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ADAPTIVE COVARIANCE MATRIX ESTIMATION THROUGH
BLOCK THRESHOLDING
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Estimation of large covariance matrices has drawn considerable recent
attention, and the theoretical focus so far has mainly been on developing
a minimax theory over a fixed parameter space. In this paper, we consider
adaptive covariance matrix estimation where the goal is to construct a single
procedure which is minimax rate optimal simultaneously over each parameter
space in a large collection. A fully data-driven block thresholding estimator
is proposed. The estimator is constructed by carefully dividing the sample
covariance matrix into blocks and then simultaneously estimating the entries
in a block by thresholding. The estimator is shown to be optimally rate adap-
tive over a wide range of bandable covariance matrices. A simulation study
is carried out and shows that the block thresholding estimator performs well
numerically. Some of the technical tools developed in this paper can also be
of independent interest.

1. Introduction. Covariance matrix estimation is of fundamental importance
in multivariate analysis. Driven by a wide range of applications in science and
engineering, the high-dimensional setting, where the dimension p can be much
larger than the sample size n, is of particular current interest. In such a setting,
conventional methods and results based on fixed p and large n are no longer appli-
cable, and in particular, the commonly used sample covariance matrix and normal
maximum likelihood estimate perform poorly.

A number of regularization methods, including banding, tapering, thresholding
and �1 minimization, have been developed in recent years for estimating a large
covariance matrix or its inverse. See, for example, Ledoit and Wolf (2004), Huang
et al. (2006), Yuan and Lin (2007), Banerjee, El Ghaoui and d’Aspremont (2008),
Bickel and Levina (2008a, 2008b), El Karoui (2008), Fan, Fan and Lv (2008),
Friedman, Hastie and Tibshirani (2008), Rocha, Zhao and Yu (2008), Rothman et
al. (2008), Lam and Fan (2009), Rothman, Levina and Zhu (2009), Cai, Zhang
and Zhou (2010), Yuan (2010), Cai and Liu (2011) and Cai, Liu and Luo (2011),
among many others.
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Let X(1), . . . ,X(n) be n independent copies of a p dimensional Gaussian ran-
dom vector X = (X1, . . . ,Xp)T ∼ N(μ,�). The goal is to estimate the covariance
matrix � and its inverse �−1 based on the sample {X(i) : i = 1, . . . , n}. It is now
well known that the usual sample covariance matrix

�̄ = 1

n − 1

n∑
i=1

(
X(i) − X̄

)(
X(i) − X̄

)T
,

where X̄ = 1
n

∑n
i=1 X(i), is not a consistent estimator of the covariance matrix �

when p � n, and structural assumptions are required in order to estimate � con-
sistently.

One of the most commonly considered classes of covariance matrices is the
“bandable” matrices, where the entries of the matrix decay as they move away
from the diagonal. More specifically, consider the following class of covariance
matrices introduced in Bickel and Levina (2008a):

Cα = Cα(M0,M) :=
{
� : max

j

∑
i

{|σij | : |i − j | ≥ k
} ≤ Mk−α ∀k,

(1.1)

and 0 < M−1
0 ≤ λmin(�),λmax(�) ≤ M0

}
.

Such a family of covariance matrices naturally arises in a number of settings, in-
cluding temporal or spatial data analysis. See Bickel and Levina (2008a) for further
discussions. Several regularization methods have been introduced for estimating a
bandable covariance matrix � ∈ Cα . Bickel and Levina (2008a) suggested banding
the sample covariance matrix �̄ and estimating � by �̄ ◦Bk where Bk is a banding
matrix

Bk = (
I
(|i − j | ≤ k

))
1≤i,j≤p

and ◦ represents the Schur product, that is, (A ◦ B)ij = AijBij for two matrices of
the same dimensions. See Figure 1(a) for an illustration. Bickel and Levina (2008a)
proposed to choose k 	 (n/ logp)1/(2(α+1)) and showed that the resulting banding
estimator attains the rate of convergence

‖�̄ ◦ Bk − �‖ = Op

((
logp

n

)α/(2α+2))
(1.2)

uniformly over Cα , where ‖ · ‖ stands for the spectral norm. This result indicates
that even when p � n, it is still possible to consistently estimate � ∈ Cα , so long
as logp = o(n).

Cai, Zhang and Zhou (2010) established the minimax rate of convergence for
estimation over Cα and introduced a tapering estimator �̄ ◦ Tk where the tapering
matrix Tk is given by

Tk =
(

2

k

{(
k − |i − j |)+ − (

k/2 − |i − j |)+})
1≤i,j≤p

,
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(a) Weighting matrix for banding (b) Weighting matrix for tapering

FIG. 1. Both banding and tapering estimators can be expressed as the Schur product of the sample
covariance matrix and a weighting matrix. Subfigures of (a) and (b) illustrate the weighting matrix
for both estimators.

with (x)+ = max(x,0). See Figure 1(b) for an illustration. It was shown that the
tapering estimator �̄ ◦ Tk with k 	 n1/(2α+1) achieves the rate of convergence

‖�̄ ◦ Tk − �‖ = Op

(
n−α/(2α+1) +

(
logp

n

)1/2)
(1.3)

uniformly over Cα , which is always faster than the rate in (1.2). This implies
that the rate of convergence given in (1.2) for the banding estimator with k 	
(n/ logp)1/(2(α+1)) is in fact sub-optimal. Furthermore, a lower bound argument
was given in Cai, Zhang and Zhou (2010) which showed that the rate of con-
vergence given in (1.3) is indeed optimal for estimating the covariance matrices
over Cα .

The minimax rate of convergence in (1.3) provides an important benchmark for
the evaluation of the performance of covariance matrix estimators. It is, however,
evident from its construction that the rate optimal tapering estimator constructed in
Cai, Zhang and Zhou (2010) requires explicit knowledge of the decay rate α which
is typically unknown in practice. It is also clear that a tapering estimator designed
for a parameter space with a given decay rate α performs poorly over another pa-
rameter space with a different decay rate. The tapering estimator mentioned above
is thus not very practical.

This naturally leads to the important question of adaptive estimation: Is it possi-
ble to construct a single estimator, not depending on the decay rate α, that achieves
the optimal rate of convergence simultaneously over a wide range of the parame-
ter spaces Cα? We shall show in this paper that the answer is affirmative. A fully
data-driven adaptive estimator �̂ is constructed and is shown to be simultaneously
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rate optimal over the collection of the parameter spaces Cα for all α > 0. That is,

sup
�∈Cα

E‖�̂ − �‖2 	 min
{
n−2α/(2α+1) + logp

n
,
p

n

}
for all α > 0.

In many applications, the inverse covariance matrix is of significant interest. We
introduce a slightly modified version of �̂−1 and show that it adaptively attains
the optimal rate of convergence for estimating �−1.

The adaptive covariance matrix estimator achieves its adaptivity through block
thresholding of the sample covariance matrix �̄. The idea of adaptive estimation
via block thresholding can be traced back to nonparametric function estimation
using Fourier or wavelet series. See, for example, Efromovich (1985) and Cai
(1999). However, the application of block thresholding to covariance matrix es-
timation poses new challenges. One of the main difficulties in dealing with covari-
ance matrix estimation, as opposed to function estimation or sequence estimation
problems, is the fact that the spectral norm is not separable in its entries. Another
practical challenge is due to the fact that the covariance matrix is “two-directional”
where one direction is along the rows and another along the columns. The blocks
of different sizes need to be carefully constructed so that they fit well in the sample
covariance matrix and the risk can be assessed based on their joint effects rather
than their individual contributions. There are two main steps in the construction of
the adaptive covariance matrix estimator. The first step is the construction of the
blocks. Once the blocks are constructed, the second step is to estimate the entries
of the covariance matrix � in groups and make simultaneous decisions on all the
entries within a block. This is done by thresholding the sample covariance matrix
block by block. The threshold level is determined by the location, block size and
corresponding spectral norms. The detailed construction is given in Section 2.

We shall show that the proposed block thresholding estimator �̂ is simulta-
neously rate-optimal over every Cα for all α > 0. The theoretical analysis of the
estimator �̂ requires some new technical tools that can be of independent interest.
One is a concentration inequality which shows that although the sample covari-
ance matrix �̄ is not a reliable estimator of �, its submatrices could still be a good
estimate of the corresponding submatrices of �. Another useful tool is a so-called
norm compression inequality which reduces the analysis on the whole matrix to
a matrix of much smaller dimensions, whose entries are the spectral norms of the
blocks.

In addition to the analysis of the theoretical properties of the proposed adaptive
block thresholding estimator, a simulation study is carried out to investigate the
finite sample performance of the estimator. The simulations show that the proposed
estimator enjoys good numerical performance when compared with nonadaptive
estimators such as the banding and tapering estimators.

Besides bandable matrices considered in the present paper, estimating sparse
covariance matrices and sparse precision matrices has also been actively studied in
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the recent literature. Bickel and Levina (2008b) proposed a thresholding estima-
tor for sparse covariance matrices and obtained the rate of convergence. Cai and
Zhou (2011) developed a new general minimax lower bound technique and estab-
lished the minimax rate of convergence for estimating sparse covariance matrices
under the spectral norm and other matrix operator norms. Cai and Liu (2011) in-
troduced an adaptive thresholding procedure for estimating sparse covariance ma-
trices that automatically adjusts to the variability of individual entries. Estimation
of sparse precision matrices has also drawn considerable attention due to its close
connections to Gaussian graphical model selection. See Yuan and Lin (2007), Yuan
(2010), Ravikumar et al. (2011) and Cai, Liu and Luo (2011). The optimal rate of
convergence for estimating sparse inverse covariance matrices was established in
Cai, Liu and Zhou (2011).

The rest of the paper is organized as follows. Section 2 presents a detailed con-
struction of the data-driven block thresholding estimator �̂. The theoretical prop-
erties of the estimator are investigated in Section 3. It is shown that the estimator �̂

achieves the optimal rate of convergence simultaneously over each Cα(M0,M) for
all α,M0,M > 0. In addition, it is also shown that a slightly modified version of
�̂−1 is adaptively rate-optimal for estimating �−1 over the collection Cα(M0,M).
Simulation studies are carried out to illustrate the merits of the proposed method,
and the numerical results are presented in Section 4. Section 5 discusses exten-
sion to subguassian noise, adaptive estimation under the Frobenius norm and other
related issues. The proofs of the main results are given in Section 6.

2. Block thresholding. In this section we present in detail the construction
of the adaptive covariance matrix estimator. The main strategy in the construction
is to divide the sample covariance matrix into blocks and then apply thresholding
to each block according to their sizes and dimensions. We shall explain these two
steps separately in Sections 2.1 and 2.2.

2.1. Construction of blocks. As mentioned in the Introduction, the application
of block thresholding to covariance matrix estimation requires more care than in
the conventional sequence estimation problems such as those from nonparametric
function estimation. We begin with the blocking scheme for a general p × p sym-
metric matrix. A key in our construction is to make blocks larger for entries that are
farther away from the diagonal and take advantage of the approximately banding
structure of the covariance matrices in Cα . Before we give a precise description of
the construction of the blocks, it is helpful to graphically illustrate the construction
in the following plot.

Due to the symmetry, we shall focus only on the upper half for brevity. We
start by constructing blocks of size k0 × k0 along the diagonal as indicated by the
darkest squares in Figure 2. Note that the last block may be of a smaller size if
k0 is not a divisor of p. Next, new blocks are created successively toward the top
right corner. We would like to increase the block sizes along the way. To this end,
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FIG. 2. Construction of blocks with increasing dimensions away from the diagonal. The solid black
blocks are of size k0 × k0. The gray ones are of size 2k0 × 2k0.

we extend to the right from the diagonal blocks by either two or one block of the
same dimensions (k0 × k0) in an alternating fashion. After this step, as exhibited in
Figure 2, the odd rows of blocks will have three k0 × k0 blocks, and the even rows
will have two k0 × k0 in the upper half. Next, the size of new blocks is doubled
to 2k0 × 2k0. Similarly to before, the last block may be of smaller size if 2k0 is
not a divisor of p, and for the most part, we shall neglect such a caveat hereafter
for brevity. The same procedure is then followed. We extend to the right again
by three or two blocks of the size 2k0 × 2k0. Afterwards, the block size is again
enlarged to 22k0 × 22k0 and we extend to the right by three or two blocks of size
22k0 × 22k0. This procedure will continue until the whole upper half of the p × p

matrix is covered. For the lower half, the same construction is followed to yield a
symmetric blocking of the whole matrix.

The initial block size k0 can take any value as long as k0 	 logp. In particular,
we can take k0 = �logp�. The specific choice of k0 does not impact the rate of
convergence, but in practice it may be beneficial sometimes to use a value different
from �logp�. In what follows, we shall keep using k0 for the sake of generality.

For notational purposes, hereafter we shall refer to the collection of index sets
for the blocks created in this fashion as B = {B1, . . . ,BN } where Bk = Ik × Jk

for some subintervals Ik, Jk ⊂ {1, . . . , p}. It is clear that B forms a partition of
{1,2, . . . , p}2, that is,

Bk1 ∩ Bk2 = ∅ if k1 �= k2 and B1 ∪ B2 ∪ · · · ∪ BN = {1,2, . . . , p}2.

For a p × p matrix A = (aij )1≤i,j≤p and an index set B = I × J ∈ B, we shall
also write AB = (aij )i∈I,j∈J , a |I | × |J | submatrix of A. Hence A is uniquely
determined by {AB :B ∈ B} and the partition B. With slight abuse of notation, we
shall also refer to an index set B as a block when no confusion occurs, for the sake
of brevity.
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Denote by d(B) the dimension of B , that is,

d(B) = max
{
card(I ), card(J )

}
.

Clearly by construction, most of the blocks in B are necessarily square in that
card(I ) = card(J ) = d(B). The exceptions occur when the block sizes are not
divisors of p, which leaves the blocks along the last row and column in rectangles
rather than squares. We opt for the more general definition of d(B) to account for
these rectangle blocks.

2.2. Block thresholding. Once the blocks are constructed, the next step is to
estimate the entries of the covariance matrix �, block by block, through thresh-
olding the corresponding blocks of the sample covariance matrix based on the
location, block size and corresponding spectral norms.

We now describe the procedure in detail. Denote by �̂ the block thresholding
estimator, and let B = I × J ∈ B. The estimate of the block �B is defined as
follows:

(a) keep the diagonal blocks: �̂B = �̄B if B is on the diagonal, that is, I = J ;
(b) “kill” the large blocks: �̂B = 0 if d(B) > n/ logn;
(c) threshold the intermediate blocks: For all other blocks B , set

�̂B = Tλ0(�̄B) = �̄B · I

(
‖�̄B‖ > λ0

√
‖�̄I×I‖‖�̄J×J ‖

√
d(B) + logp

n

)
,(2.1)

where λ0 > 0 is a turning parameter. Our theoretical development indicates that
the resulting block thresholding estimator is optimally rate adaptive whenever λ0
is a sufficiently large constant. In particular, it can be taken as fixed at λ0 = 6.
In practice, a data-driven choice of λ0 could potentially lead to further improved
finite sample performance.

It is clear from the construction that the block thresholding estimate �̂ is fully
data-driven and does not require the knowledge of α. The choice of the threshold-
ing constant λ0 comes from our theoretical and numerical studies. See Section 5
for more discussions on the choice of λ0.

We should also note that, instead of the hard thresholding operator Tλ0 , more
general thresholding rules can also be applied in a similar blockwise fashion. In
particular, one can use block thresholding rules Tλ0(�̄B) = �̄B · tλB

(‖�̄B‖) where

λB = λ0

√
‖�̄I×I‖‖�̄J×J ‖

√
d(B) + logp

n
,

and tλB
is a univariate thresholding rule. Typical examples include the soft thresh-

olding rule tλB
(z) = (|z| − λB)+ sgn(z) and the so-called adaptive lasso rule

tλB
(z) = z(1−|λB/z|η)+ for some η ≥ 1, among others. Rothman, Levina and Zhu

(2009) considered entrywise universal thresholding for estimating sparse covari-
ance matrix. In particular, they investigate the class of univariate thresholding rules
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tλB
such that (a) |tλ0(z)| ≤ |z|; (b) tλB

(z) = 0 if |z| ≤ λB ; and (c) |tλB
(z)− z| ≤ λB .

Although we will focus on the hard thresholding rule in the present paper for
brevity, all the theoretical results developed here apply to the more general class
of block thresholding rules as well.

3. Adaptivity. We now study the properties of the proposed block threshold-
ing estimator �̂ and show that the estimator simultaneously achieves the minimax
optimal rate of convergence over the full range of Cα for all α > 0. More specifi-
cally, we have the following result.

THEOREM 3.1. Let �̂ be the block thresholding estimator of � as defined in
the Section 2. Then

sup
�∈Cα(M0,M)

E‖�̂ − �‖2 ≤ C min
{
n−2α/(2α+1) + logp

n
,
p

n

}
(3.1)

for all α > 0, where C is a positive constant not depending on n and p.

Comparing with the minimax rate of convergence given in Cai, Zhang and Zhou
(2010), this shows that the block thresholding estimator �̂ is optimally rate adap-
tive over Cα for all α > 0.

REMARK 1. The block thresholding estimator �̂ is positive definite with high
probability, but it is not guaranteed to be positive definite. A simple additional
step, as was done in Cai and Zhou (2011), can make the final estimator positive
semi-definite and still achieve the optimal rate of convergence. Write the eigen-
decomposition of �̂ as �̂ = ∑p

i=1 λ̂iviv
T
i , where λ̂i ’s and vi ’s are, respectively,

the eigenvalues and eigenvectors of �̂. Let λ̂+
i = max(λ̂i,0) be the positive part

of λ̂i , and define

�̂+ =
p∑

i=1

λ̂+
i viv

T
i .

Then �̂+ is positive semi-definite, and it can be shown easily that �̂+ attains the
same rate as �̂. See Cai and Zhou (2011) for further details. If a strictly positive
definite estimator is desired, one can also set λ̂+

i = max(λ̂i, εn) for some small
positive value εn, say εn = O(logp/n), and the resulting estimator �̂+ is then
positive definite and attains the optimal rate of convergence.

The inverse of the covariance matrix, 	 := �−1, is of significant interest in
many applications. An adaptive estimator of 	 can also be constructed based on
our proposed block thresholding estimator. To this end, let �̂ = ÛD̂ÛT be its
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eigen-decomposition, that is, Û is an orthogonal matrix, and D̂ is a diagonal ma-
trix. We propose to estimate 	 by

	̂ = Û diag
(
min

{
d̂−1
ii , n

})
ÛT,

where d̂ii is the ith diagonal element of D̂. The truncation of d̂−1
ii is needed to deal

with the case where �̂ is near singular. The result presented above regarding �̂

can be used to show that 	̂ adaptively achieves the optimal rate of convergence for
estimating 	.

THEOREM 3.2. Let 	̂ be defined as above. Then

sup
�∈Cα

E‖	̂ − 	‖2 ≤ C min
{
n−2α/(2α+1) + logp

n
,
p

n

}

for all α > 0, where C > 0 is a constant not depending on n and p.

The proof of the adaptivity results is somewhat involved and requires some new
technical tools. The main ideas in the theoretical analysis can be summarized as
follows:

• The different �̂ − � can be decomposed into a sum of matrices such that each
matrix in the sum only consists of blocks in B that are of the same size. The
individual components in the sum are then bounded separately according to their
block sizes.

• Although the sample covariance matrix �̄ is not a reliable estimator of �, its
submatrix, �̄B , could still be a good estimate of �B . This is made precise
through a concentration inequality.

• The analysis on the whole matrix is reduced to the analysis of a matrix of much
smaller dimensions, whose entries are the spectral norms of the blocks, through
the application of a so-called norm compression inequality.

• With high probability, large blocks in {�̄B :B ∈ B}, which correspond to neg-
ligible parts of the true covariance matrix �, are all shrunk to zero because by
construction they are necessarily far away from the diagonal.

We shall elaborate below these main ideas in our analysis and introduce some
useful technical tools. The detailed proof is relegated to Section 6.

3.1. Main strategy. Recall that B is the collection of blocks created using the
procedure in Section 2.1, and it forms a partition of {1,2, . . . , p}2. We analyze the
error �̂ − � by first decomposing it into a sum of matrices such that each matrix
in the sum only consists of blocks in B that are of the same size. More precisely,
for a p ×p matrix A, define S(A; l) to be a p ×p matrix whose (i, j) entry equals
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(a) S(·,1) (b) S(·,2)

FIG. 3. Decompose a matrix into the sum of matrices of different block sizes: S(·,1) on the left and
S(·,2) on the right. All entries in the unshaded area are zero.

that of A if (i, j) belongs to a block of dimension 2l−1k0, and zero otherwise. In
other words,

S(A, l) = ∑
B∈B:d(B)=2l−1k0

A ◦ I
(
(i, j) ∈ B

)
1≤i,j≤p.

With this notation, �̂ − � is decomposed as

�̂ − � = S(�̂ − �,1) + S(�̂ − �,2) + · · · .
This decomposition into the sum of blocks of different sizes is illustrated in Fig-
ure 3 below.

We shall first separate the blocks into two groups, one for big blocks and another
for small blocks. See Figure 4 for an illustration. By the triangle inequality, for any
L ≥ 1,

‖�̂ − �‖ ≤ ∑
l≤L

∥∥S(�̂ − �, l)
∥∥+

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥.(3.2)

The errors on the big blocks will be bounded as a whole, and the errors on the
small blocks will be bounded separately according to block sizes. With a careful
choice of the cutoff value L, it can be shown that there exists a constant c > 0 not
depending on n and p such that for any α > 0 and � ∈ Cα ,

E

(∑
l≤L

∥∥S(�̂ − �, l)
∥∥)2

= c min
{
n−2α/(2α+1) + logp

n
,
p

n

}
,(3.3)

and

E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

= c min
{
n−2α/(2α+1) + logp

n
,
p

n

}
,(3.4)
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(a) Small blocks (b) Large blocks

FIG. 4. Small blocks and large blocks are treated separately. Small blocks are necessarily close to
the diagonal and large blocks are away from the diagonal.

which then implies Theorem 3.1 because

E‖�̂ − �‖2 ≤ 2E

(∑
l≤L

∥∥S(�̂ − �, l)
∥∥)2

+ 2E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

.

The choice of the cutoff value L depends on p and n and different approaches
are taken to establish (3.3) and (3.4). In both cases, a key technical tool we shall use
is a concentration inequality on the deviation of a block of the sample covariance
matrix from its counterpart of the true covariance matrix, which we now describe.

3.2. Concentration inequality. The rationale behind our block thresholding
approach is that although the sample covariance matrix �̄ is not a reliable estima-
tor of �, its submatrix, �̄B , could still be a good estimate of �B . This observation
is formalized in the following theorem.

THEOREM 3.3. There exists an absolute constant c0 > 0 such that for all
t > 1,

P

( ⋂
B=I×J∈B

{
‖�̄B − �B‖ < c0t

√
‖�I×I‖‖�J×J ‖

√
d(B) + logp

n

})

≥ 1 − p−(6t2−2).

In particular, we can take c0 = 5.44.

Theorem 3.3 enables one to bound the estimation error �̂ − � block by block.
Note that larger blocks are necessarily far away from the diagonal by construction.
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For bandable matrices, this means that larger blocks are necessarily small in the
spectral norm. From Theorem 3.3, if λ0 > c0, with overwhelming probability,

‖�̄B‖ ≤ ‖�B‖ + c0

√
‖�I×I‖‖�J×J ‖

√
d(B) + logp

n

< λ0

√
‖�I×I‖‖�J×J ‖

√
d(B) + logp

n

for blocks with sufficiently large sizes. As we shall show in Section 6, ‖�I×I‖
and ‖�J×J ‖ in the above inequality can be replaced by their respective sample
counterparts. This observation suggests that larger blocks are shrunken to zero with
our proposed block thresholding procedure, which is essential in establishing (3.4).

The treatment of smaller blocks is more complicated. In light of Theorem 3.3,
blocks of smaller sizes can be estimated well, that is, �̄B is close to �B for B

of smaller sizes. To translate the closeness in such a blockwise fashion into the
closeness in terms of the whole covariance matrix, we need a simple yet useful
result based on a matrix norm compression transform.

3.3. Norm compression inequality. We shall now present a so-called norm
compression inequality which is particularly useful for analyzing the properties
of the block thresholding estimators. We begin by introducing a matrix norm com-
pression transform.

Let A be a p×p symmetric matrix, and let p1, . . . , pG be positive integers such
that p1 + · · · + pG = p. The matrix A can then be partitioned in a block form as

A =

⎛
⎜⎜⎜⎜⎝

A11 A12 . . . A1G

A21 A22 . . . A2G

...
...

. . .
...

AG1 AG2 . . . AGG

⎞
⎟⎟⎟⎟⎠ ,

where Aij is a pi × pj submatrix. We shall call such a partition of the matrix A a
regular partition and the blocks Aij regular blocks. Denote by N : Rp×p �→ R

G×G

a norm compression transform

A �→ N (A;p1, . . . , pG) =

⎛
⎜⎜⎜⎜⎝

‖A11‖ ‖A12‖ . . . ‖A1G‖
‖A21‖ ‖A22‖ . . . ‖A2G‖

...
...

. . .
...

‖AG1‖ ‖AG2‖ . . . ‖AGG‖

⎞
⎟⎟⎟⎟⎠ .

The following theorem shows that such a norm compression transform does not
decrease the matrix norm.

THEOREM 3.4 (Norm compression inequality). For any p × p matrix A and
block sizes p1,p2, . . . , pG such that p1 + · · · + pG = p,

‖A‖ ≤ ∥∥N (A;p1, . . . , pG)
∥∥.
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Together with Theorems 3.3 and 3.4 provides a very useful tool for bounding
S(�̂ −�, l). Note first that Theorem 3.4 only applies to a regular partition, that is,
the divisions of the rows and columns are the same. It is clear that S(·,1) corre-
sponds to regular blocks of size k0 × k0 with the possible exception of the last row
and column which can be of a different size, that is, p1 = p2 = · · · = k0. Hence,
Theorem 3.4 can be directly applied. However, this is no longer the case when
l > 1.

To take advantage of Theorem 3.4, a new blocking scheme is needed for S(·, l).
Consider the case when l = 2. It is clear that S(l,2) does not form a regular block-
ing. But we can form new blocks with p1 = p2 = · · · = k0, that is, half the size of
the original blocks in S(·,2). Denote by the collection of the new blocks B′. It is
clear that under this new blocking scheme, each block B of size 2k0 consists of
four elements from B′. Thus

S(A,2) = ∑
B∈B

d(B)=2k0

A ◦ I
(
(i, j) ∈ B

) = ∑
B ′∈B′

∃B∈B such that d(B)=2k0
and B ′⊂B

A ◦ I
(
(i, j) ∈ B ′).

Applying Theorem 3.4 to the regular blocks B′ yields

∥∥S(A,2)
∥∥ ≤ ∥∥N

(
S(A,2);k0, . . . , k0

)∥∥,
which can be further bounded by

∥∥N
(
S(A,2);k0, . . . , k0

)∥∥
�1

,

where ‖ · ‖�1 stands for the matrix �1 norm. Observe that each row or column of
N (S(A,2);k0, . . . , k0) has at most 12 nonzero entries, and each entry is bounded
by

max
B ′∈B′

∃B∈B such that d(B)=2k0
and B ′⊂B

‖AB ′‖ ≤ max
B∈B

d(B)=2k0

‖AB‖

because B ′ ⊂ B implies ‖AB ′‖ ≤ ‖AB‖. This property suggests that ‖S(�̂−�, l)‖
can be controlled in a block-by-block fashion. This can be done using the concen-
tration inequalities given in Section 3.2.

The case when l > 2 can be treated similarly. Let p2j−1 = (2l−1 − 3)k0 and
p2j = 3k0 for j = 1,2, . . . . It is not hard to see that each block B in B of size
2l−1k0 occupies up to four blocks in this regular blocking. And following the same
argument as before, we can derive bounds for S(A, l).

The detailed proofs of Theorems 3.1 and 3.2 are given in Section 6.
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4. Numerical results. The block thresholding estimator �̂ proposed in Sec-
tion 2 is easy to implement. In this section we turn to the numerical performance
of the estimator. The simulation study further illustrates the merits of the pro-
posed block thresholding estimator. The performance is relatively insensitive to
the choice of k0, and we shall focus on k0 = �logp� throughout this section for
brevity.

We consider two different sets of covariance matrices. The setting of our first
set of numerical experiments is similar to those from Cai, Zhang and Zhou (2010).
Specifically, the true covariance matrix � is of the form

σij =
{1, 1 ≤ i = j ≤ p,

ρ|i − j |−2uij , 1 ≤ i �= j ≤ p,

where the value of ρ is set to be 0.6 to ensure positive definiteness of all covariance
matrices, and uij = uji are independently sampled from a uniform distribution
between 0 and 1.

The second settings are slightly more complicated, and the covariance matrix �

is randomly generated as follows. We first simulate a symmetric matrix A = (aij )

whose diagonal entries are zero and off-diagonal entries aij (i < j ) are indepen-
dently generated as aij ∼ N(0, |i − j |−4). Let λmin(A) be its smallest eigenvalue.
The covariance matrix � is then set to be � = max(0,−1.1λmin(A))I + A to en-
sure its positive definiteness.

For each setting, four different combinations of p and n are considered, (n,p) =
(50,50), (100,100), (200,200) and (400,400), and for each combination, 200
simulated datasets are generated. On each simulated dataset, we apply the pro-
posed block thresholding procedure with λ0 = 6. For comparison purposes, we
also use the banding estimator of Bickel and Levina (2008a) and tapering estima-
tor of Cai, Zhang and Zhou (2010) on the simulated datasets. For both estimators,
a tuning parameter k needs to be chosen. The two estimators perform similarly
for the similar values of k. For brevity, we report only the results for the taper-
ing estimator because it is known to be rate optimal if k is appropriately selected
based on the true parameter space. It is clear that for both our settings, � ∈ Cα

with α = 1. But such knowledge would be absent in practice. To demonstrate the
importance of knowing the true parameter space for these estimators and conse-
quently the necessity of an adaptive estimator such as the one proposed here, we
apply the estimators with five different values of α, 0.2,0.4,0.6,0.8 and 1. We
chose k = �n1/(2α+1)� for the tapering estimator following Cai, Zhang and Zhou
(2010).The performance of these estimators is summarized in Figures 5 and 6 for
the two settings, respectively.

It can be seen in both settings that the numerical performance of the taper-
ing estimators critically depends on the specification of the decay rate α. Mis-
specifying α could lead to rather poor performance by the tapering estimators. It is
perhaps not surprising to observe that the tapering estimator with α = 1 performed
the best among all estimators since it correctly specifies the true decay rate and



2028 T. T. CAI AND M. YUAN

FIG. 5. Comparison between the tapering and adaptive block thresholding estimators—simulation
setting 1: each panel corresponds to a particular combination of sample size n and dimension p. In
each panel, boxplots of the estimation errors, measured in terms of the spectral norm, are given for
the block thresholding estimator with λ0 = 6 and the tapering estimator with α = 0.2, 0.4,0.6,0.8
and 1.

therefore, in a certain sense, made use of the information that may not be known
a priori in practice. In contrast, the proposed block thresholding estimator yields
competitive performance while not using such information.

5. Discussion. In this paper we introduced a fully data-driven covariance ma-
trix estimator by blockwise thresholding of the sample covariance matrix. The
estimator simultaneously attains the optimal rate of convergence for estimating
bandable covariance matrices over the full range of the parameter spaces Cα for all
α > 0. The estimator also performs well numerically.

As noted in Section 2.2, the choice of the thresholding constant λ0 = 6 is based
on our theoretical and numerical studies. Similar to wavelet thresholding in non-
parametric function estimation, in principle other choices of λ0 can also be used.
For example, the adaptivity results on the block thresholding estimator holds as
long as λ0 ≥ 5.44 (= √

24/(1 − 2e−3)) where the value 5.44 comes from the
concentration inequality given in Theorem 3.3. Our experience suggests the per-
formance of the block thresholding estimator is relatively insensitive to a small
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FIG. 6. Comparison between the tapering and adaptive block thresholding estimators—simulation
setting 2: each panel corresponds to a particular combination of sample size n and dimension p. In
each panel, boxplots of the estimation errors, measured in terms of the spectral norm, are given for
the block thresholding estimator with λ0 = 6 and the tapering estimator with α = 0.2, 0.4,0.6,0.8
and 1.

change of λ0. However, numerically the estimator can sometimes be further im-
proved by using data-dependent choices of λ0.

Throughout the paper, we have focused on the Gaussian case for ease of exposi-
tion and to allow for the most clear description of the block thresholding estimator.
The method and the results can also be extended to more general subgaussian dis-
tributions. Suppose that the distribution of the X(i)’s is subgaussian in the sense
that there exists a constant σ > 0 such that

P
{∣∣vT(X − EX)

∣∣ > t
} ≤ e−t2/2σ 2

for all t > 0 and ‖v‖ = 1.(5.1)

Let Fα(σ,M0,M) denote the collection of distributions satisfying both (1.1)
and (5.1). Then for any given σ0 > 0, the block thresholding estimator �̂ adap-
tively attains the optimal rate of convergence over Fα(σ,M0,M) for all α,
M0,M > 0 and 0 < σ ≤ σ0 whenever λ0 is chosen sufficiently large.

In this paper we have focused on estimation under the spectral norm. The block
thresholding procedure, however, can be naturally extended to achieve adaption
under other matrix norms. Consider, for example, the Frobenius norm. In this case,
it is natural and also necessary to threshold the blocks based on their respective
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Frobenius norms instead of the spectral norms. Then following a similar argument
as before, it can be shown that this Frobenius norm based block thresholding esti-
mator can adaptively achieve the minimax rate of convergence over every Cα for
all α > 0. It should also be noted that adaptive estimation under the Frobenius
norm is a much easier problem because the squared Frobenius norm is entrywise
decomposable, and the matrix can then be estimated well row by row or column
by column. For example, applying a suitable block thresholding procedure for se-
quence estimation to the sample covariance matrix, row-by-row would also lead to
an adaptive covariance matrix estimator.

The block thresholding approach can also be used for estimating sparse covari-
ance matrices. A major difference in this case from that of estimating bandable co-
variance matrices is that the block sizes cannot be too large. With suitable choices
of the block size and thresholding level, a fully data-driven block thresholding es-
timator can be shown to be rate-optimal for estimating sparse covariance matrices.
We shall report the details of these results elsewhere.

6. Proofs. In this section we shall first prove Theorems 3.3 and 3.4 and then
prove the main results, Theorems 3.1 and 3.2. The proofs of some additional tech-
nical lemmas are given at the end of the section.

6.1. Proof of Theorem 3.3. The proof relies the following lemmas.

LEMMA 1. Let A be a 2×2 random matrix following the Wishart distribution
W(n,A0) where

A0 =
(

1 ρ

ρ 1

)
.

Then

P
(|A12 − ρ| ≥ x

) ≤ 2P
(|Wn − n| ≥ nx

)
,

where Wn ∼ χ2
n .

PROOF. Let Z = (Z1,Z2)
T ∼ N(0,A0) and Z(1), . . . ,Z(n) be n independent

copies of Z. Let

S = 1

n

n∑
i=1

Z(i)(Z(i))T

be its sample covariance matrix. It is clear that S =d A. Hence

P
(|A12 − ρ| ≥ x

) = P
(|S12 − ρ| ≥ x

)
.

Note that

S12 −ρ = 1

4

(
1

n

n∑
i=1

((
Z

(i)
1 +Z

(i)
2

)2 −2(1+ρ)
)− 1

n

n∑
i=1

((
Z

(i)
1 −Z

(i)
2

)2 −2(1−ρ)
))

.
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Therefore,

P
(|S12 − ρ| ≥ x

)
≤ P

(∣∣∣∣∣1n
n∑

i=1

((
Z

(i)
1 + Z

(i)
2

)2 − 2(1 + ρ)
)∣∣∣∣∣ ≥ 2(1 + ρ)x

)

+ P

(∣∣∣∣∣1n
n∑

i=1

((
Z

(i)
1 − Z

(i)
2

)2 − 2(1 − ρ)
)∣∣∣∣∣ ≥ 2(1 − ρ)x

)
.

Observe that

P

(∣∣∣∣∣1n
n∑

i=1

((
Z

(i)
1 + Z

(i)
2

)2 − 2(1 + ρ)
)∣∣∣∣∣ ≥ 2(1 + ρ)x

)

= P

(∣∣∣∣∣
n∑

i=1

(Z
(i)
1 + Z

(i)
2 )2

2(1 + ρ)
− n

∣∣∣∣∣ ≥ x

)

= P
(|Wn − n| ≥ x

)
.

Similarly,

P

(∣∣∣∣∣1n
n∑

i=1

((
Z

(i)
1 − Z

(i)
2

)2 − 2(1 − ρ)
)∣∣∣∣∣ ≥ 2(1 − ρ)x

)
= P

(|Wn − n| ≥ x
)
.

The proof is now complete. �

LEMMA 2. Let B = I × J ⊂ [1,p]2. There exists an absolute constant c0 > 0
such that for any t > 1,

P

{
‖�̄B − �B‖ < c0t

√
‖�I×I‖‖�J×J ‖

√
d(B) + logp

n

}
≥ 1 − p−6t2

.

In particular, we can take c0 = 5.44.

PROOF. Without loss of generality, assume that card(I ) = card(J ) = d(B) =
d . Let A be a d ×d matrix, u1,u2 and v1,v2 ∈ S d−1 where S d−1 is the unit sphere
in the d dimensional Euclidean space. Observe that∣∣uT

1Av1
∣∣− ∣∣uT

2Av2
∣∣ ≤ ∣∣uT

1Av1 − uT
2Av2

∣∣
= ∣∣uT

1A(v1 − v2) + (u1 − u2)
TAv2

∣∣
≤ ∣∣uT

1A(v1 − v2)
∣∣+ ∣∣(u1 − u2)

TAv2
∣∣

≤ ‖u1‖‖A‖‖v1 − v2‖ + ‖u1 − u2‖‖A‖‖v2‖
= ‖A‖(‖v1 − v2‖ + ‖u1 − u2‖),
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where as before, we use ‖·‖ to represent the spectral norm for a matrix and �2 norm
for a vector. As shown by Böröczky and Wintsche [(2005), e.g., Corollary 1.2],
there exists an δ-cover set Qd ⊂ S d−1 of S d−1 such that

card(Qd) ≤ c cos δ

sind δ
d3/2 log

(
1 + d cos2 δ

) ≈ cδ−dd3/2 log(1 + d)

for some absolute constant c > 0. Note that

‖A‖ = sup
u,v∈S d−1

uTAv ≤ sup
u,v∈Qd

uTAv + 2δ‖A‖.(6.1)

In other words,

‖A‖ ≤ (1 − 2δ)−1 sup
u,v∈Qd

uTAv.(6.2)

Now consider A = �̄B − �B . Let XI = (Xi : i ∈ I )T and XJ = (Xi : i ∈ J )T.
Then

�̄B = 1

n

n∑
i=1

(
X

(i)
I − X̄I

)(
X

(i)
J − X̄J

)T
,

where

X̄I = (X̄i : i ∈ I )T and X̄J = (X̄i : i ∈ J )T.

Similarly, �B = E(XI − EXI)(XJ − EXJ )T. Therefore,

A = 1

n

n∑
i=1

(
X

(i)
I

(
X

(i)
J

)T − EXIX
T
J

)− (
X̄I X̄

T
J − EXIEXT

J

)
.

Clearly the distributional properties of A are invariant to the mean of X. We shall
therefore assume without loss of generality that EX = 0 in the rest of the proof.

For any fixed u,v ∈ S d−1, we have

uTAv = 1

n

n∑
i=1

(
Y

(i)
1 Y

(i)
2 − EY1Y2

)− Ȳ1Ȳ2,

where Y1 = uTXI , Y2 = vTXJ , and similarly, Y
(i)
1 = uTX

(i)
I , Y

(i)
2 = vTX

(i)
J . It is

not hard to see that(
Y1

Y2

)
∼ N

(
0,

(
uT�I×I u uT�I×J v
vT�J×I u vT�J×J v

))
,

and uTAv is simply the difference between the sample and population covariance
of Y1 and Y2. We now appeal to the following lemma:

Applying Lemma 1, we obtain

P
{∣∣uTAv

∣∣ ≥ x
} ≤ 2P

(
|Wn − n| ≥ nx

((uT�I×I u)(vT�J×J v))1/2

)
,
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where Wn ∼ χ2
n . By the tail bound for χ2 random variables, we have

P

(
|Wn − n| ≥ nx

((uT�I×I u)(vT�J×J v))1/2

)
≤ exp

(
− nx2

4‖�I×I‖‖�J×J ‖
)
.

See, for example, Lemma 1 of Laurent and Massart (2000). In summary,

P
{∣∣uTAv

∣∣ ≥ x
} ≤ 2 exp

(
− nx2

4‖�I×I‖‖�J×J ‖
)
.

Now an application of union bound then yields

P
(‖�̄B − �B‖ ≥ x

) ≤ P

{
sup

u,v∈Qd

uTAv ≥ (1 − 2δ)x
}

≤ 2 card(Qd)2 exp
(
− n(1 − 2δ)2x2

4‖�I×I‖‖�J×J ‖
)

≤ cδ−2dd3 log2(1 + d) exp
(
− n(1 − 2δ)2x2

4‖�I×I‖‖�J×J ‖
)

for some constant c > 0. In particular, taking

x = c0t
√

‖�I×I‖‖�J×J ‖
√

d + logp

n

yields

P
(‖�̄B − �B‖ ≥ x

) ≤ cδ−2dd3 log2(1 + d) exp
(
−c2

0t
2

4
(1 − 2δ)2(d + logp)

)
.

Let δ = e−3 and

c0 >

√
24

1 − 2δ
= 5.44.

Then

P
(‖�̄B − �B‖ ≥ x

) ≤ p−6t2
. �

We are now in position to prove Theorem 3.3. It is clear that the total number
of blocks can be upper bounded by card(B) ≤ (p/k0)

2 < p2. It follows from the
union bound and Lemma 2 that

P

{ ⋃
B∈B

‖�̄B − �B‖ ≥ c0t
(‖�I×I‖‖�J×J ‖)1/2(

n−1(d(B) + logp
))1/2

}

≤ ∑
B∈B

P
{‖�̄B − �B‖ ≥ c0t

(‖�I×I‖‖�J×J ‖)1/2(
n−1(d(B) + logp

))1/2}

≤ p−6t2+2.
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6.2. Proof of Theorem 3.4. Denote by u,v the left and right singular vec-
tors corresponding to the leading singular value of A, that is, uTAv = ‖A‖.
Let u = (u1, . . . ,uG)T and v = (v1, . . . ,vG)T be partitioned in the same fash-
ion as X, for example, ug,vg ∈ R

pg . Denote by u∗ = (‖u1‖, . . . ,‖uG‖)T and
v∗ = (‖v1‖, . . . ,‖vG‖)T. It is clear that ‖u∗‖ = ‖v∗‖ = 1. Therefore,

∥∥N (A)
∥∥ ≥ uT∗ N (A)v∗ =

G∑
j,k=1

‖uj‖‖vk‖‖�jk‖

≥
G∑

j,k=1

uT
j�jkvk = uT�v = ‖A‖.

6.3. Proof of Theorem 3.1. With the technical tools provided by Theorems 3.3
and 3.4, we now show that �̂ is an adaptive estimator of � as claimed by Theo-
rem 3.1. We begin by establishing formal error bounds on the blocks using the
technical tools introduced earlier.

6.3.1. Large blocks. First treat the larger blocks. When � ∈ Cα , large blocks
can all be shrunk to zero because they necessarily occur far away from the diagonal
and therefore are small in spectral norm. More precisely, we have:

LEMMA 3. For any B ∈ B with d(B) ≥ 2k0,

‖�B‖ ≤ Md(B)−α.

Together with Theorem 3.3, this suggests that

‖�̄B‖ ≤ ‖�̄B − �B‖ + ‖�B‖
≤ c0

(‖�I×I‖‖�J×J ‖)1/2(
n−1(d(B) + logp

))1/2 + Md(B)−α,

with probability at least 1 − p−4. Therefore, when

d(B) ≥ c min
{
n1/(2α+1),

(
n

logp

)1/(2α)}
(6.3)

for a large enough constant c > 0,

‖�̄B‖ < 1
2(c0 + λ0)

(‖�I×I‖‖�J×J ‖)1/2(
n−1(d(B) + logp

))1/2
.(6.4)

The following lemma indicates that we can further replace ‖�I×I‖ and ‖�J×J ‖
by their respective sample counterparts.

LEMMA 4. Denote by I = {I : I × J ∈ B}. Then for all I ∈ I ,

1 −
√

card(I ) + t√
n

≤ ‖�̄I×I‖
‖�I×I‖ ≤ 1 +

√
card(I ) + t√

n
,

with probability at least 1 − 4p2 exp(−t2/2).
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In the light of Lemma 4, (6.4) implies that, with probability at least 1 − 2p−4,
for any B ∈ B such that d(B) ≤ n/ logn and (6.3) holds,

‖�̄B‖ < λ0
(‖�̄I×I‖‖�̄J×J ‖)1/2(

n−1(d(B) + logp
))1/2

,

whenever n/ logp is sufficiently large. In other words, with probability at least
1 − 2p−4, for any B ∈ B such that (6.3) holds, �̂B = 0.

6.3.2. Small blocks. Now consider the smaller blocks. From the discussions
in Section 3.3, we have∥∥S(�̂ − �, l)

∥∥ ≤ 12 max
B∈B : d(B)=2l−1k0

‖�̂B − �B‖.(6.5)

Observe that by the definition of �̂,

‖�̂B − �B‖ ≤ ‖�̂B − �̄B‖ + ‖�̄B − �B‖
≤ λ0

(‖�̄I×I‖‖�̄J×J ‖)1/2(
n−1(d(B) + logp

))1/2 + ‖�̄B − �B‖.
By Lemma 4, the spectral norm of �̄I×I and �̄J×J appeared in the first term on
the rightmost-hand side can be replaced by their corresponding population coun-
terparts, leading to

‖�̂B − �B‖ ≤ λ0
(‖�I×I‖‖�J×J ‖)1/2(

n−1(d(B) + logp
))1/2 + ‖�̄B − �B‖

≤ λ0M0
(
n−1(d(B) + logp

))1/2 + ‖�̄B − �B‖,
where we used the fact that ‖�I×I‖,‖�J×J ‖ ≤ M0. This can then be readily
bounded, thanks to Theorem 3.3:

‖�̂B − �B‖ ≤ (λ0M0 + c0)
(
n−1(d(B) + logp

))1/2
.

Together with (6.5), we get
∥∥S(�̂ − �, l)

∥∥ ≤ C
(
n−1(k02l−1 + logp

))1/2
.(6.6)

6.3.3. Bounding the estimation error. To put the bounds on both small and
big blocks together, we need only to choose an appropriate cutoff L in (3.2). In
particular, we take

L =
⎧⎪⎨
⎪⎩
⌈
log2(p/k0)

⌉
, if p ≤ n1/(2α+1),⌈

log2
(
n1/2α+1/k0

)⌉
, if logp < n1/(2α+1) and n1/(2α+1) ≤ p,⌈

log2(logp/k0)
⌉
, if n1/(2α+1) ≤ logp,

(6.7)

where �x� stands for the smallest integer that is no less than x.
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Small p. If p ≤ n1/(2α+1), all blocks are small. From the bound derived for small
blocks, for example, equation (6.6), we have

‖�̂ − �‖ ≤ ∑
l

∥∥S(�̂ − �, l)
∥∥ ≤ C

∑
l

(
n−1(2l−1k0 + logp

))1/2 ≤ C(p/n)1/2,

with probability at least 1 − 2p−4. Hereafter we use C > 0 as a generic constant
that does not depend on p, n or α, and its value may change at each appearance.
Thus

E‖�̂ − �‖2 = E‖�̂ − �‖2
I
{‖�̂ − �‖ ≤ C(p/n)1/2}

+ E‖�̂ − �‖2
I
{‖�̂ − �‖ > C(p/n)1/2}.

It now suffices to show that the second term on the right-hand side is O(p/n). By
the Cauchy–Schwarz inequality,

E‖�̂ − �‖2
I
(‖�̂ − �‖ > C(p/n)1/2)

≤ (
E‖�̂ − �‖4

P
{‖�̂ − �‖ > C(p/n)1/2})1/2

≤ (
2p−4

E‖�̂ − �‖4)1/2
.

Observe that

E‖�̂ − �‖4 ≤ E‖�̂ − �‖4
F ≤ Cp4/n2,

where ‖ · ‖F stands for the Frobenius norm of a matrix. Thus,

E‖�̂ − �‖2
I
{‖�̂ − �‖ > C(p/n)1/2} ≤ Cp/n.

Medium p. When logp < n1/(2α+1) and n1/(2α+1) ≤ p, by the analysis from Sec-
tion 6.3.1, all large blocks will be shrunk to zero with overwhelming probability,
that is,

P

{∑
l>L

S(�̂, l) = 0
}

≥ 1 − 2p−4.

When this happens,∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥ =
∥∥∥∥∑
l>L

S(�, l)

∥∥∥∥ ≤
∥∥∥∥∑
l>L

S(�, l)

∥∥∥∥
�1

.

Recall that ‖ · ‖�1 stands for the matrix �1 norm, that is, the maximum row sum of
the absolute values of the entries of a matrix. Hence,∥∥∥∥∑

l>L

S(�̂ − �, l)

∥∥∥∥ ≤ ML−α ≤ Cn−α/(2α+1).
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As a result,

E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

= E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

I

{∑
l>L

S(�̂, l) = 0
}

+ E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

I

{∑
l>L

S(�̂, l) �= 0
}
.

It remains to show that

E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

I

{∑
l>L

S(�̂, l) �= 0
}

= O
(
n−2α/(2α+1)).

By the Cauchy–Schwarz inequality,

E

{∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

I

(∑
l>L

S(�̂, l) �= 0
)}

≤
(

E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
4

P

{∑
l>L

S(�̂, l) �= 0
})1/2

.

Observe that∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
4

≤
∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
4

F
=

(∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

F

)2

≤
(∥∥∥∥∑

l>L

S(�̄ − �, l)

∥∥∥∥
2

F
+

∥∥∥∥∑
l>L

S(�, l)

∥∥∥∥
2

F

)2

≤ 2
(∥∥∥∥∑

l>L

S(�̄ − �, l)

∥∥∥∥
4

F
+

∥∥∥∥∑
l>L

S(�, l)

∥∥∥∥
4

F

)
,

where the second inequality follows from the fact that �̂ = �̄ or 0. It is not hard
to see that

E

∥∥∥∥∑
l>L

S(�̄ − �, l)

∥∥∥∥
4

F
≤ E‖�̄ − �‖4

F ≤ Cp4/n2.

On the other hand,∥∥∥∥∑
l>L

S(�, l)

∥∥∥∥
4

F
≤

( ∑
i,j :|i−j |>k02L−1

σ 2
ij

)2

≤
( ∑

i,j :|i−j |>k02L−1

|σij |
)4

≤ Cn−4α/(2α+1).

Therefore,

E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
4

≤ C
(
p4/n2 + n−4α/(2α+1)).
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Together with Theorem 3.3, we conclude that

E

∥∥∥∥∑
l>L

S(�̂ − �, l)

∥∥∥∥
2

I

{∑
l>L

S(�̂, l) �= 0
}

≤ Cn−1.

Large p. Finally, when p is very large in that logp > n1/(2α+1), we can pro-
ceed in the same fashion. Following the same argument as before, it can be shown
that

E

∥∥∥∥∑
l>L

S(�̂, l)

∥∥∥∥
2

≤ C
(
n−1 logp

)
.

The smaller blocks can also be treated in a similar fashion as before. From equa-
tion (6.6), ∑

l≤L

∥∥S(�̂ − �, l)
∥∥ ≤ C

(
n−1 logp

)
,

with probability at least 1 − 2p−4. Thus, it can be calculated that

E

(∑
l≤L

∥∥S(�̂ − �, l)
∥∥)2

≤ C
(
n−1 logp

)
.

Combining these bounds, we conclude that E‖�̂ − �‖2 ≤ C(n−1 logp). In sum-
mary,

sup
�∈Cα

E‖�̂ − �‖2 ≤ C min
{
n−2α/(2α+1) + logp

n
,
p

n

}
,

for all α > 0. In other words, the block thresholding estimator �̂ achieves the
optimal rate of convergence simultaneously over every Cα for all α > 0.

6.4. Proof of Theorem 3.2. Observe that

E‖	̂ − 	‖2 = E
(‖	̂ − 	‖2

I
{
λmin(�̂) ≥ 1

2λmin(�)
})

+ E
(‖	̂ − 	‖2

I
{
λmin(�̂) < 1

2λmin(�)
})

,

where λmin(·) denotes the smallest eigenvalue of a symmetric matrix. Under the
event that

λmin(�̂) ≥ 1
2λmin(�),

�̂ is positive definite and 	̂ = �̂−1. Note also that∥∥�̂−1 − �−1∥∥ = ∥∥�̂−1(�̂ − �)�−1∥∥ ≤ ∥∥�̂−1∥∥‖�̂ − �‖∥∥�−1∥∥.
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Therefore,

E

(
‖	̂ − 	‖2

I

{
λmin(�̂) ≥ 1

2
λmin(�)

})
≤ 4‖	‖2

E‖�̂ − �‖2

≤ C min
{
n−2α/(2α+1) + logp

n
,
p

n

}

by Theorem 3.1. On the other hand,

E
(‖	̂ − 	‖2

I
{
λmin(�̂) < 1

2λmin(�)
})

≤ E
((‖	̂‖ + ‖	‖)2

I
{
λmin(�̂) < 1

2λmin(�)
})

≤ (
n + ‖	‖)2

P
{
λmin(�̂) < 1

2λmin(�)
}
.

Note that

P
{
λmin(�̂) < 1

2λmin(�)
} ≤ P

{‖�̂ − �‖ > 1
2λmin(�)

}
.

It suffices to show that

n2
P

{
‖�̂ − �‖ >

1

2
λmin(�)

}
≤ C min

{
n−2α/(2α+1) + logp

n
,
p

n

}
.

Consider first the case when p is large. More specifically, let

p > n
(
48λ0M

2)−2
.

As shown in the proof of Theorem 3.1,

P
{‖�̂ − �‖ > 1

2λmin(�)
} ≤ 4p−4.

It is not hard to see that this implies the desired claim.
Now consider the case when

p ≤ n
(
48λ0M

2)−2
.

Observe that for each B = I × J ∈ B,

‖�̂B − �̄B‖ ≤ λ0
(‖�̄I×I‖‖�̄J×J ‖)1/2(

n−1(d(B) + logp
))1/2

≤ λ0‖�̄‖(n−1(d(B) + logp
))1/2

.

It can then be deduced from the norm compression inequality, in a similar spirit as
before, that

‖�̂ − �̄‖ ≤ ∑
l

∥∥S(�̂ − �̄, l)
∥∥

≤ 12λ0‖�̄‖∑
l

(
n−1(2l−1k0 + logp

))1/2

≤ 12λ0‖�̄‖(p/n)1/2.
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By the triangle inequality,

‖�̂ − �‖ ≤ ‖�̄ − �‖ + ‖�̂ − �̄‖,
and

‖�̄‖ ≤ ‖�̄ − �‖ + ‖�‖.
Under the event that

‖�̄ − �‖ >
(1/2)λmin(�) − 12λ0(p/n)1/2λmax(�)

1 + 12λ0(p/n)1/2 ≥ 1

5
λmin(�),

we have

‖�̂ − �‖ > 1
2λmin(�).

Now by Lemma 2,

P

{
‖�̂ − �‖ >

1

2
λmin(�)

}
≤ P

{
‖�̄ − �‖ >

1

5
λmin(�)

}
≤ exp

(
−cnλ2

min(�)

λ2
max(�)

)
,

for some constant c > 0, which concludes the proof.

6.5. Proof of Lemma 3. The proof relies on the following simple observation.

LEMMA 5. For any B ∈ B with dimension d(B) ≥ 4k0,

min
(i,j)∈B

|i − j | ≥ d(B).

PROOF. Note that for any B ∈ B, there exists an integer r > 0 such that
d(B) = 2r−1k0. We proceed by induction on r . When r = 3, it is clear by con-
struction, blocks of size 4k0 × 4k0 are at least one 2k0 × 2k0 block away from
the diagonal. See Figure 2 also. This implies that the statement is true for r = 3.
From r + 1 to r + 2, one simply observes that all blocks of size 2r+1k0 × 2r+1k0 is
at least one 2rk0 × 2rk0 block away from blocks of size 2r−1k0 × 2r−1k0. There-
fore,

min
(i,j)∈B

|i − j | ≥ 2rk0 + 2rk0 = 2r+1k0,

which implies the desired statement. �

We are now in position to prove Lemma 3 which states that big blocks of the
covariance matrix are small in spectral norm. Recall that the matrix �1 norm is
defined as

‖A‖�1 = sup
x∈Rp :‖x‖�1=1

‖Ax‖�1 = max
1≤j≤n

p∑
i=m

|aij |,
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for an m × n matrix A = (aij ))1≤i≤m,1≤j≤n. Similarly the matrix �∞ norm is
defined as

‖A‖�∞ = sup
x∈Rp :‖x‖�∞=1

‖Ax‖�∞ = max
1≤i≤m

n∑
j=1

|aij |.

It is well known [see, e.g., Golub and Van Loan (1996)] that

‖A‖2 ≤ ‖A‖�1‖A‖�∞ .

Immediately from Lemma 5, we have

‖�B‖�1,‖�B‖�∞ ≤ max
1≤i≤p

∑
j :|j−i|≥2r k0

|σij | ≤ Md(B)−α,

which implies ‖�B‖ ≤ Md(B)−α .

6.6. Proof of Lemma 4. For any I ∈ I , write ZI = �
−1/2
I×I Y . Then the entries

of ZI are independent standard normal random variables. From the concentration
bounds on the random matrices [see, e.g., Davidson and Szarek (2001)], we have

1 −
√

card(I ) + t√
n

≤ λ
1/2
min(�̄ZI

) ≤ λ1/2
max(�̄ZI

) ≤ 1 +
√

card(I ) + t√
n

with probability at least 1 − 2 exp(−t2/2) where �̄ZI
is the sample covariance

matrix of ZI . Applying the union bound to all I ∈ I yields that with probability at
least 1 − 2p2 exp(−t2/2), for all I

1 −
√

card(I ) + t√
n

≤ λ
1/2
min(�̄ZI

) ≤ λ1/2
max(�̄ZI

) ≤ 1 +
√

card(I ) + t√
n

.

Observe that �̄I×I = �
1/2
I×I �̄ZI

�
1/2
I×I . Thus

λmin(�̄ZI
)λmax(�I×I ) ≤ λmax(�̄I×I ) ≤ λmax(�̄ZI

)λmax(�I×I ),

which implies the desired statement.
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