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INDEPENDENT COMPONENT ANALYSIS VIA NONPARAMETRIC
MAXIMUM LIKELIHOOD ESTIMATION

BY RICHARD J. SAMWORTH1 AND MING YUAN2

University of Cambridge and Georgia Institute of Technology

Independent Component Analysis (ICA) models are very popular semi-
parametric models in which we observe independent copies of a random vec-
tor X = AS, where A is a non-singular matrix and S has independent compo-
nents. We propose a new way of estimating the unmixing matrix W = A−1

and the marginal distributions of the components of S using nonparamet-
ric maximum likelihood. Specifically, we study the projection of the em-
pirical distribution onto the subset of ICA distributions having log-concave
marginals. We show that, from the point of view of estimating the unmixing
matrix, it makes no difference whether or not the log-concavity is correctly
specified. The approach is further justified by both theoretical results and a
simulation study.

1. Introduction. In recent years, Independent Component Analysis (ICA) has
seen an explosion in its popularity in diverse fields such as signal processing, ma-
chine learning and medical imaging, to name a few. For a wide-ranging list of
algorithms and applications of ICA, see the monograph by Hyvärinen, Karhunen
and Oja (2001). In the ICA paradigm, one observes a random vector X ∈ R

d that
can be expressed as a non-singular linear transformation of d mutually indepen-
dent latent factors S1, . . . , Sd ; thus, X = AS, where S = (S1, . . . , Sd)T and A is a
d × d full rank matrix often referred to as the mixing matrix. As such, ICA postu-
lates the following model for the probability distribution P of X: for any Borel set
B in R

d ,

P(B) =
d∏

j=1

Pj

(
wT

j B
)
,

where W = (w1, . . . ,wd)T = A−1 is the so-called unmixing matrix and P1, . . . ,Pd

are the univariate probability distributions of the latent factors S1, . . . , Sd , respec-
tively.

The goal of ICA, as in other blind source separation problems, is to infer, from
a sample x1, . . . ,xn of independent observations of X, the independent factors
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s1 = Wx1, . . . , sn = Wxn or, equivalently, the unmixing matrix W . This task is
typically accomplished by first postulating a certain parametric family for the
marginal probability distributions P1, . . . ,Pd , and then optimising a contrast func-
tion involving (W,P1, . . . ,Pd), for example, Karvanen and Koivunen (2002). The
contrast functions are often chosen to represent the mutual information as mea-
sured by Kullback–Leibler divergence or maximum entropy, or non-Gaussianity
as measured by kurtosis or negentropy. Alternatively, in recent years, methods
for ICA have also been developed which assume P1, . . . ,Pd have smooth (log)
densities, for example, Bach and Jordan (2002), Hastie and Tibshirani (2003b),
Samarov and Tsybakov (2004), Chen and Bickel (2006) and Ilmonen and Paindav-
eine (2011). Although more flexible than their aforementioned parametric peers,
there remain unsettling questions about what happens if the smoothness assump-
tions on the marginal densities are violated, which may occur, in particular, when
some of the marginal probability distributions P1, . . . ,Pd have atoms. Another is-
sue is that, in common with most other smoothing methods, a choice of tuning
parameters is required to balance the fidelity to the observed data and the smooth-
ness of the estimated marginal densities, and it is notoriously difficult to select
these tuning parameters appropriately in practice.

In this paper, we argue that these assumptions and tuning parameters are unnec-
essary, and propose a new paradigm for ICA, based on the notion of nonparametric
maximum likelihood, that is free of these burdens. In fact, we show that the usual
nonparametric (empirical) likelihood approach does not work in this context, and
instead we proceed under the working assumption that the marginal distributions
of S1, . . . , Sd are log-concave. More specifically, we propose to estimate W by
maximising

log|detW | + 1

n

n∑
i=1

d∑
j=1

logfj

(
wT

j xi

)

over all d × d non-singular matrices W = (w1, . . . ,wd)T and univariate log-
concave densities f1, . . . , fd . Remarkably, from the point of view of estimating
the unmixing matrix W , it turns out that it makes no difference whether or not this
hypothesis of log-concavity is correctly specified.

The key to understanding how our approach works is to study what we call the
log-concave ICA projection of a distribution on R

d onto the set of densities that
satisfy the ICA model with log-concave marginals. In Section 2.1 below, we define
this projection carefully and give necessary and sufficient conditions for it to make
sense. In Section 2.2, we prove that the log-concave projection of a distribution
from the ICA model preserves both the ICA structure and the unmixing matrix.
Finally, in Section 2.3, we derive a continuity property of log-concave ICA projec-
tions, which turns out to be important for understanding the theoretical properties
of our ICA procedure.
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Our ICA estimating procedure uses the log-concave ICA projection of the em-
pirical distribution of the data, and is studied in Section 3. After explaining why
the usual empirical likelihood approach cannot be used, we prove the consistency
of our method. We also present an iterative algorithm for the computation of our
estimator. Our simulation studies in Section 4 confirm our theoretical results and
show that the proposed method compares favourably with existing methods. Proofs
are deferred to Section 5.

To conclude this section, we remark that in addition to the previous literature
already cited, further approaches to ICA have been proposed that use a choice of
two scatter (or shape) matrices [Nordhausen, Oja and Ollila (2011), Oja, Sirkiä
and Eriksson (2006), Ollila, Oja and Koivunen (2008)]. To uniquely define the
unmixing matrix, one scatter matrix (often chosen based on fourth moments) must
take distinct values on its main diagonal, which rules out situations where two
of the marginal distributions P1, . . . ,Pd are the same. Nevertheless, under further
(e.g., moment) assumptions, root-n consistency and asymptotic normality results
for estimates of the unmixing matrix under correct model specification have been
obtained [e.g., Ilmonen, Nevalainen and Oja (2010)].

2. Log-concave ICA projections.

2.1. Notation and overview. Let Pk be the set of probability distributions P

on R
k satisfying

∫
Rk ‖x‖dP (x) < ∞ and P(H) < 1 for all hyperplanes H , that

is, the probability measures in R
k that have finite mean and are not supported in

a translate of a lower-dimensional linear subspace of R
k . Here and throughout,

‖ · ‖ denotes the Euclidean norm on R
k , and we will be interested in the cases

k = 1 and k = d . Further, let W denote the set of non-singular d × d real matrices.
We use upper case letters to denote matrices in W , and the corresponding lower
case letters with subscripts to denote rows: thus, wT

j is the j th row of W ∈ W . Let

Bk denote the class of Borel sets on R
k . Then the ICA model P ICA

d is defined to
be the set of P ∈ Pd of the form

P(B) =
d∏

j=1

Pj

(
wT

j B
) ∀B ∈ Bd(1)

for some W ∈ W and P1, . . . ,Pd ∈ P1. As shown by Dümbgen, Samworth and
Schuhmacher [(2011), Theorem 2.2], the condition P ∈ Pd is necessary and suffi-
cient for the existence of a unique upper semi-continuous and log-concave density
that is the closest to P in the Kullback–Leibler sense. More precisely, let Fk de-
note the class of all upper semi-continuous, log-concave densities with respect to
the Lebesgue measure on R

k . Then the projection ψ∗ : Pd → Fd given by

ψ∗(P ) = arg max
f ∈Fd

∫
Rd

logf dP
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is well defined and surjective. In what follows, we refer to ψ∗ as the log-concave
projection operator and f ∗ := ψ∗(P ) as the log-concave projection of P . By a
slight abuse of notation, we also use ψ∗ to denote the log-concave projection from
P1 to F1.

Although the log-concave projection operator does play a role in this paper, our
main interest is in a different projection, onto the subset of Fd consisting of those
densities that belong to the ICA model. This class is given by

F ICA
d =

{
f ∈ Fd :f (x) = |detW |

d∏
j=1

fj

(
wT

j x
)

(2)

with W ∈ W, f1, . . . , fd ∈ F1

}
.

Note that, in this representation, if X has density f ∈ F ICA
d , then wT

j X has den-
sity fj . The corresponding log-concave ICA projection operator ψ∗∗(·) is defined
for any distribution P on R

d by

ψ∗∗(P ) = arg max
f ∈F ICA

d

∫
Rd

logf dP.

We also write L∗∗(P ) = supf ∈F ICA
d

∫
Rd logf dP .

PROPOSITION 1. (1) If
∫
Rd ‖x‖dP (x) = ∞, then L∗∗(P ) = −∞ and

ψ∗∗(P ) = F ICA
d .

(2) If
∫
Rd ‖x‖dP (x) < ∞, but P(H) = 1 for some hyperplane H , then

L∗∗(P ) = ∞ and ψ∗∗(P ) = ∅.
(3) If P ∈ Pd , then L∗∗(P ) ∈ R and ψ∗∗(P ) defines a non-empty, proper subset

of F ICA
d .

In view of Proposition 1, and to avoid lengthy discussion of trivial exceptional
cases, we henceforth consider ψ∗∗(·) as being defined on Pd . In contrast to ψ∗(P ),
which defines a unique element of Fd , the log-concave ICA projection operator
ψ∗∗(P ) may not define a unique element of F ICA

d , even for P ∈ Pd . For instance,
consider the situation where P is the uniform distribution on the closed unit disk
in R

2 equipped with the Euclidean norm. Here, the spherical symmetry means
that the choice of W ∈ W is not uniquely defined. In fact, after a straightforward
calculation, it can be shown that ψ∗∗(P ) includes all f ∈ F ICA

2 , where, in the
representation (2), W is an orthogonal matrix and f1, f2 ∈ F1 are given by f1(x) =
f2(x) = 2

π
(1 − x2)1/21{x∈[−1,1]}. It is certainly possible to make different choices

of W that yield different elements of F ICA
2 . This example shows that, in general,

we must think of ψ∗∗(P ) as defining a subset of F ICA
d .
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The relationship between the spaces introduced above and the projection oper-
ators is illustrated in the diagram below:

Pd
ψ∗

−→ Fd

ψ∗∗
↘

P ICA
d

ψ∗∗|P ICA
d−→ F ICA

d .

Our next subsection studies the restriction of ψ∗∗ to P ICA
d , denoted ψ∗∗|P ICA

d
; Sec-

tion 2.2 examines ψ∗∗ more generally as a map on Pd .

2.2. Log-concave projections of the ICA model. Our first result in this subsec-
tion characterises ψ∗∗|P ICA

d
.

THEOREM 2. If P ∈ P ICA
d , then ψ∗∗(P ) defines a unique element of F ICA

d .
The map ψ∗∗|P ICA

d
is surjective, and coincides with ψ∗|P ICA

d
. Moreover, suppose

that P ∈ P ICA
d , so that

P(B) =
d∏

j=1

Pj

(
wT

j B
) ∀B ∈ Bd

for some W ∈ W and P1, . . . ,Pd ∈ P1. Then f ∗∗ = ψ∗∗(P ) can be written as

f ∗∗(x) = |detW |
d∏

j=1

f ∗
j

(
wT

j x
)
,

where f ∗
j = ψ∗(Pj ).

It is interesting to observe that the log-concave projection operator ψ∗ preserves
the ICA structure. But perhaps the most important aspect of this result is the fact
that the same unmixing matrix W can be used to represent both the original ICA
model and its log-concave projection. This observation lies at the heart of the ra-
tionale for our approach to ICA.

A remaining concern is that the unmixing matrix may not be identifiable. For in-
stance, applying the same permutation to the rows of W and the vector of marginal
distributions (P1, . . . ,Pd) leaves the distribution unchanged; similarly, the same
effect occurs if we multiply any of the rows of W by a scaling factor and apply
the corresponding scaling factor to the relevant marginal distribution. The ques-
tion of identifiability for ICA models was first addressed by Comon (1994), who
assumed that W is orthogonal, and was settled in the general case by Eriksson
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and Koivunen (2004). One way to state their result is as follows: suppose that a
probability measure P on R

d has two representations as

P(B) =
d∏

j=1

Pj

(
wT

j B
) =

d∏
j=1

P̃j

(
w̃T

j B
) ∀B ∈ Bd,(3)

where W , W̃ ∈ W and P1, . . . ,Pd, P̃1, . . . , P̃d are probability measures on R. Then
the pair of conditions that P1, . . . ,Pd are not Dirac point masses and not more
than one of P1, . . . ,Pd is Gaussian is necessary and sufficient for the existence
of a permutation π of {1, . . . , d} and scaling vector ε = (ε1, . . . , εd) ∈ (R \ {0})d
such that P̃j (Bj ) = Pπ(j)(εjBj ) for all Bj ∈ B1, and w̃j = ε−1

j wπ(j). When such a
permutation and scaling factor exist for any two ICA representations of P , we say
that the ICA representation of P is identifiable, or simply that P is identifiable. By
analogy, we define f ∈ F ICA

d to be identifiable if not more than one of f1, . . . , fd

in the representation (2) is Gaussian.
Our next result shows that ψ∗∗ preserves the identifiability of the ICA model.

Together with Theorem 2, we see that if P ∈ P ICA
d is identifiable, then the un-

mixing matrices of P and ψ∗∗(P ) are identical up to the permutation and scaling
transformations described above.

THEOREM 3. Let P ∈ P ICA
d . Then ψ∗∗(P ) is identifiable if and only if P is

identifiable.

2.3. General log-concave ICA projections. We now consider the general log-
concave ICA projection ψ∗∗ defined on Pd . Define the Mallows distance d (also
known as the Wasserstein distance) between probability measures P and P̃ on R

d

with finite mean by

d(P, P̃ ) = inf
(X,X̃)∼(P,P̃ )

E‖X − X̃‖,

where the infimum is taken over all pairs (X, X̃) of random vectors X ∼ P and
X̃ ∼ P̃ on a common probability space. Recall that d(P n,P ) → 0 if and only

if both P n d→ P and
∫
Rd ‖x‖dP n(x) → ∫

Rd ‖x‖dP (x). We are interested in the
continuity of ψ∗∗.

PROPOSITION 4. Let P,P 1,P 2, . . . be probability measures in Pd with
d(P n,P ) → 0 as n → ∞. Then L∗∗(P n) → L∗∗(P ). Moreover,

sup
f n∈ψ∗∗(P n)

inf
f ∈ψ∗∗(P )

∫
Rd

∣∣f n − f
∣∣ → 0

as n → ∞.
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The second part of this proposition says that any element of ψ∗∗(P n) is ar-
bitrarily close in total variation distance to some element of ψ∗∗(P ) once n is
sufficiently large. In the special case where ψ∗∗(P ) consists of only a single ele-
ment, we can say more. It is convenient to let �d denote the set of permutations

of {1, . . . , d}, and write (W,f1, . . . , fd)
ICA∼ f if W ∈ W and f1, . . . , fd ∈ F1 can

be used to give an ICA representation of f ∈ F ICA
d in (2). Similarly, we write

(W,P1, . . . ,Pd)
ICA∼ P if W ∈ W and P1, . . . ,Pd ∈ P1 represent P ∈ P ICA

d in (1).

THEOREM 5. Suppose that P ∈ P ICA
d , and write f ∗∗ = ψ∗∗(P ). If P 1,

P 2, . . . ∈ Pd are such that d(P n,P ) → 0, then

sup
f n∈ψ∗∗(P n)

∫
Rd

∣∣f n − f ∗∗∣∣ → 0.

Suppose further that P is identifiable and that (W,P1, . . . ,Pd)
ICA∼ P . Then

sup
f n∈ψ∗∗(P n)

sup
(Wn,f n

1 ,...,f n
d )

ICA∼ f n

inf
πn∈�d

inf
εn

1 ,...,εn
d∈R\{0}

{∥∥(
εn
j

)−1
wn

πn(j) − wj

∥∥

+
∫ ∞
−∞

∣∣∣∣εn
j

∣∣f n
πn(j)

(
εn
j x

) − f ∗
j (x)

∣∣dx

}

→ 0

for each j = 1, . . . , d , where f ∗
j = ψ∗(Pj ). As a consequence, for sufficiently

large n, every f n ∈ ψ∗∗(P n) is identifiable.

The convergence statement in Theorem 5 is quite complicated, partly because
of the need to deal with possible reordering and/or scaling of the rows of the un-
mixing matrices. An alternative approach, as adopted in Ilmonen and Paindaveine
(2011), for instance, would be to study a particular representative of the equiva-
lence class of unmixing matrices that can be used to represent a given distribution
in F ICA

d . Our main reason for choosing this presentation was to make clear that the
same permutation and scaling yields simultaneous convergence of the log-concave
projections of the marginal densities.

The first part of Theorem 5 shows that if P ∈ P ICA
d and P̃ ∈ Pd are close in

Mallows distance, then every f̃ ∈ ψ∗∗(P̃ ) is close to the corresponding (unique)
log-concave ICA projection f = ψ∗∗(P ) in total variation distance. The second
part shows further that if P is identifiable, then up to permutation and scaling,
every f̃ ∈ ψ∗∗(P̃ ) and every choice of unmixing matrix W̃ and marginal densities
f̃1, . . . , f̃d in the ICA representation of f̃ is close to the unmixing matrix W and
marginal densities f1, . . . , fd in the ICA representation of f .
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To conclude this subsection, we remark that, by analogy with the situation when
P ∈ P ICA

d described in Theorem 2, if P ∈ Pd and X ∼ P , any f ∗∗ ∈ ψ∗∗(P ) can
be written as

f ∗∗(x) = |detW |
d∏

j=1

f ∗
j

(
wT

j x
)

for some W ∈ W , where f ∗
j = ψ∗(Pj ) and Pj is the marginal distribution of

wT
j X. This observation reduces the maximisation problem involved in computing

ψ∗∗(P ) to a finite-dimensional one (over W ∈ W ), and follows because

sup
f ∈F ICA

d

∫
Rd

logf dP

= sup
W∈W

sup
f1,...,fd∈F1

{
log |detW | +

d∑
j=1

∫
Rd

logfj

(
wT

j x
)
dP (x)

}

= sup
W∈W

{
log |detW | +

d∑
j=1

∫
Rd

logf ∗
j

(
wT

j x
)
dP (x)

}
.

3. Nonparametric maximum likelihood estimation for ICA models. We
are now in position to study the proposed nonparametric maximum likelihood es-
timator.

3.1. Estimating procedure and theoretical properties. Assume x1,x2, . . . are
independent copies of a random vector X ∈ R

d satisfying the ICA model. Thus,
X = AS, where A = W−1 ∈ W and S = (S1, . . . , Sd)T has independent compo-
nents. In this section, we study a nonparametric maximum likelihood estimator of
W and the marginal distributions P1, . . . ,Pd of S1, . . . , Sd based on x1, . . . ,xn,
where n ≥ d + 1.

We start by noting that the usual nonparametric maximum likelihood estimate
does not work. Indeed, in the spirit of empirical likelihood [Owen (1990)], it
would suffice to consider, for a given W = (w1, . . . ,wd)T ∈ W , estimates P̃j of
the marginal distribution Pj , supported on wT

j x1, . . . ,w
T
j xn. This leads to the non-

parametric likelihood

L(W, P̃1, . . . , P̃d) =
n∏

i=1

d∏
j=1

p̃ij ,(4)

where p̃ij = P̃j (w
T
j xi ). Let J denote a subset of (d + 1) distinct indices in

{1, . . . , n}, and let XJ denote the d × (d + 1) matrix obtained by extracting the
columns of X = (x1, . . . ,xn) with indices in J . Now let X(−j) denote the d × d

matrix obtained by removing the j th column of XJ . Let WJ ∈ W have j th row
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wj = (X−1
(−j))

T1d , for j = 1, . . . , d , where 1d is a d-vector of ones. We say that
x1, . . . ,xn are in general position if, whenever we take a n × r matrix M of full
rank, where every column of M contains exactly two non-zero entries, namely, a 1
and a −1, and define Y = (y1, . . . ,yr ) by Y = XM, then Y has full rank. Our next
result shows that if x1, . . . ,xn are in general position, then every WJ corresponds
to a maximiser of the nonparametric likelihood (4).

PROPOSITION 6. Suppose that x1, . . . ,xn are in general position. Then for
any choice J of (d + 1) distinct indices in {1, . . . , n}, there exist P̂1, . . . , P̂d ∈ P1
such that (WJ , P̂1, . . . , P̂d) maximises L(·).

If X has a density with respect to the Lebesgue measure on R
d , then x1, . . . ,xn

are in general position with probability 1. On the other hand, there is no reason for
different choices of J to yield similar estimates WJ , so we cannot hope for such
an empirical likelihood-based procedure to be consistent.

As a remedy, we propose to estimate P 0 ∈ P ICA
d by ψ∗∗(P̂ n), where P̂ n denotes

the empirical distribution of x1, . . . ,xn ∼ P 0. More explicitly, we estimate the
unmixing matrix and the marginals by maximising the log-likelihood

�n(W,f1, . . . , fd) = �n(W,f1, . . . , fd;x1, . . . ,xn)
(5)

= log |detW | + 1

n

n∑
i=1

d∑
j=1

logfj

(
wT

j xi

)

over W ∈ W and f1, . . . , fd ∈ F1. Note from Proposition 1 that ψ∗∗(P̂ n) exists
as a proper subset of F ICA

d once the convex hull of x1, . . . ,xn is d-dimensional,
which happens with probability 1 for sufficiently large n. As a direct consequence
of Theorem 5 and the fact that d(P̂ n,P 0)

a.s.→ 0, we have the following consistency
result.

COROLLARY 7. Suppose that P 0 ∈ P ICA
d is identifiable and is represented

by W 0 ∈ W and P 0
1 , . . . ,P 0

d ∈ P1. Then for any maximiser (Ŵ n, f̂ n
1 , . . . , f̂ n

d ) of
�n(W,f1, . . . , fd) over W ∈ W and f1, . . . , fd ∈ F1, there exist a permutation π̂n

of {1, . . . , d} and scaling factors ε̂n
1 , . . . , ε̂n

d ∈ R \ {0} such that

(
ε̂n
j

)−1
ŵn

π̂n(j)

a.s.→ w0
j and

∫ ∞
−∞

∣∣∣∣ε̂n
j

∣∣f̂ n
π̂n(j)

(
ε̂n
j x

) − f ∗
j (x)

∣∣dx
a.s.→ 0

for j = 1, . . . , d , where f ∗
j = ψ∗(P 0

j ).

3.2. Pre-whitening. Pre-whitening is a standard pre-processing technique in
the ICA literature; see Hyvärinen, Karhunen and Oja [(2001), pages 140 and 141]
or Chen and Bickel (2005). In this subsection, we explain the rationale for pre-
whitening and the simplifications it provides.
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Assume for now that P ∈ P ICA
d and

∫
Rd ‖x‖2 dP (x) < ∞, and let � denote the

(positive-definite) covariance matrix corresponding to P . Consider the ICA model
X = AS, where X ∼ P , the mixing matrix A is non-singular and S = (S1, . . . , Sd)

has independent components with Sj ∼ Pj . Assuming without loss of generality
that each component of S has unit variance, we can write �−1/2X = �−1/2AS ≡
ÃS, say, where Ã belongs to the set O(d) of orthogonal d × d matrices. Thus, the
unmixing matrix W belongs to the set O(d)�−1/2 = {O�−1/2 :O ∈ O(d)}.

It follows that, if � were known, we could maximise �n with the restriction
that W ∈ O(d)�−1/2. In practice, � is typically unknown, but we can estimate it
using the sample covariance matrix �̂. For n large enough that the convex hull of
x1, . . . ,xn is d-dimensional, we can therefore consider maximising

�n(W,f1, . . . , fd;x1, . . . ,xn)

over W ∈ O(d)�̂−1/2 and f1, . . . , fd ∈ F1. Denote such a maximiser by (
ˆ̂

Wn,
ˆ̂

f n
1,

. . . ,
ˆ̂

f n
d). The corollary below shows that, under a second moment condition, ˆ̂

Wn

and ˆ̂
f n

1, . . . ,
ˆ̂

f n
d have the same asymptotic properties as the original estimators Ŵn

and f̂ n
1 , . . . , f̂ n

d .

COROLLARY 8. Suppose that P 0 ∈ P ICA
d is identifiable, is represented by

W 0 ∈ W and P 0
1 , . . . ,P 0

d ∈ P1 and that
∫
Rd ‖x‖2 dP 0(x) < ∞. Then with proba-

bility 1 for sufficiently large n, a maximiser (
ˆ̂

Wn,
ˆ̂

f n
1, . . . ,

ˆ̂
f n

d) of �n(W,f1, . . . , fd)

over W ∈ O(d)�̂−1/2 and f1, . . . , fd ∈ F1 exists. Moreover, for any such max-
imiser, there exist a permutation ˆ̂πn of {1, . . . , d} and scaling factors ˆ̂εn

1, . . . ,
ˆ̂εn
d ∈

R \ {0} such that( ˆ̂εn
j

)−1 ˆ̂wn
ˆ̂πn(j)

a.s.→ w0
j and

∫ ∞
−∞

∣∣∣∣ ˆ̂εn
j

∣∣ ˆ̂
f n

ˆ̂πn(j)

( ˆ̂εn
j x

) − f ∗
j (x)

∣∣dx
a.s.→ 0,

where f ∗
j = ψ∗(P 0

j ).

An alternative, equivalent way of computing (
ˆ̂

Wn,
ˆ̂

f n
1, . . . ,

ˆ̂
f n

d) is to pre-whiten

the data by replacing x1, . . . ,xn with z1 = �̂−1/2x1, . . . , zn = �̂−1/2xn, and then
maximise

�n(O,g1, . . . , gd; z1, . . . , zn)

over O ∈ O(d) and g1, . . . , gd ∈ F1. If (Ôn, ĝn
1 , . . . , ĝn

d ) is such a maximiser, we

can then set ˆ̂
Wn = Ôn�̂−1/2 and ˆ̂

f n
j = ĝn

j . Note that pre-whitening breaks down

the estimation of the d2 parameters in W into two stages: first, we use �̂ to esti-
mate the d(d + 1)/2 free parameters of the symmetric, positive definite matrix �,
leaving only the maximisation over the d(d − 1)/2 free parameters of O ∈ O(d)

at the second stage. The advantage of this approach is that it facilitates more stable
maximisation algorithms, such as the one described in the next subsection.
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3.3. Computational algorithm. In this subsection, we address the challenge of
maximising

�n(W,f1, . . . , fd;x1, . . . ,xn)

over W ∈ O(d) and f1, . . . , fd ∈ F1; thus, we are assuming that our data have
already been pre-whitened. As a starting point, we choose W to be randomly dis-
tributed according to the Haar measure on the set O(d) of d × d orthogonal ma-
trices. A simple way of generating W with this distribution is to generate a d × d

matrix Z whose entries are independent N(0,1) random variables, compute the
QR-factorisation Z = QR, and let W = Q.

Our proposed algorithm then alternates between maximising the log-likelihood
over f1, . . . , fd for fixed W , and then over W for fixed f1, . . . , fd . The first of
these steps is straightforward given Theorem 2 and the recent work on log-concave
density estimation: we set fj to be the log-concave maximum likelihood estimator
of the data wT

j x1, . . . ,w
T
j xn. This can be computed using the Active Set algorithm

implemented in the R package logcondens [Dümbgen and Rufibach (2011),
Rufibach and Dümbgen (2006)]. This fast algorithm exploits two basic facts: first,
the logarithm of the log-concave maximum likelihood estimator is piecewise linear
and continuous between the smallest and largest order statistics, with “knots” at
the observations; and second, that the likelihood maximiser for a given (typically
small) set of knots can be computed very efficiently. The algorithm therefore varies
the set of knots appropriately until, after finitely many steps, the global optimum
is attained.

This leaves the challenge of updating W ∈ O(d). In common with other ICA
algorithms [e.g., Plumbley (2005)], we treat O(d) as a Riemannian manifold, and
use standard techniques from differential geometry, as well as some features par-
ticular to our problem, to construct our proposal. Recall that the set O(d) is a
d(d − 1)/2-dimensional submanifold of R

d2
. The tangent space at W ∈ O(d) is

TWO(d) := {WY :Y = −Y T}. In fact, if we define the natural inner product 〈·, ·〉
on TWO(d) × TWO(d) by 〈U,V 〉 = tr(UV T), then O(d) becomes a Riemannian
manifold. (Note that if we think of U and V as vectors in R

d2
, then this inner

product is simply the Euclidean inner product.)
There is no loss of generality in assuming W belongs to the Riemannian man-

ifold SO(d), the set of special orthogonal matrices having determinant 1. We can
now define geodesics on SO(d), recalling that the matrix exponential is given by

exp(Y ) = I +
∞∑

r=1

Y r

r! .

The unique geodesic passing through W ∈ SO(d) with tangent vector WY (where
Y = −Y T) is the map α : [0,1] → SO(d) given by α(t) = W exp(tY ).

We update W by moving along a geodesic in SO(d), but need to choose an
appropriate skew-symmetric matrix Y , which ideally should (at least locally)
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give a large increase in the log-likelihood. The key to finding such a direc-
tion is Proposition 9 below. To set the scene for this result, observe that for
x ∈ [min(wT

j x1, . . . ,w
T
j xn),max(wT

j x1, . . . ,w
T
j xn)], we can write

logfj (x) = min
k=1,...,mj

(bjkx − βjk)(6)

for some bjk, βjk ∈ R [e.g., Cule, Samworth and Stewart (2010)]. Since we may
assume that bj1, . . . , bjmj

are strictly decreasing, the minimum in (6) is attained
in either one or two indices. It is convenient to let

Kij = arg min
k=1,...,mj

(
bjkw

T
j xi − βjk

)
.

PROPOSITION 9. Consider the map g : SO(d) → R given by

g(W) = 1

n

n∑
i=1

d∑
j=1

min
k=1,...,mj

(
bjkw

T
j xi − βjk

)
.

Let Y be a skew-symmetric matrix and let cj denote the j th row of WY . If
|Kij | = 1, let kij denote the unique element of Kij . If |Kij | = 2, write Kij =
{kij1, kij2}. If cT

j xi ≥ 0, let kij = kij l , where l = arg minl=1,2 bkijl
; if cT

j xi < 0, let
kij = kij l , where l = arg maxl=1,2 bkijl

. Then the one-sided directional derivative
of g at W in the direction WY is

∇WY g(W) := 1

n

n∑
i=1

d∑
j=1

bjkij
cT
j xi .

Note that while the one-sided directional derivatives of g exist, the function
is not differentiable, so we cannot apply a basic gradient descent algorithm. In-
stead, for 1 < s < r < d , let Yr,s denote the d × d matrix with Yr,s(r, s) = 1/

√
2,

Yr,s(s, r) = −1/
√

2 and all other entries equal to zero. Then Y + = {Yr,s : 1 < s <

r < d} forms an orthonormal basis for the set of skew-symmetric matrices. Let
Y − = {−Y :Y ∈ Y +}. We choose Y max ∈ Y + ∪ Y − to maximise ∇WY g(W).

We therefore update W with W exp(εY max), and it remains to select ε. This
we propose to choose by means of a backtracking line search. Specifically, we fix
α ∈ (0,1) and ε = 1, and if

g
(
W exp

(
εY max))

> g(W) + αε∇WY maxg(W),(7)

we accept a move from W to W exp(εY max). Otherwise, we successively reduce ε

by a factor of γ ∈ (0,1) until (7) is satisfied, and then move to W exp(εY max). In
our implementation, we used α = 0.3 and γ = 1/2.



ICA VIA NONPARAMETRIC MAXIMUM LIKELIHOOD 2985

Our algorithm produces a sequence (W(1), f
(1)
1 , . . . , f

(1)
d ), (W(2), f

(2)
1 , . . . ,

f
(2)
d ), . . . . We terminate the algorithm once

�n(W(t), f
(t)
1 , . . . , f

(t)
d ) − �n(W(t−1), f

(t−1)
1 , . . . , f

(t−1)
d )

|�n(W(t−1), f
(t−1)
1 , . . . , f

(t−1)
d )| < η,

where, in our implementation, we chose η = 10−7. As with other ICA algorithms,
global convergence is not guaranteed, so we used 10 random starting points and
took the solution with the highest log-likelihood.

4. Numerical experiments. To illustrate the practical merits of our proposed
nonparametric maximum likelihood estimation method for ICA models, we con-
ducted several sets of numerical experiments. To fix ideas, we focus on two-
dimensional signals, that is, d = 2. The components of the signal were generated
independently, and then rotated by π/3, so the mixing matrix is

A =
(

1/2 −√
3/2√

3/2 1/2

)
.

Our goal is to reconstruct the signal and estimate A or, equivalently, W = A−1,
based on n = 200 observations of the rotated input.

We first consider a typical example in the ICA literature where the density of
each component of the true signal is uniform on the interval [−0.5,0.5]. The top
left panel of Figure 1 plots the 200 simulated signal pairs, while the top right panel
gives the rotated observations. The bottom left panel plots the recovered signal
using the proposed nonparametric maximum likelihood method. Also included in
the bottom right panel of the figure are the estimated marginal densities of the two
sources of signal.

Figure 2 gives corresponding plots when the marginals have an Exp(1) − 1
distribution. We note that both uniform and exponential distributions have log-
concave densities and, therefore, our method not only recovers the mixing matrix
but also accurately estimates the marginal densities, as can be seen in Figures 1
and 2.

To investigate the robustness of the proposed method when the marginal com-
ponents do not have log-concave densities, we repeated the simulation in two other
cases, with the true signal simulated first from a t-distribution with two degrees of
freedom scaled by a factor of 1/

√
2 and second from a mixture of normals dis-

tribution 0.7N(−0.9,1) + 0.3N(2.1,1). Figures 3 and 4 show that, in both cases,
the misspecification of the marginals does not affect the recovery of the signal.
Also, the estimated marginals represent estimates of the log-concave projection of
the true marginals (a standard Laplace density in the case Figure 3), as correctly
predicted by our theoretical results.

As discussed before, one of the unique advantages of the proposed method over
existing ones is its general applicability. For example, the method can be used even
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FIG. 1. Uniform signal: top left panel, top right panel and bottom left panel give the true signal,
rotated observations and the reconstructed signal, respectively. The bottom right panel gives the
estimated marginal densities along with the true marginal (grey line).

when the marginal distributions of the true signal do not have densities. To demon-
strate this property, we now consider simulating signals from a Bin(3,1/2) − 1.5
distribution. To the best of our knowledge, none of the existing ICA methods are
applicable for these types of problems. The simulation results presented in Figure 5
suggest that the method works very well in this case.

To further conduct a comparative study, we repeated each of the previous
simulations 200 times and computed our estimate along with those produced
by FastICA and ProDenICA methods. FastICA algorithms [e.g., Hyvärinen and
Oja (2000), Nordhausen et al. (2011), Ollila (2010)] are popular ICA methods
that traditionally proceed by maximising an approximation to the negentropy;
ProDenICA is a nonparametric ICA method proposed by Hastie and Tibshirani
(2003b), and has been shown to enjoy the best performance among a large col-
lection of existing ICA methods [Hastie, Tibshirani and Friedman (2009)]. Both
the FastICA and ProDenICA methods were implemented using the R package
ProDenICA [Hastie and Tibshirani (2003a)]. In the former case, we used the
Gfunc=G1 option to the ProDenICA function, corresponding to cosh negen-
tropy [Hyvärinen and Oja (2000)]; in the latter case, we used the Gfunc=GPois
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FIG. 2. Exponential signal: top left panel, top right panel and bottom left panel give the true signal,
rotated observations and the reconstructed signal, respectively. The bottom right panel gives the
estimated marginal densities along with the true marginal (grey line).

option, which fits a tilted Gaussian density using a Poisson generalised addi-
tive model. To compare the performance of these methods, we follow convention
[Hyvärinen, Karhunen and Oja (2001)] and compute the Amari metric between the
true unmixing matrix W and its estimates. The Amari metric between two d × d

matrices is defined as

ρ(A,B) = 1

2d

d∑
i=1

( ∑d
j=1 |Cij |

max1≤j≤d |Cij | − 1
)

+ 1

2d

d∑
j=1

( ∑d
i=1 |Cij |

max1≤i≤d |Cij | − 1
)
,(8)

where C = (Cij )1≤i,j≤d = AB−1. Boxplots of the Amari metric for all three meth-
ods are given in Figure 6.

It is clear that both our proposed method (LogConICA) and ProDenICA out-
perform the FastICA method. For both uniform and exponential marginals, Log-
ConICA improves upon ProDenICA, which might be expected since both distri-
butions have log-concave densities. It is, however, interesting to note the robust-
ness of LogConICA to misspecification of log-concavity, as it still outperforms
ProDenICA for t2 marginals, and remains competitive for the mixture of normal
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FIG. 3. t2 signal: top left panel, top right panel and bottom left panel give the true signal, rotated
observations and the reconstructed signal, respectively. The bottom right panel gives the estimated
marginal densities along with the true marginal (grey line).

marginals. The most significant advantage of the proposed method, however, is
displayed when the marginals are binomial. Recall that ProDenICA, in common
with other nonparametric methods, assumes that the log density is smooth. This as-
sumption is not satisfied with the binomial distribution and, as a result, ProDenICA
performs rather poorly. In contrast, LogConICA works fairly well in this setting
even though the true marginal does not have a log-concave density with respect
to the Lebesgue measure. All these observations confirm our earlier theoretical
development.

5. Proofs.

PROOF OF PROPOSITION 1. (1) Suppose that
∫
Rd ‖x‖dP (x) = ∞. Fix an

arbitrary f ∈ F ICA
d , and find α > 0 and β ∈ R such that f (x) ≤ e−α‖x‖+β . Then∫

Rd
logf dP ≤ −α

∫
Rd

‖x‖dP (x) + β = −∞.

Thus, L∗∗(P ) = −∞ and ψ∗∗(P ) = F ICA
d .
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FIG. 4. Mixture of normals signal: top left panel, top right panel and bottom left panel give the true
signal, rotated observations and the reconstructed signal, respectively. The bottom right panel gives
the estimated marginal densities along with the true marginal (grey line).

(2) Now suppose that
∫
Rd ‖x‖dP (x) < ∞, but P(H) = 1 for some hyper-

plane H = {x ∈ R
d :a�

1 x = α}, where a1 is a unit vector in R
d and α ∈ R. Find

a2, . . . , ad such that a1, . . . , ad is an orthonormal basis for R
d . Define the family

of density functions

fσ (x) = 1

2σ
e−|aT

1 x−α|/σ
d∏

j=2

e
−|aT

j x|

2
.

Then fσ ∈ F ICA
d , and

∫
Rd

logfσ (x) dP (x) = − log(σ ) − d log 2 −
d∑

j=2

∫
H

∣∣aT
j x

∣∣dP (x)

≥ − log(σ ) − d log 2 −
d∑

j=2

∫
H

‖x‖dP (x) → ∞

as σ → 0.
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FIG. 5. Binomial signal: top left panel, top right panel and bottom left panel give the true signal,
rotated observations and the reconstructed signal, respectively. The bottom right panel gives the
estimated marginal densities.

(3) Now suppose that P ∈ Pd . Notice that the density f (x) = 2−d ∏d
j=1 e−|xj |

belongs to F ICA
d and satisfies

∫
Rd

logf dP = −
d∑

j=1

∫
Rd

|xj |dP (x) − d log 2 > −∞.

Moreover,

sup
f ∈F ICA

d

∫
Rd

logf dP ≤ sup
f ∈Fd

∫
Rd

logf dP < ∞,

where the second inequality follows from the proof of Theorem 2.2 of Dümbgen,
Samworth and Schuhmacher (2011). We may therefore take a sequence f 1, f 2,

. . . ∈ F ICA
d such that ∫

Rd
logf n dP ↗ sup

f ∈F ICA
d

∫
Rd

logf dP.
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FIG. 6. Comparison between LogConICA, FastICA and ProDenICA. The bottom right panel gives
the Amari distances of the LogConICA and ProDenICA methods for the exponential example shown
in the top right plot, but with a rescaled y-axis.

Let csupp(P ) denote the convex support of P , that is, the intersection of all
closed, convex sets having P -measure 1. The hypothesis P ∈ Pd implies that
csupp(P ) is d-dimensional [e.g., Dümbgen, Samworth and Schuhmacher (2011),
Lemma 2.1]. Following the arguments in the proof of Theorem 2.2 of Dümbgen,
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Samworth and Schuhmacher (2011), there exist α > 0 and β ∈ R such that
supn∈N f n(x) ≤ e−α‖x‖+β for all x ∈ R

d . Moreover, these arguments [see also
the proof of Theorem 4 of Cule and Samworth (2010)] yield the existence of
a closed, convex set C ⊇ int(csupp(P )), a log-concave density f ∗∗ ∈ Fd with
{x ∈ R

d :f ∗∗(x) > 0} = C and a subsequence (f nk ) such that

f ∗∗(x) = lim
k→∞f nk (x) for all x ∈ int(C) ∪ (

R
d \ C

)
.

Since the boundary of C has zero Lebesgue measure, we deduce from Fatou’s
lemma applied to the non-negative functions x �→ −α‖x‖ + β − logf nk (x) that∫

Rd
logf ∗∗ dP ≥ lim sup

k→∞

∫
Rd

logf nk dP = sup
f ∈F ICA

d

∫
Rd

logf dP.

It remains to show that f ∗∗ ∈ F ICA
d . We can write

f nk (x) = ∣∣detWk
∣∣ d∏
j=1

f k
j

((
wk

j

)T
x
)
,

where Wk ∈ W and f k
j ∈ F1 for each k ∈ N and j = 1, . . . , d . Let Xk be a ran-

dom vector with density f nk ∈ F ICA
d , and let X be a random vector with density

f ∗∗ ∈ Fd . We know that Xk d→ X as k → ∞, and that (wk
1)

TXk, . . . , (wk
d)TXk are

independent for each k. Let w̃k
j = wk

j/‖wk
j‖ and f̃ k

j (x) = ‖wk
j‖f k

j (‖wk
j‖x). Then

we have

f nk (x) = ∣∣det W̃ k
∣∣ d∏
j=1

f̃ k
j

((
w̃k

j

)T
x
)
,(9)

where the matrix W̃ k has j th row w̃k
j . Moreover, W̃ k ∈ W and f̃ k

1 , . . . , f̃ k
d ∈ F1, so

(9) provides an alternative, equivalent representation of the density f nk , in which
each row of the unmixing matrix has unit Euclidean length. By reducing to a fur-
ther subsequence if necessary, we may assume that for each j = 1, . . . , d , there
exists w̃j ∈ R

d such that w̃k
j → w̃j as k → ∞. By Slutsky’s theorem, it then fol-

lows that ((
w̃k

1
)T

Xk, . . . ,
(
w̃k

d

)T
Xk) d→ (

w̃T
1X, . . . , w̃T

dX
)
.

Thus, for any t = (t1, . . . , td)T ∈ R
d ,

E
(
eitT(w̃T

1X,...,w̃T
dX)) = lim

k→∞E
(
eitT((w̃k

1)TXk,...,(w̃k
d )TXk))

= lim
k→∞

d∏
j=1

E
(
e
itj (w̃k

j )TXk ) =
d∏

j=1

E
(
e
itj w̃T

j X)
.



ICA VIA NONPARAMETRIC MAXIMUM LIKELIHOOD 2993

We conclude that w̃T
1X, . . . , w̃T

dX are independent. Now, the fact that the support
of f ∗∗ is a d-dimensional convex set means that none of w̃T

1X, . . . , w̃T
dX is almost

surely constant, and each of these random variables has a log-concave density, by
Theorem 6 of Prékopa (1973). Finally, since ‖w̃j‖ = 1 for all j , we deduce further
that W̃ = (w̃1, . . . , w̃d)T is non-singular. This shows that f ∗∗ ∈ F ICA

d , as required.
�

PROOF OF THEOREM 2. Suppose that P ∈ P ICA
d satisfies

P(B) =
d∏

j=1

Pj

(
wT

j B
)

for some W ∈ W and P1, . . . ,Pd ∈ P1. Consider maximising∫
Rd

logf (x) dP (x)

over f ∈ Fd . Letting s = Wx and f̃ (s) = f (As), where A = W−1, we can equiv-
alently maximise ∫

Rd
log f̃ (s) d

(
d⊗

j=1

Pj (sj )

)

over f̃ ∈ Fd . But, by Theorem 4 of Chen and Samworth (2012), the unique so-
lution to this maximisation problem is to choose f̃ (s) = ∏d

j=1 f ∗
j (sj ), where

f ∗
j = ψ∗(Pj ). This shows that f ∗ := ψ∗(P ) can be written as

f ∗(x) = |detW |
d∏

j=1

f ∗
j

(
wT

j x
)
.

Since f ∗ ∈ F ICA
d also, we deduce that f ∗ is also the unique maximiser of∫

Rd logf dP over f ∈ F ICA
d , so ψ∗∗(P ) = ψ∗(P ). �

PROOF OF THEOREM 3. Suppose that P ∈ P ICA
d . Let X ∼ P , so there exists

W ∈ W such that WX has independent components. Writing Pj for the marginal
distribution of wT

j X, note that P1, . . . ,Pd ∈ P1. By Theorem 2 and the identifi-
ability result of Eriksson and Koivunen (2004), it therefore suffices to show that
Pj ∈ P1 has a Gaussian density if and only if ψ∗(Pj ) is a Gaussian density. If Pj

has a Gaussian density f ∗
j , then since f ∗

j is log-concave, we have f ∗
j = ψ∗(Pj ).

Conversely, suppose that Pj does not have a Gaussian density. Since f ∗
j = ψ∗(Pj )

satisfies
∫ ∞
−∞ x dPj (x) = ∫ ∞

−∞ xf ∗
j (x) dx [Dümbgen, Samworth and Schuhmacher

(2011), Remark 2.3], we may assume without loss of generality that Pj and f ∗
j

have mean zero. We consider maximising∫ ∞
−∞

logf dPj
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over all mean zero Gaussian densities f . Writing φσ 2 for the mean zero Gaussian
density with variance σ 2, we have∫ ∞

−∞
logφσ 2 dPj = − 1

2σ 2

∫ ∞
−∞

x2 dPj (x) − 1

2
log

(
2πσ 2)

.

This expression is maximised uniquely in σ 2 at σ 2∗ = ∫ ∞
−∞ x2 dPj (x). But Chen

and Samworth (2012) show that the only way a distribution Pj and its log-concave
projection ψ∗(Pj ) can have the same second moment is if Pj has a log-concave
density, in which case Pj has density ψ∗(Pj ). We therefore conclude that the only
way ψ∗(Pj ) can be a Gaussian density is if Pj has a Gaussian density, a contra-
diction. �

PROOF OF PROPOSITION 4. The proof of this proposition is very similar to
the proof of Theorem 4.5 of Dümbgen, Samworth and Schuhmacher (2011), so we
only sketch the argument here. For each n ∈ N, let f n ∈ ψ∗∗(P n), and consider an
arbitrary subsequence (f nk ). By reducing to a further subsequence if necessary,
we may assume that L∗∗(P nk ) → λ ∈ [−∞,∞]. Observe that

λ ≥ lim
k→∞

∫
Rd

log
(
2−de

−∑d
j=1 |xj |)

dP nk (x)

= −d log 2 −
d∑

j=1

∫
Rd

|xj |dP (x) > −∞.

Arguments from convex analysis can be used to show that the sequence (f nk )

is uniformly bounded above, and lim infk∈N f nk (x0) > −∞ for all x0 ∈
int(csupp(P )). From this it follows that there exist a > 0 and b ∈ R such that
supk∈N supx∈Rd f nk (x) ≤ e−a‖x‖+b. Thus, by reducing to a further subsequence if
necessary, we may assume there exists f ∗∗ ∈ Fd such that

lim sup
k→∞,x→x0

f nk (x) = f ∗∗(x0) for all x0 ∈ R
d \ ∂

{
x ∈ R

d :f ∗∗(x) > 0
}
,

(10)
lim sup

k→∞,x→x0

f nk (x) ≤ f ∗∗(x0) for all x0 ∈ ∂
{
x ∈ R

d :f ∗∗(x) > 0
}
.

Note from this that

λ = lim
k→∞

∫
Rd

logf nk dP nk ≤ −a

∫
Rd

‖x‖dP (x) + b < ∞.

In fact, we can use the argument from the proof of Proposition 1 to deduce that
f ∗∗ ∈ F ICA

d . Skorokhod’s representation theorem and Fatou’s lemma can then be
used to show that λ ≤ ∫

Rd logf ∗∗ dP ≤ L∗∗(P ).
We can obtain the other bound λ ≥ L∗∗(P ) by taking any element of ψ∗∗(P ),

approximating it from above using Lipschitz continuous functions, as in the proof
of Theorem 4.5 of Dümbgen, Samworth and Schuhmacher (2011), and using
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monotone convergence. From these arguments, we conclude that L∗∗(P n) →
L∗∗(P ) and f ∗∗ ∈ ψ∗∗(P ).

We can see from (10) that f nk
a.e.→ f ∗∗, so

∫
Rd |f nk − f ∗∗| → 0, by Scheffé’s

theorem. Thus, given any f n ∈ ψ∗∗(P n) and any subsequence (f nk ), we can find
f ∗∗ ∈ ψ∗∗(P ) and a further subsequence of (f nk ) which converges to f ∗∗ in total
variation distance. This yields the second part of the proposition. �

PROOF OF THEOREM 5. The first part of the theorem is a special case of
Proposition 4. Now suppose P ∈ P ICA

d is identifiable and is represented by W ∈ W
and P1, . . . ,Pd ∈ P1. Suppose without loss of generality that ‖wj‖ = 1 for all
j = 1, . . . , d and let f ∗∗ = ψ∗∗(P ). Recall from Theorem 2 that if X has density
f ∗∗, then wT

j X has density f ∗
j = ψ∗(Pj ).

Suppose for a contradiction that we can find ε > 0, integers 1 ≤ n1 < n2 < · · · ,

f k ∈ ψ∗∗(P nk ) and (Wk,f k
1 , . . . , f k

d )
ICA∼ f k such that

inf
k∈N

inf
εk
j∈R\{0}

inf
πk∈�d

{∥∥(
εk
j

)−1
wk

πk(j)
−wj

∥∥+
∫ ∞
−∞

∣∣∣∣εk
j

∣∣f k
πk(j)

(
εk
j x

)−f ∗
j (x)

∣∣dx

}
≥ ε.

We can find a subsequence 1 ≤ k1 < k2 < · · · such that w
kl

j /‖wkl

j ‖ → w̃j , say, as
l → ∞, for all j = 1, . . . , d . The argument toward the end of the proof of case
(3) of Proposition 1 shows that W̃ can be used to represent the unmixing matrix
of f ∗∗, so by the identifiability result of Eriksson and Koivunen (2004) and the fact
that ‖w̃j‖ = 1, there exist ε̃1, . . . , ε̃d ∈ {−1,1} and a permutation π of {1, . . . , d}
such that ε̃j w̃π(j) = wj . Setting πn = π and εn

j = ε̃−1
j ‖wn

πn(j)‖, we deduce that

(
ε
kl

j

)−1
w

kl

πkl (j)
= ε̃j

w
kl

π(j)

‖wkl

π(j)‖
→ wj

for j = 1, . . . , d . Now observe that if Xkl has density f kl , then by Slutsky’s the-

orem, (ε
kl

j )−1(w
kl

πkl (j)
)TXkl

d→ wT
j X. It therefore follows from Proposition 2(c) of

Cule and Samworth (2010) that∫ ∞
−∞

∣∣∣∣εkl

j

∣∣f n

πkl (j)

(
ε
kl

j x
) − f ∗

j (x)
∣∣dx → 0

for j = 1, . . . , d . This contradiction establishes that

sup
f n∈ψ∗∗(P n)

sup
(Wn,f n

1 ,...,f n
d )

ICA∼ f n

inf
πn∈�d

inf
εn

1 ,...,εn
d∈R\{0}

{∥∥(
εn
j

)−1
wn

πn(j) − wj

∥∥

+
∫ ∞
−∞

∣∣∣∣εn
j

∣∣f n
πn(j)

(
εn
j x

) − f ∗
j (x)

∣∣dx

}
(11)

→ 0
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for each j = 1, . . . , d .
It remains to prove that for sufficiently large n, every f n ∈ ψ∗∗(P n) is identi-

fiable. Recall from the identifiability result of Eriksson and Koivunen (2004) and
Theorem 3 that not more than one of f ∗

1 , . . . , f ∗
d is Gaussian. Let φμ,σ 2(·) de-

note the univariate normal density with mean μ and variance σ 2. Let J denote
the index set of the non-Gaussian densities among f ∗

1 , . . . , f ∗
d , so the cardinality

of J is at least d − 1, and consider, for each j ∈ J , the problem of minimising
g(μ,σ) = ∫ ∞

−∞ |φμ,σ 2 − f ∗
j | over μ ∈ R and σ > 0. Observe that g is continu-

ous with g(μ,σ) < 2 for all μ and σ , that infμ∈R g(μ,σ) → 2 as σ → 0,∞ and
infσ>0 g(μ,σ) → 2 as |μ| → ∞. It follows that g attains its infimum, and there
exists η > 0 such that

inf
j∈J

inf
μ∈R

inf
σ>0

∫ ∞
−∞

∣∣φμ,σ 2 − f ∗
j

∣∣ ≥ η.(12)

Comparing (11) and (12), we see that, for sufficiently large n, whenever f n ∈
ψ∗∗(P n) and (Wn,f n

1 , . . . , f n
d )

ICA∼ f n, at most one of the densities f n
1 , . . . , f n

d

can be Gaussian. It follows that when n is large, every f n ∈ ψ∗∗(P n) is identifi-
able. �

PROOF OF PROPOSITION 6. It is well known that for fixed W ∈ W , the non-
parametric likelihood L(·) defined in (4) is maximised by choosing

P̂ W
j = 1

n

n∑
i=1

δwT
j xi

, j = 1, . . . , d.

For i = 1, . . . , n, W ∈ W and j = 1, . . . , d , let

nwj
(i) = {

ĩ ∈ {1, . . . , n} :wT
j x

ĩ
= wT

j xi

}
.

The binary relation i ∼ ĩ if nwj
(i) = nwj

(ĩ) defines an equivalence relation on
{1, . . . , n}, so we can let IW

j denote a set of indices obtained by choosing one
element from each equivalence class. Then

L
(
W, P̂ W

1 , . . . , P̂ W
d

) =
d∏

j=1

|nwj
(1)||nwj

(2)| · · · |nwj
(n)|

nn

=
d∏

j=1

n−n
∏

i∈IW
j

∣∣nwj
(i)

∣∣|nwj
(i)|

.

Note that |nwj
(i)| ≤ d , because otherwise there would exist a subset of x1, . . . ,xn

of cardinality at least d + 1 lying on a (d − 1)-dimensional hyperplane of the form
{x ∈ R

d :wT
j x = β}, for some β ∈ R, contradicting the hypothesis that x1, . . . ,xn

are in general position. In fact, we claim that
∑

i∈IW
j

(|nwj
(i)|−1) ≤ d −1. Indeed,
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suppose for a contradiction that this were not the case. Then, by reordering the
observations if necessary, we could find K ≤ |IW

j |, integers n1, . . . , nK ≥ 2 with

n1 +· · ·+nK ≥ d +K and β1, . . . , βK ∈ R such that wT
j xi = βk for i = n1 +· · ·+

nk−1 + 1, . . . , n1 + · · · + nk and k = 1, . . . ,K . Now set yik = xi − xn1+···+nk
for

i = n1 + · · · + nk−1 + 1, . . . , n1 + · · · + nk − 1 and k = 1, . . . ,K . Note that there
at least d vectors {yik}, all of which are non-zero, and any subset of cardinality
d is linearly independent because x1, . . . ,xn are in general position. On the other
hand, wT

j yik = 0 for all i, k, which establishes our contradiction. Thus, the best
we can hope for in aiming to maximise the likelihood is to be able to choose
|nwj

(i0)| = d for some i0 ∈ IW
j , and |nwj

(i)| = 1 for i ∈ IW
j \ {i0}. It follows that

L(W, P̂ W
1 , . . . , P̂ W

d ) ≤ (dd/nn)d .
Moreover, for any choice J of distinct indices in {1, . . . , n}, if we construct the

matrix WJ ∈ W as described just before the statement of Proposition 6, then for
each j = 1, . . . , d and i ∈ J \ {j}, we have wT

j xi = 1T
dX−1

(−j)xi = 1, so |nwj
(i)| = d

for such i, and L(WJ , P̂
WJ

1 , . . . , P̂
WJ

d ) = (dd/nn)d . �

As a preliminary to the proof of Corollary 8, it is convenient to define some
more notation. Let F ICA

d,0 denote the set of f ∈ F ICA
d that can be represented using

an orthogonal unmixing matrix. Let ψ∗∗
0 : Pd → F ICA

d,0 denote the log-concave ICA

projection operator onto F ICA
d,0 , so that

ψ∗∗
0 (P ) = arg max

f ∈F ICA
d,0

∫
Rd

logf dP.

The projection operator ψ∗∗
0 has many properties in common with ψ∗∗. Indeed,

the analogue of Proposition 1 is immediate (in fact, the proof is slightly simpler
because all rows of unmixing matrices have unit length). Let P ICA

d,0 denote the set

of P ∈ P ICA
d such that any X ∼ P ICA

d has identity covariance matrix. Then the ana-
logue of Theorem 2 states that the restriction ψ∗∗

0 |P ICA
d,0

coincides with ψ∗∗|P ICA
d,0

.

This follows because if the distribution of X belongs to P ICA
d,0 , so that X = AS,

where S has independent components, then there is no loss of generality in assum-
ing each component of S has unit variance, and then I = Cov(X) = AAT. Thus,
the unmixing matrix of P may be assumed to be orthogonal, and the result fol-
lows from Theorem 2. Analogues of Theorem 3 and Proposition 4 for ψ∗∗

0 are
immediate.

The proof of Corollary 8 is based on an analogue of part of Theorem 5 for P ICA
d,0 ,

which is stated below. Its proof is virtually identical to that of Theorem 5, and is
omitted.
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PROPOSITION 10. Suppose that P ∈ P ICA
d,0 is identifiable and that (W,P1, . . . ,

Pd)
ICA∼ P with W ∈ O(d). If P 1,P 2, . . . ∈ Pd are such that d(P n,P ) → 0, then

sup
f n∈ψ∗∗

0 (P n)

sup
(Wn,f n

1 ,...,f n
d )

ICA∼ f n

inf
πn∈�d

inf
εn

1 ,...,εn
d∈{−1,1}

{∥∥(
εn
j

)−1
wn

πn(j) − wj

∥∥

+
∫ ∞
−∞

∣∣∣∣εn
j

∣∣f n
πn(j)

(
εn
j x

) − f ∗
j (x)

∣∣dx

}

→ 0

for each j = 1, . . . , d , where f ∗
j = ψ∗(Pj ). As a consequence, for sufficiently

large n, every f n ∈ ψ∗∗
0 (P n) is identifiable.

Notice that the scaling factors here may be assumed to belong to {−1,1}, again
because the rows of Wn and W have unit length.

PROOF OF COROLLARY 8. Let z1 = �̂−1/2x1, . . . , zn = �̂−1/2xn, and let
P̂ n,z denote their empirical distribution. Writing z̄ = n−1 ∑n

i=1 zi and x̄ =
n−1 ∑n

i=1 xi , note that the covariance matrix corresponding to P̂ n,z is

1

n

n∑
i=1

(zi − z̄)(zi − z̄)T = 1

n

n∑
i=1

�̂−1/2(xi − x̄)(xi − x̄)T�̂−1/2 = I.

Now P̂ n,z ∈ Pd provided the convex hull of z1, . . . , zn is d-dimensional, which
occurs with probability 1 for sufficiently large n. It follows by the analogue of
Proposition 1 for ψ∗∗

0 that there then exists a maximiser (Ôn, ĝn
1 , . . . , ĝn

d ) of
�n(O,g1, . . . , gd; z1, . . . , zn) over O ∈ O(d) and g1, . . . , gd ∈ F1.

Now let � = Cov(x1), and note that the distribution P 0,z of �−1/2x1 belongs to

P ICA
d,0 . Suppose that (O0,P

0,z
1 , . . . ,P

0,z
d )

ICA∼ P 0,z, with O0 ∈ O(d). To show that

d(P̂ n,z,P 0,z)
a.s.→ 0, note first that∣∣∣∣

∫
Rd

‖x‖d
(
P̂ n,z − P 0,z)(x)

∣∣∣∣
≤

∣∣∣∣∣1

n

n∑
i=1

{∥∥�̂−1/2xi

∥∥ − ∥∥�−1/2xi

∥∥}∣∣∣∣∣ +
∣∣∣∣∣1

n

n∑
i=1

∥∥�−1/2xi

∥∥ − E
∥∥�−1/2x1

∥∥∣∣∣∣∣
≤ 1

n

n∑
i=1

∥∥(
�̂−1/2 − �−1/2)

xi

∥∥ +
∣∣∣∣∣1

n

n∑
i=1

∥∥�−1/2xi

∥∥ − E
∥∥�−1/2x1

∥∥∣∣∣∣∣
≤ |λ|max

(
�̂−1/2 − �−1/2)1

n

n∑
i=1

‖xi‖ +
∣∣∣∣∣1

n

n∑
i=1

∥∥�−1/2xi

∥∥ − E
∥∥�−1/2x1

∥∥∣∣∣∣∣,
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where |λ|max(�̂
−1/2 −�−1/2) denotes the largest absolute value of the eigenvalues

of �̂−1/2 − �−1/2. Now |λ|max(�̂
−1/2 − �−1/2)

a.s.→ 0, by the strong law of large
numbers and the continuous mapping theorem, while n−1 ∑n

i=1 ‖xi‖ a.s.→ E‖x1‖,
also by the strong law. Another application of the strong law shows that the second
term in the sum converges almost surely to zero. Moreover, if h : Rd → [−1,1] has
Lipschitz constant at most 1, then∣∣∣∣

∫
Rd

h d
(
P̂ n,z − P 0,z)∣∣∣∣

≤
∣∣∣∣∣1

n

n∑
i=1

{
h
(
�̂−1/2xi

) − h
(
�−1/2xi

)}∣∣∣∣∣
+

∣∣∣∣∣1

n

n∑
i=1

h
(
�−1/2xi

) − Eh
(
�−1/2x1

)∣∣∣∣∣
≤ |λ|max

(
�̂−1/2 − �−1/2)1

n

n∑
i=1

‖xi‖

+
∣∣∣∣∣1

n

n∑
i=1

h
(
�−1/2xi

) − Eh
(
�−1/2x1

)∣∣∣∣∣
a.s.→ 0.

This shows that d(P̂ n,z,P 0,z)
a.s.→ 0, so by Proposition 10, there exist π̂n ∈ �d and

ε̂n
1 , . . . , ε̂n

d ∈ {−1,1} such that

∥∥(
ε̂n
j

)−1
ôn
π̂n(j) − o0

j

∥∥ +
∫ ∞
−∞

∣∣∣∣ε̂n
j

∣∣ĝn
π̂n(j)

(
ε̂n
j x

) − g∗
j (x)

∣∣dx
a.s.→ 0

for each j = 1, . . . , d , where g∗
j = ψ∗(P 0,z

j ). Now set ˆ̂
Wn = Ôn�̂−1/2 and ˆ̂

f n
j =

ĝn
j , and observe that (

ˆ̂
Wn,

ˆ̂
f n

1, . . . ,
ˆ̂

f n
d) maximises �n(W,f1, . . . , fd;x1, . . . ,xn)

over W ∈ O(d)�̂−1/2 and f1, . . . , fd ∈ F1. Since (O0�−1/2,P
0,z
1 , . . . ,P

0,z
d )

ICA∼
P 0, there exist π ∈ �d and scaling factors ε1, . . . , εd ∈ R \ {0} such that
o0
j�

−1/2 = ε−1
j w0

π(j) and P
0,z
j (Bj ) = P 0

π(j)(εjBj ) for all Bj ∈ B1. It follows that,

setting ˆ̂πn = π̂n ◦ π−1 and ˆ̂εn
j = ε−1

π−1(j)
ε̂n
π−1(j)

, we have

( ˆ̂εn
j

)−1 ˆ̂wn
ˆ̂πn(j)

= ( ˆ̂εn
j

)−1
ôn

ˆ̂πn(j)
�̂−1/2

= επ−1(j)

(
ε̂n
π−1(j)

)−1
ôn
π̂n(π−1(j))

�̂−1/2

a.s.→ επ−1(j)o
0
π−1(j)

�−1/2 = w0
j
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for j = 1, . . . , d . Now,

f ∗
π(j)(x) = ψ∗(

P 0
π(j)

)
(x) = ∣∣ε−1

j

∣∣g∗
j

(
ε−1
j x

)
,

where the second equality follows by the affine equivariance of log-concave pro-
jections [Dümbgen, Samworth and Schuhmacher (2011), Remark 2.4]. Thus,∫ ∞

−∞
∣∣∣∣ ˆ̂εn

j

∣∣ ˆ̂
f n

ˆ̂πn(j)

( ˆ̂εn
j x

) − f ∗
j (x)

∣∣dx

=
∫ ∞
−∞

∣∣∣∣ε̂n
π−1(j)

ε−1
π−1(j)

∣∣ĝn
π̂n(π−1(j))

(
ε̂n
π−1(j)

επ−1(j)x
)

− ∣∣ε−1
π−1(j)

∣∣g∗
π−1(j)

(
ε−1
π−1(j)

x
)∣∣dx

=
∫ ∞
−∞

∣∣∣∣ε̂n
π−1(j)

∣∣ĝn
π̂n(π−1(j))

(
ε̂n
π−1(j)

y
) − g∗

π−1(j)
(y)

∣∣dy
a.s.→ 0

as required. �

PROOF OF PROPOSITION 9. For ε > 0, let Wε = W exp(εY ), and let wj,ε

denote the j th row of Wε . Notice that

wT
j,εxi = wT

j xi + εcT
j xi + O

(
ε2)

as ε ↘ 0. It follows that for sufficiently small ε > 0,

g(Wε) − g(W)

ε
= 1

ε

n∑
i=1

d∑
j=1

{
min

k=1,...,mj

(
bjkw

T
j,εxi − βjk

)

− min
k=1,...,mj

(
bjkw

T
j xi − βjk

)}

= 1

ε

n∑
i=1

d∑
j=1

bjkij

(
wT

j,εxi − wT
j xi

)

→
n∑

i=1

d∑
j=1

bjkij
cT
j xi

as ε ↘ 0. �
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