suppose that
V ≡ (X̃,U) ∈ V where X̃ ≡ X̃(X) is a coarsening of X.

• At phase I we observe V1, . . . , VN i.i.d. as V , and then use the phase I data
to form strata, that is, disjoint subsets V1, . . . , VJ of V with

∑J
j=1 Vj = V . We let

Nj = #{i ≤ N :Vi ∈ Vj }.
• Next, a phase II sample is drawn by sampling without replacement nj ≤ Nj

items from stratum j . For the items selected we observe Xi . Thus for the selection
indicators ξi we have P̃0(ξi = 1|Vi) = (nj/Nj )1Vj

(Vi) ≡ π0(Vi).
• Finally weighted likelihood (or inverse probability weighted) estimation

methods based on all the observed data are used to estimate the parameters of
the model P and to make further inferences about the model.

It is now well known that the classical Horvitz–Thompson estimators [9] use
only the phase II data and are inefficient, sometimes quite severely so; see, for
example, [2, 3, 14, 23] and [34]. Improvements in efficiency of estimation can be
achieved by “adjusting” the weights by use of the phase I data (even though the
sampling probabilities are known). Two basic methods of adjustment are:

(1) Estimated weights, a method originating in the missing data literature [23],
and with significant further developments since in connection with many models in
which the missing-ness mechanism is not known, in contrast to our current setting
in which the missing-ness is by design.

(2) Calibration, a method originating in the sample survey literature [8]; see also
[13, 14].

One of our goals here is to study existing methods for adjustment of the weights
of weighted likelihood methods and to introduce several new methods: modified
calibration as suggested by Chan [6] and centered calibration as proposed here in
Section 2.

A second goal is to give a systematic treatment of estimators based on sampling
without replacement at phase II in the setting of general semiparametric models
and to make comparisons with the behavior of estimators based on Bernoulli (or
independent) sampling at phase II, thus continuing and strengthening the compar-
isons made in [4, 5], and [2, 3] for a particular sub-class of semiparametric models
and adjustments via estimated weights and ordinary calibration. Many studies of
the theoretical properties of procedures based on two-phase design data have been
made for the case of Bernoulli sampling; see, for example, [11] and the review of
case-cohort sampling given there. On the other hand, while statistical practice con-
tinues to involve phase II data sampled without replacement, most available theory
in this case (other than [4, 5]) has developed on a model-by-model basis. As has
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become clear from [4, 5], sampling without replacement results in smaller asymp-
totic variances, and hence inference based on asymptotic variances derived from
Bernoulli sampling will often be conservative. Our treatment here provides theory
and tools for dealing directly with the sampling without replacement design. We do
this by providing the relevant theory both for semiparametric models in which the
infinite-dimensional nuisance parameters can be estimated at a regular rate (

√
n)

with complete data, and semiparametric models in which the infinite-dimensional
nuisance parameters can only be estimated at slower (nonregular) rates.

The main contributions of our paper are three-fold: First, we establish two
Z-theorems giving weak sufficient conditions for asymptotic distributions of the
WLEs in general semiparametric models. The first theorem covers the case where
the nuisance parameter is estimable at a regular rate; this yields rigorous justifi-
cation of [2, 3] under weaker conditions. The second theorem covers the case of
general semiparametric models with nonregular rates for estimators of the nuisance
parameters. The conditions of our theorems, formulated in terms of complete data,
are almost identical to those for the MLE with complete data. This formulation
allows us to use tools from empirical process theory together with the new tools
developed here in a straightforward way. Second, we propose centered calibration,
a new calibration method. This new calibration method is the only one guaranteed
to yield improved efficiency over the plain WLE under both Bernoulli sampling
and sampling without replacement, while other methods are warranted only for
Bernoulli sampling. Third, we establish general results for the inverse probability
weighted (IPW) empirical process. Some results such as a Glivenko–Cantelli the-
orem (Theorem 5.1) and a Donsker theorem (Theorem 5.3) are of interest in their
own right. These results accounting for dependence due to the sampling design
are useful in verifying the conditions of Z-theorems in applications. For instance,
Theorems 5.1 and 5.2 easily establish consistency and rates of convergence un-
der our “without replacement” sampling scheme. We illustrate application of the
general results with examples in Section 4.

The rest of the paper is organized as follows. In Section 2, we introduce our es-
timation procedures in the context of a general semiparametric model. The WLE
and methods involving adjusted weights are discussed. Two Z-theorems are pre-
sented in Section 3; these yield asymptotic distributions of the WLEs of finite-
dimensional parameters of the model. All estimators are compared under Bernoulli
sampling and sampling without replacement with different methods of adjusting
weights. In Section 4 we apply our Z-theorems to the Cox model with both right
censoring and interval censoring. Section 5 consists of general results for IPW
empirical processes. Several open problems are briefly discussed in Section 6. All
proofs, except those in Section 4 and auxiliary results, are collected in [25].

2. Sampling, models and estimators. We use the basic notation introduced
in the previous section. After stratified sampling, X is fully observed for nj sub-
jects in the j th stratum at phase II. The observed data is (V ,Xξ, ξ) where ξ is the
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indicator of being sampled at phase II. We use a doubly subscripted notation: for
example, Vj,i denotes V for the ith subject in stratum j . We denote the stratum
probability for the j th stratum by νj ≡ P̃0(V ∈ Vj ), and the conditional expecta-
tion given membership in the j th stratum by P0|j (·) ≡ P̃0(·|V ∈ Vj ).

The sampling probability is P(ξ = 1|Vi) = π0(Vi) = nj/Nj for Vi ∈ Vj . These
sampling probabilities are assumed to be strictly positive; that is, there is a constant
σ > 0 such that 0 < σ ≤ π0(v) ≤ 1 for v ∈ V . We assume that nj/Nj → pj > 0
for j = 1, . . . , J as N → ∞. Although dependence is induced among the obser-
vations (Vi, ξiXi, ξi) by the sampling indicators, the vector of sampling indicators
(ξj1, . . . , ξjNj

) within strata, are exchangeable for each j = 1, . . . , J , and the J

random vectors (ξj1, . . . , ξjNj
) are independent.

The empirical measure is one of the most useful tools in empirical process the-
ory. Because the Xi’s are observed only for a sub-sample at phase II, we define,
instead, the IPW empirical measure P

π
N by

P
π
N = 1

N

N∑
i=1

ξi

π0(Vi)
δXi

= 1

N

J∑
j=1

Nj∑
i=1

ξj,i

nj /Nj

δXj,i
,

where δXi
denotes a Dirac measure placing unit mass on Xi . The identity in the

last display is justified by the arguments in Appendix A of [4]. We also define the
IPW empirical process by G

π
N = √

N(Pπ
N − P0) and the phase II empirical pro-

cess for the j th stratum by G
ξ
j,Nj

≡ √
Nj(P

ξ
j,Nj

− (nj/Nj )Pj,Nj
), j = 1, . . . , J ,

P
ξ
j,Nj

≡ N−1
j

∑Nj

i=1 ξj,iδXj,i
is the phase II empirical measure for the j th stratum,

and Pj,Nj
≡ N−1

j

∑Nj

i=1 δXj,i
is the empirical measure for all the data in the j th

stratum; note that the latter empirical measure is not observed. Then, following [4],
we decompose G

π
N as follows:

G
π
N = GN +

J∑
j=1

√
Nj

N

(
Nj

nj

)
G

ξ
j,Nj

,(2.1)

where PN = N−1 ∑J
j=1 NjPj,Nj

and GN = √
N(PN −P0). Notice that G

ξ
j,Nj

cor-
respond to “exchangeably weighted bootstrap” versions of the stratum-wise com-
plete data empirical processes Gj,Nj

≡ √
Nj(Pj,Nj

− P0|j ). This observation al-
lows application of the “exchangeably weighted bootstrap” theory of [21] and [32],
Section 3.6.

2.1. Improving efficiency by adjusting weights. Efficiency of estimators based
on IPW empirical processes can be improved by adjusting weights, either by esti-
mated weights [23] or by calibration [8] via use of the phase I data; see also [14].
Besides these, we discuss two variants of calibration, modified calibration [6], and
our proposed new method, centered calibration.
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Let Zi ≡ g(Vi) be the auxiliary variables for the ith subject for a known
transformation g. For estimated weights with binary regression, Zi contains the
membership indicators for the strata IVj

(Vi), j = 1, . . . , J . Observations with
π0(V ) = 1 are dropped from binary regression, and the original weight 1 is used.
For notational simplicity, we write Zi for either method, and assume that sampling
probabilities are strictly less than 1 for all strata.

2.1.1. Estimated weights. The method of estimated weights adjusts weights
through binary regression on the phase I variables. The sampling probability
for the ith subject is modeled by pα(ξi |Zi) = Ge(Z

T
i α)ξi (1 − Ge(Z

T
i α))1−ξi ≡

πα(Vi)
ξi {1 − πα(Vi)}1−ξi , where α ∈ Ae ⊂ R

J+k is a regression parameter and
Ge : R 
→ [0,1] is a known function. If Ge(x) = ex/(1 + ex), for instance, then the
adjustment simply involves logistic regression. Let α̂N be the estimator of α that
maximizes the pseudo- (or composite) likelihood

N∏
i=1

pα(ξi |Zi) =
N∏

i=1

Ge

(
ZT

i α
)ξi

(
1 − Ge

(
ZT

i α
))1−ξi .(2.2)

We define the IPW empirical measure with estimated weights by

P
π,e
N = 1

N

N∑
i=1

ξi

πα̂N
(Vi)

δXi
= 1

N

N∑
i=1

ξi

π0(Vi)

π0(Vi)

Ge(Z
T
i α̂N)

δXi
,

and the IPW empirical process with estimated weights by G
π,e
N = √

N(P
π,e
N −P0).

2.1.2. Calibration. Calibration adjusts weights so that the inverse probabil-
ity weighted average from the phase II sample is equated to the phase I average,
whereby the phase I information is taken into account for estimation. Specifically,
we find an estimator α̂N that is the solution for α ∈ Ac ⊂ R

k of the following
calibration equation:

1

N

N∑
i=1

ξiGc(Vi;α)

π0(Vi)
Zi = 1

N

N∑
i=1

Zi,(2.3)

where Gc(V ;α) ≡ G(g(V )T α) = G(ZT α) for known G with G(0) = 1 and
Ġ(0) > 0. We call πα(V ) ≡ π0(V )/Gc(V ;α) the calibrated sampling probabil-
ity. We define the calibrated IPW empirical measure by

P
π,c
N = 1

N

N∑
i=1

ξi

πα̂N
(Vi)

δXi
= 1

N

N∑
i=1

ξi

π0(Vi)
G

(
ZT

i α̂N

)
δXi

and the calibrated IPW empirical process by G
π,c
N = √

N(P
π,c
N − P0).

Examples for G in the definition of Gc are listed in [8] (F in their notation). For
G(x) = 1+x, P

π,c
N X is a well-known regression estimator of the mean of X. Since
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we assume boundedness of G later, we may want to consider truncated versions of
these examples instead. Note that choice of G in (variants of) calibration does not
affect asymptotic results on WLEs.

As noted in [13], there are several different approaches to calibration. Here,
and in introducing variants of calibration below, we adopt the view that calibra-
tion proceeds by making the smallest possible change in weights in order to match
an estimated phase II average with the corresponding phase I average. Another
approach proceeds via regression modeling of the variable X of interest and the
auxiliary variables V , leading to a robustness discussion on effects of the valid-
ity of the model on estimation for X. We prefer the former view because we do
not assume a model for X and V throughout this paper. In fact, our results are
independent of such a modeling assumption.

2.1.3. Modified calibration. Modifying the function Gc in calibration so that
individuals with higher sampling probabilities π(Vi) receive less weight was pro-
posed by [6] in a missing response problem where observations are i.i.d. (see, e.g.,
[28] for recent developments in this area and [14] for their connections with cal-
ibration methods). An interpretation of this method within the framework of [8]
is discussed in [26]. In modified calibration, we find the estimator α̂N that is the
solution for α ∈ Amc ⊂ R

k of the following calibration equation:

1

N

N∑
i=1

ξiGmc(Vi;α)

π0(Vi)
Zi = 1

N

N∑
i=1

Zi,(2.4)

where Gmc(V ;α) ≡ G((π0(V )−1 − 1)ZT α) for known G with G(0) = 1 and
Ġ(0) > 0. We call πα(V ) ≡ π0(V )/Gmc(V ;α) the calibrated sampling probabil-
ity with modified calibration. We define the IPW empirical measure with modified
calibration by

P
π,mc
N = 1

N

N∑
i=1

ξi

πα̂N
(Vi)

δXi
= 1

N

N∑
i=1

ξi

π0(Vi)
G

(
1 − π0(Vi)

π0(Vi)
ZT

i α̂N

)
δXi

and the corresponding IPW empirical process by G
π,mc
N = √

N(P
π,mc
N − P0).

2.1.4. Centered calibration. We propose a new method, centered calibration,
that calibrates on centered auxiliary variables with modified calibration. This
method improves the plain WLE under our sampling scheme, while retaining the
good properties of modified calibration. See Section 3.4 for a discussion of its
advantage and connections to other methods.

In centered calibration, we find the estimator α̂N that is the solution for α ∈
Acc ⊂ R

k of the following calibration equation:

1

N

N∑
i=1

ξiGcc(Vi;α)

π0(Vi)
(Zi − ZN) = 0,(2.5)
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where Gcc(V ;α) ≡ G((π0(V )−1 − 1)(Z − ZN)T α) for known G with G(0) = 1
and Ġ(0) > 0 and ZN = N−1 ∑N

i=1 Zi . We call πα(V ) ≡ π0(V )/Gcc(V ;α) the
calibrated sampling probability with centered calibration. We define the IPW em-
pirical measure with centered calibration by

P
π,cc
N = 1

N

N∑
i=1

ξi

πα̂N
(Vi)

δXi
= 1

N

N∑
i=1

ξi

π0(Vi)
Gcc(Vi; α̂N )δXi

and the corresponding IPW empirical process by G
π,cc
N = √

N(P
π,cc
N − P0).

2.2. Estimators for a semiparametric model P . We study the asymptotic dis-
tribution of the weighted likelihood estimator of a finite-dimensional parameter
θ in a general semiparametric model P = {Pθ,η : θ ∈ 
,η ∈ H } where 
 ⊂ R

p

and the nuisance parameter space H is a subset of some Banach space B. Let
P0 = Pθ0,η0 denote the true distribution.

The MLE for complete data is often obtained as a solution to the infinite-
dimensional likelihood equations. In such models, the WLE under two-phase sam-
pling is obtained by solving the corresponding infinite-dimensional inverse proba-
bility weighted likelihood equations. Specifically, the WLE (θ̂N , η̂N) is a solution
to the following weighted likelihood equations:

�π
N,1(θ, η) = P

π
N �̇θ,η = oP ∗

(
N−1/2)

,
(2.6) ∥∥�π

N,2(θ, η)h
∥∥

H = ∥∥P
π
N(Bθ,ηh − Pθ,ηBθ,ηh)

∥∥
H = oP ∗

(
N−1/2)

,

where �̇θ,η ∈ L0
2(Pθ,η)

p is the score function for θ , and the score operator
Bθ,η : H 
→ L0

2(Pθ,η) is the bounded linear operator mapping a direction h in some
Hilbert space H of one-dimensional submodels for η along which η → η0. The
WLE with estimated weights (θ̂N,e, η̂N,e), the calibrated WLE (θ̂N,c, η̂N,c), the
WLE with modified calibration (θ̂N,mc, η̂N,mc) and the WLE with centered cali-
bration (θ̂N,cc, η̂N,cc) are obtained by replacing P

π
N by P

π,#
N with # ∈ {e, c,mc, cc}

in (2.6), respectively. Let �̇0 = �̇θ0,η0 and B0 = Bθ0,η0 .

3. Asymptotics for the WLE in general semiparametric models. We con-
sider two cases: in the first case the nuisance parameter η is estimable at a regular
(i.e.,

√
n) rate, and for ease of exposition, η is assumed to be a measure. In the

second case η is only estimable at a nonregular (slower than
√

n) rate. Our theo-
rem (Theorem 3.2) concerning the second case nearly covers the former case, but
requires slightly more smoothness and a separate proof of the rate of convergence
for an estimator of η. On the other hand, our theorem (Theorem 3.1) concerning
the former case includes a proof of the (regular) (

√
n) rate of convergence, and

hence is of interest by itself.
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3.1. Conditions for adjusting weights. We assume the following conditions
for estimators of α for adjusted weights. Throughout this paper, we may assume
both Conditions 3.1 and 3.2 at the same time, but it should be understood that
the former condition is used exclusively for the estimators regarding estimated
weights and the latter condition is imposed only for estimators regarding (variants
of) calibration. Also, it should be understood that Conditions 3.2(a)(i) and (d)(i),
Conditions 3.2(a)(ii) and (d)(ii) and Conditions 3.2(a)(iii) and (d)(iii) are assumed
for estimators defined via calibration, modified calibration and centered calibra-
tion, respectively.

CONDITION 3.1 (Estimated weights). (a) The estimator α̂N is a maximizer of
the pseudo-likelihood (2.2).

(b) Z ∈ R
J+k is not concentrated on a (J +k)-dimensional affine space of R

J+k

and has bounded support.
(c) Ge : R 
→ [0,1] is a twice continuously differentiable, monotone function.
(d) S0 ≡ P0[{Ġe(Z

T α0)}2{π0(V )(1−π0(V ))}−1Z⊗2] is finite and nonsingular,
where Ġe is a derivative of Ge.

(e) The “true” parameter α0 = (α0,1, . . . , α0,J+k) is given by α0,j = G−1
e (pj ),

for j = 1, . . . , J and α0,j = 0, for j = J + 1, . . . , J + k. The parameter α is iden-
tifiable, that is, pα = pα0 almost surely implies α = α0.

(f) For a fixed pj ∈ (0,1), nj satisfies nj = [Njpj ] for j = 1, . . . , J .

CONDITION 3.2 (Calibrations). (a) (i) The estimator α̂N = α̂c
N is a solution

of calibration equation (2.3). (ii) The estimator α̂N = α̂mc
N is a solution of cali-

bration equation (2.4). (iii) The estimator α̂N = α̂cc
N is a solution of calibration

equation (2.5).
(b) Z ∈ R

k is not concentrated at 0 and has bounded support.
(c) G is a strictly increasing continuously differentiable function on R such that

G(0) = 1 and for all x, −∞ < m1 ≤ G(x) ≤ M1 < ∞ and 0 < Ġ(x) ≤ M2 < ∞,
where Ġ is the derivative of G.

(d) (i) P0Z
⊗2 is finite and positive definite. (ii) P0[π0(V )−1(1 −π0(V ))Z⊗2] is

finite and positive definite. (iii) P0[π0(V )−1(1 − π0(V ))(Z − μZ)⊗2] is finite and
positive definite where μZ = PZ.

(e) The “true” parameter α0 = 0.

Condition 3.1(f) may seem unnatural at first, but in practice the phase II sample
size nj can be chosen by the investigator so that the sampling probability pj can
be understood to be automatically chosen to satisfy nj = [Njpj ]. The other parts
of Condition 3.1 are standard in binary regression, and Condition 3.2 is similar to
Condition 3.1.

Asymptotic properties of α̂N for all methods are proved in [25].
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3.2. Regular rate for a nuisance parameter. We assume the following condi-
tions.

CONDITION 3.3 (Consistency). The estimator (θ̂N , η̂N) is consistent for
(θ0, η0) and solves the weighted likelihood equations (2.6), where P

π
N may be

replaced by P
π,#
N with # ∈ {e, c,mc, cc} for the estimators with adjusted weights.

CONDITION 3.4 (Asymptotic equicontinuity). Let F1(δ) = {�̇θ,η : |θ − θ0| +
‖η−η0‖ < δ} and F2(δ) = {Bθ,ηh − Pθ,ηBθ,ηh :h ∈ H, |θ − θ0| + ‖η − η0‖ < δ}.
There exists a δ0 > 0 such that (1) Fk(δ0), k = 1,2, are P0-Donsker and
suph∈H P0|fj −f0,j |2 → 0, as |θ −θ0|+‖η−η0‖ → 0, for every fj ∈ Fj (δ0), j =
1,2, where f0,1 = �̇θ0,η0 and f0,2 = B0h − P0B0h, (2) Fk(δ0), k = 1,2, have inte-
grable envelopes.

CONDITION 3.5. The map � = (�1,�2) :
×H 
→ R
p ×�∞(H) with com-

ponents

�1(θ, η) ≡ P0�N,1(θ, η) = P0�̇θ,η,

�2(θ, η)h ≡ P0�N,2(θ, η) = P0Bθ,ηh − Pθ,ηBθ,ηh, h ∈ H,

has a continuously invertible Fréchet derivative map �̇0 = (�̇11, �̇12, �̇21, �̇22) at
(θ0, η0) given by �̇ij (θ0, η0)h = P0(ψ̇i,j,θ0,η0,h), i, j ∈ {1,2} in terms of L2(P0)

derivatives of ψ1,θ,η,h = �̇θ,η and ψ2,θ,η,h = Bθ,ηh − Pθ,ηBθ,ηh; that is,

sup
h∈H

[
P0

{
ψi,θ,η0,h − ψi,θ0,η0,h − ψ̇i1,θ0,η0,h(θ − θ0)

}2]1/2 = o
(‖θ − θ0‖)

,

sup
h∈H

[
P0

{
ψi,θ0,η,h − ψi,θ0,η0,h − ψ̇i2,θ0,η0,h(η − η0)

}2]1/2 = o
(‖η − η0‖)

.

Furthermore, �̇0 admits a partition

(θ − θ0, η − η) 
→
(

�̇11 �̇12
�̇21 �̇22

)(
θ − θ0
η − η0

)
,

where

�̇11(θ − θ0) = −Pθ0,η0 �̇θ0,η0 �̇
T
θ0,η0

(θ − θ0),

�̇12(η − η0) = −
∫

B∗
θ0,η0

�̇θ0,η0 d(η − η0),

�̇21(θ − θ0)h = −Pθ0,η0Bθ0,η0h�̇T
θ0,η0

(θ − θ0),

�̇22(η − η0)h = −
∫

B∗
θ0,η0

Bθ0,η0hd(η − η0)

and B∗
θ0,η0

Bθ0,η0 is continuously invertible.
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Let Ĩ0 = P0[(I − B0(B
∗
0 B0)

−1B∗
0 )�̇0�̇

T
0 ] be the efficient information for θ and

�̃0 = Ĩ−1
0 (I − B0(B

∗
0 B0)

−1B∗
0 )�̇0 be the efficient influence function for θ for the

semiparametric model with complete data.

THEOREM 3.1. Under Conditions 3.1–3.5,√
N(θ̂N − θ0) = √

NP
π
N �̃0 + oP ∗(1) � Z ∼ Np(0,�),

√
N(θ̂N,# − θ0) = √

NP
π,#
N �̃0 + oP ∗(1) � Z# ∼ Np(0,�#),

where # ∈ {e, c,mc, cc},

� ≡ I−1
0 +

J∑
j=1

νj

1 − pj

pj

Var0|j (�̃0),(3.1)

�# ≡ I−1
0 +

J∑
j=1

νj

1 − pj

pj

Var0|j
(
(I − Q#)�̃0

)
(3.2)

and (recall Conditions 3.1 and 3.2)

Qef ≡ P0
[
π−1

0 (V )f Ġe

(
ZT α0

)
ZT ]

S−1
0

(
1 − π0(V )

)−1
Ġe

(
ZT α0

)
Z,

Qcf ≡ P0
[
f ZT ]{

P0Z
⊗2}−1

Z,

Qmcf ≡ P0
[(

π−1
0 (V ) − 1

)
f ZT ]{

P0
[(

π−1
0 (V ) − 1

)
Z⊗2]}−1

Z,

Qccf ≡ P0
[(

π−1
0 (V ) − 1

)
f (Z − μZ)T

]{
P0

[(
π−1

0 (V ) − 1
)
(Z − μZ)⊗2]}−1

× (Z − μZ).

REMARK 3.1. Our conditions in Theorem 3.1 are the same as those in [5]
except the integrability condition. Our Condition 3.4(2) requires existence of in-
tegrable envelopes for class of scores while the condition (A1∗) in [5] requires
square integrable envelopes. Note that this integrability condition is required only
for the WLE with adjusted weights, as in [4].

REMARK 3.2. As can be seen from the definition of Q#, the choice of G in
calibration does not affect the asymptotic variances while Ge in the method of
estimated weights does affect the asymptotic variance.

3.3. Nonregular rate for a nuisance parameter. For h = (h1, . . . , hp)T with
hk ∈ H , k = 1, . . . , p, let Bθ,η[h] = (Bθ,ηh1, . . . ,Bθ,ηhp)T . We assume the fol-
lowing conditions.

CONDITION 3.6 (Consistency and rate of convergence). An estimator (θ̂N ,

η̂N) of (θ0, η0) satisfies |θ̂N − θ0| = oP (1), and ‖η̂N − η0‖ = OP (N−β) for some
β > 0.
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CONDITION 3.7 (Positive information). There is an h∗ = (h∗
1, . . . , h

∗
p), where

h∗
k ∈ H for k = 1, . . . , p, such that

P0
{(

�̇0 − B0
[
h∗])

B0h
} = 0 for all h ∈ H.

The efficient information I0 ≡ P0(�̇0 − B0[h∗])⊗2 for θ for the semiparametric
model with complete data is finite and nonsingular. Denote the efficient influ-
ence function for the semiparametric model with complete data by �̃0 ≡ I−1

0 (�̇0 −
B0[h∗]).

CONDITION 3.8 (Asymptotic equicontinuity). (1) For any δN ↓ 0 and C > 0,

sup
|θ−θ0|≤δN ,‖η−η0‖≤CN−β

∣∣GN(�̇θ,η − �̇0)
∣∣ = oP (1),

sup
|θ−θ0|≤δN ,‖η−η0‖≤CN−β

∣∣GN(Bθ,η − B0)
[
h∗]∣∣ = oP (1).

(2) There exists a δ > 0 such that the classes {�̇θ,η : |θ − θ0|+‖η −η0‖ ≤ δ} and
{Bθ,η[h∗] : |θ − θ0| + ‖η − η0‖ ≤ δ} are P0-Glivenko–Cantelli and have integrable
envelopes. Moreover, �̇θ,η and Bθ,η[h∗] are continuous with respect to (θ, η) either
pointwise or in L1(P0).

CONDITION 3.9 (Smoothness of the model). For some α > 1 satisfying αβ >

1/2 and for (θ, η) in the neighborhood {(θ, η) : |θ − θ0| ≤ δN,‖η − η0‖ ≤ CN−β},∣∣P0
{
�̇θ,η − �̇0 + �̇0

(
�̇T

0 (θ − θ0) + B0[η − η0])}∣∣
= o

(|θ − θ0|) + O
(‖η − η0‖α)

,∣∣P0
{
(Bθ,η − B0)

[
h∗] + B0

[
h∗](

�̇T
0 (θ − θ0) + B0[η − η0])}∣∣

= o
(|θ − θ0|) + O

(‖η − η0‖α)
.

In the previous section, we required that the WLE solves the weighted likeli-
hood equations (2.6) for all h ∈ H. Here, we only assume that the WLE (θ̂N , η̂N)

satisfies the weighted likelihood equations

�π
N,1(θ, η,α) = P

π
N �̇θ,η = oP ∗

(
N−1/2)

,
(3.3)

�π
N,2(θ, η,α)

[
h∗] = P

π
NBθ,η

[
h∗] = oP ∗

(
N−1/2)

.

The corresponding WLEs with adjusted weights, (θ̂N,#, η̂N,#) with # ∈ {e, c,mc,
cc} satisfy (3.3) with P

π
N replaced by P

π,#
N .

THEOREM 3.2. Suppose that the WLE is a solution of (3.3) where P
π
N may be

replaced by P
π,#
N with # ∈ {e, c,mc, cc} for the estimators with adjusted weights.
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Under Conditions 3.1, 3.2 and 3.6–3.9,
√

N(θ̂N − θ0) = √
NP

π
N �̃0 + oP ∗(1) � Z ∼ Np(0,�),

√
N(θ̂N,# − θ0) = √

NP
π,#
N �̃0 + oP ∗(1) � Z# ∼ Np(0,�#),

where � and �# are as defined in (3.1) and (3.2) of Theorem 3.1, but now I0 and
�̃0 are defined in Condition 3.7, and Q# are defined in Theorem 3.1.

REMARK 3.3. Our conditions are identical to those of the Z-theorem of [10]
except Condition 3.8(2). This additional condition is not stringent for the following
reasons. First, the Glivenko–Cantelli condition is usually assumed to prove con-
sistency of estimators before deriving asymptotic distributions. Second, a stronger
L2(P0)-continuity condition is standard as is seen in Condition 3.4 (see also Sec-
tion 25.8 of [31]). Note that the L1(P0)-continuity condition is only required for
the WLEs with adjusted weights.

3.4. Comparisons of methods. We compare asymptotic variances of five
WLEs in view of improvement by adjusting weights and change of designs. We
also include in comparison special cases of adjusting weights involving stratum-
wise adjustment.

3.4.1. Stratified Bernoulli sampling. We first give a statement of the result cor-
responding to Theorem 3.1 for stratified Bernoulli sampling where all subjects are
independent with the sampling probability pj if V ∈ Vj and θ̂Bern

N and θ̂Bern
N,# with

# ∈ {e, c,mc, cc} are the corresponding WLE and WLEs with adjusted weights.

THEOREM 3.3. Suppose Conditions 3.1 [except Condition 3.1(f)] and 3.2
hold. Let ξi ∈ {0,1} and ξ be i.i.d. with E[ξ |V ] = π0(V ) = ∑J

j=1 pjI (V ∈ Vj ).
(1) Suppose that the WLE is a solution of (3.3) where P

π
N may be replaced by

P
π,#
N with # ∈ {e, c,mc, cc} for the estimators with adjusted weights. Under the

same conditions as in Theorem 3.1,
√

N
(
θ̂Bern
N − θ0

) = √
NP

π
N �̃0 + oP ∗(1) � ZBern ∼ Np

(
0,�Bern)

,
√

N
(
θ̂Bern
N,# − θ0

) = √
NP

π,#
N �̃0 + oP ∗(1) � ZBern

# ∼ Np

(
0,�Bern

#
)
,

where

�Bern ≡ I−1
0 +

J∑
j=1

νj

1 − pj

pj

P0|j (�̃0)
⊗2,(3.4)

�Bern
# ≡ I−1

0 +
J∑

j=1

νj

1 − pj

pj

P0|j
(
(I − Q#)�̃0

)⊗2
,(3.5)
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where Q# with # ∈ {e, c,mc, cc} are defined in Theorem 3.1.
(2) Under the same conditions as in Theorem 3.2, the same conclusions in (1)

hold with I0 and �̃0 replaced by those defined in Condition 3.7.

Comparing the variance–covariance matrices in Theorem 3.3 to those in Theo-
rems 3.1 and 3.2, we obtain the following corollary comparing designs. All esti-
mators have smaller variances under sampling without replacement.

COROLLARY 3.1. Under the same conditions as in Theorem 3.3,

� = �Bern −
J∑

j=1

νj

1 − pj

pj

{P0|j �̃0}⊗2,

�# = �Bern
# −

J∑
j=1

νj

1 − pj

pj

{
P0|j (I − Q#)�̃0

}⊗2
, # ∈ {e, c,mc, cc}.

Variance formulas (3.5) with # ∈ {e,mc, cc} except for the ordinary calibration
have the following alternative representations which show the efficiency gains over
the plain WLE under Bernoulli sampling.

COROLLARY 3.2. Under the same conditions as in Theorem 3.3,

�Bern
# = �Bern − Var

(
ξ − π0(V )

π0(V )
Q#�̃0

)
, # ∈ {e,mc, cc}.

3.4.2. Within-stratum adjustment of weights. Adjusting weights can be car-
ried out in every stratum. This is proposed by Breslow et al. [2, 3] for ordi-
nary calibration. Consider calibration on Z̃ where Z̃ ≡ (Z(1), . . . ,Z(J ))T with
Z(j) ≡ I (V ∈ Vj )Z

T . The calibration equation (2.3) becomes

1

N

N∑
i=1

ξiGc(Z̃i;α)

π0(Vi)
ZiI (Vi ∈ Vj ) = 1

N

N∑
i=1

ZiI (Vi ∈ Vj ), j = 1, . . . , J,

where α ∈ R
Jk . We call this special case within-stratum calibration. We define

within-stratum modified and centered calibration analogously.
We also call estimated weights carried out within stratum within-stratum esti-

mated weights. Recall that Z in estimated weights contains the membership indica-
tors for the strata and the rest are other auxiliary variables, say Z[2]. Within-stratum
estimated weights uses Z̃ ≡ (Z(1), . . . ,Z(J ))T where Z(j) ≡ I (V ∈ Vj )(Z

[2])T
with 1 included in Z[2]. The “true” parameter α̃0 has zero for all elements except
having G−1

e (pj ) for the element corresponding to I (V ∈ Vj ), j = 1, . . . , J .
The following corollary summarizes within-stratum adjustment of weights un-

der stratified Bernoulli sampling and sampling without replacement. All methods
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achieve improved efficiency over the plain WLE under Bernoulli sampling while
centered calibration is the only method to yield a guaranteed improvement un-
der sampling without replacement. This is because centering yields the L0

2(P0|j )-
projection suitable for the conditional variances in (3.2) while noncentering results
in the L2(P0|j )-projection for the conditional expectations in (3.5).

COROLLARY 3.3. (1) (Bernoulli) Under the same conditions as in Theo-
rem 3.3 with Z replaced by Z̃ and α0 replaced by α̃0 for within-stratum estimated
weights,

�Bern
# = �Bern −

J∑
j=1

νj

1 − pj

pj

P0|j
(
Q

(j)
# �̃0

)⊗2
,(3.6)

where # ∈ {e, c,mc, cc} and

Q(j)
e f ≡ P0|j

[
f Ġe

(
Z̃T α̃0

)(
Z[2])T ]{

P0|j Ġ2
e

(
Z̃T α̃0

)(
Z[2])⊗2}−1

× Ġe

(
Z̃T α̃0

)
I (V ∈ Vj )Z

[2],

Q(j)
c f ≡ P0|j

[
f ZT ]{

P0|j
[
Z⊗2]}−1

I (V ∈ Vj )Z,

Q(j)
mcf ≡ Q(j)

c f,

Q(j)
cc f ≡ P0|j

[
f (Z − μZ,j )

T ]{
P0|j

[
(Z − μZ,j )

⊗2]}−1
I (V ∈ Vj )(Z − μZ,j )

with μZ,j ≡ E[I (V ∈ Vj )Z] for j = 1, . . . , J .
(2) (without replacement) Under the same conditions as in Theorems 3.1 or 3.2

with Z is replaced by Z̃,

�cc = � −
J∑

j=1

νj

1 − pj

pj

Var0|j
(
Q(j)

cc �̃0
)
.(3.7)

3.4.3. Comparisons. We summarize Corollaries 3.1–3.3. Every method of ad-
justing weights improves efficiency over the plain WLE in a certain design and
with a certain range of adjustment of weights (within-stratum or “across-strata”
adjustment). However, particularly notable among all methods is centered calibra-
tion. While other methods gain efficiency only under Bernoulli sampling, centered
calibration improves efficiency over the plain WLE under both sampling schemes.
There is no known method of “across-strata” adjustment that is guaranteed to gain
efficiency over the plain WLE under stratified sampling without replacement.

There are close connections among all methods. When the auxiliary variables
have mean zero, centered and modified calibrations are essentially the same. The
ordinary and modified calibrations give the same asymptotic variance when car-
ried out stratum-wise. For Z and α0 defined for estimated weights, estimated
weights and modified calibration based on (1 − π0(V ))−1Ġe(Z

T α0)Z performs
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the same way. Similarly within-stratum estimated weights with Z̃ and α̃0 is as
good as within-stratum calibration based on Ġe(Z̃

T α̃0)Z̃.
As seen in the relationship among methods, there is no single method superior

to others in each situation. In fact, performance depends on choice and transforma-
tion of auxiliary variables, the true distribution P0 and the design. For our “with-
out replacement” sampling scheme, within-stratum centered calibration is the only
method guaranteed to gain efficiency while other methods may perform even worse
than the plain WLE.

4. Examples. For asymptotic normality of WLEs, consistency and rate of
convergence need to be established first to apply our Z-theorems in Section 3.
To this end, general results on IPW empirical processes discussed in the next sec-
tion will be useful. We illustrate this in the Cox models with right censoring and
interval censoring under two-phase sampling.

Let T ∼ F be a failure time, and X be a vector of covariates with bounded
supports in the regression model. The Cox proportional hazards model [7] specifies
the relationship

�(t |x) = exp
(
θT x

)
�(t),

where θ ∈ 
 ⊂ R
p is the regression parameter, � ∈ H is the (baseline) cumula-

tive hazard function. Here the space H for the nuisance parameter � is the set of
nonnegative, nondecreasing cadlag functions defined on the positive line. The true
parameters are θ0 and �0.

In addition to X, let U be a vector of auxiliary variables collected at phase I
which are correlated with the covariate X. For simplicity of notation, we assume
that the covariates X are only observed for the subject sampled at phase II. Thus, if
some of the coordinates of X are available at phase I, then we include an identical
copy of those coordinates of X in the vector of U .

4.1. Cox model with right censored data. Under right censoring, we only ob-
serve the minimum of the failure time T and the censoring time C ∼ G. Define
the observed time Y = T ∧ C and the censoring indicator � = I (T ≤ C). The
phase I data is V = (Y,�,U), and the observed data is (Y,�, ξX,U, ξ) where ξ

is the sampling indicator. With right censored data and complete data, the theory
for maximum likelihood estimators in the Cox model has received several treat-
ments; the one we follow most closely here is that of [31]. For the Cox model with
case-cohort data, see [27] and for treatments with even more general designs [1]
and [12]. Here, for both sampling without replacement and Bernoulli sampling, we
continue the developments of [4, 5]. We assume the following conditions:

CONDITION 4.1. The finite-dimensional parameter space 
 is compact and
contains the true parameter θ0 as an interior point.
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CONDITION 4.2. The failure time T and the censoring time C are condition-
ally independent given X, and that there is τ > 0 such that P(T > τ) > 0 and
P(C ≥ τ) = P(C = τ) > 0. Both T and C have continuous conditional densities
given the covariates X = x.

CONDITION 4.3. The covariate X has bounded support. For any measurable
function h, P(X �= h(Y )) > 0.

Let λ(t) = (d/dt)�(t) be the baseline hazard function. With complete data, the
density of (Y,�,X) is

pθ,�(y, δ, x) = {
λ(y)eθT x−�(y)eθT x

(1 − G)(y|x)
}δ{

e−�(y)eθT x

g(y|x)
}1−δ

pX(x),

where pX is the marginal density of X and g(·|x) is the conditional density of
C given X = x. The score for θ is given by �̇θ,�(y, δ, x) = x{δ − eθT x�(y)},
and the score operator Bθ,� : H 
→ L2(Pθ,�) is defined on the unit ball H in
the space BV [0, τ ] such that Bθ,�h(y, δ, x) = δh(y) − eθT x

∫
[0,y] hd�. Because

the likelihood based on the density above does not yield the MLE for com-
plete data, we define the log likelihood for one observation for complete data by

�θ,�(y, δ, x) = log{(eθT x�{y})δe−�(y)eθT x } where �{t} is the (point) mass of �

at t . Then maximizing the weighted log likelihood P
π
N�θ,� reduces to solving the

system of equations P
π
N �̇θ,� = 0 and P

π
NBθ,�h = 0 for every h ∈ H. The efficient

score for θ for complete data is given by

�∗
θ0,�0

(y, δ, x) = δ
(
x − (M1/M0)(y)

) − eθT
0 x

∫
[0,y]

δ
(
x − (M1/M0)(t)

)
d�0(t),

and the efficient information for θ for complete data is

Ĩθ0,�0 = E
[(

�∗
θ0,�0

)⊗2] = EeθT
0 X

∫ τ

0

(
X − M1

M0
(y)

)⊗2

(1 − G)(y|X)d�0(y),

where Mk(s) = Pθ0,�0[XkeθT
0 XI (Y ≥ s)], k = 0,1.

THEOREM 4.1 (Consistency). Under Conditions 3.1, 3.2, 4.1–4.3, the WLEs
are consistent for (θ0,�0).

PROOF. This proof follows along the lines of the proof given by [29], but with
the usual empirical measure replaced by the IPW empirical measure (with adjusted
weights), and by use of Theorem 5.1. For details see [25]. �

Our Z-theorem (Theorem 3.1) yields asymptotic normality of the WLEs.
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THEOREM 4.2 (Asymptotic normality). Under Conditions 3.1, 3.2, 4.1–4.3,√
N(θ̂N − θ0) = √

NP
π
N �̃θ0,�0 + oP ∗(1) →d N(0,�),

√
N(θ̂N,# − θ0) = √

NP
π,#
N �̃θ0,�0 + oP ∗(1) →d N(0,�#),

where # ∈ {e, c,mc, cc}, �̃θ0,�0 = I−1
θ0,�0

�∗
θ0,�0

is the efficient influence function for
θ for complete data, and � and �# are given in Theorem 3.1.

PROOF. We verify the conditions of Theorem 3.1. Condition 3.3 holds by The-
orem 4.1. Conditions 3.4 and 3.5 hold under the present hypotheses as was shown
in [31], Section 25.12. �

For variance estimation regarding θ̂N , ÎN ≡ P
π
N(�∗

θ̂N ,�̂N
)⊗2 can be used to esti-

mate I0. Letting ˆ̃
�0 ≡ Î−1

N �∗
θ̂N ,�̂N

, we can estimate Var0|j �̃0 by P̂j �̃
⊗2
0 − {P̂j �̃0}⊗2

where P̂j �̃0 ≡ P
π
N

ˆ̃
�0I (V ∈ Vj ) and P̂j �̃

⊗2
0 ≡ P

π
N

ˆ̃
�⊗2

0 I (V ∈ Vj ). The other four
cases are similar.

4.2. Cox model with interval censored data. Let Y be a censoring time that
is assumed to be conditionally independent of a failure time T given a covariate
vector X. Under the case 1 interval censoring, we do not observe T but (Y,�)

where � ≡ I (T ≤ Y). The phase I data is V = (Y,�,U) and the observed data is
(Y,�, ξX,U, ξ) where ξ is the sampling indicator. In the case of complete data,
maximum likelihood estimates for this model were studied by Huang [10]. For
a generalized version of this model and two-phase data with Bernoulli sampling,
weighted likelihood estimates with and without estimated weights have recently
been studied by Li and Nan [11]. Here we treat two-phase data under sampling
without replacement at phase II and with both estimated weights and calibration.

With complete data, the log likelihood for one observation is given by

�(θ,F ) ≡ δ log
{
1 − F(y)exp(θT x)} + (1 − δ) logF(y)exp(θT x)

≡ δ log
{
1 − e−�(y) exp(θT x)} − (1 − δ)eθT x�(y) ≡ �(θ,�),

where F ≡ 1 − F = e−�. The score for θ and the score operator Bθ,� for
� for complete data are �̇θ,� = x exp(θT x)�(y)(δr(y, x; θ,�) − (1 − δ))

and Bθ,�[h] = exp(θT x)h(y){δr(y, x; θ,�) − (1 − δ)} where r(y, x; θ,�) =
exp(−eθT x�(y))/{1 − exp(−eθT x�(y))}. The efficient score for θ for complete
data is given by

�∗
θ0,�0

= eθT
0 xQ(y, δ, x; θ0,�0)�0(y)

{
x − E[Xe2θT

0 XO(Y |X)|Y = y]
E[e2θT

0 XO(Y |X)|Y = y]
}
,

where Q(y, δ, x; θ,�) = δr(y, x; θ,�) − (1 − δ) and O(y|x) = r(y, x; θ0,�0).
The efficient information for θ for complete data Ĩθ0,�0 = E[(�∗

θ0,�0
)⊗2] is given
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by Ĩθ0,�0 = E[R(Y,X){X − E[XR(Y,X)|Y ]/E[R(Y,X)|Y ]}] where R(Y,X) =
�2

0(Y |X)O(Y |X). See [10] for further details.
We impose the same assumptions made for complete data in [10].

CONDITION 4.4. The finite-dimensional parameter space 
 is compact and
contains the true parameter θ0 as its interior point.

CONDITION 4.5. (a) The covariate X has bounded support; that is, there ex-
ists x0 such that |X| ≤ x0 with probability 1. (b) For any θ �= θ0, the probability
P(θT X �= θT

0 X) > 0.

CONDITION 4.6. F0(0) = 0. Let τF0 = inf{t :F0(t) = 1}. The support of Y is
an interval S[Y ] = [lY , uY ] and 0 < lY ≤ uY < τF0 .

CONDITION 4.7. The cumulative hazard function �0 has strictly positive
derivative on S[Y ], and the joint function G(y,x) of (Y,X) has bounded second
order (partial) derivative with respect to y.

4.2.1. Consistency. The characterization of WLEs (θ̂N , �̂N) and (θ̂N,#, �̂N,#)

with # ∈ {e, c,mc, cc} maximizing P
π
N�(θ,�) or P

π,#
N �(θ,�) is given in [25],

Lemma A.5. We prove consistency of the WLEs in the metric given by d((θ1,�1),

(θ2,�2)) ≡ ‖θ1 − θ2‖ + ‖�1 − �2‖PY
, where ‖ · ‖ is the Euclidean metric and

‖�1 −�2‖2
PY

= ∫
(�1(y)−�2(y))2 dPY , and PY is the marginal probability mea-

sure of the censoring variable Y .

THEOREM 4.3 (Consistency). Under Conditions 3.1, 3.2, 4.4–4.7, the WLEs
are consistent in the metric d .

PROOF. We only prove consistency for the WLE. Proofs for the other four
estimators are similar.

Let H̃ be the set of all subdistribution functions defined on [0,∞]. We denote
the WLE of F as F̂N = 1 − e−�̂N . Define the set F of functions by

F ≡ {
f (θ,F ) = δ

(
1 − F(y)exp(θT x)) + (1 − δ)F (y)exp(θT x) : θ ∈ 
,F ∈ H̃

}
.

Boundedness of X and compactness of 
 ⊂ R
p imply that the set {eθT x : θ ∈ 
}

is Glivenko–Cantelli. The set H̃ is also Glivenko–Cantelli since it is a subset of
the set of bounded monotone functions. Thus, it follows from boundedness of
functions in F and the Glivenko–Cantelli preservation theorem [30] that F is
Glivenko–Cantelli.
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Let 0 < α < 1 be a fixed constant. It follows by concavity of the function u 
→
logu and Jensen’s inequality that

P0
[
log

{
1 + α

(
f (θ,F )/f (θ0,F0) − 1

)}]
≤ log

(
P0

[
1 + α

(
f (θ,F )/f (θ0,F0) − 1

)])
= log

(
1 − α + αP0

[
f (θ,F )/f (θ0,F0)

]) ≤ 0,

where the first equality holds if and only if 1 + α(f (θ,F )/f (θ0,F0) − 1) is con-
stant on S[Y ], in other words, (θ,F ) = (θ0,F0) on S[Y ] by the identifiability Con-
dition 4.5. Note also that by monotonicity of the logarithm

P0
[
log

{
1 + α

(
f (θ,F )/f (θ0,F0) − 1

)}] ≥ P0
[
log

{
1 + α(0 − 1)

}]
= log(1 − α).

Thus, the set G = {log{1 + α(f (θ,F )/f (θ0,F0) − 1)} :f (θ,F ) ∈ F } has an inte-
grable envelope. To see this, form a sequence (θn,Fn) such that

gn ≡ log
{
1 + α

(
f (θn,Fn)/f (θ0,F0) − 1

)}
↗ sup

θ∈
,F∈H̃

log
{
1 + α

(
f (θ,F )/f (θ0,F0) − 1

)} ≡ G.

Then {gn − log(1 − α)}n∈N is a monotone increasing sequence of nonnegative
functions. By the monotone convergence theorem, P0gn − log(1 − α) → P0G −
log(1 − α) ≤ − log(1 − α). Thus we choose G ∨ − log(1 − α) as an integrable
envelope. Also, the set G is Glivenko–Cantelli by a Glivenko–Cantelli preservation
theorem [30].

Now, by the concavity of the map u 
→ logu, and the definition of the WLE, we
have

P
π
N log

{
1 + α

(
f (θ̂N , F̂N)/f (θ0,F0) − 1

)}
≥ P

π
N

{
(1 − α) log(1) + α log

{
f (θ̂N , F̂N)/f (θ0,F0)

}}
= α

{
P

π
N logf (θ̂N , F̂N) − P

π
N logf (θ0,F0)

} ≥ 0.

Since 
 and H̃ are compact, there is a subsequence of (θ̂N , F̂N) converging to
(θ∞,F∞) ∈ 
 × H̃ . Along this subsequence, Theorem 5.1 implies that

0 ≤ P
π
N log

{
1 + α

(
f (θ̂N , F̂N)/f (θ0,F0) − 1

)}
→P ∗ Pθ0,F0

[
log

{
1 + α

(
f (θ∞,F∞)/f (θ0,F0) − 1

)}] ≤ 0,

so that Pθ0,F0 log{1 + α(f (θ∞,F∞)/f (θ0,F0) − 1)} = 0. This is possible when
(θ∞,F∞) = (θ0,F0) because (θ,F ) 
→ P [log{1 +α(f (θ,F )/f (θ0,F0)− 1)}] at-
tains its maximum only at (θ0,F0). Hence we conclude that (θ̂N , F̂N) converges to
(θ0,F0) in the sense of Kullback–Leibler divergence. Since the Kullback–Leibler
divergence bounds the Hellinger distance, it follows by Lemma A5 of [17] that
d((θ̂N , �̂N), (θ0,�0)) = oP ∗(1). �
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4.2.2. Rate of convergence. We prove the rate of convergence of the WLE is
N1/3 by applying the rate theorem (Theorem 5.2) in Section 5. Since we proved the
consistency of (θ̂N , �̂N) to (θ0,�0) on S[Y ], under Condition 4.6 we can restrict
a parameter space of � to HM ≡ {� ∈ H :M−1 ≤ � ≤ M , on S[Y ]}, where M is
a positive constant such that M−1 ≤ �0 ≤ M on S[Y ]. Define M ≡ {�(θ,�) : θ ∈

,� ∈ HM}.

THEOREM 4.4 (Rate of convergence). Under Conditions 4.4–4.7,

d
(
(θ̂N , �̂N), (θ0,�0)

) = OP ∗
(
N−1/3)

.

This holds if we replace the WLE by the WLEs with adjusted weights assuming
Conditions 3.1 and 3.2.

PROOF. Since the rate of convergence for the WLE is easier to verify than
the other four estimators, we only prove the theorem for the WLE with modified
calibration. The cases for the WLEs with adjusted weights.

We proceed by verifying the conditions in Theorem 5.2. Bound (5.4) follows by
Lemma 5.2 in Section 5 and Lemma A5 of [17]. For bound (5.5), we follow the
proof of (5.3) in [10]. Since α̂N is consistent, we can specify the small neighbor-
hood Amc,0 of a zero vector such that Gmc(z;α) is contained in a small interval that
contains 1 and consists of strictly positive numbers. Thus, multiplying the log like-
lihood by a uniformly bounded quantity Gmc(z;α) only requires a slight modifica-
tion of Huang’s proof of his Lemma 3.1 to obtain supQ logN[·](ε,GM,L2(Q)) �
ε−1 for ε small enough where the supremum is taken over the all discrete prob-
ability measures and GM = {Gmc(·;α)�(θ,�) :α ∈ Amc,0, �(θ,�) ∈ M}. Let
GMδ = {m(θ,�,α) − m(θ0,�0, α) :m(θ,�,α) ∈ GM, d((θ,�), (θ0,�0)) ≤
δ}. It follows by Lemma 3.2.2 of [32] that E∗‖GN‖GMδ � δ1/2{1 + (δ1/2/

δ2
√

N)M} ≡ φN(δ). Apply Theorem 5.2 to conclude rN = N1/3. �

4.2.3. Asymptotic normality of the estimators. We apply Theorem 3.2 to de-
rive the asymptotic distributions of the WLEs.

THEOREM 4.5 (Asymptotic normality). Under Conditions 3.1, 3.2, 4.4–4.7,
√

N(θ̂N − θ0) = √
NP

π
N �̃θ0,�0 + oP ∗(1) � N(0,�),

√
N(θ̂N,# − θ0) = √

NP
π,#
N �̃θ0,�0 + oP ∗(1) � N(0,�#),

where # ∈ {e, c,mc, cc}, �̃θ0,�0 = I−1
θ0,�0

�∗
θ0,�0

is the efficient influence function for
complete data and � and �# are given in Theorem 3.2.

PROOF. We proceed by verifying the conditions of Theorem 3.2 for the WLE
with modified calibration. The other four cases are similar.
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Condition 3.6 is satisfied with β = 1/3 by Theorems 4.3 and 4.4. Conditions
3.7–3.9 are verified by [10] with

h∗(y) ≡ �0(y)E
[
Xe2θT

0 XO(Y |X)|Y = y
]
/E

[
e2θT

0 XO(Y |X)|Y = y
]
.

Since P
π,mc
N �̇

θ̂N,mc,�̂N,mc
= 0 by Lemma A.5, it remains to show that

P
π,mc
N B

θ̂N,mc,�̂N,mc

[
h∗] = oP ∗

(
N−1/2)

.

Let g0 ≡ h∗ ◦�−1
0 be the composition of h∗ and the inverse of �0. Note that �0 is

a strictly increasing continuous function by our assumption. Since g0(�̂N,mc(y)) is
a right continuous function and has exactly the same jump points as �̂N,mc(y), by

Lemma A.5, P
π,mc
N g0(�̂N,mc(Y ))e

θ̂T
N,mcXQ(Y,�,X; θ̂N,mc, �̂N,mc) = 0. By Con-

ditions 4.5–4.7, h∗ has bounded derivative. This and the assumption that �0 has
strictly positive derivative by Condition 4.7 imply that g0 has bounded derivative,
too. So, noting that h∗ = g0 ◦ �0, we have

P
π,mc
N B

θ̂N,mc,�̂N,mc

[
h∗]

= P
π,mc
N h∗(Y )e

θ̂T
N,mcXQ(Y,�,X; θ̂N,mc, �̂N,mc)

= P
π,mc
N

{
g0 ◦ �0(Y ) − g0

(
�̂N,mc(Y )

)}
e
θ̂T
N,mcXQ(Y,�,X; θ̂N,mc, �̂N,mc)

= (
P

π,mc
N − Pθ0,�0

){
g0 ◦ �0(Y ) − g0

(
�̂N,mc(Y )

)}
× e

θ̂T
N,mcXQ(Y,�,X; θ̂N,mc, �̂N,mc)

+ Pθ0,�0

{
g0 ◦ �0(Y ) − g0

(
�̂N,mc(Y )

)}
× e

θ̂T
N,mcXQ(Y,�,X; θ̂N,mc, �̂N,mc).

Huang [10] showed that the second term in the display is oP ∗(N−1/2). We show
that the first term in the display is also oP ∗(N−1/2). Let C > 0 be an arbitrary
constant. Define for a fixed constant η > 0, D(η) ≡ {ψ(y, x; θ,�) :d((θ,�),

(θ0,�0)) ≤ η,� ∈ HM}, where ψ(y, δ, x; θ,�) ≡ {g0 ◦ �0(y) − g0(�(y))} ×
eθT xQ(y, δ, x; θ,�). Because Huang [10] showed that D(η) is Donsker for every
η > 0 and that ‖GN‖D(CN−1/3) = oP ∗(1), it follows by Lemma 5.4 with FN re-
placed by D(CN−1/3) that ‖G

π,mc
N ‖D(CN−1/3) = oP ∗(1). This completes the proof.

�

Unlike the previous example, �∗
θ,� depends on additional unknown functions,

and the method of variance estimation used in the previous example does not apply
to the present case. See the discussion in Section 6.
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5. General results for IPW empirical processes. The IPW empirical mea-
sure and IPW empirical process inherit important properties from the empirical
measure and empirical process, respectively. We emphasize the similarity between
empirical processes and IPW empirical processes.

5.1. Glivenko–Cantelli theorem. The next theorem states that the Glivenko–
Cantelli property for complete data is preserved under two-phase sampling.

THEOREM 5.1. Suppose that F is P0-Glivenko–Cantelli. Then∥∥P
π
N − P0

∥∥
F →P ∗ 0,(5.1)

where ‖ · ‖F is the supremum norm. This also holds if we replace P
π
N by P

π,#
N with

# ∈ {e, c,mc, cc} assuming Conditions 3.1 and 3.2.

5.2. Rate of convergence. The rate of convergence of an M-estimator for com-
plete data is often established via maximal inequalities for the empirical processes.
If we follow the same line of reasoning, it is natural to derive maximal inequal-
ities for IPW empirical processes, though this may require some efforts. Fortu-
nately, these maximal inequalities for empirical processes (or slight modifications
of them) suffice to establish the same rate of convergence under two-phase sam-
pling.

THEOREM 5.2. Let M = {mθ : θ ∈ 
} be the set of criterion functions and de-
fine Mδ = {mθ − mθ0 :d(θ, θ0) < δ} for some fixed δ > 0 where d is a semimetric
on the parameter space 
.

(1) Suppose that for every θ in a neighborhood of θ0,

P0(mθ − mθ0) � −d2(θ, θ0);(5.2)

here a � b means a ≤ Kb for some constant K ∈ (0,∞). Assume that there exists
a function φN such that δ 
→ φN(δ)/δα is decreasing for some α < 2 (not depend-
ing on N ), and for every N ,

E∗‖GN‖Mδ � φN(δ),(5.3)

where GN is the empirical process. If an estimator θ̂N satisfying P
π
Nm

θ̂N
≥

P
π
Nmθ0 − OP ∗(r−2

N ) converges in outer probability to θ0, then rNd(θ̂N , θ0) =
OP ∗(1) for every sequence rN such that r2

NφN(1/rN) ≤ √
N for every N .

(2) Let # ∈ {e, c,mc, cc} be fixed. Suppose Condition 3.2 holds. Suppose also
that for every θ ∈ 
 in a neighborhood of θ0,

P0
{
G̃#(V ;α)(mθ − mθ0)

}
� −d2(θ, θ0) + |α − α0|2,(5.4)
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where G̃e = π0(V )/Ge or G̃# = G# with # ∈ {c,mc, cc}. Assume that

E∗‖GN‖
G̃# Mδ

� φN(δ),(5.5)

where G̃#Mδ ≡ {G̃#(·;α)f : |α| ≤ δ,α ∈ AN,f ∈ Mδ} for some AN ⊂ A#. Then
an estimator θ̂N,# satisfying P

π,#
N m

θ̂N,#
≥ P

π,#
N mθ0 − OP ∗(r−2

N ) has the same rate

of convergence as θ̂N in part (1) if it is consistent.

REMARK 5.1. The key to establishing a general theorem for the rate of con-
vergence is to make use of the boundedness of the weights in the IPW empirical
process and also deal with the dependence of the weights. In treating indepen-
dent bootstrap weights in the weighted bootstrap ([15], Lemmas 1–3), require the
boundedness of bootstrap weights because the product of an unbounded weight
and a bounded function is no longer bounded. Our theorem exploits the bounded-
ness of sampling indicators in the IPW empirical processes by applying a multi-
plier inequality for the case of bounded weights (Lemma 5.1) to cover more gen-
eral cases.

The following is a multiplier inequality for bounded exchangeable weights.
Note that the sum of stochastic processes in the second term is divided by n1/2

rather than k1/2.

LEMMA 5.1. For i.i.d. stochastic processes Z1, . . . ,Zn, every bounded, ex-
changeable random vector (ξ1, . . . , ξn) with each ξi ∈ [l, u] that is independent of
Z1, . . . ,Zn, and any 1 ≤ n0 ≤ n,

E

∥∥∥∥∥ 1√
n

n∑
i=1

ξiZi

∥∥∥∥∥
∗

F

≤ 2(n0 − 1)

n

n∑
i=1

E∗‖Zi‖F E max
1≤i≤n

ξi√
n

+ 2(u − l) max
n0≤k≤n

E

∥∥∥∥∥ 1√
n

k∑
i=n0

Zi

∥∥∥∥∥
∗

F
.

Bound (5.5) is not difficult to verify in the presence of bound (5.3) since
G#(·;α) is a bounded monotone function indexed by a finite-dimensional param-
eter. Bound (5.4) may be verified through the lemma below for some applications
including the Cox model with interval censoring.

LEMMA 5.2. Suppose Conditions 3.1 and 3.2 hold. Let mθ be the log like-
lihood logpθ where pθ is the density with dominating measure μ, and d is the
Hellinger distance. Then the bound (5.4) holds.
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5.3. Donsker theorem. The next theorem yields weak convergence of the IPW
empirical processes under sampling without replacement.

THEOREM 5.3. Suppose that F with ‖P0‖F < ∞ is P0-Donsker and Condi-
tions 3.1 and 3.2 hold. Then

G
π
N � G

π ≡ G +
J∑

j=1

√
νj

√
1 − pj

pj

Gj ,(5.6)

G
π,#
N � G

π,# ≡ G +
J∑

j=1

√
νj

√
1 − pj

pj

Gj (· − Q#·)(5.7)

in �∞(F ) where # ∈ {e, c,mc, cc}, the P0-Brownian bridge process, G, indexed by
F and the P0|j -Brownian bridge processes, Gj , indexed by F are all independent.

REMARK 5.2. The integrability hypothesis ‖P0‖F < ∞ is only required for
the IPW empirical processes with adjusted weights.

For a Donsker set F , it follows by Theorem 5.3 and Lemma 2.3.11 of [32] that
asymptotic equicontinuity in probability and in mean follows for the metric that
depends on the limit process. In applications, it is of interest to have these results
for the original metric ρP0(f, g) = σP0(f − g).

THEOREM 5.4. Let F be Donsker and define Fδ = {f − g :f,g ∈ F ,

ρP0(f, g) < δ} for some fixed δ > 0. Then, for every sequence δN ↓ 0,

E∗∥∥G
π
N

∥∥
FδN

→ 0

and consequently, ‖G
π
N‖FδN

= oP ∗(1). Moreover, ‖G
π,#
N ‖FδN

= oP ∗(1) for # ∈
{e, c,mc, cc} assuming Conditions 3.1 and 3.2.

We end this section with two important lemmas. The first lemma is an extension
of Lemma 3.3.5 of [32] and will be used in our proof of Theorem 3.1 to verify
asymptotic equicontinuity.

LEMMA 5.3. Suppose F = {ψθ,h − ψθ0,h :‖θ − θ0‖ < δ,h ∈ H} is P0-
Donsker for some δ > 0 and that suph∈H P0(ψθ,h − ψθ0,h)

2 → 0, as θ → θ0. If
θ̂N converges in outer probability to θ0, then∥∥G

π
N(ψ

θ̂N ,h
− ψθ0,h)

∥∥
H = oP ∗(1).

This also holds if we replace G
π
N by G

π,#
N with # ∈ {e, c,mc, cc} assuming Condi-

tions 3.1 and 3.2 hold and ‖P0‖F < ∞.
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The second lemma is used to verify asymptotic equicontinuity in the proof of
Theorem 3.2, the first part for the IPW empirical process and the second part for
the other four IPW empirical processes with adjusted weights.

LEMMA 5.4. Let FN be a sequence of decreasing classes of functions such
that ‖GN‖FN

= oP ∗(1). Assume that there exists an integrable envelope for FN0

for some N0. Then E‖GN‖FN
→ 0 as N → ∞. As a consequence, ‖G

π
N‖FN

=
oP ∗(1).

Suppose, moreover, that FN is P0-Glivenko–Cantelli with ‖P0‖FN1
< ∞

for some N1, and that every f = fN ∈ FN converges to zero either point-
wise or in L1(P0) as N → ∞. Then ‖G

π,e
N ‖FN

= oP ∗(1), ‖G
π,c
N ‖FN

= oP ∗(1),
‖G

π,mc
N ‖FN

= oP ∗(1) and ‖G
π,cc
N ‖FN

= oP ∗(1), assuming Conditions 3.1 and 3.2.

6. Discussion. We developed asymptotic theory for weighted likelihood es-
timation under two-phase sampling, introduced and studied a new calibration
method, centered calibration, and compared several WLE estimation methods in-
volving adjusted weights. The methods of proof and general results for the IPW
empirical process are applicable to other estimation procedures. For example, the
weighted Kaplan–Meier estimator can be shown to be asymptotically Gaussian via
our Donsker theorem (Theorem 5.3) together with the functional delta method.
A particularly interesting application is to study asymptotic properties of esti-
mators that are known to be efficient under Bernoulli sampling (e.g., estimator
of [19]). Whether or not these estimators are “efficient” under our sampling scheme
is an open problem; see [16] for a definition of efficiency with non-i.i.d. data.

There are several other open problems. Variance estimation under two-phase
sampling has been restricted to the case where the asymptotic variance is a known
function up to parameters as discussed in Section 4, while there are several meth-
ods available for complete data in a general case (e.g., [18]). In [24] the first author
has proposed and studied nonparametric bootstrap variance estimation methods
which remain valid even under model misspecification; these results will appear
elsewhere. Another direction of research is to study (local and global) model mis-
specification under two-phase sampling where missingness is by design. An in-
teresting open problem beyond our sampling scheme is to study other complex
survey designs. Stratified sampling without replacement is sufficiently simple for
the existing bootstrap empirical process theory to apply. Other complex designs
may provide interesting theoretical challenges, perhaps in connection with exten-
sions of bootstrap empirical process theory.
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Norman Breslow for many helpful conversations concerning two-phase sampling,
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SUPPLEMENTARY MATERIAL

Supplementary material for “Weighted likelihood estimation under two-
phase sampling” (DOI: 10.1214/12-AOS1073SUPP; .pdf). Due to space con-
straints, the proofs and technical details have been given in the supplementary
document [25]. References here beginning with “A.” refer to [25].
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