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A CODE ARITHMETIC APPROACH FOR QUATERNARY CODE
DESIGNS AND ITS APPLICATION TO (1/64)TH-FRACTIONS1
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The study of good nonregular fractional factorial designs has received
significant attention over the last two decades. Recent research indicates that
designs constructed from quaternary codes (QC) are very promising in this
regard. The present paper aims at exploring the fundamental structure and de-
veloping a theory to characterize the wordlengths and aliasing indexes for a
general (1/4)pth-fraction QC design. Then the theory is applied to (1/64)th-
fraction QC designs. Examples are given, indicating that there exist some QC
designs that have better design properties, and are thus more cost-efficient,
than the regular fractional factorial designs of the same size. In addition, a re-
sult about the periodic structure of (1/64)th-fraction QC designs regarding
resolution is stated.

1. Introduction. In many scientific researches and investigations, the interest
lies in the study of effects of many factors simultaneously. One may choose a
full factorial design which is able to estimate all possible level combinations of
factors, but it usually involves many unnecessary trials. To be more cost-efficient,
a fractional factorial design is suggested. A good choice of fractional factorial
design allows us to study many factors with relatively small run size but enables
us to estimate a large number of effects.

Designs that can be constructed through defining relations among factors are
called regular designs, and all other designs that do not possess this kind of defin-
ing relation are called nonregular designs. Wu and Hamada (2000) and Mukerjee
and Wu (2006) provide detailed discussions on optimality criteria such as resolu-
tion and minimum aberration for choosing fractional factorial designs. Nonregu-
lar designs have received particular attention in the past ten to twenty years. The
notions of resolution and aberration have been generalized with statistical justifi-
cations to these designs; see Deng and Tang (1999) and Tang and Deng (1999). It
is well recognized that although nonregular designs have a complex aliasing struc-
ture, they can outperform their regular counterparts with regard to resolution or
projectivity, and this is a major motivating force for the current surge of interest in
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these designs. A comprehensive review on the development of nonregular designs
is referred to Xu, Phoa and Wong (2009).

A recent major development in nonregular two-level designs has been the use
of quaternary codes for their simple construction, and the resulting two-level de-
signs are generally called QC designs. Xu and Wong (2007) pioneered research
on QC designs and reported theoretical as well as computational results. Phoa and
Xu (2009) investigated the properties of quarter-fraction QC designs. In addition
to giving theoretical results on the aliasing structure of such designs, they con-
structed optimal quarter-fraction QC designs under several criteria. Zhang et al.
(2011) introduced a trigonometric representation for the study of QC designs and
successfully derived the properties of (1/8)th- and (1/16)th-fractions QC designs.
The optimal (1/8)th- and (1/16)th-fractions QC designs under maximum resolu-
tion criterion were reported in Phoa, Mukerjee and Xu (2012).

The present paper aims at exploring the fundamental structure and develop-
ing the underlying theorems of a general QC design. In Section 2 we recall some
concepts about the design construction method via quaternary codes. Then we in-
troduce some new notation that is related to wordlengths and aliasing indexes of
words. This new notation provides clear and simple presentations for theorems and
examples in the later sections. Section 3 contains some rules and corollaries about
the structure of QC designs. One can derive the wordlengths and aliasing indexes
of a word in a general QC design using these rules. In addition, two theorems are
stated about the structure of the k-equation and their necessary and sufficient con-
ditions. These theorems are applied in Section 4, leading to a theorem about the
properties of (1/64)th-fraction QC designs. An example demonstrates the use of
the theorem to derive the generalized resolutions and generalized wordlength pat-
terns of QC designs. Based on the properties of the derived classes of QC designs,
the structure periodicity of (1/64)th-fraction QC designs with high resolution is
suggested. The proofs of these theorems are given in the last section.

2. Definitions and notation. We recall some concepts in Phoa and Xu (2009)
here. A quaternary code takes on values from Z4 = {0,1,2,3}. Let G by an n × m

generator matrix over Z4. All possible linear combinations of the rows in G over
Z4 form a quaternary linear code, denoted by C. Then each Z4 entry of C is
transformed into two binary codes in its binary image D = φ(C) via the Gray
map, which is defined as follows:

φ : 0 → (1,1), 1 → (1,−1), 2 → (−1,−1), 3 → (−1,1).

Note that D is a binary 22n × 2m matrix or a two-level design with 22n runs and
2m factors.

In general, for highly-fractionated QC designs, we consider an n × (n + p)

generator matrix G = (V , In), where V = (�v1, . . . , �vp) is a matrix over Z4
that consists of p vectors of lengths n and In is an n × n identity matrix.
It leads to a two-level design D with 22n runs and 2n + 2p factors, that is,
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D = (d1, . . . , d2p, d2p+1, . . . , d2p+2n). It is easy to verify that the identity matrix
In generates a full 22n × 2n design. Therefore, the properties of D depend on the
matrix V only.

For s = {c1, c2, . . . , ck}, a subset of k ≤ 2n + 2p columns of D, define
jk(s;D) = ∑22n

i=1 cs1 · · · csk , where cij is the ith entry of cj . The jk(s;D) values
are called the J -characteristics of design D [Deng and Tang (1999), Tang (2001)].
It is evident that |jk(s;D)| ≤ 22n. Following Cheng, Li and Ye (2004), we de-
fine the aliasing index as ρk(s) = ρk(s;D) = |jk(s;D)|/22n, which measures the
amount of aliasing among columns in s. It is obvious that 0 ≤ ρk(s) ≤ 1. When
ρk(s) = 1, the columns in s are fully aliased with each other and form a complete
word of length k. It is equivalent to the defining relations in regular designs. When
0 < ρk(s) < 1, the columns in s are partially aliased with each other and form a
partial word of length k with aliasing index ρk(s). When ρk(s) = 0, the columns
in s are orthogonal and do not form a word.

Throughout this paper, for �i to be a quaternary row vector, let f�i be the number
of times that �i appears in the rows of V . Define �w = (w1, . . . ,wp) to be a word
type that describes the structure of a word. All wi are quaternary with the following
meanings. For i = 1, . . . , p, if wi = 0, none of the (2i − 1)th and (2i)th in D are
included in the word; if wi = 2, both the (2i − 1)th and (2i)th in D are included in
the word; if wi is odd, either the (2i −1)th or (2i)th in D is included in the word. If
there are q odd entries in �w, where q < p, there are 2q different column choices.
Therefore, we denote wi = 1 or 3 for different i to represent different column
choices. For example, in (1/16)th-fraction QC designs, there are four possible
forms of words, namely, (1,1), (1,3), (3,1) and (3,3), representing the cases that
select one column from the first two columns of D and select another column from
the next two columns of D.

Let k �w be the wordlength equation, or simply called k-equation, of the word
described by �w. In addition, denote C(p) by a 4p × p matrix consisting of all
possible combinations of quaternary entries. With reference to the matrix V , k �w
can be written as the linear combination of f�i , where �i represents the ith row of
C(p), that is, k �w = ∑

�i∈C(p)
c�if�i for c�i = 0,1,2. Furthermore, if there exists two k-

equations k �w1 and k �w2 with the corresponding coefficient vectors c�i and c′
�i in their

summations, then we define a code arithmetic (CA) operator ⊕ in the following
way:

k �w1 ⊕ k �w2 =
( ∑

�i∈C(p)

c�if�i
)

⊕
( ∑

�i∈C(p)

c′
�if�i

)
= ∑

�i∈C(p)

Lw

(
c�i + c′

�i
)
f�i ,

where Lw(x) represents the Lee weight of x and the Lee weights of 0,1,2,3 ∈ Z4
are 0,1,2,1, respectively. Notice that the wordlength of a word is not equal to the
value of k-equations directly, but it is equal to that plus a constant showing the
number of columns among the first 2p columns of D (generated from V ) that are
included in the word.



3164 F. K. H. PHOA

The above definitions and concepts are demonstrated in the following example.

EXAMPLE 1. Consider a general (1/16)th-fraction QC design D (i.e., p = 2)
generated by a generator matrix G = (V , In), where V = (u, v) for convenience.
There are 16 possible combinations of quaternary entries for �i = (i1, i2) for i1, i2 ∈
{0,1,2,3}. Given a word formed by a specific group of columns �w, its k-equations
k �w can always be written as linear combinations of these 16 combinations of �i. For
example,

k10 = 0(f00 + f01 + f02 + f03)

+ 1(f10 + f11 + f12 + f13 + f30 + f31 + f32 + f33)

+ 2(f20 + f21 + f22 + f23) = l1,

k02 = 0(f00 + f02 + f10 + f12 + f20 + f22 + f30 + f32)

+ 2(f01 + f03 + f11 + f13 + f21 + f23 + f31 + f33) = l6,

where l1 and l6 are defined in Zhang et al. (2011). If we perform a CA operation
on these two k-equations,

k10 ⊕ k02 = 0(f00 + f02 + f21 + f23)

+ 1(f10 + f11 + f12 + f13 + f30 + f31 + f32 + f33)

+ 2(f01 + f03 + f20 + f22).

In the resulting k-equation, the coefficient of f11 and f21 come from Lw(1+2) = 1
and Lw(2 + 2) = 0, respectively.

For a simpler notation, we may write a set of k-equations into a matrix form
K = CF , where K and F are the k-equations and frequency vectors, C is the
wordlength equation coefficient matrix or simply called k-matrix. For (1/4)th-
fractions, F = (f0, f1, f2, f3)

T , K = (k1, k2)
T and the equations of k1 and k2 in

Phoa and Xu (2009) are rewritten as

C =
(

0 1 2 1
0 2 0 2

)
.

For (1/16)th-fractions, F = (f00, f01, f02, f03, f10, f11, f12, f13, f20, f21, f22,

f23, f30, f31, f32, f33)
T , K = (k01, k10, k02, k11, k13, k20, k12, k21, k22)

T and the
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equations of l1, . . . , k10 in Zhang et al. (2011) are rewritten as

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 1 0 1 2 1 0 1 2 1 0 1 2 1
0 0 0 0 1 1 1 1 2 2 2 2 1 1 1 1
0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
0 1 2 1 1 2 1 0 2 1 0 1 1 0 1 2
0 1 2 1 1 0 1 2 2 1 0 1 1 2 1 0
0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2
0 2 0 2 1 1 1 1 2 0 2 0 1 1 1 1
0 1 2 1 2 1 0 1 0 1 2 1 2 1 0 1
0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The k-equations are ordered in the vector K under the following rules: (1) the
position of k�i1 is on the front of that of k�i2 if

∑p
q=1 Lw(i1,q) <

∑p
q=1 Lw(i2,q);

(2) if
∑p

q=1 Lw(i1,q) = ∑p
q=1 Lw(i2,q), then the position of k�i1 is on the front of

that of k�i2 if i1,u < i2,u and i1,q = i2,q for all 0 < q < u, where i1,q and i2,q are

the qth entries of �i1 and �i2, respectively. The frequency vector F is ordered in
the ascending order of its quaternary-coded decimal counterpart. The k-matrix of
higher-order-fraction QC designs (p > 1) will be discussed in the later part of this
paper.

The aliasing index can be written in the form of ρ = 2−�(a+δ)/2	, where a is a
linear combination of frequencies. Therefore, we may write all a’s into a matrix
form A = BF , where A is the aliasing index equation vector or simply called
a-equations, and B is the aliasing index equation coefficient matrix or simply
called a-matrix. Generally speaking, the aliasing index of each k �w is ρ �w(mod 2),
and a �w(mod 2) is a component of its order by definition. In addition, δ = 1 if the
sum of entries of �w is even, or 0 otherwise. According to Phoa and Xu (2009),
for (1/4)th-fractions, there is only one aliasing index for k1, so A = (a1) and
B = (0101). For (1/16)th-fractions in Zhang et al. (2011), there are three alias-
ing indexes A = (a01, a10, a11) and

B =
⎛
⎜⎝

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

⎞
⎟⎠ .

In general, the a-equations are ordered in the vector A under similar rules as k-
equations in K .

3. Some rules and theorems on the structure of quaternary-code designs.
Given a general k-equation in (1/4)pth-fraction QC designs k �w = ∑

�i∈C(p)
c�if�i ,

where c�i = 0,1 or 2, all entries of �w are quaternary and �i is the ith row of C(p),
we denote �w = ( �wl, �wp−l) as a partition into two segments: the first segment has
length l and the second segment has length p − l. Similarly, we denote all �i =
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(�il,�ip−l). In addition, if c is quaternary constant, �cl represents a vector of length l

that all entries are constant c.
The following rules suggest how a k-equation can be derived from another k-

equation. Rule 1 extends the k-equations in (1/4)pth-fraction QC designs to those
in (1/4)p+1th-fractions.

RULE 1. Given a general k-equation in a (1/4)pth-fraction QC design D0,
k �w = ∑

�i∈C(p)
c�if�i . Then all k-equations with wl+1 = 0 in a (1/4)p+1th-fraction

QC design D can be expressed as k( �wl,0, �wp−l ) = ∑3
s=0

∑
�i∈C(p)

c�if(�il ,s,�ip−l )
.

This result is obvious. If a k-equation consists of wl+1 = 0, the word described
by this k-equation includes none of the (2l + 1)th and (2l + 2)th columns of D. It
acts like considering the same k-equation in (1/4)pth-fraction QC design D0. This
rule can be used to form the basic k-equations for QC designs, which are stated in
the following corollaries.

COROLLARY 1. For a general (1/4)p+1th-fraction QC design, k
(�0l ,1,�0p−l )

=∑
�i∈C(p)

(f
(�il ,1,�ip−l )

+ f
(�il ,3,�ip−l )

+ 2f
(�il ,2,�ip−l )

), where (�il,�ip−l) represents the ith
row of C(p).

COROLLARY 2. For a general (1/4)p+1th-fraction QC design, k
(�0l ,2,�0p−l )

=
2

∑
�i∈C(p)

(f
(�il ,1,�ip−l )

+f
(�il ,3,�ip−l )

), where (�il,�ip−l) represents the ith row of C(p).

The proofs of two corollaries are given in the last section. Rule 2 considers
the k-equations of a word that consists of only one out of two binary columns
generated from every quaternary column in V .

RULE 2. Given a k-equation in a (1/4)pth-fraction QC design k�1p
=∑

�i∈C(p)
c�if(�ip−1,ip)

, where ip represents the last entry of �i, then k
(1,�3p)

=∑3
s=0

∑
�i∈C(p)

c�if(s,�ip−1,(ip+s)mod 4)
.

It provides a gateway to extend from the k-equations of (1/4)pth-fraction to
(1/4)p+1th-fraction, where the subscript vectors of the k-equations are all odd
entries. For examples, this rule helps to extend from k1 of (1/4)th-fraction to k13
of (1/16)th-fraction, or k111 of (1/64)th-fraction to k1333 of (1/256)th-fraction.

Rule 3 provides a relationship between two k-equations of words with slight
difference in the columns chosen.

RULE 3. Given a general k-equation in a (1/4)p+1th-fraction QC design
k �w = k( �wl,s1, �wp−l ), then k( �wl,s2, �wp−l ) = k �w ⊕ k

(�0l ,2,�0p−l )
, where s1 = (s2 + 2)mod 4.
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The addition of k
(�0l ,2,�0p−l )

implies that a new word is derived from the origi-
nal word with additional inclusion of the (2l − 1)th and (2l)th columns from D,
plus some columns in In so that the termwise multiplication of these additional
columns results in a vector of 1, that is, a complete aliased structure. Notice that
the inclusion of a column twice is equivalent to the exclusion of the column. In
the case when s1 is odd, the exchange between 1 and 3 represents a derivation of
different form of k-equations when the word includes either the (2l−1)th or (2l)th
column only. On the other hand, when s1 is even, the exchange between 0 and 2
represents a derivation of the k-equation of a new word that includes or excludes
both the (2l − 1)th or (2l)th columns.

Let Cz(p) be a subset of C(p) for z = 0,1,2 as follows. For z is even, Cz(p) =
{�i ∈ C(p) : i1 + · · · + ip = z(mod 4)}; otherwise, C1(p) = {�i ∈ C(p) : i1 + · · · +
ip = 1 or 3(mod 4)}. Then the general structure of a k-equation, where all entries
of �w are odd, can be derived in the following theorem.

THEOREM 1. In a (1/4)pth-fraction QC design, for all odd entries of �w = �1p ,
a k-equation is expressed as k �w = 1

∑
�i∈C1(p)

f�i + 2
∑

�i∈C2(p)
f�i .

There are 22p−1 frequencies with coefficients 1, 22p−2 frequencies with coef-
ficients 0 and 22p−2 frequencies with coefficients 2. Furthermore, among those
22p−2 frequencies with coefficients 2, there are 2p−1 frequencies that all entries
of �i2 are either 0 or 2. It is also the same for those 22p−2 frequencies with coeffi-
cients 0.

EXAMPLE 2. We consider a k-equation k11 in a general (1/16)th-fraction
QC design D. We can express k11 = 1(f01 + f10 + f21 + f12 + f03 + f30 +
f23 + f32) + 2(f02 + f20 + f11 + f33), that is, C0 = {(00), (22), (13), (31)}, C1 =
{(01), (10), (21), (12), (03), (30), (23), (32)} and C2 = {(02), (20), (11), (33)}.
By counting the above frequencies, there are 22p−1 = 8 frequencies with coef-
ficient 1, 22p−2 = 4 frequencies with coefficients 0 and 22p−2 = 4 frequencies
with coefficients 2. Furthermore, among those four frequencies with coefficients 2,
there are two frequencies (f02 and f20) that all entries of �i2 are either 0 or 2. It is
also the same for those frequencies with coefficients 0 (f00 and f22).

The last rule defines the a-equation of a word accompanied with a k-equation.

RULE 4. Given a general k-equation in a (1/4)pth-fraction QC design k �w as
in Theorem 1, then the a-equation of the corresponding word is a �w = a �w mod 2 =∑

�i∈C1(p)
f�i .

Rule 4 implies that the aliasing index of a word depends only on the number of
odd entries in �w and their positions, and the even entries basically have no effects.
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For example, k10 and k12 are expected to share the same aliasing index a10, but
k110 and k011 are expected to have different aliasing indexes, the prior has aliasing
index a110 and the latter has aliasing index a011.

Among all 4p k-equations for a general (1/4)pth-fraction QC design D, some
of them are equivalent to others and some are irrelevant. The following theorem
considers these equivalences and irrelevance and specifies a list of k-equations that
are necessary to be computed in order to obtain the properties of D.

THEOREM 2. Consider a general (1/4)pth-fraction QC design D. There ex-
ists 4p possible combinations of �w for k-equations. It is necessary and sufficient
to consider the following �w in order to obtain the properties of D:

(1) �w that all entries are even, except all entries are 0;
(2) �w that the first odd entry must be 1 for �w that consists of odd entries.

There are 2p −1 k-equations in the first group of �w and 22p−1 −2p−1 k-equations
in the second group.

EXAMPLE 3. We consider a general (1/16)th-fraction QC design D and there
are 16 possible combinations of �w listed in Example 1. According to Theorem 2,
the first group of �w has only even entries. Except {0,0}, there are three com-
binations that satisfy this situation and they are {0,2}, {2,0} and {2,2}. For the
remaining 12 combinations (with at least one odd entry), these 6 combinations
{0,3}, {2,3}, {3,0}, {3,1}, {3,2}, {3,3} are not included in consideration because
the k-equations of them are exactly equivalent to those with �w = {0,1}, {2,1},
{1,0}, {1,3}, {1,2}, {1,1}, respectively. Therefore, among all 16 possible com-
binations of �w, only 9 of them, 3 in the first group and 6 in the second group,
are necessary and sufficient to be considered in order to determine the properties
of D.

4. Code arithmetic (CA) approach for generating wordlength equations
of (1/64)th-fraction QC designs. This section extends the results of (1/16)th-
fraction QC designs that appeared in Zhang et al. (2011) and Phoa, Mukerjee
and Xu (2012), and sets of k-equations and a-equations for (1/64)th-fractions QC
designs are generated using the theorems above. These equations are applied to
derive the design properties of (1/64)th-fraction QC designs.

Following Theorem 2, 35 k-equations are sufficient to determine the properties
of a (1/64)th-fraction QC design. Specifically, seven of them belong to the first
group and 28 of them belong to the second group. Using the CA approach, we de-
rive these 35 k-equations and their corresponding a-equations from the k-equations
of (1/4)th- and (1/16)th-fractions QC designs. First, we define C(2) to be a 16×2
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matrix consisting of all 16 possible combinations of quaternary entries. Through-
out this section, we express all k-equations as a row in the k-matrix for clear and
convenient notation.

Rule 1 and two corollaries are applied to obtain k-equations where �i con-
tains at least one 0. More explicitly, to obtain k-equations with two 0s in �i,
that is, k100, k010, k001, k200, k020 and k002, we apply Corollaries 1 and 2 with
l = 0,1,2. For example, for k100, we apply Corollary 1 with l = 0. This yields
a k-equation where, for j, k = 0,1,2,3, the coefficients of f0jk , f1jk , f2jk and
f3jk are 0, 1, 2 and 1, respectively. Rule 4 suggests a100, the a-equations of k100,
such that the coefficients of f0jk , f1jk , f2jk and f3jk are 0, 1, 0 and 1, respec-
tively.

For all k-equations with one 0 in �i, we consider applying Rule 1 on k11, k13, k12,
k21 and k22 with different l. This leads to k011, k013, k012, k021, k022 when l = 0,
k101, k103, k102, k201, k202 when l = 1 and k110, k130, k120, k210, k220 when l = 2.
For example, for k101, Rule 1 suggests that �wl = �wp−l = 1. Then for every row of
C(2), denoted as (c1, c2), the coefficients of f(c1,0,c2),f(c1,1,c2),f(c1,2,c2),f(c1,3,c2)

in k101 are all equal to the coefficient of f(c1,c2) in k11.
It is straightforward to substitute 0s in all k-equations mentioned above with 2

by Rule 3. By changing one 0 into 2 in �i, we obtain k102, k120, k012, k210, k021,
k201, k202, k220, k022, k112, k132, k122, k212, k222, k121, k123, k221, k211 and k213.
For example, in order to obtain k121, Rule 3 suggests performing a CA operation
k121 = k101 ⊕ k020. The a-equation of k121 is equal to a101.

Rule 2 is applied in order to obtain the k-equations with all odd entries in �i,
including k111, k113, k131 and k133. According to Rule 2, k133 can be derived
from k11. For every row of C(2), the first and second entries are considered as
�ip−1 and ip , respectively. For example, �ip−1 = 1 and ip = 0 for f10. Then we can
determine the coefficients of frequency vectors in k133 from those in k11. Consider
�i = (10), for example. The coefficient of f10 in k11 is 1. This implies f010 = f111 =
f212 = f313 = 1 in k133 for s = 0,1,2,3. Consider �i = (02) as another example.
The coefficient of f02 in k11 is 2. This implies f002 = f103 = f200 = f301 = 2 in
k133 for s = 0,1,2,3. The other three k-equations without 0s in �i can be derived
from k133 via the CA operations suggested in Rule 3: k111 = (k133 ⊕ k020) ⊕ k002,
k113 = k133 ⊕ k020, and k131 = k133 ⊕ k002. The a-equations of k111, k113, k131 and
k133 are the same.

There are in total 35 k-equations and 7 a-equations in K and A, respectively.
Similar to (1/16)th-fraction QC designs, we may rewrite these k-equations and
a-equations into matrix forms where

K = (k001, k010, k100, k002, k011, k013, k020, k101, k103, k110, k130, k200, k012,

k021, k102, k111, k113, k131, k133, k120, k201, k210, k022, k112, k132, k121,

k123, k202, k211, k213, k220, k122, k212, k221, k222)
T ,
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F = (f000, f001, f002, f003, f010, f011, f012, f013, f020, f021, f022, f023, f030,

f031, f032, f033, f100, f101, f102, f103, f110, f111, f112, f113, f120, f121,

f122, f123, f130, f131, f132, f133, f200, f201, f202, f203, f210, f211, f212,

f213, f220, f221, f222, f223, f230, f231, f232, f233, f300, f301, f302, f303,

f310, f311, f312, f313, f320, f321, f322, f323, f330, f331, f332, f333)
T ,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0121012101210121012101210121012101210121012101210121012101210121
0000111122221111000011112222111100001111222211110000111122221111
0000000000000000111111111111111122222222222222221111111111111111
0202020202020202020202020202020202020202020202020202020202020202
0121121021011012012112102101101201211210210110120121121021011012
0121101221011210012110122101121001211012210112100121101221011210
0000222200002222000022220000222200002222000022220000222200002222
0121012101210121121012101210121021012101210121011012101210121012
0121012101210121101210121012101221012101210121011210121012101210
0000111122221111111122221111000022221111000011111111000011112222
0000111122221111111100001111222222221111000011111111222211110000
0000000000000000222222222222222200000000000000002222222222222222
0202111120201111020211112020111102021111202011110202111120201111
0121210101212101012121010121210101212101012121010121210101212101
0202020202020202111111111111111120202020202020201111111111111111
0121121021011012121021011012012121011012012112101012012112102101
0121101221011210101221011210012121011210012110121210012110122101
0121101221011210121001211012210121011210012110121012210112100121
0121121021011012101201211210210121011012012112101210210110120121
0000222200002222111111111111111122220000222200001111111111111111
0121012101210121210121012101210101210121012101212101210121012101
0000111122221111222211110000111100001111222211112222111100001111
0202202002022020020220200202202002022020020220200202202002022020
0202111120201111111120201111020220201111020211111111020211112020
0202111120201111111102021111202020201111020211111111202011110202
0121210101212101121010121210101221010121210101211012121010121210
0121210101212101101212101012121021010121210101211210101212101012
0202020202020202202020202020202002020202020202022020202020202020
0121121021011012210110120121121001211210210110122101101201211210
0121101221011210210112100121101201211012210112102101121001211012
0000222200002222222200002222000000002222000022222222000022220000
0202202002022020111111111111111120200202202002021111111111111111
0202111120201111202011110202111102021111202011112020111102021111
0121210101212101210101212101012101212101012121012101012121010121
0202202002022020202002022020020202022020020220202020020220200202

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A = (a001, a010, a100, a011, a101, a110, a111),
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B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0101010101010101010101010101010101010101010101010101010101010101
0000111100001111000011110000111100001111000011110000111100001111
0000000000000000111111111111111100000000000000001111111111111111
0101101001011010010110100101101001011010010110100101101001011010
0101010101010101101010101010101001010101010101011010101010101010
0000111100001111111100001111000000001111000011111111000011110000
0101101001011010101001011010010101011010010110101010010110100101

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The constants for calculating wordlengths are 1,1,1,2,2,2,2,2,2,2,2,2,3,

3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,6 and δ for seven a-equations
are 0,0,0,1,1,1,0. Then we apply the K and A matrix to the design properties of
a general (1/64)th-fraction QC design D with an even number of factors. Assume
D is constructed from a generator matrix G = (u, v,w, In). Theorem 3 presented
below gives an account of words of all possible types.

THEOREM 3. With reference to the 2(2n+6)−6 QC design D, assuming∑
i=1,3;j=1,3;k=0,2 fijk ,

∑
i=1,3;j=0,2;k=1,3 fijk and

∑
i=0,2;j=1,3;k=1,3 fijk are all

greater than 0, the following hold:

(a) There are 8/ρ2
100 words each with aliasing index ρ100; each 1/4 of them

have lengths k100 + 1, k120 + 3, k102 + 3 and k122 + 5.
(b) There are 8/ρ2

010 words each with aliasing index ρ010; each 1/4 of them
have lengths k010 + 1, k210 + 3, k012 + 3 and k212 + 5.

(c) There are 8/ρ2
001 words each with aliasing index ρ001; each 1/4 of them

have lengths k001 + 1, k201 + 3, k021 + 3 and k221 + 5.
(d) There are 8/ρ2

110 words each with aliasing index ρ110; each 1/4 of them
have lengths k110 + 2, k130 + 2, k112 + 4 and k132 + 4.

(e) There are 8/ρ2
101 words each with aliasing index ρ101; each 1/4 of them

have lengths k101 + 2, k103 + 2, k121 + 4 and k123 + 4.
(f) There are 8/ρ2

011 words each with aliasing index ρ011; each 1/4 of them
have lengths k011 + 2, k013 + 2, k211 + 4 and k213 + 4.

(g) There are 8/ρ2
111 words each with aliasing index ρ111; each 1/4 of them

have lengths k111 + 3, k113 + 3, k131 + 3 and k133 + 3.
(h) There are 7 words each with aliasing index 1; they have lengths k200 + 2,

k020 + 2, k002 + 2, k220 + 4, k202 + 4, k022 + 4 and k222 + 6, respectively.

All ρijk are defined as 2−�(aijk+δ)/2	, where δ = 1 for ρ110, ρ101 and ρ011, and
δ = 0 otherwise.

The proof of Theorem 3 can be done in a similar way as either the matrix expan-
sion method in the proof of Theorem 1 of Phoa and Xu (2009) or the trigonometric
approach in the proof of Theorem 2 of Zhang et al. (2011) and omitted here. The-
orem 3, in conjunction with equations of K and A, shows that the resolution and
wordlength pattern of the design D depend on u, v and w only. The following
example illustrates the calculations of the generalized resolution and generalized
wordlength pattern of D.
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EXAMPLE 4. Given the generating matrix of a 256 × 14 quaternary-code de-
sign D,

G = (u, v,w, I4) =

⎛
⎜⎜⎜⎝

1 1 2 1 0 0 0
1 2 1 0 1 0 0
1 3 3 0 0 1 0
2 1 3 0 0 0 1

⎞
⎟⎟⎟⎠ .

D can be represented by a frequency vector F = (�022,1, �02,1, �05,1, �07,1, �024),
where �0n is a vector of 0 with length n. So K = CF = (5,5,5,6,4,4,6,4,4,4,4,

6,3,3,3,3,3,3,7,3,3,3,4,2,6,2,6,4,6,2,4,5,5,5,2) and A = BF = (3,3,3,

2,2,2,1). It leads to 35 wordlengths with lengths 6, 6, 6, 8, 6, 6, 8, 6, 6, 6, 6, 8,
6, 6, 6, 6, 6, 6, 10, 6, 6, 6, 8, 6, 10, 6, 10, 8, 10, 6, 8, 10, 10, 10, 8 and seven
aliasing indexes all equal to 1/2. Theorem 3 entails 224 partial words each with
aliasing index 1/2; of these, 168 have length six and 56 have length ten. In addi-
tion, Theorem 3 entails seven complete words of length eight. Hence, in this case
the QC design D, which is a 214−6 design, has resolution 6.5 and wordlength pat-
tern (0,0,0,0,0,42,0,7,0,14,0,0,0,0). Comparing to the regular design of the
same size, this QC design has a higher resolution (6.5 versus 5.0) and it has better
aberration (A5 = 0 for QC design versus A5 
= 0 for regular design). Therefore,
this QC design is more favorable than its corresponding regular design.

Instead of performing a complete enumeration, a periodic structure for a class
of good (1/64)th-fraction QC designs with high resolution is presented in the fol-
lowing theorem.

THEOREM 4. Given a 2(2n+6)−6 QC design D0 defined by a frequency vec-
tor F0, assume D0 satisfies the conditions in Theorem 3 and it has generalized
resolution R0 = r0 + 1 − ρ0. Then for t ≥ 0, a 2(2n+126t+6)−6 QC design Dt de-
fined by Ft = F0 + (0, �163)t has generalized resolution Rt = rt + 1 − ρt , where
rt = r0 + 64t and ρt = ρ0(2−16t ) if ρ0 < 1 and ρt = 1 if ρ0 = 1.

EXAMPLE 5. Following Example 4, let F0 = (�022,1, �02,1, �05,1, �07,1, �024)

and the 256 × 14 QC design D0 has generalized resolution 6.5. Then The-
orem 4 suggests that for t = 1, a 2140−6 QC design D1 defined by Ft =
(0, �121,2, �12,2, �15,2, �17,2, �124) has rt = 6 + 64(1) = 70 and ρt = (1/2) ×
(2−16(1)) = 2−17, that is, generalized resolution 70.9999924.

5. Summary. This work provides some theoretical understandings of the
structure of a general (1/4)pth-fraction QC design. In Section 2 we show via
the Code Arithmetic approach how the k-equations and a-equations of a general
(1/4)pth-fraction QC design are developed from those of other (1/4)hth-fraction
QC designs, where p > h. Section 3 lists four rules on the structure of k-equations
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and a-equations when some entries of �w are added and/or changed. In addition,
Theorem 1 describes the general structure of k-equations when all entries are odd
and Theorem 2 suggests which k-equations are sufficient to be considered so that
the design properties can be determined. In Section 4 these rules and theorems
are applied to determine the properties of (1/64)th-fraction QC designs and the
periodic structure regarding resolution is derived.

6. Proofs.

6.1. Proof of Corollaries 1 and 2. We prove Corollary 1 via induction. It is
trivial for p = 1, because it leads to k10 and k01 for l = 0,1. Assume p = z

is true, that is, k
(�0l ,1,�0z−l )

= ∑
�i∈C(z)

(f
(�il ,1,�iz−l )

+ f
(�il ,3,�iz−l )

+ 2f
(�il ,2,�iz−l )

). For

p = z + 1, we rewrite �w as (�0l ,1,0, �0z−l), that is, insert a 0 in the (l + 2)th en-
try of �w. Applying Rule 1, we have k

(�0l ,1,0,�0z−l )
= ∑3

s=0
∑

�i∈C(z)
(f

(�il ,1,s,�iz−l )
+

f
(�il ,3,s,�iz−l )

+ 2f
(�il ,2,s,�iz−l )

). Notice that (�il, s,�iz−l) represents the ith row of
C(z + 1) for s = 0,1,2,3, and the above equation becomes k

(�0l ,1,�0(z+1)−l )
=∑3

s=0
∑

�i∈C(z+1)
(f

(�il ,1,�i(z+1)−l )
+f

(�il ,3,�i(z+1)−l )
+2f

(�il ,2,�i(z+1)−l )
). This completes the

proof of Corollary 1. The proof of Corollary 2 follows the same induction except
the formula is different.

6.2. Proof of Theorem 1. We prove Theorem 1 via induction. The cases of
p = 1 and p = 2 are true from the results of Phoa and Xu (2009) and Zhang
et al. (2011). Assume it is true for p = z is true, that is, for k �w = 1

∑
�i∈C1(z)

f�i +
2

∑
�i∈C2(z)

f�i , the sum of entries of all �i in C1(z) are odd and the sum of en-

tries of all �i in C2(z) are even. Consider p = z + 1. We start from rewrit-
ing k�1z

= 0(
∑

�i∈C0(z)
f

(�iz−1,iz)
)+ 1(

∑
�i∈C1(z)

f
(�iz−1,iz)

)+ 2(
∑

�i∈C2(z)
f

(�iz−1,iz)
). The

application of Rule 2 suggests that k
(1,�3z)

= ∑3
s=0 0(

∑
�i∈C0(z)

f
(s,�iz−1,iz+s)

) +
1(

∑
�i∈C1(z)

f
(s,�iz−1,iz+s)

) + 2(
∑

�i∈C2(z)
f

(s,�iz−1,iz+s)
). Notice that if the sum of en-

tries of (�iz−1) plus iz is odd, then s plus the sum of entries of
∑

(�iz−1) plus (iz + s)

is still odd for s = 0,1,2,3. It is also true for the even case.
Applying Rule 3, k( �wl,s2, �wp−l ) = k( �wl,s1, �wp−l ) ⊕ k

(�0l ,2,�0p−l )
, where s2 = (s1 +

2)mod 4. Lw(1+2) = Lw(3+2) = 1 implies that the frequencies with an odd sum
of entries of �i have odd coefficients. Similarly, Lw(0 + 2) = 2 and Lw(2 + 2) = 0
imply that the frequencies with an even sum of entries �i have even coefficients.
Therefore, by repeatedly applying Rule 3 to change all entries of 3 into 1 in �w,
we can express k�1z+1

= 0
∑

�i∈C0(z+1)
f�i + 1

∑
�i∈C1(z+1)

f�i + 2
∑

�i∈C2(z+1)
f�i . This

completes the proof.

6.3. Proof of Theorem 2. Consider a general (1/4)pth-fraction QC design D.
There are 4p different combinations of �w with entries in Z4 ∈ {0,1,2,3}. Among
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these �w, there are 2p of them where their entries are all even. Then it is obvious
that k�0 is obviously irrelevant to any properties of D because this k-equation does
not include any columns from V and the columns from In are complete. This leads
to the first group of �w with a total of 2p − 1 possible combinations.

Eliminating the choice with all even entries, there are 4p − 2p different �w that
consist of at least one odd entry. If we focus on the first odd entry of �w, half of these
�w start with 1 and another half start with 3. Notice that k �w and k �w′ are equivalent

if all 1 entries in �w become 3 entries in �w′ and vice versa. It is proved as follows.
Using the expression in Theorem 1, without loss of generality, k �w =

1
∑

�i∈C1(p)
f�i + 2

∑
�i∈C2(p)

f�i . A repeated use of Rule 3 on every odd entry of �w in
k �w leads to k �w′ = k �w ⊕k �w2 , where the entries of �w2 are 2 if the corresponding entry
of �w is odd, and 0 otherwise. We can express k �w2 easily by the CA operation on the
expressions of Corollary 2 and it results in k �w2 = 2

∑
�i∈C1(p)

f�i + 0
∑

�i∈C2(p)
f�i .

Then k �w′ can be expressed in the same way as k �w due to the Lee weight Lw(3) = 1.
Therefore, for all �w that consist of odd entries, it is sufficient and necessary to

consider the k-equations that the first odd entry of �w is 1, and there are (4p −2p)/2
or 22p−1 − 2p−1 �w in total.

6.4. Proof of Theorem 4. About the periodicities of rt , we start from the
original k-matrix K0 = CF0. If Ft = F0 + (0, �163)t , then Kt = CFt = C(F0 +
(0, �163)t) = K0 +C(0, �163)t . Since the second term results in a vector of length 35
and all entries are 64t , and the constants for calculating wordlengths are invariant
to t , rt = r0 + 64t .

About the periodicities of ρt , we start from the original a-matrix A0 = BF0.
Similar to the k-matrix, At = A0 + B(0, �163)t . Since the second term results in a
vector of length 7 and all entries are 32t , and the constants for calculating alias-
ing indexes are fixed at (0,0,0,1,1,1,0), ρt = 2−�(at+δ)/2	 = 2−�(a0+32t+δ)/2	 =
2−�(a0+δ)/2	2−32t/2 = ρ0(2−16t ).
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