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ESTIMATION IN FUNCTIONAL REGRESSION FOR GENERAL
EXPONENTIAL FAMILIES

BY WINSTON WEI DOU2, DAVID POLLARD1 AND HARRISON H. ZHOU2

Yale University

This paper studies a class of exponential family models whose canon-
ical parameters are specified as linear functionals of an unknown infinite-
dimensional slope function. The optimal minimax rates of convergence for
slope function estimation are established. The estimators that achieve the op-
timal rates are constructed by constrained maximum likelihood estimation
with parameters whose dimension grows with sample size. A change-of-
measure argument, inspired by Le Cam’s theory of asymptotic equivalence,
is used to eliminate the bias caused by the nonlinearity of exponential family
models.

1. Introduction. There has been extensive exploratory and theoretical study
of functional data analysis (FDA) over the past two decades. Two monographs
by Ramsay and Silverman (2002, 2005) provide comprehensive discussions on
methods and applications.

Among many problems involving functional data, slope estimation in functional
linear regression has received substantial attention in literature, for example, by
Cardot, Ferraty and Sarda (2003), Li and Hsing (2007) and Hall and Horowitz
(2007). In particular, Hall and Horowitz (2007) established minimax rates of con-
vergence and proposed rate-optimal estimators based on spectral truncation (re-
gression on functional principal components). They showed that the optimal rates
depend on the smoothness of the slope function and the decay rate of the eigenval-
ues of the covariance kernel of the functional independent variable.

In this paper, we study optimal rates of convergence for slope estimation in func-
tional generalized linear models, for which little theory is known. We introduce
several new technical devices to overcome the problems caused by nonlinearity of
the link function. To analyze our estimator, we establish a sharp approximation for
maximum likelihood estimators for exponential families parametrized by linear
functions of N -dimensional parameters, for an N that grows with sample size; see
Lemma 1. We develop a change-of-measure argument—inspired by ideas from Le
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Cam’s theory of asymptotic equivalence of models—to eliminate the effect of bias
terms caused by the nonlinearity of the link function; see Sections 4.2 and 4.3.

We consider problems where the observed data consist of independent, iden-
tically distributed pairs (yi,Xi) where each Xi is a Gaussian process indexed by
a compact subinterval of the real line, which with no loss of generality we take
to be [0,1]. Assume, for each i, that the random variable yi conditional on the
process Xi , follows a distribution Qλi

, where {Qλ :λ ∈ R} is a one-parameter ex-
ponential family. The density function of Qλ is specified in equation (2). We take
parameter λi to be a linear functional of Xi of the form

λi = a +
∫ 1

0
Xi(t)B(t) dt

(1)
for an unknown constant a and an unknown B ∈ L2[0,1].

Thus, the conditional joint distribution of (y1, . . . , yn) given (X1, . . . ,Xn) is the
product measure Qn,a,B,X1,...,Xn

= ⊗
i≤n Qλi

. We abbreviate Qn,a,B,X1,...,Xn
to

Qn,a,B. Write Pμ,K for the distribution of each Xi , where μ is the mean and
K is the covariance of Xi . The joint distribution of the sample processes is
then Pn,μ,K = P n

μ,K . Therefore, our models Pn,f := Pn,μ,KQn,a,B, where f =
(K,a,μ,B), are the joint distributions of the sample (y1,X1), . . . , (yn,Xn). The
parameter set F ≡ F (R,α,β) depend on universal constants R,α and β . See Defi-
nition 1 (in Section 2) for the precise specification of the parameter set. The univer-
sal constant α controls the decay rate of eigenvalues of kernel K , and the universal
constant β characterizes the “smoothness” of the slope function B.

Denote the corresponding norm and inner product in the space L2[0,1] by ‖ · ‖
and 〈·, ·〉. We focus on the estimation of B using integrated squared error loss,

L(B̂n,B) = ‖B̂n − B‖2 =
∫ 1

0

(
B̂n(t) − B(t)

)2
dt.

The two main results are as follows.

THEOREM 1 (Minimax upper bound). Under the assumptions stated in Sec-
tion 2, there exists an estimating sequence of B̂n’s for which: for each ε > 0 there
exists a finite constant Cε such that

sup
f ∈F

Pn,f

{‖B̂n − B‖2 > Cεn
(1−2β)/(α+2β)}< ε for all large enough n.

THEOREM 2 (Minimax lower bound). Under the assumptions stated in Sec-
tion 2,

lim inf
n→∞ n(2β−1)/(α+2β) sup

f ∈F
Pn,f ‖B̂n − B‖2 > 0 for every estimator {B̂n}.
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Two closely related works in the area of functional generalized linear models
are Müller and Stadtmüller (2005) and Cardot and Sarda (2005), which provided
theory for the convergence rate in functional generalized linear models. However,
the rate optimality was not studied. In addition, Müller and Stadtmüller (2005) es-
tablished an upper bound for rates of convergence assuming the negligibility of the
bias due to the approximation of the infinite-dimensional model by a sequence of
finite-dimensional models, the issue we overcome by using a change-of-measure
argument. By contrast, more theoretical advances have been achieved in the func-
tional linear regression setting, not only for estimation but also for prediction. For
example, Cai and Hall (2006) and Crambes, Kneip and Sarda (2009) derived op-
timal rates of convergence for prediction in the fixed and random design cases.
See also, Cardot, Mas and Sarda (2007) which derived a CLT for prediction in the
fixed and random design cases and Cardot and Johannes (2010) which established
a minimax optimal result for prediction at a random design using thresholding es-
timators. In a companion study to our paper, Dou [(2010), Chapter 5] considers
optimal prediction in functional generalized linear regressions with an application
to the economic problem of predicting recessions from the U.S. Treasury yield
curve.

Our minimax upper bound result (Theorem 1) is proved in Section 4. The mini-
max lower bound result (Theorem 2) is established in Section 5. The proof of The-
orem 1 depends on an approximation result (Lemma 1) for maximum likelihood
estimators in exponential family models for parameters whose dimensions change
with sample size. As an aid to the reader, we present our proof of Theorem 1 in two
stages. In Section 4.2, we assume that both the mean μ and the covariance kernel
K are known. This allows us to emphasize the key ideas in our proofs. We proceed
in Section 4.3 to the case where μ and K are estimated. The proofs for the lemmas
are collected together in Section 6. Some of them invoke the perturbation-theoretic
results collected in the supplemental article [Dou, Pollard and Zhou (2012)].

2. Regularity conditions. Let {Qλ :λ ∈ R} be a one-parameter exponential
family,

dQλ/dQ0 = fλ(y) := exp
(
λy − ψ(λ)

)
for all λ ∈ R.(2)

Necessarily ψ(0) = 0. Remember that eψ(λ) = Q0e
λy and that the distribution Qλ

has mean ψ̇(λ) and variance ψ̈(λ).

REMARK. We may assume that ψ̈(λ) > 0 for every real λ. Otherwise we
would have 0 = ψ̈(λ0) = varλ0(y) = Q0fλ0(y)(y − ψ̇(λ0))

2 for some λ0, which
would make y = ψ̇(λ0) for almost all y under Q0 and hence Qλ ≡ Qλ0 for ev-
ery λ.
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REMARK. The main results in this paper can be extended to the functional
quasi-likelihood regression models [see, e.g., Wedderburn (1974)] as follows:

yi = μi + σiεi,

where

μi = g

(
a +

∫
T

B(t)Xi (t) dt

)
and σi = v(μi) with known g and v.

However, a main goal of this paper is to provide a better understanding of the diffi-
culties caused by nonlinearity in functional data analysis models and to propose a
general approach to tackle them. The exponential families can provide a good rep-
resentation of the quasi-likelihood regression models to this end. One of the gains
of specifying exponential families is to simplify the proofs while still achieving our
main goal and covering the most broadly used models, such as the functional lo-
gistic regression model, the functional probit regression model and the functional
poisson regression model. The general nonparametric setting where the link func-
tions g and v are unknown is studied by Müller and Stadtmüller (2005), assuming
the negligibility of the bias due to the approximation of the infinite-dimensional
model by a sequence of finite-dimensional models. Without ignoring the bias, the
problem becomes much more difficult and would be an interesting topic for future
research.

REMARK. A natural extension of our model is the classical generalized linear
model with nuisance parameters φ as follows:

yi |Xi ∼ fλi,φ(y) with λi = a +
∫

T
B(t)Xi (t) dt

and

fλ,φ(y) := exp
[
α1(φ)

(
λy − ψ(λ)

)+ α2(φ, y)
]
,

where α1(φ) > 0 so that for each φ ∈ Rd we have an exponential family. Under
some regularity conditions on the known functions α1(·) and α2(·), the exact max-
imum likelihood estimation analysis and the lower bound argument of this paper
can still be employed to derive minimax results for the slightly more general set-
ting.

We assume:

(	̈) For each ε > 0 there exists a finite constant Cε for which ψ̈(λ) ≤
Cε exp(ελ2) for all λ ∈ R. Equivalently, ψ̈(λ) ≤ exp(o(λ2)) as |λ| → ∞.

(˙	̈) There exists an increasing real function G on R+ such that∣∣˙ψ̈(λ + h)
∣∣≤ ψ̈(λ)G

(|h|) for all λ and h.

Without loss of generality we assume G(0) ≥ 1.
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We also assume the observed data are i.i.d. pairs (yi,Xi) for i = 1, . . . , n,
where:

(X) Each {Xi (t) : 0 ≤ t ≤ 1} is distributed like {X(t) : 0 ≤ t ≤ 1}, a Gaussian
process with mean μ(t) and covariance kernel K(s, t).

(Y) yi |Xi ∼ Qλi
with λi = a + 〈Xi ,B〉 for an unknown {B(t) : 0 ≤ t ≤ 1} in

L2[0,1] and a ∈ R.

DEFINITION 1. For real constants α > 1 and β > (α + 3)/2 and R > 1, de-
fine F = F (R,α,β) as the set of all f = (K,a,μ,B) that satisfy the following
conditions:

(K) The covariance kernel is square integrable with respect to Lebesgue mea-
sure and has an eigenfunction expansion (as a compact operator on L2[0,1])

K(s, t) = ∑
k∈N

θkφk(s)φk(t),

where the eigenvalues θk are decreasing with Rk−α ≥ θk ≥ θk+1 + (α/R)k−α−1.
(a) |a| ≤ R.
(μ) ‖μ‖ ≤ R.
(B) B has an expansion B(t) =∑

k∈N bkφk(t) with |bk| ≤ Rk−β , for the eigen-
functions defined by the kernel K .

REMARK. The purpose of this paper is not to offer a universally optimal esti-
mation procedure, but to provide a theory for the principal components regression
in nonlinear models of functional data. As in Hall and Horowitz (2007) and Cai
and Hall (2006), among others, assumptions (K) and (B) set up a natural theoreti-
cal framework to justify and analyze the principal components regression. In prac-
tice, principal components analysis has been one of the most widely and success-
fully used statistical methods. One example of successful application of principal
components analysis is in analyzing the relationship between U.S. Treasury zero-
coupon yield curves, which is a typical functional data, and the macroeconomic
activities [see, e.g., Dou (2010), Estrella and Hardouvelis (1991), Wright (2006)].
In this analysis, the fixed basis such as wavelet basis or fourier basis fails to give a
sparse representation of the yield curve data. Admittedly, under different regular-
ity assumptions, by design the principal components regression approach may not
be applicable, and accordingly, other estimation methods such as wavelet basis or
spline basis may have better performance; see, for example, Crambes, Kneip and
Sarda (2009), Efromovich and Koltchinskii (2001). In Efromovich and Koltchin-
skii (2001), the authors discussed an approach of using two different bases, one
is for the slope function and the other is for the covariance kernel operator. This
technique can be applied to some cases where the principal components regres-
sion fails. Nevertheless, the results in Efromovich and Koltchinskii [(2001), The-
orem 3.1] requires a lower level of noise in the covariance kernel and a higher
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degree of smoothness of the slope function in order to allow tractability in more
severely ill-posed settings.

REMARK. The awkward lower bound for θk in assumption (K) implies, for all
k < j ,

θk − θj ≥ R−1
∫ j

k
αx−α−1 dx = R−1(k−α − j−α).(3)

If K and μ were known, we would only need the lower bound θk ≥ R−1k−α and
not the lower bound for θk − θk+1. As explained by Hall and Horowitz [(2007),
page 76], the stronger assumption is needed when one estimates the individual
eigenfunctions of K . Note that the subset of L2[0,1] in which B lies, denoted
as BK , depends on K . We regard the need for the stronger assumption on the
eigenvalues and the irksome assumption (B) as artifacts of the method of proof,
but we have not yet succeeded in removing either assumption.

REMARK. We discuss two extreme cases to help understand the regularity as-
sumption β > (α +3)/2. One case is that the eigenvalues {θk} decay exponentially
fast and the slope coefficients {bk} decay with polynomial rates, where essentially
we have α is much larger than β , for which it can be shown that the optimal rate
of convergence is just logarithmic. The other case is that the eigenvalues {θk} de-
cay polynomially fast, and the slope coefficients {bk} decay with exponential rates,
where essentially we have β is much larger than α, for which it can be shown that
the optimal convergence rate is nearly parametric up to a logarithmic term.

3. Methodology. In this section we introduce the methodology to construct
a sequence of estimators, which achieve the optimal rates of convergence stated
in Theorem 1. Our estimation features a two-step procedure. We first truncate at
the first N principal components and replace the original model Pn,f by the trun-
cated model P̃n,f,N defined in (7). The choice of N depends on an estimation-
approximation trade-off: oversized N can compromise the performance of the
MLE maximizing (11), whereas undersized N can make the model misspecifica-
tion between Pn,f and its finite-dimensional approximation P̃n,f,N nonnegligible.
Second, we further truncate the MLE at m < N to form our estimator in (10). The
choice of m depends on the standard variance-bias tradeoff as in nonparametric
estimation problems. See Section 4.2 for more details.

Under the assumptions (X) and (K) from Section 2, the process Xi admits the
eigen decomposition

Xi (t) − μ(t) = Zi (t) = ∑
k∈N

zi,kφk(t).

The random variables zi,k := 〈Zi , φk〉 are independent with zi,k ∼ N(0, θk).
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Because μ and K are unknown, we estimate them in the usual way:

μ̃(t) = X(t) = n−1
∑
i≤n

Xi (t)(4)

and

K̃(s, t) = (n − 1)−1
∑
i≤n

(
Xi (s) − X(s)

)(
Xi (t) − X(t)

)
(5)

= (n − 1)−1
∑
i≤n

(
Zi (s) − Z(s)

)(
Zi (t) − Z(t)

)
,

which has spectral representation

K̃(s, t) = ∑
k∈N

θ̃kφ̃k(s)φ̃k(t)(6)

with θ̃1 ≥ θ̃2 ≥ · · · ≥ θ̃n−1 ≥ 0. In fact we must have θ̃k = 0 for k ≥ n because
all the eigenfunctions φ̃k corresponding to nonzero θ̃k’s must lie in the (n − 1)-
dimensional space spanned by {Zi − Z : i = 1,2, . . . , n}.

Using the first N [to be specified in (13)] principal components, we can ap-
proximate the original infinite-dimensional model Pn,f by a sequence of truncated
finite-dimensional models

P̃n,f,N = Pn,μ,KQ̃n,a,B,N,X1,...,Xn
,(7)

where Q̃n,a,B,N,X1,...,Xn
:=⊗

i≤n Qλ̃i,N
with yi |X1, . . . ,Xn ∼ Qλ̃i,N

and

λ̃i,N = b̃0 + ∑
1≤k≤N

b̃k(̃zi,k − z̃·k),(8)

where b̃0 = a + 〈B,X〉, and b̃k = 〈B, φ̃k〉 for k ≥ 1, and z̃i,k = 〈Zi , φ̃k〉 for all
i, k, and z̃·k = n−1∑

i≤n z̃i,k = 〈Z, φ̃k〉. And hence z̃i,k − z̃·k = 〈Zi − Z, φ̃k〉 =
〈Xi − X, φ̃k〉. We abbreviate Q̃n,a,B,N,X1,...,Xn

to Q̃n,a,B,N in the rest of the pa-
per. We introduce the following matrices and vectors for the purpose of notational
convenience. Define:

• zi := (zi,1, . . . , zi,N)′ and z̃i := (̃zi,1, . . . , z̃i,N )′;
• z· := (z·1, . . . , z·N)′ and z̃· := (̃z·1, . . . , z̃·N)′;
• D := diag(1, θ1, . . . , θN)1/2, where θk’s are defined in assumption (K);
• D̃ := diag(1, θ̃1, . . . , θ̃N )1/2, where θ̃k’s are defined in (6);
• ξi := (1, z′

i)
′ and ξ̃i := (1, z̃′

i − z̃′·)′;
• ηi := D−1ξi and η̃i := D−1ξ̃i ;
• γ := (b0, b1, . . . , bN)′ and γ̃ := (b̃0, b̃1, . . . , b̃N )′.
Thus, equation (8) can be rewritten as

λ̃i,N = ξ̃ ′
i γ̃ = η̃′

iDγ̃ .(9)
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We estimate B by

B̂n(t) = ∑
k≤m

b̂kφ̃k(t),(10)

where (b̂0, . . . , b̂N ) is the conditional MLE for the truncated model P̃n,f,N , and
m is the optimal cutoff point according to the variance-bias tradeoff with m < N .
More precisely, (b̂0, . . . , b̂N ) is chosen to maximize the following conditional (on
the Xi ’s) log likelihood over g ≡ (g0, g1, . . . , gN)′ in RN+1:

Ln(g) =∑
i≤n

yi

(̃
ξ ′
i g
)− ψ

(̃
ξ ′
i g
)

(11)

with cutoff points m and N chosen as

m 
 n1/(α+2β)(12)

and

N 
 nζ with (2 + 2α)−1 > ζ > (α + 2β − 1)−1.(13)

Note that N is much larger than m. Such a ζ exists because the assumptions α > 1
and β > (α + 3)/2 imply α + 2β − 1 > 2 + 2α. The universal constants α and β

characterize the decay rate of the eigenvalues of kernel K and the smoothness of
slope function B defined in Definition 1.

4. Proof of Theorem 1. The proof of Theorem 1 is divided into two stages. In
the first stage, we prove the theorem assuming that the mean μ and the covariance
kernel K are known. This case is relatively simple and of course artificial, but it
captures the essence of our proof. For the Gaussian case, this is reduced to the
setting considered in Goldenshluger and Tsybakov (2001). In the second stage
where μ and K are unknown, we show that using the natural estimates μ̃ and K̃

as in (4) and (5) will not affect the result achieved in the first stage.
In Section 4.1 we state the technical lemmas which serve as building blocks

for establishing the main theorems. Their proofs are postponed to the Section 6.
In Section 4.2 we prove Theorem 1 assuming μ and K are known, and then in
Section 4.3 we apply Lemma 5 to complete the proof of Theorem 1 with unknown
μ and K .

4.1. Technical lemmas. We write the lemmas in a notation that makes the ap-
plications in Sections 4.2 and 4.3 more straightforward. The notational cost is that
the parameters are indexed by {0,1, . . . ,N} in Lemmas 1 and 2. Each of the lem-
mas stated in this subsection is a general result.

We first introduce an approximation result for maximum likelihood estimators
in exponential family models for parameters whose dimensions change with sam-
ple size. This lemma combines ideas from Portnoy (1988) and from Hjort and
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Pollard (1993). For each square matrix A, its spectral norm is defined by its largest
absolute value of the eigenvalues, that is, ‖A‖2 := sup|v|≤1 |Av| where |v| denotes
the l2 norm of vector v. The proof can be found in Section 6.1.

LEMMA 1. Let Qλ be the one-parameter exponential family distribution de-
fined as in (2) and satisfying regularity condition (˙	̈). Suppose ξ1, . . . , ξn are
(nonrandom) vectors in RN+1. Suppose Q =⊗

i≤n Qλi
with λi = ξ ′

i γ for a fixed
γ = (γ0, γ1, . . . , γN)′ in RN+1. Under Q, the coordinate maps y1, . . . , yn are in-
dependent random variables with yi ∼ Qλi

.
The log-likelihood for fitting the model is

Ln(g) =∑
i≤n

(
ξ ′
i g
)
yi − ψ

(
ξ ′
i g
)

for g ∈ RN+1,

which is maximized (over RN+1) at the MLE ĝ (=ĝn). Define ηi := D−1ξi for
some nonsingular matrix D, and define the matrix

Jn :=∑
i≤n

ξiξ
′
i ψ̈(λi) = nDAnD

′ with An := 1

n

∑
i≤n

ηiη
′
i ψ̈(λi).

Assume Bn is another nonsingular matrix for which

‖An − Bn‖2 ≤ (2∥∥B−1
n

∥∥
2

)−1(14)

and assume

max
i≤n

|ηi | ≤ ε
√

n/(N + 1)

G(1)

√
32‖B−1

n ‖2

for some 0 < ε < 1,(15)

where G(·) is defined as in regularity condition (˙	̈). Then, for each set of vectors
κ = {κ0, . . . , κM} in RN+1 there is a set Yκ,ε with QYc

κ,ε < 2ε on which

∑
0≤j≤M

∣∣κ ′
j (ĝ − γ )

∣∣2 ≤ 6‖B−1
n ‖2

nε

∑
0≤j≤M

∣∣D−1κj

∣∣2.
REMARK. This is a quite general result. In this paper, we are interested in one

particular case where κj have all elements equal to zero except the j th element
that equals one and D = diag(θ0, . . . , θM). In this case, the result can be rewritten
as ∑

0≤j≤M

(ĝj − γj )
2 ≤ 6‖B−1

n ‖2

nε

∑
0≤j≤M

θ−2
j .

The following approximation result for random matrices will be invoked in or-
der to apply Lemma 1 to show Theorem 1. The proof can be found in Section 6.2.
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LEMMA 2. Suppose {ηi,k : i, k ≥ 1} are i.i.d. standard normal random vari-
ables. Let

An := n−1
∑
i≤n

ηiη
′
i ψ̈
(
γ ′Dηi

)
,(16)

where γ = (γ0, γ1, . . . , γN)′, ηi = (1, ηi,1, . . . , ηi,N)′ and D = diag(D0, . . . ,DN).
Define Bn := PAn, and assume ψ satisfies regularity condition (	̈). If we have∑

k≥1 D2
kγ

2
k < ∞ and N = o(n1/2), then it follows that∥∥B−1

n

∥∥
2 = O(1) and P‖An − Bn‖2

2 = o(1).

The following lemma establishes a bound on the Hellinger distance between
members of an exponential family, which plays a key role in our change-of-
measure argument. We write h(·, ·) for the Hellinger distance. If both P and Q

are dominated by some measure ν, with densities p and q , then h2(P,Q) :=
ν(

√
p − √

q)2. The proof can be found in Section 6.3.

LEMMA 3. Suppose {Qλ :λ ∈ R} is an exponential family defined as in (2)
and satisfies regularity condition (˙	̈). Then

h2(Qλ,Qλ+δ) ≤ δ2ψ̈(λ)
(
1 + |δ|)G(|δ|) ∀λ, δ ∈ R.

Here G(·) is defined in the condition (˙	̈).

The following lemma provides a maximal inequality for weighted-chi-square
variables, which easily leads to maximal inequalities for Gaussian processes and
multivariate normal vectors. These inequalities will be repeatedly invoked. The
proof can be found in Section 6.4.

LEMMA 4. Suppose {ηi,k : i, k ≥ 1} are i.i.d. standard normal random vari-
ables. Let

Wi = ∑
k∈N

τi,kη
2
i,k for i = 1, . . . , n.

If the τi,k’s are nonnegative constants with T := maxi≤n

∑
k∈N τi,k < ∞, then it

follows that

P
{
max
i≤n

Wi > 4T (logn + x)
}

< 2e−x for each x ≥ 0.

The following lemma is to guarantee that the estimation of B using μ̃ and K̃

basically has the same accuracy as using μ and K . We need some terminology be-
fore formally introducing the lemma, and these notations introduced below apply
to the rest of the paper. When we want to indicate that a bound involving constants
c, C, C1, . . . holds uniformly over all models indexed by a set of parameters F ,
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we write c(F ), C(F ), C1(F ), . . . . By the usual convention for eliminating sub-
scripts, the values of the constants might change from one paragraph to the next:
a constant C1(F ) in one place need not be the same as a constant C1(F ) in an-
other place. For sequences of constants cn that might depend on f ∈ F , we write
cn = OF (1) and oF (1) and so on to show that the asymptotic bounds hold uni-
formly over F . Denote Hp and H̃p to be orthogonal projection operators associ-
ated with span{φ1, . . . , φp} and span{φ̃1, . . . , φ̃p}, respectively, where φk’s are the
eigenfunctions defined in assumption (K), and φ̃k’s are their sample approxima-
tions defined in (6). We also need to define the following key quantities:

• S̃ := diag(σ0, . . . , σN) with σ0 = 1 and σk = sign(〈φk, φ̃k〉) for k ≥ 1.
• � := K̃ − K , where K̃ is defined in (5).
• Ãn := n−1∑

i≤n η̃i η̃
′
i ψ̈ (̃λi,N ), where η̃i and λ̃i,N are defined in Section 3.

• B̃n := S̃BnS̃, where Bn is defined in (19).

The proof of Lemma 5 can be found in Section 6.5.

LEMMA 5. Assume the regularity conditions in Section 2 hold. Let m and N

are chosen according to (12) and (13), respectively. For each ε > 0 there exists a
set X̃ε,n, depending on μ and K , with

sup
F

Pn,μ,K X̃c
ε,n < ε for all large enough n

and on which, for some constant Cε that does not depend on μ or K :

(i) ‖�‖ ≤ Cεn
−1/2;

(ii) maxi≤n ‖Zi‖ ≤ Cε

√
logn and ‖Z‖ ≤ Cεn

−1/2;
(iii) ‖(H̃m − Hm)B‖2 = oF (n(1−2β)/(α+2β));
(iv) ‖(H̃N − HN)B‖2 = OF (n−1−ν) for some universal constant ν > 0;
(v) maxi≤n |η̃i |2 = oF (

√
n/N);

(vi) ‖S̃ÃnS̃ − An‖2 = oF (1).

4.2. Proof of Theorem 1 with known Gaussian distribution. Initially we sup-
pose that μ and K are known. We emphasize that this simpler case serves as an
intermediate step to the more interesting unknown distribution case, and it captures
the essential idea of the proof of Theorem 1.

Remember under Qn,a,B, the yi ’s are independent, conditional on X1, . . . ,Xn,
with yi ∼ Qλi

and

λi = a + 〈Xi ,B〉 = b0 + ∑
k∈N

zi,kbk where b0 = a + 〈μ,B〉.

Our task is to estimate the bk’s with sufficient accuracy so that we are able to
estimate B(t) =∑

k∈N bkφk(t) within an error of order n(1−2β)/(α+2β). In fact it
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will suffice to estimate the component HmB of B in the subspace spanned by
{φ1, . . . , φm} with m 
 n1/(α+2β) because∥∥H⊥

m B
∥∥2 = ∑

k>m

b2
k = OF

(
m1−2β)= OF

(
n(1−2β)/(α+2β)).(17)

One might try to estimate the coefficients (b0, . . . , bm) by choosing ĝ =
(ĝ0, . . . , ĝm)′ to maximize a conditional log likelihood over all g = (g0, g1, . . . ,

gm)′ in Rm+1:

Ln,m(g) :=∑
i≤n

yi

(
g0 + ∑

1≤k≤m

zi,kgk

)
− ψ

(
g0 + ∑

1≤k≤m

zi,kgk

)
.

To this end one might try to appeal to Lemma 1 stated at the beginning of the
previous subsection, with κj equal to the unit vector with a 1 in its j th position
for j ≤ m and κj = 0 otherwise. That would give a bound for

∑
k≤m(ĝk − bk)

2.
Unfortunately, we cannot directly invoke the lemma with N = m to estimate γ ′ =
(b0, b1, . . . , bN) when we replace Q, D, ξi and ηi (notations) in Lemma 1 by
Qn,a,B (defined in Section 1), D, ξi and ηi (defined in Section 3), respectively,
because λi �= ξ ′

i γ , a bias problem.

REMARK. We could modify Lemma 1 to allow λi = ξ ′
i γ +biasi , for a suitably

small bias term, but at the cost of extra regularity conditions and a more delicate
argument. The same difficulty arises whenever one investigates the asymptotics of
maximum likelihood estimators with the true distribution outside the model family,
that is, MLE under model misspecification.

Instead, we use a two-stage estimation procedure,

B̂n = ∑
k≤m

b̂kφk,(18)

where (b̂0, . . . , b̂N ) is the conditional MLE for the truncated model and m ≤ N .
More precisely, (b̂0, . . . , b̂N ) is chosen to maximize the following conditional (on
the Xi ’s) log likelihood over g ≡ (g0, g1, . . . , gN) in RN+1:

Ln,N(g) :=∑
i≤n

yi

(
ξ ′
i g
)− ψ

(
ξ ′
i g
)

with cutoff points m and N chosen as in (12) and (13), respectively. Note that this
estimator differs from that in (10) in the sense that it uses φk and zi,k instead of
the approximation correspondences φ̃k and z̃i,k − z̃·k . This two-stage estimation
procedure eliminates the bias term by a change-of-measure argument conditional
on the Xi ’s. We present the proof in the following three steps.
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Step 1. From the analysis above, one can see that the key in our proof is the
change-of-measure argument and the application of Lemma 1. In this step, we
construct a high probability set such that for each realization of the Xi’s on the set
the assumptions of Lemma 1 are satisfied.

Define γ , ξi , D and ηi as in Section 3. Note that in this case ηi,j = zi,j /
√

θi for
all i, j , and hence the ηi,j ’s are i.i.d. standard normal variables. We define matrix
An as in (16),

An = n−1
∑
i≤n

ηiη
′
i ψ̈
(
γ ′Dηi

)
and Bn := Pn,μ,KAn.(19)

Now, let us define Xn = XZ,n ∩ Xη,n ∩ XA,n, where

XZ,n :=
{
max
i≤n

‖Zi‖2 ≤ C0 logn
}
,(20)

Xη,n :=
{
max
i≤n

|ηi |2 ≤ C0N logn
}
,(21)

XA,n := {‖An − Bn‖2 ≤ (2∥∥B−1
n

∥∥
2

)−1}
.(22)

If we choose a large enough universal constant C0 = C0(F ), Lemma 4 en-
sures that Pn,μ,KXc

Z,n ≤ 2/n and Pn,μ,KXc
η,n ≤ 2/n by choosing τi,k = θi and

τi,k = {i ≤ N}, respectively, for all i, k; and Lemma 2 shows that∥∥B−1
n

∥∥
2 = OF (1) and Pn,μ,K‖An − Bn‖2

2 = oF (1),

thus Pn,μ,KXc
A,n = oF (1). And hence,

Pn,μ,KXc
n ≤ Pn,μ,KXc

Z,n + Pn,μ,KXc
η,n + Pn,μ,KXc

A,n = oF (1).(23)

Step 2. In the previous step, we show the assumptions of Lemma 1 are satisfied
on the set Xn. In this step, we show that the change-of-measure argument is ready
to work. Let us consider the truncated model

Qn,a,B,N :=⊗
i≤n

Qλi,N
with λi,N := ξ ′

i γ .

“Change of measure” means to view the data y1, . . . , yn as if they are gener-
ated from the conditional joint distribution Qn,a,B,N , though the true distribu-
tion is Qn,a,B. In this step, we show that the divergence caused by replacing
Qn,a,B by Qn,a,B,N is small enough that it will not compromise the asymptotic
results. A common control of this divergence is the total variation distance be-
tween Qn,a,B,N and Qn,a,B. We show that there exists a sequence of nonnegative
constants cn of order oF (logn) such that

‖Qn,a,B − Qn,a,B,N‖2
TV ≤ e2cn

∑
i≤n

|λi − λi,N |2 on Xn.(24)
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To establish inequality (24) we use the bound

‖Qn,a,B − Qn,a,B,N‖2
TV ≤ h2(Qn,a,B,Qn,a,B,N ) ≤∑

i≤n

h2(Qλi
,Qλi,N

).

By Lemma 3

h2(Qλi
,Qλi,N

) ≤ δ2
i ψ̈(λi)

(
1 + |δi |)G(|δi |) with δi := λi − λi,N ,

where

|δi | = |λi − λi,N | = ∣∣〈Zi ,B〉 − 〈HNZi ,B〉∣∣= ∣∣〈Zi ,H
⊥
N B

〉∣∣
(25)

≤ ‖Zi‖
∥∥H⊥

N B
∥∥≤ OF

(√
N1−2β logn

)= oF (1).

Because δi = oF (1) for each i, we know all the (1 + |δi |)G(|δi |) factors can be
bounded by a single OF (1) term.

Further, for (a,B,μ,K) ∈ F (R,α,β) and with the ‖Zi‖’s on the set Xn,

|λi | ≤ |a| + (‖μ‖ + ‖Zi‖)‖B‖ ≤ C2

√
logn(26)

for some constant C2 = C2(F ). Assumption (	̈) then ensures that all the ψ̈(λi)

are bounded by a single exp(oF (logn)) term.
Therefore, inequality (24) is proved to hold. This bound for total variation dis-

tance legitimates the change-of-measure argument in the next step.

Step 3. We apply the change-of-measure argument and Lemma 1 to complete
the proof. On the set Xn, we can apply Lemma 1 directly with Q = Qn,a,B,N ,
because the conditions of Lemma 1 hold: inequality (14) holds by construction of
Xn and inequality (15) holds for large enough n because

max
i≤n

|ηi |2 ≤ OF (N logn) = oF (
√

n/N).

In the equation above, the first inequality is due to the construction of Xn, and the
second equality is due to N = oF (n1/(2+2α)).

For each realization of the Xi’s lying in Xn, we invoke Lemma 1, with ηi , An,
Bn, D and Q (notations) in Lemma 1 replaced by ηi , An, Bn, D and Qn,a,B,N

defined in this subsection, respectively, and it gives a high probability set Ym,ε

with Qn,a,B,NYc
m,ε < 2ε on which∑

1≤k≤m

|b̂k − bk|2 = OF

(
n−1

∑
1≤k≤m

θ−1
k

)
= OF

(
m1+α/n

)= OF
(
n(1−2β)/(α+2β)),

which implies

‖B̂n − B‖2 = ∑
1≤k≤m

|b̂k − bk|2 + ∑
k>m

b2
k = OF

(
n(1−2β)/(α+2β)).
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From inequality (24) it follows, for a large enough constant Cε , that

Pn,μ,KQn,a,B

{‖B̂n − B‖2 > Cεn
(1−2β)/(α+2β)}

≤ Pn,μ,KXc
n + Pn,μ,KXn

(‖Qn,a,B − Qn,a,B,N‖TV + Qn,a,B,NYc
m,ε

)
≤ oF (1) + 2ε + ecn

(∑
i≤n

Pn,μ,K |λi − λi,N |2
)1/2

.

By construction,

λi − λi,N = ∑
k>N

zi,kbk

with the zi,k’s independent and zi,k ∼ N(0, θk). Thus∑
i≤n

Pn,μ,K |λi − λi,N |2 ≤ n
∑
k>N

θkb
2
k = OF

(
nN1−α−2β)= oF

(
e−2cn

)
,

because ζ > (α + 2β − 1)−1. That is, we have an estimator that achieves the
OF (n(1−2β)/(α+2β)) minimax rate.

4.3. Proof of Theorem 1 with unknown Gaussian distribution. Let B̂n be the
two-stage estimator defined in (10) with cutoff points m and N defined in (12) and
(13), respectively. In this section, we show that B̂n achieves the asymptotic rates
of convergence stated in Theorem 1.

As in Section 4.2, most of the analysis will be conditional on the Xi’s lying
in a set with high probability on which the various estimators and other random
quantities are well behaved. In fact, we choose the high probability set as X̃ε,n that
is defined in Lemma 5. The set X̃ε,n is an analogy to Xn in Section 4.2.

As in Section 4.2, the component of B orthogonal to span{φ̃1, . . . , φ̃m} causes
no trouble because

‖B̂ − B‖2 = ∑
1≤k≤m

(b̂k − b̃k)
2 + ∥∥H̃⊥

m B
∥∥2

and, by Lemma 5 part (iii),∥∥H̃⊥
m B

∥∥2 ≤ 2
∥∥H⊥

m B
∥∥2 + 2

∥∥(H̃m − Hm)B
∥∥2 = OF

(
n(1−2β)/(α+2β)) on X̃ε,n.

To handle
∑

1≤k≤m(b̂k − b̃k)
2, we invoke Lemma 1 for Xi’s lying in X̃ε,n, with ηi ,

An, Bn, D and Q (notations) in Lemma 1 replaced by η̃i , Ãn, B̃n, D and Q̃n,a,B,N ,
respectively, where

Q̃n,a,B,N :=⊗
i≤n

Qλ̃i,N
.

And, it gives a high probability set Ỹm,ε with Q̃n,a,B,N Ỹc
m,ε < 2ε on which∑

1≤k≤m

(b̂k − b̃k)
2 = OF

(
n(1−2β)/(α+2β)).
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The conditions of Lemma 1 are satisfied on X̃ε,n when n is large, because of
Lemma 5 part (v) and

‖Ãn − B̃n‖2 ≤ ‖Ãn − S̃AnS̃‖2 + ‖S̃AnS̃ − S̃BnS̃‖2 = oF (1),

where the first part ‖Ãn − S̃AnS̃‖2 = oF (1) is due to Lemma 5 part (vi), and the
second part ‖S̃AnS̃ − S̃BnS̃‖2 = oF (1) is due to Lemma 2.

Now, to complete the proof it suffices to show that ‖Qn,a,B,N − Q̃n,a,B,N‖TV
tends to zero. First note that

λ̃i,N − λi,N = a + 〈B,X〉 + 〈H̃NB,Zi − Z〉 − a − 〈B,μ〉 − 〈HNB,Zi〉
= 〈

H̃⊥
N B,Z

〉− 〈H⊥
N B,Z

〉+ 〈H⊥
N B,Z

〉+ 〈H̃NB − HNB,Zi〉,
which implies that, on X̃ε,n,

|̃λi,N − λi,N |2 ≤ 2
∣∣〈H⊥

N B,Z
〉∣∣2 + 2‖H̃NB − HNB‖2(‖Zi‖ + ‖Z‖)2

≤ OF
(
N1−2β)C2

ε n−1 + OF
(
n−1−ν)C2

ε

(
n−1/2 +

√
logn

)2(27)

= OF
(
n−1−ν′)

for some 0 < ν′ < ν.

Now we can argue as in step 2 of the proof for the case of known K : on X̃ε,n,

‖Q̃n,a,B,N − Qn,a,B,N‖2
TV ≤∑

i≤n

h2(Qλ̃i,N
,Qλi,N

)

≤ exp
(
oF (logn)

)∑
i≤n

|̃λi,N − λi,N |2

= oF (1).

Finish the argument as in Section 4.2, by splitting into contributions from X̃c
ε,n and

X̃ε,n ∩ Ỹc
m,ε and X̃ε,n ∩ Ỹm,ε .

5. Proof of Theorem 2. We apply a slight variation on Assouad’s lemma—
combining ideas from Yu (1997) and from van der Vaart [(1998), Section 24.3]—to
establish the minimax lower bound result in Theorem 2.

We consider behavior only for μ = 0, a = 0 and a fixed K with spectral de-
composition

∑
j∈N θjφj ⊗ φj satisfying assumption (K). For simplicity we ab-

breviate Pn,0,K to P. Let J = {m + 1,m + 2, . . . ,2m} and � = {0,1}J := {γ =
(γm+1, . . . , γ2m)|γj = 0 or γj = 1}. Let βj = Rj−β . For each γ in � define
Bγ = ε

∑
j∈J γjβjφj , for a small ε > 0 to be specified, and write Qγ for the prod-

uct measure
⊗

i≤n Qλi(γ ) with λi(γ ) = 〈Bγ ,Zi〉 = ε
∑

j∈J γjβj zi,j .

For each j let �j = {γ ∈ � :γj = 1} and let ψj be the bijection on � that flips
the j th coordinate but leaves all other coordinates unchanged. Let π be the uniform
distribution on �, that is, πγ = 2−m for each γ .
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For each estimator B̂ =∑
j∈N b̂j φj we have ‖Bγ − B̂‖2 ≥∑j∈J (εγjβj − b̂j )

2,
and so

sup
F

Pn,f ‖B − B̂‖2 ≥ ∑
γ∈�

πγ

∑
j∈J

PQγ (εγjβj − b̂j )
2

= 2−m
∑
j∈J

∑
γ∈�j

P
(
Qγ (εβj − b̂j )

2 + Qψj (γ )(0 − b̂j )
2)(28)

≥ 2−m
∑
j∈J

∑
γ∈�j

1

4
(εβj )

2P‖Qγ ∧ Qψj (γ )‖,

where the first lower bound is due to the fact that the supremum over F is not less
than the average over a subset of F , and the last lower bound comes from the fact
that

(εβj − b̂j )
2 + (0 − b̂j )

2 ≥ 1
4(εβj )

2 for all b̂j .

We assert that, if ε is chosen appropriately,

min
j,γ

P‖Qγ ∧ Qψj (γ )‖ stays bounded away from zero as n → ∞,(29)

which will ensure that the lower bound in (28) is eventually larger than a constant
multiple of

∑
j∈J β2

j ≥ cn(1−2β)/(α+2β) for some constant c > 0. The inequality in
Theorem 2 will then follow.

To prove (29), consider a γ in � and the corresponding γ ′ = ψj(γ ). By virtue
of the inequality

‖Qγ ∧ Qγ ′‖ = 1 − ‖Qγ − Qγ ′‖TV ≥ 1 −
(

2 ∧∑
i≤n

h2(Qλi(γ ),Qλi(γ
′))
)1/2

,

it is enough to show that

lim sup
n→∞

max
j,γ

P

(
2 ∧∑

i≤n

h2(Qλi(γ ),Qλi(γ
′))
)

< 1.(30)

Define Xn = {maxi≤n ‖Zi‖2 ≤ C0 logn}. Based on Lemma 4, we know that PXc
n =

o(1) with the constant C0 large enough. On Xn we have∣∣λi(γ )
∣∣2 ≤ ∑

j∈J

β2
j ‖Zi‖2 = O

(
n(1−2β)/(α+2β) logn

)= o(1),

and, by inequality in Lemma 3, there exits a universal constant C > 0 such that

h2(Qλi(γ ),Qλi(γ
′)) ≤ C

∣∣λi(γ ) − λi

(
γ ′)∣∣2 ≤ Cε2β2

j z2
i,j .

We deduce that

P

(
2 ∧∑

i≤n

h2(Qλi(γ ),Qλi(γ
′))
)

≤ 2PXc
n + C

∑
i≤n

ε2β2
j PXnz

2
i,j

≤ o(1) + Cε2nβ2
j θj .
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The choice of J makes β2
j θj ≤ R2m−α−2β ∼ R2/n. Assertion (30) follows for any

small enough ε.

6. Proofs of technical lemmas.

6.1. Proof of Lemma 1. We need to first show the following lemma. Note that
Jn =∑

i≤n ξiξ
′
i ψ̈(λi). To avoid an excess of parentheses we write N+ for N + 1.

We define wi := J
−1/2
n ξi and Wn =∑

i≤n wi(yi − ψ̇(λi)). Notice that QWn = 0
and varQ(Wn) =∑

i≤n wiw
′
i ψ̈(λi) = IN+ and

Q|Wn|2 = trace
(
varQ(Wn)

)= N+.

LEMMA 6. Suppose 0 < ε1 ≤ 1/2 and 0 < ε2 < 1 and

max
i≤n

|wi | ≤ ε1ε2

2G(1)N+
with G as in assumption (˙	̈).

Then, the MLE ĝ has the decomposition ĝ = γ + J
−1/2
n (Wn + rn) with |rn| ≤ ε1

on the set {|Wn| ≤ √
N+/ε2}, which has Q-probability greater than 1 − ε2.

PROOF. The equality Q|Wn|2 = N+ and Chebyshev’s inequality give

Q
{|Wn| >

√
N+/ε2

}≤ ε2.

Reparametrize by defining t = J
1/2
n (g − γ ). The concave function

Ln(t) := Ln

(
γ + J−1/2

n t
)− Ln(γ ) =∑

i≤n

yiw
′
i t + ψ(λi) − ψ

(
λi + w′

i t
)

is maximized at t̂n = J
1/2
n (ĝ − γ ). It has derivative

L̇n(t) =∑
i≤n

wi

(
yi − ψ̇

(
λi + w′

i t
))

.

For a fixed unit vector u ∈ RN+ and a fixed t ∈ RN+ , consider the real-valued
function of the real variable s,

H(s) := u′L̇n(st) =∑
i≤n

u′wi

(
yi − ψ̇

(
λi + sw′

i t
))

,

which has derivatives

Ḣ (s) = −∑
i≤n

(
u′wi

)(
w′

i t
)
ψ̈
(
λi + sw′

i t
)
,

Ḧ (s) = −∑
i≤n

(
u′wi

)(
w′

i t
)2˙ψ̈(λi + sw′

i t
)
.

Notice that H(0) = u′Wn and Ḣ (0) = −u′∑
i≤n wiw

′
i ψ̈(λi)t = −u′t .
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Write Mn := maxi≤n |wi |. By virtue of assumption (˙	̈),∣∣Ḧ (s)
∣∣ ≤∑

i≤n

∣∣u′wi

∣∣(w′
i t
)2

ψ̈(λi)G
(∣∣sw′

i t
∣∣)

≤ MnG
(
Mn|st |)t ′∑

i≤n

wiw
′
i ψ̈(λi)t

= MnG
(
Mn|st |)|t |2.

By Taylor expansion, for some 0 < s∗ < 1,∣∣H(1) − H(0) − Ḣ (0)
∣∣≤ 1

2

∣∣Ḧ (s∗)∣∣≤ 1
2MnG

(
Mn|t |)|t |2.

That is, ∣∣u′(L̇n(t) − Wn + t
)∣∣≤ 1

2MnG
(
Mn|t |)|t |2.(31)

Approximation (31) will control the behavior of L̃(s) := Ln(Wn + su), a concave
function of the real argument s, for each unit vector u. By concavity, the derivative
˙̃L(s) is a decreasing function of s. Let us decompose ˙̃L(s) in the following way:

˙̃L(s) = u′L̇n(Wn + su) = −s + R(s),

where ∣∣R(s)
∣∣≤ 1

2MnG
(
Mn|Wn + su|)|Wn + su|2.

On the set {|Wn| ≤ √
N+/ε2} we have

|Wn ± ε1u| ≤
√

N+/ε2 + ε1.

Thus

Mn|Wn ± ε1u| ≤ ε1ε2

2G(1)N+
(
√

N+/ε2 + ε1) < 1,

implying ∣∣R(±ε1)
∣∣≤ 1

2
MnG(1)|Wn ± ε1u|2 ≤ ε1ε2

G(1)N+
(
N+/ε2 + ε2

1
)

≤ ε1
(
1 + ε2

1ε2/N+
)
<

5

8
ε1.

Deduce that

˙̃L(ε1) = −ε1 + R(ε1) ≤ −3
8ε1 and ˙̃L(−ε1) = ε1 + R(−ε1) ≥ 3

8ε1.

The concave function s �→ Ln(Wn + su) must achieve its maximum for some s in
the interval [−ε1, ε1], for each unit vector u. It follows that |̂tn − Wn| ≤ ε1. �
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First we establish a bound on the spectral distance between A−1
n and B−1

n . De-
fine H = B−1

n An − I . Then‖H‖2 ≤ ‖B−1
n ‖2‖An −Bn‖2 ≤ 1/2, which justifies the

expansion∥∥A−1
n − B−1

n

∥∥
2 = ∥∥((I + H)−1 − I

)
B−1

n

∥∥
2 ≤∑

j≥1

‖H‖k
2

∥∥B−1
n

∥∥
2 ≤ ∥∥B−1

n

∥∥
2.

As a consequence, ‖A−1
n ‖2 ≤ 2‖B−1

n ‖2.
Choose ε1 = 1/2 and ε2 = ε in Lemma 6. The bound on maxi≤n |ηi | gives the

bound on maxi≤n |wi | needed by the lemma

n|wi |2 = η′
iD(Jn/n)−1Dηi = η′

iA
−1
n ηi ≤ ∥∥A−1

n

∥∥
2|ηi |2.

As shown in Lemma 6, the MLE ĝ can be decomposed as

ĝ = γ + J−1/2
n (Wn + rn).

Define Kj := J
−1/2
n κj , so that |κ ′

j (ĝ−γ )|2 ≤ 2(K ′
jWn)

2 +2(K ′
j rn)

2. By Cauchy–
Schwarz, ∑

j

(
K ′

j rn
)2 ≤∑

j

|Kj |2|rn|2 = Uκ |rn|2,

where

Uκ :=∑
j

κ ′
j J

−1
n κj =∑

j

n−1(D−1κj

)′
A−1

n D−1κj ≤ 2n−1∥∥B−1
n

∥∥
2

∑
j

∣∣D−1κj

∣∣2.
For the contribution Vκ :=∑

j |K ′
jWn|2, the Cauchy–Schwarz bound is too crude.

Instead, notice that QVκ = Uκ , which ensures that the complement of the set

Yκ,ε := {|Wn| ≤
√

N+/ε
}∩ {Vκ ≤ Uκ/ε}

has Q probability less that 2ε. On the set Yκ,ε ,∑
0≤j≤N

∣∣κ ′
j (ĝ − γ )

∣∣2 ≤ 2Vκ + 2Uκ |rn|2 ≤ 3Uκ/ε.

The asserted bound follows.

6.2. Proof of Lemma 2. Throughout this subsection, abbreviate Pn,μ,K to P.
The matrix An is an average of n independent random matrices each of which
is distributed like NN′ψ̈(γ ′DN), where N = (N0,N1, . . . ,NN)′ with N0 ≡ 1, and
the other Nj ’s are independent N(0,1)’s. Moreover, by rotational invariance of the
spherical normal, we may assume with no loss of generality that γ ′DN = ā+κN1,
where

κ2 =
N∑

k=1

D2
kb

2
k = OF (1).
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Thus

Bn = PNN′ψ̈(ā + κN1) = diag(F, r0IN−1),

where

rj := PN
j
1ψ̈(ā + κN1) and F =

[
r0 r1
r1 r2

]
.

The block diagonal form of Bn simplifies calculation of spectral norms,∥∥B−1
n

∥∥
2 = ∥∥diag

(
F−1, r−1

0 IN−1
)∥∥

2

≤ max
(∥∥F−1∥∥

2,
∥∥r−1

0 IN−1
∥∥

2

)≤ max
(

r0 + r2

r0r2 − r2
1

, r−1
0

)
.

Assumption (	̈) ensures that both r0 and r2 are OF (1).
Continuity and strict positivity of ψ̈ , together with max(|ā|, κ) = OF (1), ensure

that c0 := infā,κ inf|x|≤1 ψ̈(ā + κx) > 0. Thus

√
2πr0 ≥ c0

∫ +1

−1
e−x2/2 dx > 0.

Similarly, √
2π
(
r0r2 − r2

1
)= √

2πr0Pψ̈(ā + κN1)(N1 − r1/r0)
2

≥ c0r0

∫ +1

−1
(x − r1/r0)

2e−x2/2 dx

≥ c0r0

∫ +1

−1
x2e−x2/2 dx.

It follows that ‖B−1
n ‖2 = OF (1).

The random matrix An − Bn is an average of n independent random matrices,
each distributed like NN′ψ̈(ā + κN1) minus its expected value. Thus

P‖An − Bn‖2
2 ≤ P‖An − Bn‖2

F = n−1
∑

0≤j,k≤N

var
(
NjNkψ̈(ā + κN1)

)
,

where ‖ · ‖F is the Frobenius norm. Assumption (	̈) ensures that each summand
is OF (1), which leaves us with a OF (N2/n) = oF (1) upper bound.

6.3. Proof of Lemma 3. Let us temporarily write λ′ for λ + δ and write λ for
(λ + λ′)/2 = λ + δ/2,

1 − 1

2
h2(Qλ,Qλ′) =

∫ √
fλ(y)fλ′(y) =

∫
exp

(
λy − 1

2
ψ(λ) − 1

2
ψ
(
λ′))

= exp
(
ψ(λ) − 1

2
ψ(λ) − 1

2
ψ
(
λ′))

≥ 1 + ψ(λ) − 1

2
ψ(λ) − 1

2
ψ
(
λ′).
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That is,

h2(Qλ,Qλ′) ≤ ψ(λ) + ψ(λ + δ) − 2ψ(λ + δ/2).

By Taylor expansion in δ around 0, the right-hand side is less than
1
4δ2ψ̈(λ) + 1

6δ3(˙ψ̈(λ + δ∗)− 1
4
˙ψ̈(λ + δ∗/2

))
,

where 0 < |δ∗| < |δ|. Invoke inequality (˙	̈) twice to bound the coefficient of δ3/6
in absolute value by

ψ̈(λ)
(
G
(|δ|)+ 1

4G
(|δ|/2

))≤ 5
4 ψ̈(λ)G

(|δ|).
The stated bound simplifies some unimportant constants.

6.4. Proof of Lemma 4. Without loss of generality, let us suppose T = 1. For
s = 1/4, note that

P
[
exp(sWi)

]= ∏
k∈N

(1 − 2sτi,k)
−1/2 ≤ exp

(∑
k∈N

sτi,k

)
≤ e1/4

by virtue of the inequality − log(1 − t) ≤ 2t for |t | ≤ 1/2. With the same s, it then
follows that

P
{
max
i≤n

Wi > 4(logn + x)
}

≤ exp
(−4s(logn + x)

)
P
[
exp

(
max
i≤n

sWi

)]
≤ e−x 1

n

∑
i≤n

P
[
exp(sWi)

]
.

The 2 is just a clean upper bound for e1/4.

6.5. Proof of Lemma 5. We first show some preliminary lemmas in Sec-
tion 6.5.1. Those preliminary results are used in the main proofs throughout Sec-
tions 6.5.2 to 6.6. For notational simplicity, we write

∑∗
j for

∑
j �=k .

6.5.1. Preliminary lemmas. Remember that θj ’s are the eigenvalues of K as
defined in Definition 1. Many of the inequalities in the proof of Lemma 5 involve
sums of functions of the θj ’s. The following result will save us a lot of repetition.

LEMMA 7. (i) For each r ≥ 1 there is a constant Cr = Cr(F ) for which

κk(r, γ ) := ∑
j∈N

{j �= k} j−γ

|θj − θk|r ≤
{

Cr

(
1 + kr(1+α)−γ

)
, if r > 1,

C1
(
1 + k1+α−γ logk

)
, if r = 1.

(ii) For each p, ∑
k≤p

∑
j>p

k−α−2βj−α

|θk − θj |2 = OF
(
p1−α).
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PROOF. For (i), argue in the same way as Hall and Horowitz [(2007), page 85],
using the lower bounds

|θj − θk| ≥
⎧⎨⎩

cαj−α, if j < k/2,
cα|j − k|k−α−1, if k/2 ≤ j ≤ 2k,
cαk−α, if j > 2k,

where cα is a positive constant.
For (ii), split the range of summation into two subsets: {(k, j) : j > max(p,2k)}

and {(k, j) :p/2 < k ≤ p < j ≤ 2k}. The first subset contributes at most∑
k≤p

k−α−2β
∑

j>max(p,2k)

j−α(cαk−α)−2 = OF
(
p1−α),

because α − 2β < −3. The second subset contributes at most∑
p/2<k≤p

k−α−2βc−2
α k2α+2

∑
j>p

j−α(j − k)−2 = OF
(
p2+α−2βp1−α),

which is of order oF (p−α). �

Remember that zi,j = 〈Zi , φj 〉 and the standardized variables ηi,j = zi,j /
√

θj

are independent N(0,1)’s. Define η·j = n−1∑
i≤n ηi,j and

Cj,k := (n − 1)−1
∑
i≤n

(ηi,j − η·j )(ηi,k − η·k),

the (j, k)-element of a sample covariance matrix of i.i.d. N(0, IN) random vectors.
We further define

�k := ∑
j∈N

�k,jφj with �k,j :=
{√

θj θkCj,k/(θk − θj ), if j �= k,
0, if j = k.

In fact, most of the inequalities that we need for proving Lemma 5 come from
simple moment bounds (Lemma 8) for the sample covariances Cj,k and the derived
bounds (Lemma 9) for the �k’s. The distribution of Cj,k does not depend on the
parameters of our model. By the rotation of axes we can rewrite (n − 1)Cj,k as
U ′

jUk , where U1,U2, . . . are independent N(0, In−1) random vectors. This repre-
sentation gives some useful equalities and bounds.

LEMMA 8. Uniformly over distinct j, k, �:

(i) PCj,j = 1 and P(Cj,j − 1)2 = 2(n − 1)−1;
(ii) PCj,k = PCj,kCj,� = 0;

(iii) PC2
j,k = O(n−1).
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PROOF. Assertion (i) is classical because |Uj |2 ∼ χ2
n−1. For assertion (ii) use

P(U ′
1U2|U2) = 0 and

P
(
U ′

1U2U
′
2U3|U2

)= trace
(
U2U

′
2P
(
U3U

′
1
))= 0.

For (iii) use P(U1U
′
1) = In−1 and

P
(
U ′

1U2U
′
2U1|U2

)= trace
(
U2U

′
2P
(
U1U

′
1
))= trace

(
U2U

′
2
)= |U2|2. �

LEMMA 9. Uniformly over distinct j, k, �:

(i) P�k,j = P�k,j�k,� = 0;
(ii) P�2

k,j = OF (n−1k−αj−α(θk − θj )
−2);

(iii) P‖�k‖2 = OF (n−1k2).

PROOF. Assertions (i) and (ii) follow from assertions (ii) and (iii) of Lemma 8.
For (iii), note that

P‖�k‖2 =
∗∑
j

P�2
j,k = OF

(
n−1k−α)κk(2, α)

and κk(2, α) = OF (k2+α) from Lemma 7. �

The following two lemmas related to perturbation theory for self-adjoint com-
pact operators [cf., e.g., Birman and Solomjak (1987), Bosq (2000), Kato (1995)]
are crucial in the development of Lemma 5. They are special cases of Lemmas 2
and 4 in the supplemental article [Dou, Pollard and Zhou (2012)] under the general
perturbation-theoretic framework. For Lemma 10, similar results were established
by other authors; see, for example, Hall and Hosseini-Nasab (2006), equation 2.8,
and Cai and Hall (2006), Section 5.6. Lemma 11 extends the perturbation result
for eigenprojections, obtained by Tyler [(1981), Lemma 4.1], from the matrix case
to the general operator case.

Define

εk := min
{|θj − θk| : j �= k

}
and

fk := σkφ̃k − φk for all k.

LEMMA 10. If we have εk > 5‖�‖, then it follows that

‖fk‖ ≤ 3‖�k‖.

Define HJ = span{φj : j ∈ J } and H̃J = span{φ̃j : j ∈ J } for J ⊆ N.
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LEMMA 11. If we have mink∈J εk > 5‖�‖, then it follows that

(H̃J − HJ )B = ∑
j∈J

∑
k∈J c

φjbk(�j,k + �k,j ) + e,

where ‖e‖2 is bounded by a universal constant times R1 + ‖�‖2R2 with

R1 =
(∑

k∈J

‖�k‖2
)∑

k∈J

( ∗∑
j

�k,j bj

)2

,

R2 = ∑
k∈J

‖�k‖2

( ∗∑
j

|bj |
|θk − θj |

)2

+
(∑

k∈J

‖�k‖|bk|
∗∑
j

1

|θk − θj |
)2

+∑
k∈J

‖�k‖2|bk|2k2+2α.

6.5.2. A high probability set X̃ε,n. To prove Lemma 5 we define X̃ε,n as an
intersection of sets chosen to make the six assertions of the lemma hold,

X̃ε,n := X̃�,n ∩ X̃Z,n ∩ X̃η,n ∩ X̃A,n ∩ X̃�,n,

where the complement of each of the five sets appearing on the right-hand side has
probability less than ε/5. More specifically, for a large enough constant Cε , we
define

X̃�,n = {‖�‖ ≤ Cεn
−1/2},

X̃Z,n =
{
max
i≤n

‖Zi‖2 ≤ Cε logn and ‖Z‖ ≤ Cεn
−1/2

}
,

X̃η,n =
{

max
i≤n

|ηi |2 ≤ CεN logn and
∥∥∥∥∑
i≤n

ηiη
′
i

∥∥∥∥
2
≤ Cεn

}
,

X̃A,n =
{∥∥∥∥∑

i≤n

η̃i η̃
′
i

∥∥∥∥
2
≤ Cεn

}
.

The set of X̃�,n is defined in a slightly more complicated way. It is defined by
requiring various functions of the �k’s to be smaller than Cε times their expected
values. Calculate expected values for all the terms in R1 and R2 that appear in the
bound of Lemma 11.

Pn,μ,K

∑
k≤p

(∑
j>p

�k,j bj

)2

+ Pn,μ,K

∑
j>p

(∑
k≤p

�k,jbk

)2

= ∑
k≤p

∑
j>p

Pn,μ,K�2
k,j

(
b2
j + b2

k

)
by Lemma 9 part (i)(32)
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= OF
(
n−1)∑

k≤p

∑
j>p

k−α−2βj−α(θk − θj )
−2

= OF
(
n−1p1−α) by Lemma 7

and

Pn,μ,K

∑
k≤p

b2
k‖�k‖2k2+2α = OF

(
n−1)∑

k≤p

k4+2α−2β

= OF
(
n−1)(1 + p5+2α−2β + logp

)
and

Pn,μ,K

∑
k≤p

|bk|‖�k‖2 = OF
(
n−1)∑

k∈J

k2−β = OF
(
n−1)(1 + p3−β + logp

)
and

Pn,μ,K

∑
k≤p

‖�k‖2 = OF
(
n−1p3)

and

Pn,μ,K

∑
k≤p

( ∗∑
j

�k,j bj

)2

= OF
(
n−1)∑

k≤p

∗∑
j

k−αj−a−2β(θk − θj )
−2

(33)
= OF

(
n−1) by Lemma 7

and

Pn,μ,K

∑
k≤p

‖�k‖2

( ∗∑
j

|bj |
|θk − θj |

)2

= OF
(
n−1)(p3 + p5+2α−2β log2 p

)
(34)

and by Lemma 7

∑
k≤p

b2
k

( ∗∑
j

1

|θk − θj |
)2

= OF
(
1 + p3+2α−2β log2 p

)
.(35)

For some constant Cε = Cε(F ), on a set X�,n with Pn,μ,KXc
�,n < ε/5, each of the

random quantities in the previous set of inequalities (for both p = m and p = N )
is bounded by Cε times its Pn,μ,K expected value. By virtue of Lemma 9 part (iii),
we may also assume that ‖�k‖2 ≤ Cεk

2/n on X�,n.
We now show that supf ∈F Pn,μ,K X̃c

ε,n < ε. From the construction of X̃�,n

above, it follows directly that Pn,μ,K X̃c
�,n < ε/5.

We analyze K̃ by rewriting it using the eigenfunctions for K . Then

Zi (t) − Z(t) = ∑
j∈N

(zi,j − z·j )φj (t) = ∑
j∈N

√
θj (ηi,j − η·j )φj (t)
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and

K̃(s, t) = ∑
j,k∈N

K̃j,kφj (s)φk(t) with K̃j,k =√
θj θkCj,k.(36)

Observe that

P‖�‖2 =∑
j,k

Pn,μ,K

(
K̃j,k − θj {j = k})2 =∑

j,k

θj θkP
(
Cj,k − {j = k})2

≤∑
j

θjOF
(
n−1)+∑

j,k

θj θkOF
(
n−2)= OF

(
n−1).

Thus, we have Pn,μ,K X̃c
�,n < ε/5.

The set X̃A,n is almost redundant in the sense that X̃�,n ⊆ X̃A,n when n and Cε

are large enough. From Definition 1 we know that

min
1≤j<j ′≤N

|θj − θj ′ | ≥ (α/R)N−1−α and min
1≤j≤N

θj ≥ R−1N−α.

The choice N 
 nζ with ζ < (2 + 2α)−1 ensures that n1/2N−1−α → ∞. On X̃�,n

the spacing assumption used in Lemmas 10 and 11 holds for all n large enough;
all the bounds from those lemmas are available to us on X̃ε,n. In particular,

max
j≤N

|θ̃j /θj − 1| ≤ OF
(
Nα‖�‖)= oF (1),(37)

where θ̃j ’s are defined in (6). Remember that

Zi (t) − Z(t) = ∑
k∈N

(̃zi,k − z̃·k)φ̃k(t)

so that

θ̃k{j = k} =
∫ ∫

K̃(s, t)φ̃j (s)φ̃k(t) ds dt = (n − 1)−1
∑
i≤n

(̃zi,j − z̃·j )(̃zi,k − z̃·k),

which implies (n − 1)−1∑
i≤n z̃i z̃

′
i = D̃2 and

(n − 1)−1
∑
i≤n

η̃i η̃
′
i = D−1D̃2D−1 := diag(1, θ̃1/θ1, . . . , θ̃N/θN).(38)

Inequality (37) and equality (38) together show that X̃�,n ⊆ X̃A,n eventually if we
make sure Cε > 1. Thus, Pn,μ,K X̃c

A,n ≤ Pn,μ,K X̃c
�,n < ε/5.

As the controls for the set defined in (20) and (21), Lemma 4 controls
maxi≤n‖Zi‖2 and maxi≤n|ηi |2. In addition, we know that

P

∥∥∥∥n−1
∑
i≤n

ηiη
′
i − IN+1

∥∥∥∥2

2
≤ P

∥∥∥∥n−1
∑
i≤n

ηiη
′
i − IN+1

∥∥∥∥2

F

= n−1
∑

0≤j,k≤N

var(ηi,kηi,j ) = OF
(
N2/n

)
.



2448 W. W. DOU, D. POLLARD AND H. H. ZHOU

Thus, P‖n−1∑
i≤n ηiη

′
i‖2 = 1 + oF (1). Therefore, we have Pn,μ,K X̃c

η,n < ε/5. To

control the Z contribution, note that n‖Z‖2 has the same distribution as ‖Z1‖2,
which has expected value

∑
j∈N θj < ∞. Thus, we have Pn,μ,K X̃c

Z,n < ε/5.
Therefore, there exists Cε > 0 such that

Pn,μ,K X̃c
ε,n ≤ Pn,μ,K

(
X̃c

�,n + X̃c
Z,n + X̃c

η,n + X̃c
A,n + X̃c

�,n

)
< ε.

6.6. Proof of the assertions on X̃ε,n. The assertions (i) and (ii) hold on the set
X̃ε,n as a direct consequence of the construction. From Lemma 11, it follows that
on the set X�,n ∩ X�,n, if p ≤ N ,∥∥(H̃p − Hp)B

∥∥2 = OF
(
n−1p1−α).

This inequality leads to the asserted conclusions in (iii) and (iv) when p = m or
p = N .

Now we show assertion (v) holds on the set X̃ε,n. By construction, η̃i1 = 1 for
every i, and for j ≥ 2,√

θj η̃i,j = (̃zi,j − z̃·j ) = 〈Zi − Z, φ̃j 〉.
Thus, for j ≥ 2,

σj η̃i,j = θ
−1/2
j 〈Zi − Z, φj + fj 〉 = ηi,j + δ̃i,j

with δ̃i,j satisfying the following bound, due to Lemma 10:

|̃δi,j |2 ≤ θ−1
j

(‖Zi‖ + ‖Z‖)2‖fj‖2 ≤ OF

(
j2+α logn

n

)
on X̃ε,n.

In vector form,

S̃η̃i = ηi + δ̃i with |̃δi |2 = OF

(
N3+α logn

n

)
≤ oF

(
n/N2) on X̃ε,n.(39)

It follows that

max
i≤n

|η̃i | = max
i≤n

|S̃η̃i | ≤ max
i≤n

|ηi | + oF (
√

n/N) = OF (
√

n/N) on X̃ε,n.

In the end, we show that on X̃ε,n assertion (vi) holds. From inequality (27) we
know that

ε̃N := max
i≤n

|̃λi,N − λi,N | = OF
(
n−(1+ν′)/2) on X̃ε,n,

and from bounds (25) and (26) in Section 4.2, we have maxi≤n |λi,N | =
OF (

√
logn). Assumption (˙	̈) in Section 2 and the mean-value theorem then give

max
i≤n

∣∣ψ̈ (̃λi,N ) − ψ̈(λi,N)
∣∣≤ ε̃N ψ̈(λi,N )G(̃εN) = oF (1).
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If we replace ψ̈ (̃λi,N ) in the definition of Ãn by ψ̈(λi,N ), we make a change

� = (n − 1)−1
∑
i≤n

η̃i η̃
′
i

(
ψ̈ (̃λi,N ) − ψ̈(λi,N )

)
with ‖�‖2 ≤ oF (1)‖(n − 1)−1∑

i≤n η̃i η̃
′
i‖2, which, by equality (38), is of order

oF (1) on X̃ε,n.
From assumption (	̈) we have dn := log maxi≤n ψ̈(λi,N ) = oF (logn). By tri-

angular inequality and decomposition (39), we have

‖S̃ÃnS̃ − An‖2 ≤ ‖�‖2 +
∥∥∥∥(n − 1)−1

∑
i≤n

ψ̈(λi,N )
(
S̃η̃i η̃

′
i S̃ − ηiη

′
i

)∥∥∥∥
2

≤ oF (1) + OF
(
n−1edn

)∥∥∥∥∑
i≤n

δ̃i δ̃
′
i

∥∥∥∥
2

(40)

+ OF
(
n−1)∥∥∥∥∑

i≤n

ψ̈(λi,N )
(̃
δiη

′
i + ηi δ̃

′
i

)∥∥∥∥
2

on X̃ε,n.

Uniformly over all unit vectors u in RN+1, we have

u′
(∑

i≤n

δ̃i δ̃
′
i

)
u ≤∑

i≤n

|̃δi |2 ≤ nmax
i≤n

|̃δi |2 = OF
(
N3+α logn

)
on X̃ε,n

and by the Cauchy–Schwarz inequality,∣∣∣∣u′
(∑

i≤n

ψ̈(λi,N )
(̃
δiη

′
i + ηi δ̃

′
i

))
u

∣∣∣∣ ≤ OF
(
n1/2edn

)
max
i≤n

|̃δi |
∥∥∥∥∑
i≤n

ηiη
′
i

∥∥∥∥1/2

2

= OF
(
edn

√
n lognN(3+α)/2) on X̃ε,n.

Therefore, the following two bounds hold:∥∥∥∥∑
i≤n

δ̃i δ̃
′
i

∥∥∥∥
2
= OF

(
N3+α logn

)
on X̃ε,n,

∥∥∥∥∑
i≤n

ψ̈(λi,N )
(
ηi δ̃

′
i + δ̃η′

i

)∥∥∥∥
2
= OF

(
edn

√
n lognN(3+α)/2) on X̃ε,n.

By plugging into (40), we can obtain that ‖S̃ÃnS̃ − An‖2 = oF (1) on X̃ε,n.

SUPPLEMENTARY MATERIAL

Supplement to “Estimation in functional regression for general exponential
families.” (DOI: 10.1214/12-AOS1027SUPP; .pdf). We introduce some useful re-
sults in spectral theory and perturbation theory in general Hilbert spaces. They
serve as powerful tools that allow us to tackle some of the statistical approxima-
tion problems in an elegant way. Some of the results are well-established, while
others we believe are new.

http://dx.doi.org/10.1214/12-AOS1027SUPP
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