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SPATIALLY-ADAPTIVE SENSING IN NONPARAMETRIC
REGRESSION

BY ADAM D. BULL

University of Cambridge

While adaptive sensing has provided improved rates of convergence in
sparse regression and classification, results in nonparametric regression have
so far been restricted to quite specific classes of functions. In this paper,
we describe an adaptive-sensing algorithm which is applicable to general
nonparametric-regression problems. The algorithm is spatially adaptive, and
achieves improved rates of convergence over spatially inhomogeneous func-
tions. Over standard function classes, it likewise retains the spatial adaptivity
properties of a uniform design.

1. Introduction. In many statistical problems, such as classification and re-
gression, we observe data Y1, Y2, . . . , where the distribution of each Yn depends
on a choice of design point xn. Typically, we assume the xn are fixed in advance.
In practice, however, it is often possible to choose the design points sequentially,
letting each xn be a function of the previous observations Y1, . . . , Yn−1.

We will describe such procedures as adaptive sensing, but they are also known
by many other names, including sequential design, adaptive sampling, active learn-
ing and combinations thereof. The field of adaptive sensing has seen much recent
interest in the literature: compared with a fixed design, adaptive sensing algorithms
have been shown to provide improvements in sparse regression [Boufounos et al.
(2012), Davenport and Arias-Castro (2012), Haupt, Castro and Nowak (2011),
Iwen (2009), Malloy and Nowak (2011b)] and classification [Beygelzimer, Das-
gupta and Langford (2009), Castro and Nowak (2008), Cohn, Atlas and Ladner
(1994), Hanneke (2011), Koltchinskii (2010)]. Recent results have also focused on
the limits of adaptive sensing [Arias-Castro, Candes and Davenport (2011), Castro
(2012), Malloy and Nowak (2011a)].

In this paper, we will consider the problem of nonparametric regression, where
we aim to estimate an unknown function f : [0,1] → R from observations

Yn := f (xn) + εn, εn
i.i.d.∼ N

(
0, σ 2)

.

While previous authors have also considered this model under adaptive sens-
ing, their results have either been restricted to quite specific classes of func-
tions f , or have not provided improved rates of convergence [Castro, Willett
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and Nowak (2006), Cohn, Ghahramani and Jordan (1996), Efromovich (2008),
Faraway (1990), Hall and Molchanov (2003)].

In the following, we will describe a new algorithm for adaptive sensing in non-
parametric regression. Our algorithm will be based on standard wavelet techniques,
but with an adaptive choice of design points: we will aim to codify, in a meaningful
way, the intuition that we should place more design points in regions where f is
hard to estimate.

While many such heuristics are possible, we would like to construct an algo-
rithm with good theoretical justification; in particular, we will be interested in at-
taining improved rates of convergence. In general, however, it is known that in
nonparametric regression, adaptive sensing cannot provide improved rates over
standard classes of functions. Castro, Willett and Nowak (2006) prove such a re-
sult for L2 loss; we will show the same is true locally uniformly.

In the following, we will argue that the fault here lies not with adaptive sens-
ing, but rather with the functions considered. In the field of spatial adaptation,
unknown functions are often assumed to be spatially inhomogeneous: they may be
rougher, and thus harder to estimate, in some regions of space than in others. The
seminal paper of Donoho and Johnstone (1994) provides examples, which we have
reproduced in Figure 1; these mimic the kinds of functions observed in imaging,
spectroscopy and other signal processing problems.

Previous work in this field has provided many fixed-design estimators with good
performance over such functions [Donoho and Johnstone (1998), Donoho et al.
(1995), Fan and Gijbels (1995), Fan et al. (1999), Lepski, Mammen and Spokoiny
(1997)]. With adaptive sensing, however, we can obtain further improvements: if
we place more design points in regions where f is rough, our estimates f̂n will
become more accurate overall.

To quantify this, we will need to introduce new classes describing spatially-
inhomogeneous functions, over which our algorithm will be shown to obtain im-
proved rates of convergence. While these classes are novel, they will be shown to
contain quasi-all functions from standard classes in the literature. Furthermore, our
algorithm will be shown to adaptively obtain near-optimal rates over both the new
and standard function classes.

Smoothness classes similar to our own have arisen in the study of adaptive non-
parametric inference [Bull (2012), Giné and Nickl (2010), Picard and Tribouley
(2000)], and more generally also in the study of turbulence [Frisch and Parisi
(1985), Jaffard (2000)]. As in those papers, we find that for complex nonparametric
problems, the standard smoothness classes may be insufficient to describe behav-
ior of interest; by specifying our target functions more carefully, we can achieve
more powerful results.

We might also compare this phenomenon to results in sparse regression, where
good rates are often dependent on specific assumptions about the design matrix
or unknown parameters [Fan and Lv (2008), Meinshausen and Bühlmann (2010),
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FIG. 1. Examples of spatially inhomogeneous functions from Donoho and Johnstone (1994). Each
function is scaled to have sd(f ) = 7.

van de Geer and Bühlmann (2009)]. As there, we can use the nature of our as-
sumptions to provide insight into the kinds of problems on which we can expect to
perform well.

We will test our algorithm by estimating the functions in Figure 1 under Gaus-
sian noise. We will see that, by sensing adaptively, we can make significant im-
provements to accuracy; we thus conclude that adaptive sensing can be of value in
nonparametric regression whenever the unknown function may be spatially inho-
mogeneous.

In Section 2, we describe our adaptive-sensing algorithm. In Section 3, we de-
scribe our model of spatial inhomogeneity and show that adaptive sensing can
lead to improved performance over such functions. In Section 4, we discuss the
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implementation of our algorithm, and provide empirical results. Detailed proofs
are available in the supplemental article [Bull (2013)].

2. The adaptive-sensing algorithm. We now describe our adaptive-sensing
algorithm in detail. We first discuss how we estimate f under varying designs; we
then move on to the choice of design itself.

2.1. Estimation under varying designs. Given observations Y1, . . . , Yn at a set
of design points ξn := {x1, . . . , xn}, we will estimate the function f using the tech-
nique of wavelet thresholding, which is known to give spatially-adaptive estimates
[Donoho and Johnstone (1994)]. To begin, we will need to choose our wavelet
basis; for j0 ∈ N, let

ϕj,k and ψj,k, j, k ∈ Z, j ≥ j0,0 ≤ k < 2j ,

be a compactly supported wavelet basis of L2([0,1]), such as the construction of
Cohen, Daubechies and Vial (1993).

In the following, we will assume the wavelets ψj,k have N ∈ N vanishing mo-
ments, ∫

xnψj,k(x) dx = 0, n ∈ Z,0 ≤ n < N,

and both ϕj,k and ψj,k are zero outside intervals Sj,k of width 2−j (2L − 1),

Sj,k := 2−j [k − L + 1, k + L) ∩ [0,1).

For any i ∈ N, i ≥ j0, we may then write an unknown function f ∈ L2([0,1]) in
terms of its wavelet expansion,

f =
2i−1∑
k=0

αi,kϕi,k +
∞∑

j=i

2j−1∑
k=0

βj,kψj,k

and estimate f in terms of the coefficients αj0,k, βj,k .
When the design is uniform, we can estimate these coefficients efficiently in the

standard way, using the fast wavelet transform [Donoho and Johnstone (1994)].
Suppose, as will always be the case in the following, that the design points xn

are distinct, so we may denote the observations Yn as Y(xn). Given i ∈ N, i ≥ j0,
suppose also that we have observed f on a grid of design points 2−ik, k ∈ Z,0 ≤
k < 2i .

We may then estimate the scaling coefficients αi,k of f as

α̂i
i,k := 2−i/2Y

(
2−ik

)
,

since for i large,

αi,k =
∫
Si,k

f (x)ϕi,k(x) dx ≈ 2−i/2f
(
2−ik

)
.(1)
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By an orthogonal change of basis, we can produce estimates α̂i
j0,k

and β̂i
j,k of the

coefficients αj0,k and βj,k , given by the relationship

2j0−1∑
k=0

α̂i
j0,k

ϕj0,k +
i−1∑
j=j0

2j−1∑
k=0

β̂i
j,kψj,k :=

2i−1∑
k=0

α̂i
i,kϕi,k.(2)

These estimates can be computed efficiently by applying the fast wavelet transform
to the vector of values 2−i/2Y(2−ik).

Since we will be considering nonuniform designs, this situation will often not
apply directly. Many approaches to applying wavelets to nonuniform designs have
been considered in the literature, including transformations of the data, and design-
adapted wavelets; see Kerkyacharian and Picard (2004) and references therein. In
the following, however, we will use a simple method, which allows us to simulta-
neously control the accuracy of our estimates for many different choices of design.

To proceed, we note that the value of an estimated coefficient α̂i
j,k or β̂i

j,k de-

pends only on observations Y(x) at points x ∈ Sj,k ∩ 2−i
Z. We may therefore

estimate the wavelet coefficients αj0,k and βj,k by

α̂j0,k := α̂
in(j0,k)
j0,k

and β̂j,k := β̂
in(j,k)
j,k ,(3)

where the indices in(j, k) are chosen so that these estimates use as many observa-
tions as possible,

in(j, k) := max
{
i ∈ N : i > j,Sj,k ∩ 2−i

Z ⊆ ξn

}
.(4)

To ease notation, for now we will estimate coefficients only up to a maximum
resolution level jmax

n ∈ N, jmax
n > j0, chosen so that 2jmax

n ∼ n/ log(n). We will
then be able to guarantee that the set in (4) is nonempty.

Using these estimates directly will lead to a consistent estimate of f , but
one converging very slowly; to obtain a spatially-adaptive estimate, we must use
thresholding. We fix κ > 1, and for

en(j, k) := σ2−in(j,k)/2
√

2 log(n),(5)

define the hard-threshold estimates

β̂T
j,k :=

{
β̂j,k, |β̂j,k| ≥ κen(j, k),
0, otherwise.

We then estimate f by

f̂n :=
2j0−1∑
k=0

α̂j0,kϕj0,k +
jmax
n −1∑
j=j0

2j−1∑
k=0

β̂T
j,kψj,k.(6)

Given a uniform design ξn = 2−i
Z ∩ [0,1), this is a standard hard-threshold esti-

mate; otherwise it gives a generalization to nonuniform designs.
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2.2. Adaptive design choices. So far, we have only discussed how to estimate
f from a fixed design. However, we can also use these estimates to choose the
design points adaptively. We will choose the design points in stages, at stage m

selecting points xnm−1+1 to xnm in terms of previous observations Y1, . . . , Ynm−1 .
The number of design points in each stage can be chosen freely, subject only to the
conditions that n0 is a power of two, and the ratios nm/nm−1 are bounded away
from 1 and ∞. We may, for example, choose

nm := ⌊
2j+τm⌋

(7)

for some j ∈ N, and τ > 0.
In the initial stage, we will choose n0 design points spaced uniformly on [0,1],

xi := (i − 1)/n0, 1 ≤ i ≤ n0.

At further stages m ∈ N, we will construct a target density pm on [0,1], and then
select design points xnm−1+1, . . . , xnm so that the design ξnm approaches a draw
from this density. We will choose pm to be concentrated in regions of [0,1] where
we believe the function f is difficult to estimate, ensuring that later design points
will adapt to the unknown shape of f .

At time nm−1, for each j ∈ N, j0 ≤ j < jmax
nm−1

, we rank the 2j thresholded esti-

mates β̂T
j,k in decreasing order of size. We then have

∣∣β̂T

j,r−1
j (1)

∣∣ ≥ · · · ≥ ∣∣β̂T

j,r−1
j (2j )

∣∣
for a bijective ranking function rj . We will choose the target density so that, in the
support of each significant term βj,kψj,k in the wavelet series, the density will be,
up to log factors, at least 2j /rj (k). The density will thus be concentrated in regions
where the wavelet coefficients are known to be large. To ensure that all coefficients
are estimated accurately, we will also require the density to be bounded below by
a fixed constant, given by a choice of parameter λ > 0.

Split the interval [0,1] into sub-intervals

Il,m := 2−jmax
nm [l, l + 1), l ∈ Z,0 ≤ l < 2jmax

nm .

We define the target density on Il,m to be

pl,m := Amax
(
{λ} ∪

{
2j

rj (k)(jmax
nm−1

)2 : j ∈ N, j0 ≤ j < jmax
nm−1

,

Il,m ⊆ Sj,k, β̂
T
j,k �= 0

})
,

where the fixed constant A > 0 is chosen so that the density pm always integrates
to at most one, 2−jmax

nm
∑

l pl,m ≤ 1. The specific value of A is unimportant, but
note that

2−jmax
nm

2jmax
nm −1∑
l=0

pl,m � 1 + (
jmax
nm−1

)−2
jmax
nm−1∑
j=0

2j∑
k=1

k−1 � 1,
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so such a choice of A exists.
We now aim to choose new design points xnm−1+1, . . . , xnm so that the design

ξn approximates a draw from pm. To simplify notation, we first include any points
x ∈ 2−jmax

nm Z ∩ [0,1) not already in the design. We will assume the nm and jmax
n

are chosen so that this requires no more than nm − nm−1 design points; since jmax
n

is defined only asymptotically, and 2jmax
nm = o(nm −nm−1), such a choice is always

possible.
We then construct an effective density qm,n, describing a nominal density gen-

erating the design ξn. This density will be at least 2i/n on any region where the
design contains the grid 2−i

Z; it will thus describe the density of all design points
on regular grids. We define the effective density on Il,m at time n to be

ql,m,n := n−1 max
{
2i : i ∈ N,2−i

Z ∩ Il,m ⊆ ξn

}
.

Again, note this density integrates to at most one, 2−jmax
nm

∑
l ql,m,n ≤ 1.

Our remaining goal is to choose the new design points so that the effective
density approaches the target density. In our proofs, we will require control over
the maximum discrepancy from pm to qm,n,

2jmax
nm −1
max
l=0

pl,m/ql,m,n.(8)

To choose the next stage of design points, having selected points x1, . . . , xn, we
therefore pick an l maximizing (8); note that this does not require us to calculate A.
We then add points 2−i

Z ∩ Il,m to the design, choosing the smallest index i for
which at least one such point is not already present.

In doing so, we halve the largest value of pl,m/nql,m,n, while leaving all other
such values unchanged. Repeating this process, we will therefore add design points
on grids 2−i

Z ∩ Il,m so as to minimize (8). We continue until we have selected a
total of nm design points; for convenience, let ql,m := ql,m,nm denote the effective
density on Il,m once we are done.

The final algorithm is thus described by Algorithm 1; it can be implemented
efficiently using a priority queue to find values of l maximising (8). We will show
that this algorithm ensures the final effective density qm is close to the target den-
sity pm, and that estimates made under it are therefore spatially-adaptive for a wide
variety of functions.

3. Theoretical results. We now provide theoretical results on the perfor-
mance of our algorithm. We begin by defining the relevant function classes, then
discuss our choice of functions considered; we conclude with our results on con-
vergence rates.
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Algorithm 1 Spatially-adaptive sensing
n ← n0
x1, . . . , xn ← n−1

Z ∩ [0,1)

observe Y1, . . . , Yn

m ← 1
loop

xn+1, . . . , xn′ ← 2−jmax
nm Z ∩ [0,1) \ ξn

n ← n′
while n < nm do

choose l maximizing pl,m/ql,m,n

S ← 2−i
Z ∩ Il,m \ ξn, for the smallest i such that S �= ∅

repeat
n ← n + 1
choose xn ∈ S

S ← S \ {xn}
until S = ∅ or n = nm

end while
observe Ynm−1+1, . . . , Yn

estimate f by f̂n

m ← m + 1
end loop

3.1. Function classes. We first define the function classes we will consider in
the following. We will assume we have a wavelet basis ψj0,k, ϕj,k satisfying the
assumptions of Section 2.1; we can then describe any function f ∈ L2([0,1]) by
its wavelet series,

f =
2j0−1∑
k=0

αj0,kϕj0,k +
∞∑

j=j0

2j−1∑
k=0

βj,kψj,k.

The smoothness of f , and thus the ease with which it can be estimated, is deter-
mined by the size of the coefficients αj0,k, βj,k; f is smooth and easily estimated
when these coefficients are small. The smoothness of a function can be described
in terms of its membership of standard function classes. While there are many such
classes, in what follows we will be interested primarily in the Hölder and Besov
scales [Härdle et al. (1998)].

For s ∈ N, the Hölder classes Cs(M) contain all functions which are s-times dif-
ferentiable, with value and derivatives are bounded by M; the local Hölder classes
Cs(M, I) instead require this condition to hold only over an interval I . These
definitions can also be extended to noninteger s, and given in terms of wavelet co-
efficients. We note that while the wavelet definitions are in general slightly weaker
than the classical ones, this will not fundamentally affect our results in what fol-
lows.
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DEFINITION 1. For s ∈ (0,N), M > 0 and I ⊆ [0,1], Cs(M, I) is the class
of functions f ∈ L2([0,1]) satisfying

max
(
2j0(s+1/2) sup

k : Sj0,k⊆I

|αj0,k|, ∞
sup
j=j0

2j (s+1/2) sup
k : Sj,k⊆I

|βj,k|
)

≤ M.

For I = [0,1], we denote this class Cs(M).

The Besov classes Br
p,∞(M) are more general. For p = ∞, they coincide with

our definition of the Hölder classes Cr(M). For p < ∞, they allow functions
with some singularities, provided they are still, on average, r-times differentiable;
smaller values of p correspond to more irregular functions.

DEFINITION 2. For r ∈ (0,N), p ∈ [1,∞) and M > 0, Br
p,∞(M) is the class

of functions f ∈ L2([0,1]) satisfying

max
(

2j0(r+1/2−1/p)

(∑
k

|αj0,k|p
)1/p

,
∞

sup
j=j0

2j (r+1/2−1/p)

(∑
k

|βj,k|p
)1/p)

≤ M.

For p = ∞, we define Br∞,∞(M) := Cr(M).

Many other standard classes are related to these Besov classes, including the
Sobolev classes Wr,p(M) ⊆ Br

p,∞(M), the Sobolev Hilbert classes Hr(M) ⊆
Br

2,∞(M) and the functions of bounded variation BV (M) ⊆ B1
1,∞(M). In each

case, convergence rates are unchanged by considering the containing Besov class,
meaning we need consider only Besov classes in what follows.

Besov classes can also be thought of as describing functions whose wavelet
expansions are sparse. From the above definitions, we can see that, compared to
a Hölder class, functions in a Besov class can have a number of larger wavelet
coefficients, provided there are not too many. In other words, functions in a Besov
class can have wavelet expansions where most, but not all, coefficients are small.

Besov classes are often used to describe spatially-inhomogeneous functions; we
can see why by considering Figure 2, which plots the wavelet coefficients of the
functions in Figure 1. As above, the coefficients are often, but not always, small.

Our final function class is a new definition, which we will argue captures an-
other typical feature of spatially-inhomogeneous functions, and is necessary to
obtain improved rates of convergence. From Figure 2, we can see that, in regions
where the functions f are rough, their wavelet coefficients are often large; in re-
gions where they are smooth, their coefficients are small. In other words, if f is
difficult to approximate in some region at high resolution, it will also be difficult
to approximate there at lower resolutions.

We will call such functions detectable, and describe them in terms of detectable
classes Ds

t (M, I) ⊆ Cs(M, I). The additional parameter t ∈ (0,1) controls the
strength of our condition; larger t corresponds to a stronger condition on func-
tions f .
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FIG. 2. CDV-8 wavelet coefficients for the functions in Figure 1. The height of each line corre-
sponds to a wavelet coefficient βj,k; the x-axis plots the location 2−j k, and the y-axis the scale j .

DEFINITION 3. For s ∈ (0,N), t ∈ (0,1), M > 0, and an interval I ⊆ [0,1],
Ds

t (M, I) is the class of functions f ∈ Cs(M, I) which also satisfy

∀j ∈ N, j ≥
⌈
j0

t

⌉
, k :Sj,k ∩ I �= ∅,

∃j ′ ∈ N, �tj� ≤ j ′ < j, k′ :Sj ′,k′ ⊃ Sj,k,(9)

|βj ′,k′ | ≥ (
j ′/j

)
2(j−j ′)(s+1/2)|βj,k|.

The definition thus requires that each term in the wavelet series on I , at a fine
scale j , lies within the support of another term, of comparable size, at a coarser
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scale j ′. The parameter s controls how large this second term must be, and t con-
trols how far apart the scales j and j ′ can be.

In Section 3.2, we will discuss why such conditions may be natural to consider
for this problem. First, however, we will establish that a typical locally Hölder
function will be detectable; indeed, similarly to results in Jaffard (2000) and Giné
and Nickl (2010), we can show that the set of functions which are locally Hölder
but not detectable is topologically negligible. We may therefore sensibly restrict to
detectable functions in what follows.

PROPOSITION 4. For s ∈ (0,N), M > 0 and any interval I ⊆ [0,1], define

D := Cs(M, I) \ ⋃
t∈(0,1)

Ds
t (M, I).

Then D is nowhere dense in the norm topology of Cs(M, I).

3.2. Spatially-inhomogeneous functions. We now discuss our choice of func-
tions to consider. We begin with some well-known results, which describe the lim-
itations of adaptive sensing over Hölder classes. Let

α(s) := s/(2s + 1)

and define an adaptive-sensing algorithm to be a choice of design points xn =
xn(Y1, . . . , Yn−1), together with an estimator f̂n = f̂n(Y1, . . . , Yn). Then, up to
log factors, a spatially-adaptive estimate can attain the rate n−α(s) over any local
Hölder class Cs(M, I), and this cannot be improved upon by adaptive sensing.

THEOREM 5. Using a uniform design xi = (i − 1)/n, there exists an estima-
tor f̂n, which satisfies

sup
x∈J

∣∣f̂n(x) − f (x)
∣∣ = Op(cn),

uniformly over f ∈ Cs(M, I)∩C1/2(M), for any s ∈ [1
2 ,N), M > 0, I an interval

open in [0,1], J ⊆ I a closed interval and

cn = (
n/ log(n)

)−α(s)
.

THEOREM 6. Let s ≥ 1
2 , M > 0, I an interval open in [0,1] and J ⊆ I a

closed interval. Given an adaptive-sensing algorithm with estimator f̂n, if

sup
x∈J

∣∣f̂n(x) − f (x)
∣∣ = Op(cn)

uniformly over f ∈ Cs(M, I) ∩ C1/2(M), then

cn � n−α(s).
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To benefit from adaptive sensing, we will need to exploit two features of the
functions in Figure 1. The first is that, as discussed in Section 3.1, these functions
are sparse: they are rougher in some regions than others. This sparsity is necessary
to benefit from adaptive sensing: it is the difference between rough and smooth
which allows us to improve performance, placing more design points in rougher
regions.

Sparsity is commonly measured in terms of Besov, rather than Hölder, classes.
This change alone, however, is not enough to allow us to benefit from adaptive
sensing. Since Br

p,∞(M) ⊆ Cr−1/p(M), over this class we can achieve the rate

n−α(r−1/p), up to log factors, with the fixed-design method of Theorem 5. We can
further show that, in this case, adaptive sensing offers little improvement.

THEOREM 7. Let p ∈ [1,∞], r ≥ 1
2 + 1

p
, M > 0 and I be an interval in [0,1].

Given an adaptive-sensing algorithm with estimator f̂n, if

sup
x∈I

∣∣f̂n(x) − f (x)
∣∣ = Op(cn),

uniformly over f ∈ Br
p,∞(M), then

cn � n−α(r−1/p).

To benefit from adaptive sensing, it is not enough to have regions in which the
function is rough or smooth; we must also be able to detect where those regions
are. This is the rationale behind our detectable classes Ds

t (M, I): if a function
is detectable, its roughness at high resolutions will be signaled by corresponding
roughness at low resolutions, which we can observe in advance.

We will be interested in functions f which are both sparse and detectable. For
p ∈ [1,∞], r ∈ [1

2 + 1
p
,N), s ∈ [r − 1

p
,N), t ∈ (0,1), M > 0 and any interval

I ⊆ [0,1], let

F = F (p, r, s, t,M, I) := Br
p,∞(M) ∩ Ds

t (M, I)(10)

denote a class of sparse and detectable functions.
We note that this class has two smoothness parameters: r governs the aver-

age global smoothness of a function f ∈ F , while s governs its local smoothness
over I . Since functions in Br

p,∞ are everywhere at least (r − 1
p
)-smooth, we have

restricted to the interesting case s ≥ r − 1
p

.
From Proposition 4, we know that quasi-all locally Hölder functions are de-

tectable; we can likewise show that under a fixed design, restricting to sparse and
detectable functions does not alter the minimax rate of estimation. We may thus
conclude that requiring sparsity and detectability thus does not make estimation
fundamentally easier.
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THEOREM 8. Using a fixed design, if an estimator f̂n satisfies

sup
x∈I

∣∣f̂n(x) − f (x)
∣∣ = Op(cn),

uniformly over f ∈ F , then

cn �
(
n/ log(n)

)−α(s)
.

3.3. Benefits of adaptive sensing. With adaptive sensing, however, we can take
advantage of these conditions to obtain improved rates of convergence. We even
can show that Algorithm 1 achieves this without knowledge of the class F ; we
can thus adapt not only to the regions where f is rough, but also to the overall
smoothness and sparsity of f .

THEOREM 9. Algorithm 1 satisfies

sup
x∈I

∣∣f̂n(x) − f (x)
∣∣ = Op(cn),

uniformly over f ∈ F , for u := max(r − s,0),

r ′ := s + tu, s′ := s/(1 − ptu)(11)

and

cn := (
n/ log(n)3)−α(min(r ′,s′)) log(n)1(r ′=s′).(12)

We thus obtain, up to log factors, the weaker of the two rates n−α(r ′) and n−α(s′).
Both of these rates are at least as good as the n−α(s) bound faced by a fixed design;
when s < r , and the function f may be locally rough, the rates are strictly better.
In that case, we obtain the n−α(r ′) rate when s/r ≥ (1 − t)/(2 − t) and the n−α(s′)

rate otherwise.
The improvement is driven by two parameters: t , which governs how easy it is

to detect irregularities of f , and u, which governs how much rougher f is locally
than on average. When both t and u are large, the rates we obtain are significantly
improved; in the most favorable case, when u = 1, and t ≈ 1, this result is equiv-
alent to gaining an extra derivative of f . We can even show that these rates are
near-optimal over classes F .

THEOREM 10. Given an adaptive-sensing algorithm with estimator f̂n, if

sup
x∈I

∣∣f̂n(x) − f (x)
∣∣ = Op(cn),

uniformly over f ∈ F , then

cn � n−α(min(r ′,s′))

for r ′, s′ given by (11).
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Furthermore, we also have that, even in the absence of sparsity or detectability,
we still achieve the spatial adaptation properties of a fixed design. We may thus
use our adaptive-sensing algorithm with the confidence that, even if f is spatially
homogeneous, we will not pay an asymptotic penalty.

THEOREM 11. Algorithm 1 satisfies

sup
x∈J

∣∣f̂n(x) − f (x)
∣∣ = Op(cn),

uniformly over f ∈ Cs(M, I)∩C1/2(M), for any s ∈ [1
2 ,N), M > 0, I an interval

open in [0,1], J ⊆ I a closed interval and

cn := (
n/ log(n)

)−α(s)
.

4. Implementation and experiments. We now give some implementation
details of Algorithm 1, and provide empirical results. Before we test the algorithm,
we must describe how we compute f̂n and choose the parameters governing the
algorithm’s behavior.

4.1. Estimating functions. For simplicity, in (6) we defined f̂n in terms of
wavelets only up to the resolution level jmax

n . While asymptotically this carries
no penalty, in finite time we may do better by estimating all the wavelets for which
we have available data. In other words, we use the estimate

f̂n :=
2j0−1∑
k=0

α̂j0,kϕj0,k +
∞∑

j=j0

2j−1∑
k=0

β̂T
j,kψj,k,(13)

where for j ≥ jmax
n , if the set in (4) is empty, we let in(j, k) := −∞, forcing

β̂T
j,k = 0. We note that since there are finitely many design points, the sum in (13)

must have finitely many nonzero terms.
To compute these estimates f̂n, we must convert the estimated coefficients α̂j0,k ,

β̂T
j,k back into function values f̂n(x). For i ∈ N, i ≥ j0, to evaluate f̂n at points

x = 2−ik, k ∈ Z,0 ≤ k < 2i , we make the approximation

f̂n

(
2−ik

) ≈ 2i/2α̂T
i,k,(14)

where the post-thresholding scaling coefficients α̂T
i,k are defined by

2i−1∑
k=0

α̂T
i,kϕi,k := f̂n.

These can again be computed efficiently using the fast wavelet transform.
Given a uniform design and predicting f only at the design points, this is

enough to give estimates f̂n; if we set κ = 1, we have just described a standard
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hard-threshold wavelet estimate [Donoho and Johnstone (1994)]. In this case, the
observations and predictions are always made at the same scale, in(j, k) = i, so the
errors in (1) and (14) tend to cancel out. In other cases, however, the observations
and predictions may be at different scales; these errors then may build up, making
f̂n look like a translation of f .

To resolve the issue, we will use a slightly different definition of the estimated
coefficients α̂j0,k and β̂j,k , which ensures the scales of observation and predic-
tion are the same. Given i ∈ N, i ≥ j0, to estimate f at points x = 2−ik, k ∈ Z,
0 ≤ k < 2i , we set xn,k := sup{x ∈ ξn :x ≤ 2−ik}, and let

α̂i,k := 2−i/2Y(xn,k).

We then define the estimates α̂j0,k and β̂j,k by

2j0−1∑
k=0

α̂j0,kϕj0,k +
i−1∑
j=j0

2j−1∑
k=0

β̂j,kψj,k :=
2i−1∑
k=0

α̂i,kϕi,k,

using the fast wavelet transform as before.
We note that this definition is approximately the same as the one in (3); while it

is harder to control theoretically, it gives improved experimental behavior. We also
note that, with a uniform design, if we wish to predict f only at the design points,
this again reduces to a standard wavelet estimate.

4.2. Choosing parameters. To apply Algorithm 1, we must choose the param-
eters κ , λ and τ , and also estimate σ if it is not already known. The parameter κ

governs the size of our wavelet thresholds: larger κ means we will be more conser-
vative. While our theoretical results are proved for choices κ > 1, in our empirical
tests we took κ = 1. This gives a simple choice of threshold which performs well,
and allows us to compare our results with standard hard-threshold estimates.

The parameter λ controls how uniform we make our design points: for λ � 0
the design points will be mostly uniform, while for λ ≈ 0 they will be concentrated
at irregularities of f . The parameter τ likewise controls how many design points
we choose at each stage: for τ � 0 there will be a few large stages, while for τ ≈ 0
there will be many small ones. Empirically, we found the values λ = τ = 1

2 gave
good trade-offs.

Finally, for uniform designs, Donoho and Johnstone (1994) suggest estimating
σ by the median size of the β̂j,k at fine resolution scales. Our designs may not
be uniform, but they are guaranteed to provide us with estimates β̂j,k up to level
jmax
n − 1. We will therefore use the similar estimate

σ̂n := median
{
2i/2|β̂j,k| : j ≥ jmax

n − 1, in(j, k) > −∞}
/0.6745,

which includes all estimated coefficients at scales at least this fine.
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4.3. Empirical results. We now describe the results of using Algorithm 1 to
estimate the functions in Figure 1, observing under N(0, σ 2) noise. Figure 3 plots
n = 211 noisy samples of each function, under a uniform design, with σ = 1, while
Figure 4 plots a standard wavelet threshold estimate from these samples.

Figure 5 plots typical results of using Algorithm 1 under these conditions. The
algorithm was again given access to n = 211 observations, with σ = 1; we set
n0 = 26, and chose the parameters κ,λ, τ and σ̂n as in Section 4.2. We used the
family of wavelet bases described by Cohen, Daubechies and Vial (1993), and
implemented in Nason (2010); we took wavelets with N = 8 vanishing moments,
set j0 = 5, and jmax

n = max(j0 + 1, �n/ log(n)�).
The dots along the top of each plot are drawn proportionally to the number

of design points. We can see that, for the Heavisine and Doppler functions, the

FIG. 3. Noisy samples from the functions in Figure 1.
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FIG. 4. Fixed-design estimates of the functions in Figure 1.

adaptive design concentrated in the regions where the function is rough; as a result,
the adaptive estimates are noticeably better at recovering the shape of these curves.

For the Blocks and Bumps functions, which have more complicated patterns of
spatial inhomogeneity, with these measurements the adaptive design was not able
to locate all the areas where the functions are rough. However, we might expect
performance on all the above functions to improve as the number of design points
increases; to this end, we next considered performance with up to n = 214 design
points.

At this level of detail, it becomes harder to visually compare estimates; instead,
to numerically measure the spatial adaptivity of our estimates, we evaluated pro-
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FIG. 5. Adaptive-sampling estimates of the functions in Figure 1.

cedures in terms of their maximum error over [0,1], approximated by

max
x∈2−j Z∩[0,1)

∣∣f̂n(x) − f (x)
∣∣

for j large. In the following, we took j = 17 to avoid biasing the performance
measure toward a uniform design.

Figure 6 compares the performance of the two methods on the Doppler function
with σ = 1; the values plotted are sample medians after 250 runs, together with
95% confidence intervals for the true median. We can see that for n large, the adap-
tive design significantly outperforms the uniform one, consistent with a difference
in the asymptotic rate of estimation.

Table 1 compares performance on all the functions in Figure 1, given n = 214

observations, and varying levels of σ . We again report sample medians after 250
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FIG. 6. Log-log plot of empirical performance on the Doppler function.

runs, together with the p-value of a two-sided Mann–Whitney-U test for difference
in medians. (We note that the large errors reported for the Blocks function are due
to the large discontinuities present, which are difficult to estimate uniformly over
[0,1].)

We can see that for the Blocks function, the uniform design fared slightly bet-
ter, as the adaptive algorithm still struggled to choose a good design. However,
for the other three functions, adaptive sampling provided a significant improve-
ment; the improvement was largest for small σ , but still significant for two of the
three functions even with large σ . We thus conclude that adaptive sensing can be
of value in nonparametric regression whenever the function f may be spatially
inhomogeneous.

Acknowledgements. We would like to thank Richard Nickl and several
anonymous referees for their valuable comments and suggestions.
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TABLE 1
Empirical performance on the functions in Figure 1 for n = 214

Uniform design Adaptive design p-Value

σ = 0.5

Blocks 13.284 13.3882 <0.001
Bumps 3.553 3.0086 <0.001
Heavisine 2.646 2.5902 <0.001
Doppler 1.783 0.5138 <0.001

σ = 1

Blocks 12.355 12.799 <0.001
Bumps 5.721 5.487 <0.001
Heavisine 3.260 3.204 <0.001
Doppler 2.725 1.028 <0.001

σ = 2

Blocks 11.121 10.988 0.428
Bumps 8.947 7.964 <0.001
Heavisine 3.053 3.061 0.815
Doppler 3.621 2.984 <0.001

SUPPLEMENTARY MATERIAL

Proofs for “Spatially-adaptive sensing in nonparametric regression” (DOI:
10.1214/12-AOS1064SUPP; .pdf). We provide detailed proofs of the results in this
paper.
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