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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS

BY YINGYING FAN! AND RUNZE L1?
University of Southern California and Pennsylvania State University

This paper is concerned with the selection and estimation of fixed and
random effects in linear mixed effects models. We propose a class of noncon-
cave penalized profile likelihood methods for selecting and estimating impor-
tant fixed effects. To overcome the difficulty of unknown covariance matrix of
random effects, we propose to use a proxy matrix in the penalized profile like-
lihood. We establish conditions on the choice of the proxy matrix and show
that the proposed procedure enjoys the model selection consistency where
the number of fixed effects is allowed to grow exponentially with the sample
size. We further propose a group variable selection strategy to simultaneously
select and estimate important random effects, where the unknown covariance
matrix of random effects is replaced with a proxy matrix. We prove that, with
the proxy matrix appropriately chosen, the proposed procedure can identify
all true random effects with asymptotic probability one, where the dimen-
sion of random effects vector is allowed to increase exponentially with the
sample size. Monte Carlo simulation studies are conducted to examine the
finite-sample performance of the proposed procedures. We further illustrate
the proposed procedures via a real data example.

1. Introduction. During the last two decades, linear mixed effects models
[Laird and Ware (1982), Longford (1993)] have been widely used to model longi-
tudinal and repeated measurements data, and have received much attention in the
fields of agriculture, biology, economics, medicine and sociology; see Verbeke and
Molenberghs (2000) and references therein. With the advent of modern technol-
ogy, many variables can be easily collected in a scientific study, and it is typical to
include many of them in the full model at the initial stage of modeling to reduce
model approximation error. Due to the complexity of the mixed effects models,
the inferences and interpretation of estimated models become challenging as the
dimension of fixed or random components increases. Thus the selection of impor-
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tant fixed or random components becomes a fundamental problem in the analysis
of longitudinal or repeated measurements data using mixed effects models.

Variable selection for mixed effects models has become an active research topic
in the literature. Lin (1997) considers testing a hypothesis on the variance compo-
nent. The testing procedures can be used to detect whether an individual random
component is significant or not. Based on these testing procedures, a stepwise
procedure can be constructed for selecting important random effects. Vaida and
Blanchard (2005) propose the conditional AIC, an extension of the AIC [Akaike
(1973)], for mixed effects models with detailed discussion on how to define de-
grees of freedom in the presence of random effects. The conditional AIC has
further been discussed in Liang, Wu and Zou (2008). Chen and Dunson (2003)
develop a Bayesian variable selection procedure for selecting important random
effects in the linear mixed effects model using the Cholesky decomposition of the
covariance matrix of random effects, and specify a prior distribution on the stan-
dard deviation of random effects with a positive mass at zero to achieve the spar-
sity of random components. Pu and Niu (2006) extend the generalized information
criterion to select linear mixed effects models and study the asymptotic behavior
of the proposed method for selecting fixed effects. Bondell, Krishna and Ghosh
(2010) propose a joint variable selection method for fixed and random effects in
the linear mixed effects model using a modified Cholesky decomposition in the
setting of fixed dimensionality for both fixed effects and random effects. Ibrahim
et al. (2011) propose to select fixed and random effects in a general class of mixed
effects models with fixed dimensions of both fixed and random effects using max-
imum penalized likelihood method with the SCAD penalty and the adaptive least
absolute shrinkage and selection operator penalty.

In this paper, we develop a class of variable selection procedures for both fixed
effects and random effects in linear mixed effects models by incorporating the
recent advances in variable selection. We propose to use the regularization meth-
ods to select and estimate fixed and random effects. As advocated by Fan and Li
(2001), regularization methods can avoid the stochastic error of variable selection
in stepwise procedures, and can significantly reduce computational cost compared
with the best subset selection and Bayesian procedures. Our proposal differs from
the existing ones in the literature mainly in two aspects. First, we consider the
high-dimensional setting and allow dimension of fixed or random effects to grow
exponentially with the sample size. Second, our proposed procedures can estimate
the fixed effects vector without estimating the random effects vector and vice versa.

We first propose a class of variable selection methods for the fixed effects us-
ing penalized profile likelihood method. To overcome the difficulty of unknown
covariance matrix of random effects, we propose to replace it with a suitably cho-
sen proxy matrix. The penalized profile likelihood is equivalent to a penalized
quadratic loss function of the fixed effects. Thus, the proposed approach can take
advantage of the recent developments in the computation of the penalized least-
squares methods [Efron et al. (2004), Zou and Li (2008)]. The optimization of the
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penalized likelihood can be solved by the LARS algorithm without extra effort.
We further systematically study the sampling properties of the resulting estimate
of fixed effects. We establish conditions on the proxy matrix and show that the re-
sulting estimate enjoys model selection oracle property under such conditions. In
our theoretical investigation, the number of fixed effects is allowed to grow expo-
nentially with the total sample size, provided that the covariance matrix of random
effects is nonsingular. In the case of singular covariance matrix for random effects,
one can use our proposed method in Section 3 to first select important random ef-
fects and then conduct variable selection for fixed effects. In this case, the number
of fixed effects needs to be smaller than the total sample size.

Since the random effects vector is random, our main interest is in the selection
of true random effects. Observe that if a random effect covariate is a noise vari-
able, then the corresponding realizations of this random effect should all be zero,
and thus the random effects vector is sparse. So we propose to first estimate the
realization of random effects vector using a group regularization method and then
identify the important ones based on the estimated random effects vector. More
specifically, under the Bayesian framework, we show that the restricted posterior
distribution of the random effects vector is independent of the fixed effects coeffi-
cient vector. Thus, we propose a random effect selection procedure via penalizing
the restricted posterior mode. The proposed procedure reduces the impact of error
caused by the fixed effects selection and estimation. The unknown covariance ma-
trix is replaced with a suitably chosen proxy matrix. In the proposed procedure,
random effects selection is carried out with group variable selection techniques
[Yuan and Lin (2006)]. The optimization of the penalized restricted posterior mode
is equivalent to the minimization of the penalized quadratic function of random ef-
fects. In particular, the form of the penalized quadratic function is similar to that
in the adaptive elastic net [Zou and Hastie (2005), Zou and Zhang (2009)], which
allows us to minimize the penalized quadratic function using existing algorithms.
We further study the theoretical properties of the proposed procedure and estab-
lish conditions on the proxy matrix for ensuring the model selection consistency
of the resulting estimate. We show that, with probability tending to one, the pro-
posed procedure can select all true random effects. In our theoretical study, the
dimensionality of random effects vector is allowed to grow exponentially with the
sample size as long as the number of fixed effects is less than the total sample size.

The rest of this paper is organized as follows. Section 2 introduces the penalized
profile likelihood method for the estimation of fixed effects and establishes its
oracle property. We consider the estimation of random effects and prove the model
selection consistency of the resulting estimator in Section 3. Section 4 provides two
simulation studies and a real data example. Some discussion is given in Section 5.
All proofs are presented in Section 6.

2. Penalized profile likelihood for fixed effects. Suppose that we have a
sample of N subjects. For the ith subject, we collect the response variable
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vij, the d x 1 covariate vector x;; and g x 1 covariate vector z;;, for j =
1,...,n;, where n; is the number of observations on the ith subject. Let n =
ZlNzl ni, m, = maxj<;<n n;, and m, = minj<; <y n;. We consider the case where
limsup, =* < oo, that is, the sample sizes for N' subjects are balanced. For suc-

n

cinct presentation, we use matrix notation and write y; = (i1, yi2, .- - yini)T,
X; = (Xi1,Xi2, -+, Xin;,)| and Z; = (21,22, ...,%n,)" . In linear mixed effects
models, the vector of repeated measurements y; on the ith subject is assumed to
follow the linear regression model

(1) Yi=XiB+Zy +e&,

where B is the d x 1 population-specific fixed effects coefficient vector, p; rep-
resents the g x 1 subject-specific random effects with y; ~ N(0, G), &; is the
random error vector with components independent and identically distributed as
N(,02%),and y{,..., Yy, €1 ..., €y are independent. Here, G is the covariance
matrix of random effects and may be different from the identity matrix. So the
random effects can be correlated with each other.

Let vectors y, y and e, and matrix X be obtained by stacking vectors y;,
y; and ¢;, and matrices X;, respectively, underneath each other, and let Z =
diag{Zi, ...,Zy} and G = diag{G, ..., G} be block diagonal matrices. We fur-
ther standardize the design matrix X such that each column has norm 4/n. The
linear mixed effects model (1) can be rewritten as

() y=XB+Zy +e.

2.1. Selection of important fixed effects. In this subsection, we assume that
there are no noise random effects, and G is positive definite. In the case where
noise random effects exist, one can use the method in Section 3 to select the true
ones. The joint density of y and y is

JO» =10 r@)
3) = Quo)~taN/2|g =12

1 1 _
xexpl = 5~ XB -2 (- XB -2y~ 3767y ).
o 2
Given B, the maximum likelihood estimate (MLE) for y is ¥ (8) = B, (y — X8),

where B, = (ZTZ + ¢2G~")~'ZT . Plugging 7(B) into f(y, ) and dropping the
constant term yield the following profile likelihood function:

1
4 L.(B.7(B) = exp{—?@ _XB)TP.(y —Xﬁ)},

where P, = (I - ZB,)" (1 - ZB.) + 0>BI G~'B, with I being the identity matrix.
By Lemma 3 in Section 6, P, can be rewritten as P, = (I 4+ 0 2ZGZ7)~!. To
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select the important x-variables, we propose to maximize the following penalized
profile log-likelihood function:

dy
) log(La (B, 7 () —n > _ p1,(181).

j=1

where p;, (x) is a penalty function with regularization parameter A, > 0. Here, the
number of fixed effects d;,, may increase with sample size .
Maximizing (5) is equivalent to minimizing

1 n
(6) 0n(B)=3(y~— XB) P,y —XB)+n > pr,(18))).

j=1

Since P, depends on the unknown covariance matrix G and o2, we propose to use
a proxy IA’JZ = A+ ZMZT)~! to replace P,, where M is a pre-specified matrix.
Denote by 0,(B) the corresponding objective function when IN’Z is used. We will
discuss in the next section how to choose M.

We note that (6) does not depend on the inverse of G. So although we started
this section with the nonsingularity assumption of G, in practice our method can
be directly applied even when noise random effects exist, as will be illustrated in
simulation studies of Section 4.

Many authors have studied the selection of the penalty function to achieve the
purpose of variable selection for the linear regression model. Tibshirani (1996)
proposes the Lasso method by the use of L penalty. Fan and Li (2001) advocate
the use of nonconvex penalties. In particular, they suggest the use of the SCAD
penalty. Zou (2006) proposes the adaptive Lasso by using adaptive L penalty,
Zhang (2010) proposes the minimax concave penalty (MCP), Liu and Wu (2007)
propose to linearly combine L and L penalties and Lv and Fan (2009) introduce
a unified approach to sparse recovery and model selection using general concave
penalties. In this paper, we use concave penalty function for variable selection.

CONDITION 1. For each A > 0, the penalty function p, (¢) with ¢ € [0, c0)
is increasing and concave with p; (0) = 0, its second order derivative exists and
is continuous and p;(O—i—) € (0, 00). Further, assume that sup,. p/k’(t) — 0 as
A — 0.

Condition 1 is commonly assumed in studying regularization methods with con-
cave penalties. Similar conditions can be found in Fan and Li (2001), Fan and Peng
(2004) and Lv and Fan (2009). Although it is assumed that pj (r) exists and is con-
tinuous, it can be relaxed to the case where only p; (7) exists and is continuous.
All theoretical results presented in later sections can be generalized by imposing
conditions on the local concavity of p, (¢), as in Lv and Fan (2009).
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2.2. Model selection consistency. Although the proxy matrix I~’Z may be dif-
ferent from the true one P,, solving the regularization problem (6) may still yield
correct model selection results at the cost of some additional bias. We next estab-
lish conditions on P, to ensure the model selection oracle property of the proposed
method.

Let B, be the true coefficient vector. Suppose that B is sparse, and denote
s1n = || Bollo, that is, the number of nonzero elements in 8. Write

Bo=(B1,0.---. Ba,0)" = (B . ﬂg,o)T’

where B ( is an s1,-vector and B () is a (d, — s1,)-vector. Without loss of gener-
ality, we assume that 8 2.0 = 0, that is, the nonzero elements of Bo locate at the first
S1n coordinates. With a slight abuse of notation, we write X = (X1, X») with X
being a submatrix formed by the first 51, columns of X and X, being formed by
the remaining columns. For a matrix B, let Apin(B) and Apax (B) be its minimum
and maximum eigenvalues, respectively. We will need the following assumptions.

CONDITION 2. (A) Let a, = minj <<, |Bo, j|. It holds that

ann® (logn)~3/?

— 00
with 7 € (0, %) being some positive constant, and sup;~, p/xl,, (1) = o(n~1127),
(B) There exists a constant ¢; > 0 such that Apin(ciM — 072G) > 0 and
Amin(c10~*(logn)G — M) > 0.
(C) The minimum and maximum eigenvalues of matrices n_l(XlTXl) and

n? (XITPZX 1)~! are both bounded from below and above by ¢y and co L respec-
tively, where 6 € (27, 1] and cg > 0 is a constant. Further, it holds that

1 " —1
G ((xpxi) | < aogm¥p) a2
e}
5 5 -1
(8) IXTPXi (X[ P.X0) " |, < S, (0H)/PS, (@n/2),
where || - || denotes the matrix infinity norm.

Condition 2(A) is on the minimum signal strength a,,. We allow the minimum
signal strength to decay with sample size n. When concave penalties such as SCAD
[Fan and Li (2001)] or SICA [Lv and Fan (2009)] are used, this condition can be
easily satisfied with A, appropriately chosen. Conditions 2(B) and (C) put con-
straints on the proxy M. Condition 2(C) is about the design matrices X and Z.
Inequality (8) requires noise variables and signal variables not highly correlated.
The upper bound of (8) depends on the ratio P/xn O+)/ p’xn (a,/2). Thus, concave
penalty functions relax this condition when compared to convex penalty functions.
We will further discuss constraints (7) and (8) in Lemma 1.

If the above conditions on the proxy matrix are satisfied, then the bias caused by
using P, is small enough, and the resulting estimate still enjoys the model selection
oracle property described in the following theorem.
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THEOREM 1. Assume that \/nA, — 00 asn — oo andlogd, = o(nA%). Then
under Conditions 1 and 2, with probability tending to 1 as n — oo, there exists a
strict local minimizer 8 = (ﬂlT, ﬂg)T of On(B) which satisfies

9) IB1 — Boillo <n "(logn) and B,=0.

Theorem 1 presents the weak oracle property in the sense of Lv and Fan (2009)
on the local minimizer of Q(ﬂ). Due to the high dimensionality and the concav-
ity of p,(-), the characterization of the global minimizer of é(ﬂ) is a challenging
open question. As will be shown in the simulation and real data analysis, the con-
cave function Q(ﬂ ) will be iteratively minimized by the local linear approximation
method [Zou and Li (2008)]. Following the same idea as in Zou and Li (2008), it
can be shown that the resulting estimate poesses the properties in Theorem 1 under
some conditions.

2.3. Choice of proxy matrix M. It is difficult to see from (7) and (8) on how
restrictive the conditions on the proxy matrix M are. So we further discuss these
conditions in the lemma below. We introduce the notation T = 62G~! + ZTP, Z
and E = 02G~! + ZTZ with P, = I — X; (X! X;)~!X;. Correspondingly, when
the proxy matrix M is used, define T= M~ +Z"P,Z and E= M~ + Z7Z.
We use || - |2 to denote the matrix 2-norm, that is, ||[B|2 = {Amax(BB7)}!/2 for a
matrix B.

LEMMA 1. Assume that ||(XTP.X1)[oo <n™"/Togn/pj, (an/2) and

(10) IT=V2TT712 1), < (1 4+ 075, p), (an/2)|ZT7'Z7 | )7

Then (7) holds.
Similarly, assume that | X3P, X1(X{ P X1)'|lew < p}, (0+)/p} (an/2), and
there exists a constant ¢y > 0 such that

|12 1
(11) <[t+ntzZT 27,
x max{con?, cal(logn)sll,/lz)»,zlpin (an/2)| X3 PX; Hz}]_l,
|E~2EET2 ~ 1],
(12) <[1 +A;1(logn)sll;£2(10gn)p;n (an/2)
x |ZGZT |, {[|(XTPX1) ™ | XT PXa |} 2],

then (8) holds.
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Equations (10), (11) and (12) show conditions on the proxy matrix M. Note
that if penalty function used is flat outside of a neighborhood of zero, then p/kn (an/
2) =~ 0 with appropriately chosen regularization parameter A,, and conditions (10)
and (12), respectively, reduce to

(13) |T= 2T 2 —1|, <1,  |ETVPEETV2 1|, < 1.

Furthermore, since Z is a block diagonal matrix, if the maximum eigenvalue of
ZT'Z7 is of the order o(n'~?), then condition (11) reduces to

(14) T2 12 1, < 1.

Conditions (13) and (14) are equivalent to assuming that T-12TT-1/2 and
E~!/2EE~'/2 have eigenvalues bounded between 0 and 2. By linear algebra, they
can further be reduced t0~||T*1T||2 <2and |[E'E|2 < 2. It is seen from the def-
initions of T, T, E and E that if eigenvalues of ZP.Z7 and ZZ" dominate those
of 02G~! by a larger order of magnitude, then these conditions are not difficult to
satisfy. In fact, note that both ZP,Z” and ZZ” have components with magnitudes
increasing with n, while the components of ¢2G~! are independent of n. Thus
as long as both matrices ZP,Z” and ZZ” are nonsingular, these conditions will
easily be satisfied with the choice M = (logn)I when 7 is large enough.

3. Identifying important random effects. In this section, we allow the num-
ber of random effects g to increase with sample size n and write it as g, to empha-
size its dependency on n. We focus on the case where the number of fixed effects
dy is smaller than the total sample size n = ZlNzl n;. We discuss the d,, > n case
in the discussion Section 5. The major goal of this section is to select important
random effects.

3.1. Regularized posterior mode estimate. The estimation of random effects
is different from the estimation of fixed effects, as the vector y is random. The
empirical Bayes method has been used to estimate the random effects vector p in
the literature. See, for example, Box and Tiao (1973), Gelman et al. (1995) and
Verbeke and Molenberghs (2000). Although the empirical Bayes method is useful
in estimating random effects in many situations, it cannot be used to select impor-
tant random effects. Moreover, the performance of an empirical Bayes estimate
largely depends on the accuracy of estimated fixed effects. These difficulties call
for a new proposal for random effects selection.

Patterson and Thompson (1971) propose the error contrast method to obtain
the restricted maximum likelihood of a linear model. Following their notation,
define the  x (n — d) matrix A by the conditions AAT =P, and ATA =1, where
P, =1 — X(X”X)"'X”. Then the vector AT e provides a particular set of n — d
linearly independent error contrasts. Let w; = A”y. The following proposition
characterizes the conditional distribution of wy:
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PROPOSITION 1. Given y, the density function of w1 takes the form
(- 1
(15)  fu, (ATyly) = 2ro?) "9/ exp{—ﬁ(y —Zy) Pu(y - Zr)}.

The above conditional probability is independent of the fixed effects vector 8
and the error contrast matrix A, which allows us to obtain a posterior mode esti-
mate of y without estimating 8 and calculating A.

Let Mg C {1,2,..., g} be the index set of the true random effects. Define

Mo=1{j:j=iqgn+k fori=0,1,2,...,N —1and k € Mo}

and denote by ﬁg ={1,2,...,Nq,} \ M. Then My is the index set of nonzero
random effects coefficients in the vector y, and ﬁg is the index set of the zero
ones. Let 57, = [|9Mpllo be the number of true random effects. Then || Myl =
Nsy,. We allow Nsy, to diverge with sample size n, which covers both the case
where the number of subjects N diverges with n alone and the case where N and
so, diverge with n simultaneously.

Forany S C {1, ..., ¢,N}, we use Zg to denote the (g, N) x |S| submatrix of Z
formed by columns with indices in S, and y g to denote the subvector of y formed
by components with indices in S. Then Yom, ™ N(O0, gﬁo) with gﬁo a submatrix
formed by entries of G with row and column indices in M. In view of (15), the
restricted posterior density of ygy can be derived as

S (e, IATY) o fw, (ATylyen,) f Pam,)
1 T 1 T -1
x eXP{—m(y —Zgy, Y, P (Y — Zoy, vem,) — Eyﬁogmygmo}-

Therefore, the restricted posterior mode estimate of Yo, is the solution to the
following minimization problem:

(16)  min{(y — Zgy yi)) Py — Za, Yi,) + 0 v g O Y, |-

In practice, since the true random effects My are unknown, the formulation
(16) does not help us estimate y. To overcome this difficulty, note that Zﬁoyﬁo =
Zy and y%og%ym =y TGty with G the Moore—Penrose generalized inverse
of G. Thus the objective function in (16) is rewritten as

(y—Zy) Py —2Zy)+0’pTGTy,

which no longer depends on the unknown 9y. Observe that if the kth random
effect is a noise one, then the corresponding standard deviation is 0, and the co-
efficients y;; for all subjects i = 1,..., N should equal to 0. This leads us to
consider group variable selection strategy to identify true random effects. Define
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Vi = (Z 1Y k)l/ 2 k=1,...,qu,and consider the following regularization prob-
lem:
1 T 1 2.,T ~+ &
(17 SO—ZY) Py =Zy) + 507y Gy +n ) pi, (v,
k=1

where p;, (-) is the penalty function with regularization parameter A, > 0. The
penalty function here may be different from the one in Section 2. However, to ease
the presentation, we use the same notation.

There are several advantages to estimating the random effects vector y using
the above proposed method (17). First, this method does not require knowing or
estimating the fixed effects vector §, so it is easy to implement, and the estima-
tion error of B has no impact on the estimation of y. In addition, by using the
group variable selection technique, the true random effects can be simultaneously
selected and estimated.

In practice, the covariance matrix G and the variance o> are both unknown.
Thus, we replace 0 ~2G with M, where M = diag{M, ..., M} with M a proxy
of G, yielding the following regularization problem:

(18) 0y = —<y Zy)'Pi(y—Zy)+ yTM y+n Z Pa, (V)

k=1
Itis interesting to observe that the form of regularization in (18) includes the elastic
net [Zou and Hastie (2005)] and the adaptive elastic net [Zou and Zhang (2009)]
as special cases. Furthermore, the optimization algorithm for adaptive elastic net
can be modified for minimizing (18).

3.2. Asymptotic properties. Minimizing (18) yields an estimate of y, denoted
by ¥. In this subsection, we study the asymptotic property of ¥. Because y is
random rather than a deterministic parameter vector, the existing formulation for
the asymptotic analysis of a regularization problem is inapplicable to our setting.
Thus, asymptotic analysis of y is challenging.

Let T=Z"P,Z+0%G" and T=Z"P,Z + M~!. Denote by Ty| = A8 Py x

meo + aZ(Q%) 1Ty = Z—CP L5 o and T» = Z P Ly S Slmllarly, we can

define submatrices T11, Tzz and T12 by replacing o 2g with /\/l Then it is easy
to see that T12 = T5. Notice that if the oracle information of set 91y is available
and G, and o? are known, then the Bayes estimate of the true random effects coef-
ficient vector yg; has the form TUlZ ny Define y* = (7, ..., ) DT

with yJ = (yjl, ey qu,,)T for j =1,..., N as the oracle-assisted Bayes estimate
of the random effects vector. Then y*ﬁg =0 and Y*ﬁo = Tl_l1 ZTﬁOny' Corre-
spondingly, define ¥* as the oracle Bayses estimate with proxy matrix, that is,
?ﬁc =0and

0

(19) Vi, = T Zi5; Pay.
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For k=1,...,qp, let y} = {Z 1()/] )2}1/2. Throughout we condition on the
event

(20) QF _{mm yk>«/_b0}

keI
with b € (0, minegy, 0%) and akz = var(yjx). The above event * is to ensure that
the oracle-assisted estimator y/ VN of oy is not too negatively biased.

CONDITION 3. (A) The maximum eigenvalues satisfy Amax(ZiGZiT ) <
c3sy, for all i = 1,..., N and the minimum and maximum eigenvalues of
m, 1ZTﬁOPxZﬁ0 and Gy, are bounded from below and above by c3 and c; L
respectively, with m, = maxj<;<y n;, where c3 is a positive constant. Further,
assume that for some § € (0, %),

~ 1 /Nn—1—3
2D 1T o = — v
PAH(V Nb0/2)
/
~ ~_ D5 (0+)
(22) max |ZT P, Zs T, < —22——
jeimf)” JEXEMy 11 ”2 Pi,l(ﬁbf)k/z)

where Z j s the submatrix formed by the N columns of Z corresponding to the jth
random effect.
(B) It holds that sup;,... /7, o) Py (@) =o(N"1).

(C) The proxy matrix satisfies Amin(M — o ~2G) > 0.

Condition 3(A) is about the design matrices X, Z and covariance matrix G.
Since Zg, is a block diagonal matrix and limsup maX’Z’ < 00, the compo—
nents of Zﬁonlsmo have magnitude of the order m;, = O(n/N). Thus, i
is not very restrictive to assume that the minimum and maximum eigenval—
ues of ZTﬁOPxZﬁ0 are both of the order m,. Condition (22) puts an up-
per bound on the correlation between noise covariates and true covariates.
The upper bound of (22) depends on the penalty function. Note that for con-
cave penalty we have P/x,l 0+4)/ p’kn (\/ﬁb’s /2) > 1, whereas for L; penalty
pin O+)/ pﬁ\n (/N by/2) = 1. Thus, concave penalty relaxes (22) when compared
with the L penalty. Condition 3(B) is satisfied by many commonly used penalties
with appropriately chosen A, for example, L penalty, SCAD penalty and SICA
penalty with small a. Condition 3(C) is a restriction on the proxy matrix M, which
will be further discussed in the next subsection.

Lety = (le, cee, yITv)T with y; = (yj1, ..., y]q”)T being an arbitrary (Ng,)-
vector. Define y.x = (Z 1 yjk)l/2 foreachk=1,...,¢g,. Let

(23) My) ={ke{l,...,qn}: yx #0}.
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Theorem 2 below shows that there exists a local minimizer of Q;(y) defined in
(18) whose support is the same as the true one 9y, and that this local minimizer
is close to the oracle estimator y*.

THEOREM 2. Assume that Conditions 1 and 3 hold, b(’)“n‘s/\/ﬁ — 00,
log(Ng,) = O(nz)»%/(stnmn)), and nz)\%/(Nmnszn) — 00 as n — o0o. Then,
with probability tending to 1, there exists a strict local minimizer y € RN of
QZ (y) such that

1 N 1/2
MFP) =My and — S P —-75)*t <n7,
@)=Mo an Igg%{]v;(m ij)} =n

where § is defined in (21).

Using a similar argument to that for Theorem 1, we can obtain that the dimen-
sionality N g, is also allowed to grow exponentially with sample size n under some
growth conditions and with appropriately chosen A,,. In fact, note that if the sample
sizes n; = --- =ny = my/N, then the growth condition in Theorem 2 becomes
log(Ngp) = o(nsz_nl A%). Since the lowest signal level in this case is «/Nbg, if b is
a constant, a reasonable choice of tuning parameter would be of the order v/Nn %
with some « € (0, %). For s5, = O(n") with v € [0, %) and Nn!'=%V - 0, we

obtain that N¢, can grow with rate exp(Nn'=2¢~7).

3.3. Choice of proxy matrix M. Similarly as for the fixed effects selection and
estimation, we discuss (21) and (22) in the following lemma.

-1 N 1
LEMMA 2. Assume that || T l|co < o (JNED) [1 N

4 T T =1, < [1+fs2 lognn' " p} (VNB/2) | T7 5]
Then (21) holds.

] and

5 - 5 (04) - .
Assume that max jeone | ZTP Zagy T1' |12 < m with Z; defined in
(22) and
(25) I T 1], <1.
Then (22) holds.

Conditions (24) and (25) put restrictions on the proxy matrix M. Similarly
to the discussions after Lemma 1, if p/kn (/N b3/2) ~ 0, then these conditions be-

come ||T11'T'1711 —I<1.If ZTﬁOPXZﬁO dominates azg%o by a larger magnitude,

then conditions (24) and (25) are not restrictive, and choosing M = (logn)I should
make these conditions as well as Condition 3(C) satisfied for large enough 7.
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We remark that using the proxy matrix M = (logn)I is equivalent to ignoring
correlations among random effects. The idea of using diagonal matrix as a proxy
of covariance matrix has been proposed in other settings of high-dimensional sta-
tistical inference. For instance, the naive Bayes rule (or independence rule), which
replaces the full covariance matrix in Fisher’s discriminant analysis with a diago-
nal matrix, has been demonstrated to be advantageous for high-dimensional clas-
sifications both theoretically [Bickel and Levina (2004), Fan and Fan (2008)] and
empirically [Dudoit, Fridlyand and Speed (2002)]. The intuition is that although
ignoring correlations gives only a biased estimate of covariance matrix, it avoids
the errors caused by estimating a large amount of parameters in covariance matrix
in high dimensions. Since the accumulated estimation error can be much larger
than the bias, using diagonal proxy matrix indeed produces better results.

4. Simulation and application. In this section, we investigate the finite-
sample performance of the proposed procedures by simulation studies and a real
data analysis. Throughout, the SCAD penalty with a = 3.7 [Fan and Li (2001)]
is used. For each simulation study, we randomly simulate 200 data sets. Tuning
parameter selection plays an important role in regularization methods. For fixed
effect selection, both AIC- and BIC-selectors [Zhang, Li and Tsai (2010)] are used
to select the regularization parameter A, in (6). Our simulation results clearly indi-
cate that the BIC-selector performs better than the AIC-selector for both the SCAD
and the LASSO penalties. This is consistent with the theoretical analysis in Wang,
Li and Tsai (2007). To save space, we report the results with the BIC-selector. Fur-
thermore the BIC-selector is used for fixed effect selection throughout this section.
For random effect selection, both AIC- and BIC-selectors are also used to select
the regularization parameter A, in (18). Our simulation results imply that the BIC-
selector outperforms the AIC-selector for the LASSO penalty, while the SCAD
with AIC-selector performs better than the SCAD with BIC-selector. As a result,
we use AIC-selector for the SCAD and BIC-selector for the LASSO for random
effect selection throughout this section.

EXAMPLE 1. We compare our method with some existing ones in the litera-
ture under the same model setting as that in Bondell, Krishna and Ghosh (2010),
where a joint variable selection method for fixed and random effects in linear
mixed effects models is proposed. The underlying true model takes the following
form with g = 4 random effects and d = 9 fixed effects:

(26)  yij = bi1 + Bixij1 + Baxij2 + bizzij1 + bizzij2 + €ij, €ij ~iid N(O, 1),

where the true parameter vector 8= (1, 1,0, ..., O)T, the true covariance matrix

for random effects
9 48 0.6
G= (4.8 4 1 )
06 1 1
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and the covariates x;j; for k =1,...,9 and z;;; for [ =1, 2,3 are generated in-
dependently from a uniform distribution over the interval [—2,2]. So there are
three true random effects and two true fixed effects. Following Bondell, Krishna
and Ghosh (2010), we consider two different sample sizes N = 30 subjects and
n; =5 observations per subject, and N = 60 and n; = 10. Under this model setting,
Bondell, Krishna and Ghosh (2010) compared their method with various methods
in the literature, and simulations therein demonstrate that their method outper-
forms the competing ones. So we will only compare our methods with the one in
Bondell, Krishna and Ghosh (2010).

In implementation, the proxy matrix is chosen as M = (logn)I. We then es-
timate the fixed effects vector § by minimizing Q,(#), and the random effects
vector y by minimizing (18). To understand the effects of using proxy matrix M
on the estimated random effects and fixed effects, we compare our estimates with
the ones obtained by solving regularization problems (6) and (17) with the true
value 0 —2G.

Table 1 summarizes the results by using our method with the proxy matrix
M and SCAD penalty (SCAD-P), our method with proxy matrix M and Lasso
penalty (Lasso-P), our method with true o ~2G and SCAD penalty (SCAD-T).
When SCAD penalty is used, the local linear approximation (LLA) method pro-
posed by Zou and Li (2008) is employed to solve these regularization problems.
The rows “M-ALASSQO” in Table 1 correspond to the joint estimation method by
Bondell, Krishna and Ghosh (2010) using BIC to select the tuning parameter. As
demonstrated in Bondell, Krishna and Ghosh (2010), the BIC-selector outperforms
the AIC-selector for M-ALASSO. We compare these methods by calculating the
percentage of times the correct fixed effects are selected (%CF), and the percentage
of times the correct random effects are selected (%CR). Since these two measures
were also used in Bondell, Krishna and Ghosh (2010), for simplicity and fairness
of comparison, the results for M-ALASSO in Table 1 are copied from Bondell,
Krishna and Ghosh (2010).

TABLE 1
Fixed and random effects selection in Example 1 when d =9
and g =4
Setting Method % CF % CR
N =30 Lasso-P 51 19.5
nj=>5 SCAD-P 90 86
SCAD-T 93.5 99
M-ALASSO 73 79
N =60 Lasso-P 52 50.5
n; =10 SCAD-P 100 100
SCAD-T 100 100

M-ALASSO 83 89
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It is seen from Table 1 that SCAD-P greatly outperforms Lasso-P and M-
ALASSO. We also see that when the true covariance matrix o 2§ is used,
SCAD-T has almost perfect variable selection results. Using the proxy matrix

makes the results slightly inferior, but the difference vanishes for larger sample
size N =60, n; = 10.

EXAMPLE 2. In this example, we consider the case where the design matri-
ces for fixed and random effects overlap. The sample size is fixed at n; = 8 and
N = 30, and the numbers for fixed and random effects are chosen to be d = 100
and g = 10, respectively. To generate the fixed effects design matrix, we first inde-
pendently generate X;; from N4 (0, X), where X = (oy;) with o5, = o~ and p €
(—1,1). Then for the jth observation of the ith subject, we set x;j;x = I (X;jx > 0)
for covariates k = 1 and d, and set x;jx = X;; for all other values of k. Thus 2 out
of d covariates are discrete ones and the rest are continuous ones. Moreover, all
covariates are correlated with each other. The covariates for random effects are the
same as the corresponding ones for fixed effects, that is, for the jth observation of
the ith subject, we set z;jx = x;jx for k =1, ..., = 10. Then the random effect
covariates form a subset of fixed effect covariates.

The first six elements of fixed effects vector B are (2,0, 1.5, 0,0, DT, and the
remaining elements are all zero. The random effects vector yp is generated in the
same way as in Example 1. So the first covariate is discrete and has both nonzero
fixed and random effect. We consider different values of correlation level p, as
shown in Table 2. We choose M = (logn)I.

Since the dimension of random effects vector y is much larger than the total
sample size, as suggested at the beginning of Section 2.1, we start with the ran-

TABLE 2
Fixed and random effects selection and estimation in Example 2 when n; =8, N =30, d = 100,
q = 10 and design matrices for fixed and random effects overlap

Random effects Fixed effects

FNR FPR MRL2 MRL1 FNR FPR MRL2 MRL1
Setting Method (%) (%) (%) (%)

p=03 Lasso-P  11.83 9.50  0.532 0.619  62.67 041 0.841 0.758
SCAD-P 0.50 1.07  0.298 0.348 0.83 0.03 0.142 0.109
SCAD-T 3.83 0.00 0.522 0.141 0.33  0.02 0.102 0.082

p=-03 Lasso-P 23.67 7.64 0524 0.580  59.17 041 0.802 0.745
SCAD-P 1.83 0.71  0.308 0.352 0.67 0.05 0.141 0.109
SCAD-T 3.17 0.00  0.546 0.141 0.17 0.02  0.095 0.078

p=05 Lasso-P 9.83 10.07  0.548 0.631 60.33 048 0.844 0.751
SCAD-P 1.67 0.50  0.303 0.346 0.17 005 0.138 0.110
SCAD-T 5.00 0.00  0.532 0.149 0.50 0.02 0.113 0.091
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dom effects selection by first choosing a relatively small tuning parameter A and
use our method in Section 3 to select important random effects. Then with the se-
lected random effects, we apply our method in Section 2 to select fixed effects.
To improve the selection results for random effects, we further use our method in
Section 3 with the newly selected fixed effects to reselect random effects. This it-
erative procedure is applied to both Lasso-P and SCAD-P methods. For SCAD-T,
since the true o~ 2@ is used, it is unnecessary to use the iterative procedure, and
we apply our methods only once for both fixed and random effects selection and
estimation.
We evaluate each estimate by calculating the relative L, estimation loss

RL2(B) = |18 — Boll2/1IBoll2,

where ﬁ is an estimate of the fixed effects vector B. Similarly, the relative L
estimation error of B, denoted by RL1(f), can be calculated by replacing the L,-
norm with the L-norm. For the random effects estimation, we define RL2(¥) and
RL1(y) in a similar way by replacing B with the true p in each simulation. We
calculate the mean values of RL2 and RL1 in the simulations and denote them by
MRL?2 and MRL1 in Table 2. In addition to mean relative losses, we also calculate
the percentages of missed true covaritates (FNR), as well as the percentages of
falsely selected noise covariates (FPR), to evaluate the performance of proposed
methods.

From Table 2 we see that SCAD-T has almost perfect variable selection re-
sults for fixed effects, while SCAD-P has highly comparable performance, for all
three values of correlation level p. Both methods greatly outperform the Lasso-P
method. For the random effects selection, both SCAD-P and SCAD-T perform
very well with SCAD-T having slightly larger false negative rates. We remark
that the superior performance of SCAD-P is partially because of the iterative pro-
cedure. In these high-dimensional settings, directly applying our random effects
selection method in Section 3 produces slightly inferior results to the ones for
SCAD-T in Table 2, but iterating once improves the results. We also see that as the
correlation level increases, the performance of all methods become worse, but the
SCAD-P is still comparable to SCAD-T, and both perform very well in all settings.

EXAMPLE 3. We illustrate our new procedures through an empirical analysis
of a subset of data collected in the Multi-center AIDs Cohort Study. Details of
the study design, method and medical implications have been given by Kaslow
et al. (1987). This data set comprises the human immunodeficiency virus (HIV)
status of 284 homosexual men who were infected with HIV during the follow-up
period between 1984 and 1991. All patients are scheduled to take measurements
semiannually. However, due to the missing of scheduled visits and the random
occurrence of HIV infections, there are an unequal number of measurements and
different measurement times for each patients. The total number of observations is
1765.



VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 2059

TABLE 3
The estimated coefficients of fixed and random effects in Example 3

Intercept by (t) by () b3(¢) by(t) bs(¢) x1 xp x3
Fixed 29.28 9.56 5.75 0 —8.32 0 4.95 0 0
Random 0 0 0 0 0 0 0 0 0

bi(t)xs  ba(t)xs b3()xz ba(t)x3 bs(t)x3 x1x2 x1x¥3  X2X3

Fixed 0 0 0 0 0 0 0 0
Random 0.163 0.153 0.057 0.043 0.059 O 0.028 0.055

Of interest is to investigate the relation between the mean CD4 percentage after
the infection (y) and predictors smoking status (xy, 1 for smoker and O for non-
smoker), age at infection (x7), and pre-HIV infection CD4 percentage (Pre-CD4
for short, x3). To account for the effect of time, we use a five-dimensional cubic
spline b(t) = (b1(t), ba(¢t), ..., bs (1))T. We take into account the two-way inter-
actions b(#;;)x;3, xi1x;2, X;1x;3 and x;2x;3. These eight interactions together with
variables b(#;;), x;1, x;2 and x;3 give us 16 variables in total. We use these 16
variables together with an intercept to fit a mixed effects model with dimensions
for fixed and random effects d = g = 17. The estimation results are listed in Ta-
ble 3 with rows “Fixed” showing the estimated f;’s for fixed effects, and rows
“Random” showing the estimates y.x/~/N. The standard error for the null model
is 11.45, and it reduces to 3.76 for the selected model. From Table 3, it can be seen
that the baseline has time-variant fixed effect and Pre-CD4 has time-variant ran-
dom effect. Smoking has fixed effect while age and Pre-CD4 have no fixed effects.
The interactions smoking x Pre-CD4 and age x Pre-CD4 have random effects with
smallest standard deviations among selected random effects. The boxplots of the
selected random effects are shown in Figure 1.

Our results have close connections with the ones in Huang, Wu and Zhou (2002)
and Qu and Li (2006), where the former used bootstrap approach to test the sig-
nificance of variables and the later proposed hypothesis test based on penalized
spline and quadratic inference function approaches, for varying-coefficient mod-
els. Both papers revealed significant evidence for time-varying baseline, which is
consistent with our discovery that basis functions b (¢)’s have nonzero fixed effect
coefficients. At 5% level, Huang, Wu and Zhou (2002) failed to reject the hypoth-
esis of constant Pre-CD4 effect (p-value 0.059), while Qu and Li’s (2006) test was
weakly significant with p-value 0.045. Our results show that Pre-CD4 has constant
fixed effect and time-varying random effect, which may provide an explanation on
the small difference of p-values in Huang, Wu and Zhou (2002) and Qu and Li
(2006).

To further access the significance of selected fixed effects, we refit the linear
mixed effects model with selected fixed and random effects using the Matlab func-



2060 Y. FAN ANDR. LI

0.6 B

*
0.4} + .
-
|
02t :
|

] LR T
A

T
I
I
|
1
=+ +
+

+

bi()x3  b2()x3  b3()x3  b4()x3  b5(t)x3 x1x3 X2x3

FI1G. 1. Boxplots of selected random effects. From left to right: b; (t)x3,i =1,2,...,5, x1x3, Xpx3,
where x1 is the smoking status, x, is the age at infection, x3 is Pre-CD4 level and b;(t)’s are cubic
spline basis functions of time.

tion “nlmefit.” Based on the 7-statistics from the refitted model, the intercept, the
baseline functions b () and b,(¢) are all highly significant with ¢-statistics much
larger than 7, while the z-statistics for b4(¢) and x; (smoking) are —1.026 and
2.216, respectively. This indicates that b4(¢) is insignificant, and smoking is only
weakly significant at 5% significance level. This result is different from those in
Huang, Wu and Zhou (2002) and Qu and Li (2006), where neither paper found sig-
nificant evidence for smoking. A possible explanation is that by taking into account
random effects and variable selection, our method has better discovery power.

5. Discussion. We have discussed the selection and estimation of fixed effects
in Section 2, providing that the random effects vector has nonsingular covariance
matrix, while we have discussed the selection of random effects in Section 3, pro-
viding that the dimension of fixed effects vector is smaller than the sample size. We
have also illustrated our methods with numerical studies. In practical implementa-
tion, the dimensions of the random effects vector and fixed effects vector can be
both much larger than the total sample size. In such case, we suggest an iterative
way to select and estimate the fixed and random effects. Specifically, we can first
start with the fixed effects selection using the penalized least squares by ignoring
all random effects to reduce the number of fixed effects to below sample size. Then
in the second step, with the selected fixed effects, we can apply our new method
in Section 3 to select important random effects. Third, with the selected random
effects from the second step, we can use our method in Section 2 to further select
important fixed effects. We can also iterate the second and third steps several times
to improve the model selection and estimation results.
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6. Proofs. Lemma 3 is proved in the supplemental article Fan and Li (2012).

LEMMA 3. It holds that
P,=(I-7ZB,)"R™'(I -ZB,)+B/G™'B, = (R+2GZ")""

6.1. Proof of Theorem 1. Let Ny = {B = (,Bl,ﬂz)T 1By — Bo.1lloo <

n~"(logn), B, =0 € R%5n}, We are going to show that under Conditions 1
and 2, there exists a strict local minimizer ﬂ e Ny of O, (B) with asymptotic prob-
ability one.

For a vector 8 = (B1, ..., B p)T let p (ﬂ) be a vector of the same length whose
jth component is pin(lﬁjl)sgn(ﬁj), ] =1,...,d,. By Lv and Fan (2009), the
sufficient conditions for B = (B{, 07)T € R% with Bl € R’I" being a strict local
minimizer of Qn(ﬂ) are

27) —X{P.(y —Xi8)) +np, (B) =0,
(28) IV2lloe < np), (0-),
(29) Amin(XTP.X)) > —np) (1Bjl),  j=1,....5m,

where vy = Xg I~’Z y— Xlﬁl). So we only need to show that with probability tend-
ing to 1, there exists a B € N satisfying conditions (27)—(29).
We first consider (27). Since y = X B | + Zy + ¢, equation (27) can be rewrit-
ten as
-~ ~ —1 ~ ~ -1 - -~
(30) By —Boy=(X{P.X1) X{P.(Zy +e) —n(X[P.X1)" 5}, (B
Define a vector-valued continuous function
~ —1 ~ ~ —1 -
gB1) =B —Bo1— (XTPXy) X[ P, (Zy +&) +n(X{P.X1)" 7 (B))

with B8; € R*I. It suffices to show that with probability tending to 1, there exists
B =BT, BY)T € Ny such that g(B,) = 0. To this end, first note that

(XTPX1) X[ Po(Zy +e) ~ V(0. (X{P:X)) " XT PP B X0 (X{PX)) 7).
By Condition 2(B), the matrix ¢|P, — PP, 'P, = P,Z(c;M — 0 2G)Z"P, > 0,
where A > 0 means the matrix A is positive semi-definite. Therefore,
al)  v=xXPx) ' XIP.p B X (X X)) <oy (XTR. X))

Thus, the jth diagonal component of matrix V in (31) is bounded from above
by the jth diagonal component of cl(Xle’ZXl)_l. Further note that by Condi-
tion 2(B), P71 — ¢1(logn)P; ! < Z(M — ¢; 18D G)ZT < 0. Recall that by lin-
ear algebra, 1f two positive definite matnces A and B satisfy A > B, then it
follows from the Woodbury formula that A~' < B~!. Thus, (c; logn)P > P,
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and (XIP,X;)~! < (c1logn)(XTP.X;)~!. So by Condition 2(C), the diago-
nal components of V in (31) are bounded from above by omn="? (logn)). This
indicates that the variance of each component of the normal random vector
XTP, X))~ 'XTP,(Zy + €) is bounded from above by O (n~?(logn)). Hence, by
Condition 2(C),

|(XTP. X)) ' XiP,(Zy + )|, = 0,(n"%/(ogn)(logsiy))

=o0p(n" " (logn)).

(32)

Next, by Condition 2(A), for any B = (B1, ..., Ba, )T e Ny and large enough n, we
can obtain that

(33) 1Bl =1Bo.jl = 1Bo.j — Bjl = an/2, J=1.... 5.

Since p;n(x) is a decreasing function in (0,00), we have ||p_in(ﬁ1)||OO <
p/kn (a, /2). This together with Condition 2(C) ensures that

i |(XTPX1) 7' 5}, (B1) o < IXTBX0) ™ o155, B oo
<o(n" " (logn)).

Combining (32) and (34) ensures that with probability tending to 1, if n is large
enough,

|(XTP. X)) "X, P (Zy + &) +n(X]P.X)) "' 5, (B1)] ., <n " (logn).

Applying Miranda’s existence theorem [Vrahatis (1989)] to the function g(8;)
ensures that there exists a vector ﬂl € R satistying ||ﬂ1 Bo.illco <n~"logn
such that g(ﬂl) =0.

Now we prove that the solution to (27) satisfies (28). Plugging y = X8 | +
Zy + € into v in (28) and by (30), we obtain that

V2 = XZTf)zXI(ﬂO,l ~ B +XIP,(Zy + &) =va1 + Va2,

where vo | = [-XJ P, X (XTP. X)) " !XTP, + XJP,1(Zy +¢) and v2 » = XJ P, x
X (XITPZXl)_lﬁAn (B1)- Since (Zy + ) ~ N(O, Pz_l), it is easy to see that vy i
has normal distribution with mean O and variance

X5 -P.x, (xIP.X)) "' XD)B.P P, (1 - X, (XTP.X,) " 'XTP,)X,.

Since P I < clP_1 I- Pl/zXl(XTP X))~ 1XTP 12 is a projection matrix, andP
has elgenvalues less than 1, it follows that for the unit vector ey,

e,{ var(vz’l)ek < Clegxg (f)z — I~)ZX1 (X{f)le)_ Xle’Z)Xzek

< cle,{XzTPzXzek < e,{XZTXzek =cn,
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where in the the last step, each column of X is standardized to have Ly-norm +/n.
Thus the diagonal elements of the covariance matrix of v; » are bounded from
above by cn. Therefore, for some large enough constant C > 0,

P(Iva.1lloo > /2Cnlogdy,) < (dn — s12) P(IN(0, c1n)| > /2Cnlogd,)
= (d, — S1p) exp(—CI_ICIOgdn) — 0.

Thus, it follows from the assumption logd,, = o(n)»ﬁ) that

Iv2,1lloc = Op(y/nlogdn) = 0p(np}, (0+)).

Moreover, by Conditions 2(B) and (C),
5 5 -1
V2,20l < 1| XTPX (XTPX1) ™ [ o 25, (@n/2) < np},, (04).

Therefore inequality (28) holds with probability tending to 1 as n — oo.

Finally we prove that B € N satisfying (27) and (28) also makes (29) hold with
probability tending to 1. By (33) and Condition 2(A),

0<—np (1Bjl) < —n sup pj (1) =o(n’).
t>a,/2

On the other hand, by Condition 2(C), Amin(Xle’ZXl) > con?. Since 6 > 27, in-
equality (34) holds with probability tending to 1 as n — oo.

Combing the above results, we have shown that with probability tending to 1
as n — oo, there exists ﬂ € Ny which is a strict local minimizer of Qn (B). This
completes the proof.

6.2. Proof of Theorem 2. Let y = (le, e le\,)T e R#N with ij = (¥j1,
.y Vjg,) be a RN _yector satisfying M (y) = Myp. Define u(y) = (ulT,...,
uK,)T e RV with u; = (uj,..., ujqn)T, where for j=1,..., N,

(35) Mt jk = py, VOViK/ve  ifkeMy)

and Aqujr =0 if k ¢ M(y). Here, yi = {Z —1Y; k}l/2 Let y* be the oracle-
assisted estimate defined in (19). By Lv and Fan (2009) the sufficient conditions
for y with Yoo = 0 being a strict local minimizer of (18) are

(36) Vi, — Yar, = mhaT1 uvag),
N 12
37) (Z w?k) < npj, (04), k € M,
j=1

- 82 qn
(38) Amin(T11) > nAmax (_ 92 (Z Py (V-k))>,
=1

Mo
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where w(y) = (wlT, cees w]T\,)T € RN with wi=(Wwji,..., w‘,-qn)T, and
(39) w(y)=Z"P.(y—Zy) - M 'y.

We will show that, under Conditions 1 and 3, conditions (36)—(38) above are sat-
isfied with probability tending to 1 in a small neighborhood of y*.

In general, it is not always guaranteed that (36) has a solution. We first show
that under Condition 3, there exists a vector ¥* with 9t(¥*) = 9 such that ?*ﬁo

makes (36) hold. To this end, we constrain the objective function Q,";(y) defined
in (18) on the (Nsy»)-dimensional subspace B ={y € RN . Yo = 0} of R#"N
Next define

N 1/2
le{yeB maX{Z(yjk—?fk)z} fx/ﬁn‘s}.

keMp | =
j=l1

Forany ¥ = (i1, -+, Pigys - -» N1« --» YNg,) . € N1 and k € My, we have

12
17 =7 <max{z y]k—yjk } <+/Nn=% and

N 1/2 N 1/2 N 1/2
~ o\ 2 ~ ~ 2 ~
(40) Vi = {Z(yfk) } < {Z(y;‘k — Pik) } + {Z(m)Z}
j=1 j=1 j=1

=< VNn=% + V-
Note that by Condition 3(C), we have ’T‘l_ll > Tl_ll. Thus it can be derived using
linear algebra and the definitions of ¥} and y} that y7 > y. Since we condition
on the event * in (20), it is seen that for large enough n,

(41) Vx>V =/ Nn7° >yt —/Nn™ > V/Nb}/2
for k € My and y € N;. Thus, in view of the definition of u(y) in (35), for k € My,
we have

[*auFar) | = max pi, (70 < 1}, (VNBG/2),

where in the last step, pin (t) is decreasing in t € (0, oo) due to the concavity of
Dx, (t). This together with (21) in Condition 3 ensures

(42) i T u @z, oo < I T7 |0 Ph, (VNBG/2) < VN~

Now define the vector-valued continuous function W(§) = & — }7;_710 — nAn’T‘l_llu(g),
with & a RV*2_vector. Combining (40) and (42) and applying Miranda’s existence
theorem [Vrahatis (1989)] to the function W (&), we conclude that there exists

y* € N such that ?*ﬁo is a solution to equation (36).
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We next show that ¥* defined above indeed satisfies (38). Note that for any
vector X # 0,

9* x! 1 xx!
@3 L (Ixl2) = Pl (1xl2) X ¢ p (Ix ||2( —)
ax P (IX112) = 3, )|| x|2 w (IXI2) Ixll2  |Ix|3

Since —p/kn (t) <0 and —pi/n (t) >0 fort € (0, 00), we have

Py, (xll2) — p;, (ixll2)
lIxll2 lIxll2

82
Amax(—a?m,,(uxnz)) < —pJ (Ixll2) +
= — ] (Ixll2).

Since y y—o € N1, by (41) we have y; > «/—b /2 for k € My. It follows from
the above inequality and Condition 3(B) that with probability tending to 1, the

maximum eigenvalue of the matri 8}’322 ( i1 Py (¥7%)) is less than
I
max (—pf (7)) =o(N~") = oma/n).
J€Mo
Further, by Condition 3(A), ; Amin(T11) = J Amin(Z; PiZay) = c3%2. Thus
the maximum eigenvalue of the matrix _W(Z(ji':l P, (V7)) is less than
My

7~ Amin (Tl 1) with asymptotic probability 1, and (38) holds for p*
It remains to show that y* satisfies (37). Let V= y* — ¥ *. Since y* is a solution
to (36), we have V= n)\n"fl_llu(?ﬁo). In view of (39), we have

W@*ﬁg) = (ZT— LT, IIZ )ny + Tszvﬁo
(44) = (ZT -THLTH'ZL Pc(Zy +e) + T ¥,
=W + v~vz.
Since Zy + e ~ N (O, P;l), we obtain that w; ~ N (0, H) with
H= (ZT — LT 255 )PP P (Lo — Zay T Th2).

Note that Zﬁg is a block diagonal matrix, and the ith block matrix has size
n; X (gn — s2,). By Condition 3(A), it is easy to see that Amax(ZGZT) <
max|<i<y Amax(ZiGZ]) < c1s2,. Thus, PyP7'P, = P (0”1 + ZGZ")P, <
(02 + clszn)Pﬁ = (02 + c¢152,)Py. Further, it follows from T, = T, and
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25 PiZy;, < T that
H < (02 + c15m) (Zgge — TR T Zgg )P (Zage — Zag, T Tho)
= (0 + c1524)
X (23 PeZage + T 2y PoZ T T — 225 P Zay T Ta)
< (0?4 clsz")(z%gpxzﬁg ~TLT [ Tn) < (6% + clszn)z%gpxzﬁg.

Thus, the ith diagonal element of H is bounded from above by the ith diagonal
element of (o2 + c1szn)ZTﬁc PxZﬁ(c), and is thus bounded by ¢} s2,m, with ¢; some
0

positive constant. Therefore by the normality of W; we have

P(I%1 100 > (2815207 10g(N (g — 52))} /%)

< N(gn — $20) P(IN (0, Tr20m) | = (2C1 520 10g(N (g — 521))} %)
= 0((1og(N(gn — 52)))~"*) = 0(1).
Therefore, [|W1|loo = 0, ({20, 10g(N (g — 521)}'/%) = 0,(nN~1/21,,) and
N 1/2
(45) Jn;ax{k; T, jk} <V N|Willoo = 0pnin) = 0p(np} (0+),

where W _j is the ((j — 1)g, + k)lh element of Ng,-vector wy.

Now we consider W. Define Z; as the submatrix of Z formed by columns
corresponding to the jth random effect. Then, for each j =s5, 4+ 1,..., gn, by
Condition 3(A) we obtain that

" 1/2
{zw} = |ET P2, T 07 )
k=1

< nau(p )| 2P 2y, T

27

where W ji is the ((j — 1)g, + k)th element of Ng,-vector W. Since ?*ﬁo €
N1, by (35), (41) and the decreasing property of p/kn(-) we have ||)L”u(7*ﬁ0)||2 <
Pin (VN b§/2). By (22) in Condition 3(A),

N 1/2
~2 /
max E w5 < np;, (0+).
jzs2n+1{k_l 2’1"} P,

Combing the above result for W, with (44) and (45), we have shown that (37) holds
with asymptotic probability one. This completes the proof.
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SUPPLEMENTARY MATERIAL

Supplement to “Variable selection in linear mixed effects models” (DOI:
10.1214/12-A0S1028SUPP; .pdf). We included additional simulation examples
and technical proofs omitted from the main text: simulation Examples A.1-A.3,
and technical proofs of Lemmas 1-3 and Proposition 1.
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