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ASYMPTOTIC OPTIMALITY AND EFFICIENT COMPUTATION OF
THE LEAVE-SUBJECT-OUT CROSS-VALIDATION

BY GANGGANG XU1 AND JIANHUA Z. HUANG1,2

Texas A&M University

Although the leave-subject-out cross-validation (CV) has been widely
used in practice for tuning parameter selection for various nonparametric and
semiparametric models of longitudinal data, its theoretical property is un-
known and solving the associated optimization problem is computationally
expensive, especially when there are multiple tuning parameters. In this pa-
per, by focusing on the penalized spline method, we show that the leave-
subject-out CV is optimal in the sense that it is asymptotically equivalent to
the empirical squared error loss function minimization. An efficient Newton-
type algorithm is developed to compute the penalty parameters that optimize
the CV criterion. Simulated and real data are used to demonstrate the effec-
tiveness of the leave-subject-out CV in selecting both the penalty parameters
and the working correlation matrix.

1. Introduction. In recent years there has seen a growing interest in applying
flexible statistical models for analyzing longitudinal data or the more general clus-
tered data. Various semiparametric [e.g., Lin and Ying (2001), Wang, Carroll and
Lin (2005), Zeger and Diggle (1994), Zhang et al. (1998)] and nonparametric [e.g.,
Fan and Zhang (2000), Lin and Carroll (2000), Rice and Silverman (1991), Wang
(1998, 2003), Welsh, Lin and Carroll (2002), Zhu, Fung and He (2008)] models
have been proposed and studied in the literature. All of these flexible, semipara-
metric or nonparametric methods require specification of tuning parameters, such
as the bandwidth for the local polynomial kernel methods, the number of knots for
regression splines and the penalty parameter for penalized splines and smoothing
splines.

The “leave-subject-out cross-validation” (LsoCV) or more generally called
“leave-cluster-out cross-validation,” introduced by Rice and Silverman (1991), has
been widely used as the method for selecting tuning parameters in analyzing longi-
tudinal data and clustered data; see, for example, Hoover et al. (1998), Huang, Wu
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and Zhou (2002), Wang, Li and Huang (2008), Wu and Zhang (2006). The LsoCV
is intuitively appealing since the within-subject dependence is preserved by leav-
ing out all observations from the same subject together in the cross-validation. In
spite of its broad acceptance in practice, the use of LsoCV still lacks a theoret-
ical justification to date. Computationally, the existing literature has focused on
the grid search method for finding the minimizer of the LsoCV criterion (LsoCV
score) [Chiang, Rice and Wu (2001), Huang, Wu and Zhou (2002), Wang, Li and
Huang (2008)], which is rather inefficient and even prohibitive when there are
multiple tuning parameters. The goal of this paper is twofold: First, we develop
a theoretical justification of the LsoCV by showing that the LsoCV criterion is
asymptotically equivalent to an appropriately defined loss function; second, we
develop a computationally efficient algorithm to optimize the LsoCV criterion for
selecting multiple penalty parameters for penalized splines.

We shall focus our presentation on longitudinal data, but all discussions in
this paper apply to clustered data analysis. Suppose we have n subjects and
subject i, i = 1, . . . , n, has observations (yij ,xij ), j = 1, . . . , ni , with yij be-
ing the j th response and xij being the corresponding vector of covariates. De-
note yi = (yi1, . . . , yini

)T and X̃i = (xi1, . . . ,xini
). The marginal non- and semi-

parametric regression model [Welsh, Lin and Carroll (2002), Zhu, Fung and He
(2008)] assumes that the mean and covariance matrix of the responses are given
by

μij = E(yij |X̃i ) = xij0β0 +
m∑

k=1

fk(xijk), cov(yi |X̃i ) = �i ,(1)

where β0 is a vector of linear regression coefficients, fk , k = 1, . . . ,m, are un-
known smooth functions, and �i’s are within-subject covariance matrices. Denote
μi = (μi1, . . . ,μini

)T . By using a basis expansion to approximate each fk , μi can
be approximated by μi ≈ Xiβ for some design matrix Xi and unknown parameter
vector β , which then can be estimated by minimizing the penalized weighted least
squares

pl(β) =
n∑

i=1

(yi − Xiβ)T W−1
i (yi − Xiβ) +

m∑
k=1

λkβ
T Skβ,(2)

where Wi’s are working correlation matrices that are possibly misspecified, Sk

is a semi-positive definite matrix such that βT Skβ serves as a roughness penalty
for fk , and λ = (λ1, . . . , λm) is a vector of penalty parameters.

Methods for choosing basis functions, constructing the corresponding design
matrices Xi’s and defining the roughness penalty matrices are well established in
the statistics literature. For example, B-spline basis and basis obtained from re-
producing kernel Hilbert spaces are commonly used. Roughness penalty matrices
can be formed corresponding to the squared second-difference penalty, the squared
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second derivative penalty, the thin-plate splines penalty or using directly the repro-
ducing kernels. We refer to the books by Green and Silverman (1994), Gu (2002)
and Wood (2006) for thorough treatments of this subject.

The idea of using working correlation for longitudinal data can be traced back
to the generalized estimating equations (GEE) of Liang and Zeger (1986), where
it is established that the mean function can be consistently estimated with the cor-
rect inference even when the correlation structure is misspecified. Liang and Zeger
(1986) further demonstrated that using a possibly misspecified working correlation
structure W has the potential to improve the estimation efficiency over methods
that completely ignore the within-subject correlation. Similarly, results have been
obtained in the nonparametric setting in Welsh, Lin and Carroll (2002) and Zhu,
Fung and He (2008). Commonly used working correlation structures include com-
pound symmetry and autoregressive models; see Diggle et al. (2002) for a detailed
discussion.

In the case of independent data, Li (1986) established the asymptotic optimality
of the generalized cross-validation (GCV) [Craven and Wahba (1979)] for penalty
parameter selection by showing that minimizing the GCV criterion is asymptoti-
cally equivalent to minimizing a suitably defined loss function. To understand the
theoretical property of LsoCV, we ask the following question in this paper: What
loss function does the LsoCV mimic or estimate and how good is this estimation?
We are able to show that the unweighted mean squared error is the loss function
that LsoCV is targeting. Specifically, we obtain that, up to a quantity that does not
depend on the penalty parameters, the LsoCV score is asymptotically equivalent to
the mean squared error loss. Our result provides the needed theoretical justification
of the wide use of LsoCV in practice.

In two related papers, Gu and Ma (2005) and Han and Gu (2008) developed
modifications of the GCV for dependent data under assumptions on the correla-
tion structure and established the optimality of the modified GCVs. Although their
modified GCVs work well when the correlation structure is correctly specified up
to some unknown parameters, they need not be suitable when there is not enough
prior knowledge to make such a specification or the within-subject correlation is
too complicated to be modeled nicely with a simple structure. The main differ-
ence between LsoCV and these modified GCVs is that LsoCV utilizes working
correlation matrices in the estimating equations and allows misspecification of the
correlation structure. Moreover, since the LsoCV and the asymptotic equivalent
squared error loss are not attached to any specific correlation structure, LsoCV can
be used to select not only the penalty parameters but also the correlation structure.

Another contribution of this paper is the development of a fast algorithm for
optimizing the LsoCV criterion. To avoid computation of a large number of ma-
trix inversions, we first derive an asymptotically equivalent approximation of the
LsoCV criterion and then derive a Newton–Raphson type algorithm to optimize
this approximated criterion. The algorithm is particularly useful when we need to
select multiple penalty parameters.
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The rest of the paper is organized as follows. Section 2 presents the main the-
oretical results. Section 3 proposes a computationally efficient algorithm for opti-
mizing the LosCV criterion. Results from some simulation studies and a real data
analysis are given in Sections 4 and 5. All technical proofs and computational im-
plementations are collected in the Appendix and in the supplementary materials
[Xu and Huang (2012)].

2. Leave-subject-out cross validation. Let μ̂(·) denote the estimate of the
mean function obtained by using basis expansion of unknown functions fk’s (k =
1, . . . ,m) and solving the minimization problem (2) for β . Let μ̂[−i](·) be the
estimate of the mean function μ(·) by the same method but using all the data
except observations from subject i, 1 ≤ i ≤ n. The LsoCV criterion is defined as

LsoCV(W,λ) = 1

n

n∑
i=1

{
yi − μ̂[−i](Xi )

}T {
yi − μ̂[−i](Xi )

}
.(3)

By leaving out all observations from the same subject, the within-subject correla-
tion is preserved in LsoCV. Before giving the formal justification of LsoCV, we
review a heuristic justification in Section 2.1. Section 2.2 defines the suitable loss
function. Section 2.3 lists the regularity conditions and Section 2.4 provides an
example illustrating how the regularity conditions in Section 2.3 can be verified
using more primitive conditions. Section 2.5 presents the main theoretical result
about the optimality of LsoCV.

2.1. Heuristic justification. The initial heuristic justification of LsoCV by
Rice and Silverman (1991) is that it mimics the mean squared prediction error
(MSPE). Consider some new observations (Xi ,y∗

i ), taken at the same design points
as the observed data. For a given estimator of the mean function μ(·), denoted as
μ̂(·), the MSPE is defined as

MSPE = 1

n

n∑
i=1

E
∥∥y∗

i − μ̂(Xi )
∥∥2 = 1

n
tr(�) + 1

n

n∑
i=1

E
∥∥μ(Xi ) − μ̂(Xi )

∥∥2
.

Using the independence between μ̂[−i](·) and yi , we obtain that

E
{
LsoCV(W,λ)

} = 1

n
tr(�) + 1

n

n∑
i=1

E
∥∥μ(Xi ) − μ̂[−i](Xi )

∥∥2
,

where � = diag{�1, . . . ,�n}. When n is large, μ̂[−i](·) should be close to
μ̂(·), the estimate that uses observations from all subjects. Thus, we expect
E{LsoCV(W,λ)} to be close to the MSPE.
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2.2. Loss function. We shall provide a formal justification of LsoCV by
showing that the LsoCV is asymptotically equivalent to an appropriately de-
fined loss function. Denote Y = (yT

1 , . . . ,yT
n )T , X = (XT

1 , . . . ,XT
n )T , and W =

diag{W1, . . . ,Wn}. Then, for a given choice of λ and W, the minimizer of (2) has
a closed-form expression

β̂ =
(

XT W−1X +
m∑

k=1

λkSk

)−1

XT W−1Y.(4)

The fitted mean function evaluated at the design points is given by

μ̂(X|Y,W,λ) = Xβ̂ = A(W,λ)Y,(5)

where A(W,λ) is the hat matrix defined as

A(W,λ) = X

(
XT W−1X +

m∑
k=1

λkSk

)−1

XT W−1.(6)

From now on, we shall use A for A(W,λ) without causing any confusion.
For a given estimator μ̂(·) of μ(·), define the mean squared error (MSE) loss as

the true loss function

L(μ̂) = 1

n

n∑
i=1

{
μ̂(Xi ) − μ(Xi)

}T {
μ̂(Xi) − μ(Xi )

}
.(7)

Using (5), we obtain that, for the estimator obtained by minimizing (2), the true
loss function (7) becomes

L(W,λ) = 1

n
(AY − μ)T (AY − μ)

(8)

= 1

n
μT (I − A)T (I − A)μ + 1

n
εT AT Aε − 2

n
μT (

I − AT )
Aε,

where μ = (μ(X1)
T , . . . ,μ(Xn)

T )T , ε = Y − μ. Since E(ε|X̃1, . . . , X̃n) = 0 and
Var(ε|X̃1, . . . , X̃n) = �, the risk function can be derived as

R(W,λ) = E
{
L(W,λ)

} = 1

n
μT (I − A)T (I − A)μ + 1

n
tr

(
AT A�

)
.(9)

2.3. Regularity conditions. This section states some regularity conditions
needed for our theoretical results. Noticing that unless W = I, A is not symmet-
ric. We define a symmetric version of A as Ã = W−1/2AW1/2. Let Cii be the
diagonal block of Ã2 corresponding to the ith subject. With some abuse of no-
tation (but clear from the context), denote by λmax(·) and λmin(·) the largest and
the smallest eigenvalues of a matrix. The regularity conditions involve the quantity
ξ(�,W) = λmax(�W−1)λmax(W), which takes the minimal value λmax(�) when
W = I or W = �. Let ei = �

−1/2
i εi and ui be ni × 1 vectors such that uT

i ui = 1,
i = 1, . . . , n.
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Condition 1. For some K > 0, E{(uT
i ei )

4} ≤ K , i = 1, . . . , n.
Condition 2. (i) max1≤i≤n{tr(Aii)} = O(tr(A)/n) = o(1);

(ii) max1≤i≤n{tr(Cii)} = o(1).
Condition 3. ξ(�,W)/n = o(R(W,λ)).
Condition 4. ξ(�,W){n−1 tr(A)}2/{n−1 tr(AT A�)} = o(1).
Condition 5. λmax(W)λmax(W−1)O(n−2 tr(A)2) = o(1).

Condition 1 is a mild moment condition that requires that each component of
the standardized residual ei = �

−1/2
i εi has a uniformly bounded fourth moment.

In particular, when εi’s are from the Gaussian distribution, the condition holds
with K = 3.

Condition 2 extends the usual condition on controlling leverage, used in theoret-
ical analysis of linear regression models. Note that {tr(Aii)} can be interpreted as
the leverage of subject i, measuring the contribution to the fit from data of subject i

and tr(A)/n is the average of the leverages. This condition says that the maximum
leverage cannot be arbitrarily larger than the average leverage or, in other words,
there should not be any dominant or extremely influential subjects. In the special
case that all subjects have the same design matrices, the condition automatically
satisfies since tr(Aii) = tr(A)/n for all i = 1, . . . , n. Condition 2 is likely to be
violated if the ni’s are very unbalanced. For example, if 10% of subjects have 20
observations and the rest of the subjects only have 2 or 3 observations each, then
max1≤i≤n{tr(Aii)}/{n−1 tr(A)} can be very large.

When ni’s are bounded, any reasonable choice of W would generally yield a
bounded value of the quantity ξ(�,W), and condition 3 reduces to nR(W,λ) →
∞, which simply says that the parametric rate of convergence of risk O(n−1) is not
achievable. This is a mild condition since we are considering nonparametric esti-
mation. When ni’s are not bounded, condition 3’s verification should be done on a
case-by-case basis. As a special case, recent results for the longitudinal function es-
timation by Cai and Yuan (2011) indicate that condition 3 would be satisfied in this
particular setting if ξ(�,W)/n∗ = O(1) and n∗/n1/2r → 0 or ξ(�,W)/n∗ = o(1)

and n∗/n1/2r → ∞ for some r > 1, where n∗ = ( 1
n

∑n
i=1

1
ni

)−1 is the harmonic
mean of n1, . . . , nn. This conclusion holds for both fixed common designs and
independent random designs.

Condition 4 essentially says that ξ(�,W){n−1 tr(A)}2 = o(R(W,λ)). It is
straightforward to show that the left-hand side is bounded from above by
c(�W−1)c(W){tr(Ã)/n}2/{tr(Ã2)/n}, where c(M) = λmax(M)/λmin(M) is the
condition number of a matrix M. If ni’s are bounded, for choices of W such
that �W−1 and W are not singular, to ensure condition 4 holds it suffices to
have that {tr(Ã)/n}2/{tr(Ã2)/n} = o(1). For regression splines (λ = 0), this con-
dition holds if p/n → 0 where p is the number of basis functions used, since
tr(Ã2) = tr(Ã) = p. For penalized splines and smoothing splines, we provide a
more detailed discussion in Section 2.4.
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If the working correlation matrix W is chosen to be well-conditioned such
that its condition number λmax(W)/λmin(W) is bounded, condition 5 reduces to
tr(A)/n → 0, which can be verified as condition 4.

Conditions 3–5 all indicate that a bad choice of the working correlation ma-
trix W may deteriorate the performance of using the LsoCV. For example, condi-
tions 3–5 may be violated when �−1W or W is nearly singular. Thus, in practice,
it is wise to avoid using a working correlation W that is nearly singular.

We do not make the assumption that ni’s are bounded. However, ni obviously
cannot grow too fast relative to the number of subjects n. In particular, if ni’s are
too large, λmax(�W−1) can be fairly large unless W ≈ �, and λmax(W) can be
fairly large due to increase of dimensions of the working correlation matrices for
individual subjects. Thus, conditions 3–5 implicitly impose a limit to the growth
rate of ni .

2.4. An example: Penalized splines with B-spline basis functions. In this sec-
tion, we provide an example where conditions 3–5 can be discussed in a more
specific manner. Consider model (1) with only one nonparametric covariate x and
thus there is only one penalty parameter λ. We further assume that all eigeinval-
ues of matrices W and �W−1 are bounded from below and above, that is, there
exist positive constants c1 and c2 such that c1 ≤ λmin(W) ≤ λmax(W) ≤ c2 and
c1 ≤ λmin(�W−1) ≤ λmax(�W−1) ≤ c2. Under this assumption, it is straightfor-
ward to show that conditions 3–5 reduce to the following conditions.

Condition 3′. nR(W, λ) → ∞ as n → ∞.
Condition 4′. {n−1 tr(A)}2/{n−1 tr(Ã2)} = o(1).
Condition 5′. tr(A)/n = o(1).

Using Lemmas 4.1 and 4.2 from Han and Gu (2008) and similar arguments, we
have the following three inequalities:

tr
{
Ã(c2λ, I)

} ≤ tr
{
Ã(λ,W)

} ≤ tr
{
Ã(c1λ, I)

}
,(10)

tr
{
Ã2(c2λ, I)

} ≤ tr
{
Ã2(λ,W)

} ≤ tr
{
Ã2(c1λ, I)

}
(11)

and

c1c
−1
3

{
I − Ã(c2λ, I)

}
(12)

≤ {
I − A(λ,W)

}T {
I − A(λ,W)

} ≤ c2c3
{
I − Ã(c2λ, I)

}
,

where c3 = exp{c2(1 + (c−1
1 − c−1

2 )2 + (c−1
1 − c−1

2 ))}. These inequalities and the
definition of the risk function R(W, λ) imply that we need only to check condi-
tions 3′–5′ for the case that W = I. In particular, (10)–(12) imply that

c1c
−1
3 μT {

I − Ã(c2λ, I)
}2

μ + c2
1 tr

{
Ã2(c2λ, I)

}
≤ nR(W, λ) ≤ c2c3μ

T {
I − Ã(c1λ, I)

}2
μ + c2

2 tr
{
Ã2(c1λ, I)

}
,
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and, therefore, to show condition 3′, it suffices to show

μT {
I − Ã(λ, I)

}2
μ → ∞ or tr

{
Ã2(λ, I)

} → ∞(13)

as n → ∞.
We now use existing results from the literature to show how to verify condi-

tions 3′–5′. Note that the notation used in the literature of penalized splines and
smoothing splines is not always consistent. To fix notation, we denote for the rest
of this section that λ∗ = λ/N and Ã∗(λ∗) = Ã(λ, I), where N is the total number
of observations from all subjects.

Let r denote the order of the B-splines and consider a sequence of knots defined
on the interval [a, b], a = t−(r−1) = · · · = t0 < t1 < · · · < tKn < tKn+1 = · · · =
tKn+r = b. Define B-spline basis functions recursively as

Bj,1(x) =
{

1, tj ≤ x < tj+1,

0, otherwise,

Bj,r (x) = x − tj

tj+r−1 − tj
Bj,r−1(x) + tj+r − x

tj+r − tj+1
Bj+1,r−1(x)

for j = −(r − 1), . . . ,Kn. When this B-spline basis is used for basis expansion,
the j th row of Xi is XT

i(j) = (B−(r−1),r (xij ), . . . ,BKn,r (xij )), for j = 1, . . . , ni

and i = 1, . . . , n. When the penalty is the integrated squared qth derivative of the
spline function with q ≤ r − 1, that is,

∫
(f (q))2, the penalty term can be written in

terms of the spline coefficient vector β as λβT �T
q R�qβ , where R is a (Kn + r −

q)× (Kn + r −q) matrix with Rij = ∫ b
a Bj,r−q(x)Bi,r−q(x) dx and �q is a matrix

of weighted qth order difference operator [Claeskens, Krivobokova and Opsomer
(2009)].

We make the following assumptions: (a) δ = max0≤j≤Kn(tj+1 − tj ) is of the
order O(K−1

n ) and δ/min0≤j≤Kn(tj+1 − tj ) ≤ M for some constant M > 0;
(b) supx∈[a,b] |Qn(x) − Q(x)| = o(K−1

n ), where Qn and Q are the empirical and
true distribution function of all design points {x1, . . . , xN }; (c) Kn = o(N). Define
quantity Kq = (Kn + r − q)(λ∗c̃1)

1/(2q) with some constant c̃1 > 0 depending on
q and the design density. Claeskens, Krivobokova and Opsomer (2009) showed
that, under above assumptions, if Kq < 1, tr{Ã∗(λ∗)} and tr{Ã∗2(λ∗)} are both of

the order O(Kn) and μT {I − Ã∗(λ∗)}2μ = O(λ∗2NK
2q
n + NK−2r

n ); if Kq ≥ 1,
tr{Ã∗(λ∗)} and tr{Ã∗2(λ∗)} are of order O(λ∗−1/(2q)) and μT {I − Ã∗(λ∗)}2μ =
O(Nλ∗ +NK

−2q
n ). Using these results and the results following inequalities (10)–

(12), it is straightforward to show that if λ∗ = 0 (for regression splines), letting
Kn → ∞ and Kn/n → 0 is sufficient to guarantee conditions 3′–5′, and if λ∗ 
= 0
(for penalized splines), further assuming λ∗ → 0 and nλ∗1/(2q) → ∞ ensures the
validity of conditions 3′–5′.

When Kq ≥ 1, the asymptotic property of the penalized spline estimator is close
to that of smoothing splines, where the number of internal knots Kn = N . In
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fact, as discussed in Han and Gu (2008), for smoothing splines, it typically holds
that tr{Ã∗(λ∗)} and tr{Ã∗2(λ∗)} are of order O(λ∗−1/d) and μT {I − Ã∗(λ∗)}2μ =
O(Nλ∗) for some d > 1 as N → ∞ and λ∗ → 0; see also Craven and Wahba
(1979), Li (1986) and Gu (2002). Therefore, if one has λ∗ → 0 and nλ∗1/d → ∞,
conditions 3′–5′ can be verified for smoothing splines.

2.5. Optimality of leave-subject-out CV. In this subsection, we provide a the-
oretical justification of using the minimizer of LosCV(W,λ) to select the optimal
value of the penalty parameters λ. We say that the working correlation matrix W
is predetermined if it is determined by observation times and/or some other co-
variates. One way to obtain such W is to use some correlation function plugged
in with estimated parameters. Naturally, it is reasonable to consider the value of λ
that minimizes the true loss function L(W,λ) as the optimal value of the penalty
parameters for a predetermined W. However, L(W,λ) cannot be evaluated using
data alone since the true mean function in the definition of L(W,λ) is unknown.
One idea is to use an unbiased estimate of the risk function R(W,λ) as a proxy of
L(W,λ). Define

U(W,λ) = 1

n
YT (I − A)T (I − A)Y + 2

n
tr(A�).(14)

It is easy to show that

U(W,λ) − L(W,λ) − 1

n
εT ε = 2

n
μT (I − A)T ε − 2

n

{
εT Aε − tr(A�)

}
,(15)

which has expectation zero. Thus, if � is known, U(W,λ)−εT ε/n is an unbiased
estimate of the risk R(W,λ). Actually, the estimator is consistent, as stated in the
following theorem.

THEOREM 2.1. Under conditions 1–4, for a predetermined W and a nonran-
dom λ, as n → ∞,

L(W,λ) − R(W,λ) = op

(
R(W,λ)

)
and

U(W,λ) − L(W,λ) − 1

n
εT ε = op

(
L(W,λ)

)
.

This theorem shows that the function U(W,λ) − εT ε/n, the loss function
L(W,λ) and the risk function R(W,λ) are asymptotically equivalent. Thus, if
� is known, U(W,λ) − εT ε/n is a consistent estimator of the risk function and,
moreover, U(W,λ) can be used as a reasonable surrogate of L(W,λ) for select-
ing the penalty parameters, since the εT ε/n term does not depend on λ. However,
U(W,λ) depends on knowledge of the true covariance matrix �, which is usually
not available. The following result states that the LsoCV score provides a good
approximation of U(W,λ), without using the knowledge of �.



3012 G. XU AND J. Z. HUANG

THEOREM 2.2. Under conditions 1–5, for a predetermined W and a nonran-
dom λ, as n → ∞,

LsoCV(W,λ) − U(W,λ) = op

(
L(W,λ)

)
and, therefore,

LsoCV(W,λ) − L(W,λ) − 1

n
εT ε = op

(
L(W,λ)

)
.

This theorem shows that minimizing LsoCV(W,λ) with respect to λ is asymp-
totically equivalent to minimizing U(W,λ) and is also equivalent to minimizing
the true loss function L(W,λ). Unlike U(W,λ), LsoCV(W,λ) can be evaluated
using the data. The theorem provides the justification of using LsoCV, as a consis-
tent estimator of the loss or risk function, for selecting the penalty parameters.

REMARK 1. Although the above results are presented for selection of the
penalty parameter λ for penalized splines, the results also hold for selection of
knot numbers (or number of basis functions) Kn for regression splines when λ = 0
and Kn is the tuning parameter to be selected.

REMARK 2. Since the definition of the true loss function (7) does not depend
on the working correlation structure W, we can use this loss function to compare
performances of different choices of W, for example, compound symmetry or au-
toregressive, and then choose the best one among several candidates. Thus, the
result in Theorem 2.2 also provides a justification for using the LsoCV to select
the working correlation matrix. This theoretical implication is also confirmed in
a simulation study in Section 4.3. When using the LsoCV to select the working
correlation matrix, we recommend to use regression splines, that is, setting λ = 0,
because this choice simplifies computation and provides more stable finite sample
performance.

3. Efficient computation. In this section, we develop a computationally effi-
cient Newton–Raphson-type algorithm to minimize the LsoCV score.

3.1. Shortcut formula. The definition of LsoCV would indicate that it is nec-
essary to solve n separate minimization problems in order to find the LsoCV score.
However, a computational shortcut is available that requires solving only one min-
imization problem that involves all data. Recall that A is the hat matrix. Let Aii

denote the diagonal block of A corresponding to the observations of subject i.

LEMMA 3.1 (Shortcut formula). The LsoCV score satisfies

LsoCV(W,λ) = 1

n

n∑
i=1

(yi − ŷi )
T (Iii − Aii)

−T (Iii − Aii)
−1(yi − ŷi ),(16)

where Iii is a ni × ni identity matrix, and ŷi = μ̂(Xi).
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This result, whose proof is given in the supplementary material [Xu and Huang
(2012)], extends a similar result for independent data [e.g., Green and Silverman
(1994), page 31]. Indeed, if each subject has only one observation, then (16) re-
duces to LsoCV = (1/n)

∑n
i=1(yi − ŷi )

2/(1 − aii)
2, which is exactly the shortcut

formula for the ordinary cross-validation score.

3.2. An approximation of leave-subject-out CV. A close inspection of the
short-cut formula of LsoCV(W,λ) given in (16) suggests that the evaluation of
LsoCV(W,λ) can still be computationally expensive because of the requirement
of matrix inversion and the formulation of the hat matrix A. To further reduce the
computational cost, using Taylor’s expansion (Iii − Aii)

−1 ≈ Iii + Aii , we obtain
the following approximation of LsoCV(W,λ):

LsoCV∗(W,λ) = 1

n
YT (I − A)T (I − A)Y + 2

n

n∑
i=1

êT
i Aii êi ,(17)

where êi is the part of ê = (I − A)Y corresponding to subject i. The next theorem
shows that this approximation is a good one in the sense that its minimization is
asymptotically equivalent to the minimization of the true loss function.

THEOREM 3.1. Under conditions 1–5, for a predetermined W and a nonran-
dom λ, as n → ∞, we have

LsoCV∗(W,λ) − L(W,λ) − 1

n
εT ε = op

(
L(W,λ)

)
.

This result and Theorem 2.2 together imply that LsoCV∗(W,λ) and
LsoCV(W,λ) are asymptotically equivalent, that is, for a predetermined W and
a nonrandom λ, LsoCV(W,λ) − LsoCV∗(W,λ) = op(L(W,λ)). The proof of
Theorem 3.1 is given in the Appendix.

We developed an efficient algorithm to minimizing LsoCV∗(W,λ) with respect
to λ for a pre-given W based on the works of Gu and Wahba (1991) and Wood
(2004). The idea is to optimize the log transform of λ using the Newton–Raphson
method. The detailed algorithm is described in the supplementary material [Xu and
Huang (2012)] and it can be shown that, for LsoCV∗(W,λ), the overall computa-
tional cost for each Newton–Raphson iteration is O(Np), which is much smaller
than the cost of directly minimizing LsoCV(W,λ) (O(Np2)) when the total num-
ber of used basis functions p is large.

4. Simulation studies.

4.1. Function estimation. In this section, we illustrate the finite-sample per-
formance of LsoCV∗ in selecting the penalty parameters. In each simulation run,
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we set n = 100 and ni = 5, i = 1, . . . , n. A random sample is generated from the
model

yij = f1(x1,i ) + f2(x2,ij ) + εij , j = 1, . . . ,5, i = 1, . . . ,100,(18)

where x1 is a subject level covariate and x2 is an observational level covariate, both
of which are drawn from Uniform(−2,2). Functions used here are from Welsh, Lin
and Carroll (2002):

f1(x) = √
z(1 − z) sin

(
2π

1 + 2−3/5

1 + z−3/5

)
,

f2(x) = sin(8z − 4) + 2 exp
(−256(z − 0.5)2)

,

where z = (x + 2)/4. The error term εij ’s are generated from a Gaussian distri-
bution with zero mean, variance σ 2 and the compound symmetry within-subject
correlation, that is,

Corr(εij , εkl) =
⎧⎨
⎩

1, if i = j = k = l,

ρ, if i = k, j 
= l,

0, otherwise,
(19)

j, l = 1, . . . ,5, i, k = 1, . . . ,100. In this subsection, we take σ = 1 and ρ = 0.8.
A cubic spline with 10 equally spaced interior knots in [−2,2] was used for esti-
mating each function. Functions were estimated by minimizing (2) with two work-
ing correlations: the working independence (denoted as W1 = I) and the com-
pound symmetry with ρ = 0.8 (denoted as W2). Penalty parameters were selected
by minimizing LsoCV* defined in (17). The top two panels of Figure 1 show that
the biases using W1 and W2 are almost the same, which is consistent with the
conclusion in Zhu, Fung and He (2008) that the bias of function estimation us-
ing regression splines does not depend on the choice of the working correlation.
The bottom two panels indicate that using the true correlation structure W2 yields
more efficient function estimation, and the message is more clear in the estimation
of f2(x).

4.2. Comparison with an existing method. Assuming that the structure of W is
known up to a parameter γ and the true covariance matrix � is attained at γ = γ0,
Han and Gu (2008) proposed to simultaneously select γ and λ by minimizing the
following criterion:

V∗(W,λ) = log
{
YT W1/2(I − Ã)2W1/2Y/N

} − 1

N
log |W| + 2 tr(A)

N − tr(A)
,(20)

where N is the total number of observations. They proved that V* is asymptotically
optimal in selecting both the penalty parameter λ and the correlation parameter γ ,
provided that the within subject correlation structure is correctly specified. In this
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FIG. 1. Simulation results for function estimation based on 200 Monte Carlo runs. Functions are
evaluated over 100 equally spaced grid points in [−2,2]. Top panels: estimated functions: solid—true
functions; dashed—average of estimates using W1; dotted—average of estimates using W2 (not
distinguishable with dashed). Bottom panels: variance of estimated functions: solid—estimates us-
ing W1; dashed—estimates using W2.

section, we compare the finite sample performance of LsoCV∗ and V* in selecting
the penalty parameter when the working correlation matrix W is given and fixed.

We generated data using (18) and (19) as in the previous subsection and consid-
ered different parameters for the correlation matrix. In particular, we fixed ρ = 0.8
and varied the noise standard deviation σ from 0.5 to 1; we also fixed σ = 1
and varied ρ from −0.2 to 0.9. A cubic spline with 10 equally spaced interior
knots was used for each unknown regression function. For each simulation run, to
compare the effectiveness of two selection criteria for a given working correlation
matrix W, we calculated the ratio of true losses at different choices of penalty pa-
rameters: L(W,λV∗)/L(W,λLsoCV∗) and L(W,λOpt)/L(W,λLsoCV∗), where λV∗
and λLsoCV∗ are penalty parameters selected by using V* and LsoCV*, respec-
tively, and λOpt is obtained by minimizing the true loss function defined in (7)
assuming the mean function μ(·) is known.

In the first experiment, the true correlation matrix was used as the working cor-
relation matrix, denoted as W1. This is the case that V* is expected to work well
according to Han and Gu (2008). Results in Figure 2 indicate that performances of
LsoCV* and V* are comparable for this case regardless of values of σ or ρ. In the
second experiment, the working correlation structure was chosen to be different
from the true correlation structure. Specifically, the working correlation matrix,
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FIG. 2. Relative efficiency of LsoCV* to V* and to the true loss when the working correlation
matrix is the same as the true correlation matrix.

denoted as W2, is a truncated version of (19) where the correlation coefficient be-
tween εi,j1 and εi,j2 is set to ρ if |j1 − j2| = 1 and 0 if |j1 − j2| ≥ 2. Results in
Figure 3 show that LsoCV* becomes more effective than V* in terms of minimiz-
ing the true loss of estimating the true mean function μ̂(·) as σ or ρ increases.
These results are understandable since V* is applied to a situation that it is not
designed for and its asymptotic optimality does not hold. Moreover, from the right
two panels of Figures 2 and 3, we see that the minimum value of LsoCV* is rea-
sonably close to the true loss function assuming the knowledge of the true function,
as indicated by the conclusion of Theorem 3.1.

4.3. Correlation structure selection. We conducted a simulation study to eval-
uate the performance of LsoCV* in selecting the working correlation matrix W.
The data was generated using the model (18) with σ = 1, ni = 5 for all i =
1, . . . , n. In this experiment, both x1 and x2 are set to be observational level covari-
ates drawn from Uniform(−2,2). Four types of within-subject correlation struc-
tures were considered: independence (IND), compound symmetry with correlation
coefficient ρ (CS), AR(1) with lag-one correlation ρ (AR), and unstructured cor-
relation matrix with ρ12 = ρ23 = 0.8, ρ13 = 0.3 and 0 otherwise (UN). Data were
generated using one of these correlation structures and then the LsoCV* was used
to select the best working correlation from the four possible candidates. A cubic
spline with 10 equally spaced interior knots in [−2,2] was used to model each
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FIG. 3. Relative efficiency of LsoCV* to V* and to the true loss when the working correlation
matrix is different from the true correlation matrix.

unknown function and we set the penalty parameter vector λ = 0. Table 1 sum-
marizes the results based on 200 simulation runs for each setup. We observe that
LsoCV* works well: the true correlation structure is selected in the majority of
times.

5. A real data example. As a subset from the Multi-center AIDS Cohort
Study, the data set includes the repeated measurements of CD4 cell counts and
percentages on 283 homosexual men who became HIV-positive between 1984 and
1991. All subjects were scheduled to take their measurements at semi-annual vis-
its. However, since many subjects missed some of their scheduled visits, there are
unequal numbers of repeated measurements and different measurement times per
subject. Further details of the study can be found in Kaslow et al. (1987).

Our goal is a statistical analysis of the trend of mean CD4 percentage deple-
tion over time. Denote by tij the time in years of the j th measurement of the ith
individual after HIV infection, by yij the ith individual’s CD4 percentage at time

tij and by X
(1)
i the ith individual’s smoking status with values 1 or 0 for the ith

individual ever or never smoked cigarettes, respectively, after the HIV infection.
To obtain a clear biological interpretation, we define X

(2)
i to be the ith individual’s

centered age at HIV infection, which is obtained by the ith individual’s age at in-
fection subtract the sample average age at infection. Similarly, the ith individual’s
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TABLE 1
Simulation results for working correlation structure selection

Selected structure

n ρ True structure IND CS AR UN

50 0.3 IND 97.0 2.0 1.0 0
CS 8.5 78.0 13.5 0
AR 13.5 10.0 76.5 0
UN 1.5 1.5 21.5 75.5

0.5 IND 96.5 2.5 1.0 0
CS 3.0 78.5 18.5 0
AR 4.0 9.5 86.5 0
UN 3.5 4.0 11.5 81.0

0.8 IND 98.5 1.0 0.5 0
CS 3.5 74.0 22.0 0.5
AR 5.5 21.0 71.0 2.5
UN 5.5 1.0 8.5 85.0

100 0.3 IND 95.0 3.0 2.0 0
CS 2.0 84.5 13.5 0
AR 3.5 8.5 88.0 0
UN 0 1.0 13.5 85.5

0.5 IND 99.5 0.5 0 0
CS 2.5 81.0 16.5 0
AR 1.0 6.0 93.0 0
UN 2.0 0.5 10.0 87.5

0.8 IND 99.0 1.0 0 0
CS 2.5 73.5 24.0 0
AR 2.0 20.0 76.5 1.5
UN 5.5 2.0 9.0 83.5

150 0.3 IND 98.5 1.0 0.5 0
CS 2.0 85.0 13.0 0
AR 2.5 5.5 92.0 0
UN 0 0 16.5 83.5

0.5 IND 100 0 0 0
CS 1.0 81.5 17.5 0
AR 2.5 8.5 89.0 0
UN 0.5 0 12.0 87.5

0.8 IND 99.5 0.5 0 0
CS 1.0 78.0 20.0 1.0
AR 0.5 18.5 77.5 3.5
UN 1.0 2.0 6.5 90.5

centered pre-infection CD4 percentage, denoted by X
(3)
i , is computed by subtract-

ing the average pre-infection CD4 percentage of the sample from the ith individ-
ual’s actual pre-infection CD4 percentage. These covariates, except the time, are
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time-invariant. Consider the varying-coefficient model

yij = β0(tij ) + X
(1)
i β1(tij ) + X

(2)
i β2(tij ) + X

(2)
i β2(tij ),(21)

where β0(t) represents the trend of mean CD4 percentage changing over time af-
ter the infection for a nonsmoker with average pre-infection CD4 percentage and
average age at HIV infection, and β1(t), β2(t) and β3(t) describe the time-varying
effects on the post-infection CD4 percentage of cigarette smoking, age at HIV
infection and pre-infection CD4 percentage, respectively. Since the number of ob-
servations is very uneven among subjects, we only used subjects with at least 4
observations. A cubic spline with k = 10 equally spaced knots was used for mod-
eling each function. We first used the working independence W1 = I to fit the data
and then used the residuals from this model to estimate parameters in the correla-
tion function

γ (u;α, θ) = α + (1 − α) exp(−θu),

where u is the lag in time and 0 < α < 1, θ > 0. This correlation function was
considered previously in Zeger and Diggle (1994). The estimated parameter val-
ues are (α̂, θ̂ ) = (0.40,0.75). The second working correlation matrix W2 consid-
ered was formed using γ (u; α̂, θ̂ ). We computed that LsoCV(W1,0) = 881.88 and
LsoCV(W2,0) = 880.33, which implies that using W2 is preferable. This conclu-
sion remains unchanged when the number of knots varies. To visualize the gain in
estimation efficiency by using W2 instead of W1, we calculated the width of the
95% pointwise bootstrap confidence intervals based on 1000 bootstrap samples,
which is displayed in Figure 4. We can observe that the bootstrap intervals using
W2 are almost uniformly narrower than those using W1, indicating higher estima-
tion efficiency. The fitted coefficient functions (not shown to save space) using W2
with λ selected by minimizing LsoCV∗(W2,λ) are similar to those published in
previous studies conducted on the same data set [Fan and Zhang (2000), Huang,
Wu and Zhou (2002), Wu and Chiang (2000)].

APPENDIX: TECHNICAL PROOFS

This section is organized as follows. We first give three technical lemmas (Lem-
mas A.1–A.4) needed for the proof of Theorem 2.1. After proving Theorem 2.1, we
give another lemma (Lemma A.5) that facilitates proofs of Theorems 2.2 and 3.1.
We prove Theorem 3.1 first and then proceed to the proof of Theorem 2.2.

Let λmax(M) = λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) = λmin(M) be eigenvalues of
the p × p symmetric matrix M. We present several useful lemmas.

LEMMA A.1. For any positive semi-definite matrices M1 and M2,

λi(M1)λp(M2) ≤ λi(M1M2) ≤ λi(M1)λ1(M2), i = 1, . . . , p.(22)

PROOF. See Anderson and Das Gupta (1963) and Bénasséni (2002). �
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FIG. 4. Width of the 95% pointwise bootstrap confidence intervals based on 1000 bootstrap sam-
ples, using the working independence W1 (solid line) and the working correlation matrix W2
(dashed line).

LEMMA A.2. For any positive semi-definite matrices M1 and M2,

tr(M1M2) ≤ λmax(M1) tr(M2).(23)

PROOF. The proof is trivial, using the eigen decomposition of M1. �

LEMMA A.3. Eigenvalues of AT A� and (I − A)T (I − A)� are bounded
above by ξ(�,W) = λmax(�W−1)λmax(W).

PROOF. Recall that Ã = W−1/2AW1/2. For A�AT , by Lemma A.1,

λi

(
AT A�

) = λi

(
ÃWÃW−1/2�W−1/2)

≤ λi(ÃWÃ)λmax
(
�W−1)

≤ λi

(
Ã2)

λmax(W)λmax
(
�W−1) ≤ ξ(�,W).

The last inequality follows from the fact that maxi{λi(Ã2)} ≤ 1. Similarly, λi((I −
A)T (I − A)�) ≤ ξ(�,W) follows from maxi{λi((I − Ã)2)} ≤ 1. �

Denote e = (eT
1 , . . . , eT

n )T , where ei ’s are independent random vectors with
length ni , E(ei ) = 0 and Var(e) = Ii for i = 1, . . . , n. For each i, define zij =
(uT

ij ei )
2 where uT

ij uik = 1 if j = k and 0 otherwise, j, k = 1, . . . , ni .
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LEMMA A.4. If there exists a constant K such that E(z2
ij ) ≤ K holds for all

j = 1, . . . , ni , i = 1, . . . , n, then

Var
(
eT Be

) ≤ 2 tr
(
BBT ) + K

n∑
i=1

{
tr

(
B∗

ii

)}2
,(24)

where B is any N × N matrix (not necessarily symmetric), Bii is the ith (ni × ni)

diagonal block of B and B∗
ii is an “envelop” matrix such that B∗

ii ± (Bii + BT
ii)/2

are positive semi-definite.

The proof of this lemma is given in the supplementary material [Xu and Huang
(2012)].

PROOF OF THEOREM 2.1. In light of (9) and (15), it suffices to show that

L(W,λ) − R(W,λ) = op

(
R(W,λ)

)
,(25)

1

n
μT (I − A)T ε = op

(
R(W,λ)

)
,(26)

2

n

{
εT Aε − tr(A�)

} = op

(
R(W,λ)

)
(27)

because, combining (25)–(27), we have

U(W,λ) − L(W,λ) − 1

n
εT ε = op

(
L(W,λ)

)
.

We first prove (25). By (8), we have

Var
(
L(W,λ)

) = 1

n2 Var
{
εT AT Aε − 2μT (I − A)T Aε

}
.(28)

Define B = �1/2AT A�1/2. Then εT AT Aε = (�−1/2ε)T B(�−1/2ε). Since B is
positive semi-definite, by applying Lemma A.4 with e = �−1/2ε, B =
�1/2AT A�1/2 and B∗

ii = Bii , we obtain

1

n2 Var
(
εT AT Aε

) ≤ 2

n2 tr
(
B2) + K

n2

n∑
i=1

{
tr(Bii)

}2(29)

for some K > 0 as defined in Lemma A.4. By Lemmas A.2 and A.3, under condi-
tion 3, we have

2

n2 tr
(
B2) ≤ 2λmax(AT A�)

n2 tr
(
AT A�

)
(30)

≤ 2ξ(�,W)

n

1

n
tr

(
AT A�

) = o
(
R2(W,λ)

)
.
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Recall that Cii is the ith diagonal block of Ã2. Then, under condition 2(ii),
tr(Cii) ∼ o(1). Thus,

tr(Bii ) = tr
(
Li�

1/2W−1/2ÃWÃW−1/2�1/2LT
i

)
≤ λmax(W) tr

(
ÃW−1/2�1/2LT

i Li�
1/2W−1/2Ã

)
= λmax(W) tr

(
CiiW

−1/2
i �iW

−1/2
i

)
(31)

≤ λmax(W)λmax
(
�iW

−1
i

)
tr(Cii)

= o(1)ξ(�,W).

Since
∑n

i=1{tr(Bii )} = tr(B) = tr(AT A�), under condition 3,

K

n2

n∑
i=1

{
tr(Bii )

}2 = o(1)
Kξ(�,W) tr(B)

n2

(32)

= o(1)
Kξ(�,W)

n

1

n
tr

(
AT A�

) = o
(
R2(W,λ)

)
.

Combining (29)–(32), we obtain

1

n2 Var
(
εT AT Aε

) ∼ o
(
R2(W,λ)

)
.

Since λmax(AT A�) ≤ ξ(�,W) by Lemma A.3, under condition 3,

1

n2 Var
{
μT (I − A)T Aε

} = 1

n2 μT (I − A)T A�AT (I − A)μ

≤ λmax(AT A�)

n

1

n
μT (I − A)T (I − A)μ

(33)

≤ ξ(�,W)

n

1

n
μT (I − A)T (I − A)μ

= o
(
R2(W,λ)

)
.

Combining (28)–(33) and using the Cauchy–Schwarz inequality, we obtain
Var(L(W,λ)) = o(R2(W,λ)), which proves (25).

To show (26), by Lemma (A.3) and condition 3, we have

1

n2 Var
{
μT (I − A)T ε

} = 1

n2 μT (I − A)T �(I − A)μ

≤ λmax(�)

n

1

n
μT (I − A)T (I − A)μ

≤ ξ(�,W)

n

1

n
μT (I − A)T (I − A)μ = o

(
R2(W,λ)

)
.

The result follows from an application of the Chebyshev inequality.
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To show (27), applying Lemma A.4 with e = �−1/2ε, B = �1/2A�1/2. For
each Bii = �

1/2
i Aii�

1/2
i , noticing that (W1/2

i − αW−1/2
i )Ãii(W

1/2
i − αW−1/2

i ) is

positive semi-definite, we can define an “envelop” matrix as B∗
ii = 1

2�
1/2
i (W1/2

i ×
ÃiiW

1/2
i /αi + αiW

−1/2
i ÃiiW

−1/2
i )�

1/2
i for any αi > 0. Then by Lemma A.4, we

obtain

2

n2 Var
(
εT Aε

) = 2

n2 Var
(
eT Be

)
(34)

≤ 2

n2 tr
(
BBT ) + K

n2

n∑
i=1

{
tr

(
B∗

ii

)}2
,

where K is as in Lemma A.4. By Lemma A.2, under condition 3, we have

2

n2 tr
(
BBT ) = 2

n2 tr
(
�A�AT ) ≤ 2λmax(�)

n

1

n
tr

(
AT A�

)

≤ 2ξ(�,W)

n

1

n
tr

(
AT A�

) = o
(
R2(W,λ)

)
.

By using Lemma A.1 repeatedly and taking αi = λmax(Wi ), we have

tr
(
B∗

ii

) = tr
(
Ãii�

1/2
i Wi�

1/2
i

)
/(2αi) + αi tr

(
Ãii�

1/2
i W−1

i �
1/2
i

)
/2

≤ λmax
(
�iW

−1
i

)
λmax(Wi ) tr(Ãii)

≤ ξ(�,W) tr(Ãii).

Under conditions 2(i), 3 and 4, we have

K

n2

n∑
i=1

{
tr

(
B∗

ii

)}2 ≤ K

n2 ξ2(�,W)O
(
n−2 tr(A)2) = o

(
R2(W,λ)

)
.(35)

Therefore, combining (34)–(35) and noticing conditions 1–4, we have

1

n2 Var
(
εT Aε

) ∼ o
(
R2(W,λ)

)
,

which leads to (27). �

To prove Theorem 2.2, it is easier to prove Theorem 3.1 first. The following
lemma is useful for the proof of Theorem 3.1.

LEMMA A.5. Let D = diag{D11, . . . ,Dnn} be a diagonal block matrix and
D∗ = diag{D∗

11, . . . ,D∗
nn} be a positive semi-definite matrix such that D∗ ±

(D + DT )/2 are positive semi-definite. In addition, Dii’s and D∗
ii’s meet the

following conditions: (i) max1≤i≤n{tr(D∗
iiWi )} ∼ λmax(W)O(n−1 tr(A));
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(ii) max1≤i≤n{tr(DiiWiDT
ii} ∼ λmax(W)O(n−2 tr(A)2). Then, under conditions 1–

5, we have

1

n2 Var
{
YT (I − A)T D(I − A)Y

} = o
(
R2(W,λ)

)
.

The proof is given in the supplementary material [Xu and Huang (2012)].

PROOF OF THEOREM 3.1. By Theorem 2.1, it suffices to show that

LsoCV∗(W,λ) − U(W,λ) = op

(
R(W,λ)

)
,

which can be obtained by showing

E
{
LsoCV∗(W,λ) − U(W,λ)

}2 = op

(
R2(W,λ)

)
.(36)

Hence, it suffices to show that

E
{
LsoCV∗(W,λ) − U(W,λ)

} = o
(
R(W,λ)

)
and(37)

Var
{
LsoCV∗(W,λ) − U(W,λ)

} = o
(
R2(W,λ)

)
.(38)

Denote Ad = diag{A11, . . . ,Ann} and Ãd = diag{Ã11, . . . , Ãnn}. It follows that
Ãd = W−1/2AdW1/2 and n−1 tr(Ã2

d) = O(n−2 tr(A)2) by condition 2. Some alge-
bra yields that

LsoCV∗(W,λ) − U(W,λ) = 2

n
YT (I − A)T Ad(I − A)Y − 2

n
tr(A�).

First consider (37). We have that

E
{
LsoCV∗(W,λ) − U(W,λ)

}
= 1

n
μT (I − A)T

(
Ad + AT

d

)
(I − A)μ(39)

+ 1

n
tr

{
AT (

Ad + AT
d

)
A�

} − 2

n
tr

(
AT

d Ad�
) − 2

n
tr

(
A2

d�
)
.

We shall show that each term in (39) is of the order o(R(W,λ)).
Condition 2 says that max1≤i≤n tr(Ãii) = O(n−1 tr(A)) = o(1). Using condi-

tions 2 and 5, we have

tr
(
Aii + AT

ii

)2 = 2 tr
(
A2

ii + AiiAT
ii

)
= 2 tr

(
Ã2

ii + ÃiiWiÃiiW
−1
i

)
≤ 2 tr

(
Ã2

ii

){
1 + λmax

(
W−1

i

)
λmax(Wi)

}
= λmax(W)λmax

(
W−1)

O
(
n−2 tr(A)2) = o(1),
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which implies that all eigenvalues of (Ad + AT
d ) are of order o(1), and, hence,

1

n
μT (I − A)T

(
Ad + AT

d

)
(I − A)μ = o(1)

1

n
μT (I − A)T (I − A)μ = o

(
R(W,λ)

)
,

1

n
tr

{
AT (

Ad + AT
d

)
A�

} = o(1)
1

n
tr

(
AT A�

) = o
(
R(W,λ)

)
.

Under condition 4, the third term in (39) can be bounded as

1

n
tr

(
AT

d Ad�
) ≤ λmax

(
�W−1)1

n
tr

(
Ã1/2

d W1/2Ãd

)

≤ ξ(�,W)
1

n
tr

(
Ã2

d

)
(40)

= ξ(�,W)O
(
n−2 tr(A)2) = o

(
R(W,λ)

)
.

For the last term in equation (39), observe that (W1/2
i − αiW

−1/2
i )�(W1/2

i −
αiW

−1/2
i ) is positive semi-definite for any αi . Taking αi = λmax(Wi), we have

2

n
tr

(
A2

d�
) = 2

n
tr

(
Ã2

dW−1/2�W1/2) ≤ max
1≤i≤n

tr
{
Ã2

ii

(
�∗

i + �∗T
i

)}
≤ max

1≤i≤n
tr

{
Ã2

ii

(
W1/2

i �iW
1/2
i /αi + αiW

−1/2
i �iW

−1/2
i

)}
≤ max

1≤i≤n

{
λmax

(
�iW

−1
i

)
λmax(Wi ) tr

(
Ã2

ii

)}
≤ ξ(�,W)O

(
n−2 tr(A)2) = o

(
R(W,λ)

)
,

where �∗
i = W−1/2

i �iW
1/2
i . Equation (39) and thus (37) have been proved.

To prove (38), define D = Ad and the corresponding “envelop” matrix D∗ =
diag{D∗

11, . . . ,D∗
nn}, where the diagonal blocks are defined as D∗

ii = 1
2(W1/2 ×

ÃiiW
1/2
i /αi + αiW

−1/2
i ÃiiW

−1/2
i ) with αi = λmax(Wi ), then since

tr
(
AiiWiAT

ii

) = tr
(
Ã2

iiWi

) ≤ λmax(Wi )
{
tr(Aii)

}2 and

tr
(
D∗

iiWi

) ≤ λmax(Wi) tr(Aii),

we have that max1≤i≤n tr(AiiWiAT
ii) = λmax(W)O(n−2 tr(A)2) and that

max1≤i≤n tr(D∗
iiWi ) = λmax(W)O(n−1 tr(A)) by condition 2. Under conditions 3–

4, (38) follows from Lemma A.5. �

PROOF OF THEOREM 2.2. By Theorem 3.1, it suffices to show

LsoCV(W,λ) − LsoCV∗(W,λ) = op

(
L(W,λ)

)
,

which can be proved by showing that

E
{
LsoCV(W,λ) − LsoCV∗(W,λ)

}2 = op

(
R2(W,λ)

)
.
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It suffices to show

E
{
LsoCV(W,λ) − LsoCV∗(W,λ)

} = o
(
R(W,λ)

)
and(41)

Var
{
LsoCV(W,λ) − LsoCV∗(W,λ)

} = o
(
R2(W,λ)

)
.(42)

For each i = 1, . . . , n, consider the eigen-decomposition Ãii = Pi�iPT
i , where

Pi is a ni × ni orthogonal matrix and �i = diag{λi1, . . . , λini
}, λij ≥ 0. Using this

decomposition, we have

(Iii − Aii)
−1 = W1/2

i Pi�
∗
i PT

i W−1/2,

where �∗
i is a diagonal matrix with diagonal elements (1 − λij )

−1, j = 1, . . . , ni .
Since under condition 2 max1≤j≤ni

{λij } ∼ o(1), we have (1 − λij )
−1 = ∑∞

k=0 λk
ij ,

which leads to

(Iii − Ãii)
−1 =

∞∑
k=0

Pi�
k
i PT

i =
∞∑

k=0

Ãk
ii .

Define D̃(m) = diag{D̃(m)
11 , . . . , D̃(m)

nn }, where D̃(m)
ii = ∑∞

k=m Ãk
ii i = 1, . . . , n, m =

1,2, . . . . It follows that, for each i,

tr
(
D̃(m)

ii

) =
∞∑

k=m

tr
(
Ãk

ii

) ≤
∞∑

k=m

{
tr(Ãii)

}k = {tr(Ãii)}m
1 − tr(Ãii)

.

Since condition 2(i) gives max1≤i≤n tr(Aii) ∼ O(n−1 tr(A)), we obtain that

max
1≤i≤n

tr
(
D̃(m)

ii

) = O
(
n−m tr(A)m

)
, m = 1,2, . . . .(43)

Some algebra yields

LsoCV(W,λ) − LsoCV∗(W,λ) = 1

n
YT (I − A)T

(
D(1) + D(2))1/2

(I − A)Y,

where D(1) = W−1/2D̃(1)WD̃(1)W−1/2 and D(2) = W1/2D̃(2)W−1/2.
To show (41), note that

E
{
LsoCV(W,λ) − LsoCV∗(W,λ)

}
= 1

n
μT (I − A)T D(1)(I − A)μ + 1

n
tr

{
(I − A)T D(1)(I − A)�

}
(44)

+ 1

n
μT (I − A)T D(2)(I − A)μ + 1

n
tr

{
(I − A)T D(2)(I − A)�

}
.

Using Lemmas A.1 and A.2 repeatedly and condition 5, we have

λmax
(
D(1)) ≤ λmax(W)λmax

(
W−1)

O
(
n−2 tr(A)2) = o(1).
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Thus, the first terms (44) can be bounded as

1

n
μT (I − A)T D(1)(I − A)μ = o(1)

1

n
μT (I − A)T (I − A)μ = o

(
R(W,λ)

)
.

Using Lemma A.3, under condition 4 and (43), the second term of (44) can be
bounded as

1

n
tr

{
(I − A)T D(1)(I − A)�

} ≤ ξ(�,W)
1

n
tr

(
D̃(1)2)

= ξ(�,W)O
(
n−2 tr(A)2) = o

(
R(W,λ)

)
.

Now consider the third term in (44). Under condition 5 and (43),

tr
{(

D(2)
ii + D(2)T

ii

)2} = 2 tr
(
D̃(2)2

ii

) + 2 tr
(
D(2)

ii D(2)T
ii

)
= 2 tr

(
D̃(2)2

ii

) + 2 tr
(
D̃(2)

ii W−1
i D̃(2)

ii Wi

)
(45)

≤ 2 tr
(
D̃(2)2

ii

) + 2λmax
(
W−1

i

)
λmax(Wi ) tr

(
D̃(2)2

ii

)
= o

(
n−2 tr(A)2)

,

which implies that all eigenvalues of D(2)
ii + D(2)T

ii are of the order O(n−1 tr(A)),
and thus o(1). Then, under conditions 1–5, we have

1

n
μT (I − A)T D(2)(I − A)μ = 1

2n
μT (I − A)T

(
D(2) + D(2)T )

(I − A)μ

= o(1)
1

n
μT (I − A)T (I − A)μ = o

(
R(W,λ)

)
.

To study the the fourth term in (44), we have

1

n
tr

{
(I − A)T D(2)(I − A)�

}

= 1

n

n∑
i=1

tr
{
(Iii − Aii)

T D(2)
ii (Iii − Aii)�i

}
(46)

− 1

n

n∑
i=1

tr
(
AT

iiD
(2)
ii Aii�i

) + 1

n
tr

(
AT D(2)A�

)
.

To bound the first term in (46), we note that

tr
{
(Iii − Aii)

T D(2)
ii (Iii − Aii)�i

}
= 1

2
tr

{
(Iii − Aii)

T (
W1/2

i D̃(2)
ii W−1/2

i + W−1/2
i D̃(2)

ii W1/2
i

)
(Iii − Aii)�i

}
,
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which is bounded by

1

2
tr

{
(Iii − Aii)

T (
W1/2

i D̃(2)
ii W1/2

i /αi + αiW
−1/2
i D̃(2)

ii W−1/2
i

)
(Iii − Aii)�i

}

≤ 1

2
ξ(�i ,Wi) tr

(
D̃(2)

ii

) + αi

2
tr

{(
D̃(2)

ii − 2D̃(3)
ii

)
W−1/2

i �iW
−1/2
i

}
+ αi

2
tr

{
D̃(2)

ii ÃiiW
−1/2
i �iW

−1/2
i Ãii

}

≤ 1

2
ξ(�,W)

{
2 + λmax

(
Ã2

ii

)}
tr

(
D̃(2)

ii

)
= o

(
R(W,λ)

)
,

where we take αi = λmax(Wi ). The last equation follows from (43) and condi-
tion 4. Similarly, we can show that the second part of (46) is o(R(W,λ)).

Consider the third part of (46), 1
n

tr(AT D(2)A�) = o(1) 1
n

tr(AT A�) =
o(R(W,λ)) since all eigenvalues of D(2)

ii + D(2)T
ii are of the order o(1) as is shown

in (45). Hence, (46) gives

1

n
tr

{
(I − A)T D(2)(I − A)�

} = o
(
R(W,λ)

)
.

Therefore, (41) has been proved.
Next, we proceed to prove (42). Define envelop matrices D(1)∗ = D(1) and

D(2)∗ = diag{D(2)∗
11 , . . . ,D(2)∗

nn }, where D(2)∗
ii = 1

2(W1/2
i D̃(2)

ii W1/2
i /αi + αiW

−1/2
i ×

D̃(2)
ii W−1/2

i ) with αi = λmax(Wi ). It is easy to check that D(1)∗ and D(2)∗ are valid
envelops of D(1) and D(2), respectively. Since under condition 5, we have

tr
(
D(1)

ii WiD
(1)T
ii

)
≤ λmax(W)λmax(W)λmax

(
W−1)

λ2
max

(
D̃(1)

ii

)
tr

(
D̃(1)2

ii

)
= {

λmax(W)λmax
(
W−1)

O
(
n−2 tr(A)2)}

λmax(W)O
(
n−2 tr(A)2)

= λmax(W)O
(
n−2 tr(A)2)

,

tr
(
D(1)∗

ii Wi

) ≤ λmax(Wi ) tr
(
D̃(1)2

ii

) = λmax(W)O
(
n−2 tr(A)2)

and

tr
(
D(2)

ii WiD
(2)T
ii

) ≤ λmax(Wi ) tr
(
D̃(2)2

ii

) = λmax(W)O
(
n−4 tr(A)4)

= λmax(W)o
(
n−2 tr(A)2)

,

tr
(
D(2)∗

ii Wi

) ≤ λmax(Wi ) tr
(
D̃(2)

ii

) = λmax(W)O
(
n−2 tr(A)2)

.

By applying Lemma A.5, we have

1

n2 Var
{
YT (I − A)T D(m)(I − A)Y

} = op

(
R2(W,λ)

)
, m = 1,2,
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and (42) follows by the Cauchy–Schwarz inequality. �

SUPPLEMENTARY MATERIAL

Efficient algorithm and additional proofs (DOI: 10.1214/12-AOS1063SUPP;
.pdf). In the Supplementary Material, we give a detailed description of the algo-
rithm proposed in Section 3.2. In addition, proofs of some technical lemmas are
also included.
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