
The Annals of Statistics
2012, Vol. 40, No. 4, 1989–1996
DOI: 10.1214/12-AOS985
Main article DOI: 10.1214/11-AOS949
© Institute of Mathematical Statistics, 2012

DISCUSSION: LATENT VARIABLE GRAPHICAL MODEL
SELECTION VIA CONVEX OPTIMIZATION1

BY ZHAO REN AND HARRISON H. ZHOU

Yale University

1. Introduction. We would like to congratulate the authors for their refresh-
ing contribution to this high-dimensional latent variables graphical model selection
problem. The problem of covariance and concentration matrices is fundamentally
important in several classical statistical methodologies and many applications. Re-
cently, sparse concentration matrices estimation has received considerable atten-
tion, partly due to its connection to sparse structure learning for Gaussian graphical
models. See, for example, Meinshausen and Bühlmann (2006) and Ravikumar et
al. (2011). Cai, Liu and Zhou (2012) considered rate-optimal estimation.

The authors extended the current scope to include latent variables. They assume
that the fully observed Gaussian graphical model has a naturally sparse depen-
dence graph. However, there are only partial observations available for which the
graph is usually no longer sparse. Let X be (p + r)-variate Gaussian with a sparse
concentration matrix S∗

(O,H). We only observe XO , p out of the whole p + r vari-
ables, and denote its covariance matrix by �∗

O . In this case, usually the p × p

concentration matrix (�∗
O)−1 are not sparse. Let S∗ be the concentration matrix of

observed variables conditioned on latent variables, which is a submatrix of S∗
(O,H)

and hence has a sparse structure, and let L∗ be the summary of the marginalization
over the latent variables and its rank corresponds to the number of latent variables
r for which we usually assume it is small. The authors observed (�∗

O)−1 can be
decomposed as the difference of the sparse matrix S∗ and the rank r matrix L∗,
that is, (�∗

O)−1 = S∗ − L∗. Then following traditional wisdoms, the authors nat-
urally proposed a regularized maximum likelihood approach to estimate both the
sparse structure S∗ and the low-rank part L∗,

min
(S,L):S−L�0,L�0

tr
(
(S − L)�n

O

) − log det(S − L) + χn

(
γ ‖S‖1 + tr(L)

)
,

where �n
O is the sample covariance matrix, ‖S‖1 = ∑

i,j |sij |, and γ and χn are
regularization tuning parameters. Here tr(L) is the trace of L. The notation A � 0
means A is positive definite, and A � 0 denotes that A is nonnegative.

There is an obvious identifiability problem if we want to estimate both the sparse
and low-rank components. A matrix can be both sparse and low rank. By explor-
ing the geometric properties of the tangent spaces for sparse and low-rank compo-
nents, the authors gave a beautiful sufficient condition for identifiability, and then
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provided very much involved theoretical justifications based on the sufficient con-
dition, which is beyond our ability to digest them in a short period of time in the
sense that we don’t fully understand why those technical assumptions were needed
in the analysis of their approach. Thus, we decided to look at a relatively simple
but potentially practical model, with the hope to still capture the essence of the
problem, and see how well their regularized procedure works. Let ‖ · ‖1→1 denote
the matrix l1 norm, that is, ‖S‖1→1 = max1≤i≤p

∑p
j=1 |sij |. We assume that S∗ is

in the following uniformity class:

U (s0(p),Mp) =
{
S = (sij ) :S � 0,‖S‖1→1 ≤ Mp,

(1)

max
1≤i≤p

p∑
j=1

1{sij �= 0} ≤ s0(p)

}
,

where we allow s0(p) and Mp to grow as p and n increase. This uniformity class
was considered in Ravikumar et al. (2011) and Cai, Liu and Luo (2011). For the
low-rank matrix L∗, we assume that the effect of marginalization over the latent
variables spreads out, that is, the low-rank matrix L∗ has row/column spaces that
are not closely aligned with the coordinate axes to resolve the identifiability prob-
lem. Let the eigen-decomposition of L∗ be as follows:

L∗ =
r0(p)∑
i=1

λiuiu
T
i ,(2)

where r0(p) is the rank of L∗. We assume that there exists a universal constant c0

such that ‖ui‖∞ ≤
√

c0
p

for all i, and ‖L∗‖1→1 is bounded by Mp which can be
shown to be bounded by c0r0. A similar incoherence assumption on ui was used
in Candès and Recht (2009). We further assume that

λmax(�
∗
O) ≤ M and λmin(�

∗
O) ≥ 1/M(3)

for some universal constant M .
As discussed in the paper, the goals in latent variable model selection are to

obtain the sign consistency for the sparse matrix S∗ as well as the rank consistency
for the low-rank semi-positive definite matrix L∗. Denote the minimum magnitude
of nonzero entries of S∗ by θ , that is, θ = mini,j |sij |1{sij �= 0}, and the minimum
nonzero eigenvalue of L∗ by σ , that is, σ = min1≤i≤r0 λi . To obtain theoretical
guarantees of consistency results for the model described in (1), (2) and (3), in
addition to the strong irrepresentability condition which seems to be difficult to
check in practice, the authors require the following assumptions (by a translation
of the conditions in the paper to this model) for θ, σ and n:

(1) θ � √
p/n, which is needed even when s0(p) is constant;



COMMENT 1991

(2) σ � s3
0(p)

√
p/n under the additional strong assumptions on the Fisher

information matrix �∗
O ⊗ �∗

O (see the footnote for Corollary 4.2);
(3) n � s4

0(p)p.

However, for sparse graphical model selection without latent variables, either
the l1-regularized maximum likelihood approach [see Ravikumar et al. (2011)]
or CLIME [see Cai, Liu and Luo (2011)] can be shown to be sign consistent if
the minimum magnitude nonzero entry of concentration matrix θ is at the order
of

√
(logp)/n when Mp is bounded, which inspires us to study rate-optimalites

for this latent variables graphical model selection problem. In this discussion,
we propose a procedure to obtain an algebraically consistent estimate of the la-
tent variable Gaussian graphical model under a much weaker condition on both θ

and σ . For example, for a wide range of s0(p), we only require θ is at the order of√
(logp)/n and σ is at the order of

√
p/n to consistently estimate the support of

S∗ and the rank of L∗. That means the regularized maximum likelihood approach
could be far from being optimal, but we don’t know yet whether the suboptimality
is due to the procedure or their theoretical analysis.

2. Latent variable model selection consistency. In this section we propose
a procedure to obtain an algebraically consistent estimate of the latent variable
Gaussian graphical model. The condition on θ to recover the support of S∗ is
reduced to that in Cai, Liu and Luo (2011) which studied sparse graphical model
selection without latent variables, and the condition on σ is just at an order of√

p/n, which is smaller than s3
0(p)

√
p/n assumed in the paper when s0(p) → ∞.

When Mp is bounded, our results can be shown to be rate-optimal by lower bounds
stated in Remarks 2 and 4 for which we are not giving proofs due to the limitation
of the space.

2.1. Sign consistency procedure of S∗. We propose a CLIME-like estimator
of S∗ by solving the following linear optimization problem:

min‖S‖1 subject to ‖�n
OS − I‖∞ ≤ τn, S ∈ R

p×p,

where �n
O = (σ̃ij ) is the sample covariance matrix. The tuning parameter τn is

chosen as τn = C1Mp

√
logp

n
for some large constant C1. Let Ŝ1 = (ŝ1

ij ) be the

solution. The CLIME-like estimator Ŝ = (ŝij ) is obtained by symmetrizing Ŝ1 as
follows:

ŝij = ŝj i = ŝ1
ij 1{|ŝ1

ij | ≤ ŝ1
ji} + ŝ1

ji1{|ŝ1
ij | > ŝ1

ji}.
In other words, we take the one with smaller magnitude between ŝ1

ij and ŝ1
ji . We

define a thresholding estimator S̃ = (s̃ij ) with

s̃ij = s̃ij 1{|s̃ij | > 9Mpτn}(4)

to estimate the support of S∗.
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THEOREM 1. Suppose that S∗ ∈ U (s0(p),Mp),√
(logp)/n = o(1) and ‖L∗‖∞ ≤ Mpτn.(5)

With probability greater than 1 − Csp
−6 for some constant Cs depending on M

only, we have

‖Ŝ − S∗‖∞ ≤ 9Mpτn.

Hence, if the minimum magnitude of nonzero entries θ > 18Mpτn, we obtain the
sign consistency sign(S̃) = sign(S∗). In particular, if Mp is in the constant level,
then to consistently recover the support of S∗, we only need that θ � √

(logp)/n.

PROOF. The proof is similar to Theorem 7 in Cai, Liu and Luo (2011). The
sub-Gaussian condition with spectral norm upper bound M implies that each em-
pirical covariance σ̃ij satisfies the following large deviation result:

P(|σ̃ij − σij | > t) ≤ Cs exp
(
− 8

C2
2

nt2
)

for |t | ≤ φ,

where Cs,C2 and φ only depend on M . See, for example, Bickel and Levina
(2008). In particular, for t = C2

√
(logp)/n which is less than φ by our assump-

tion, we have

P(‖�∗
O − �n

O‖∞ > t) ≤ ∑
i,j

P(|σ̃ij − σij | > t) ≤ p2 · Csp
−8.(6)

Let

A = {‖�∗
O − �n

O‖∞ ≤ C2

√
(logp)/n

}
.

Equation (6) implies P(A) ≥ 1 − Csp
−6. On event A, we will show

‖(S∗ − L∗) − Ŝ1‖∞ ≤ 8Mpτn,(7)

which immediately yields

‖S∗ − Ŝ‖∞ ≤ ‖(S∗ − L∗) − Ŝ1‖∞ + ‖L∗‖∞ ≤ 8Mpτn + Mpτn = 9Mpτn.

Now we establish equation (7). On event A, for some large constant C1 ≥ 2C2,
the choice of τn yields

2Mp‖�∗
O − �n

O‖∞ ≤ τn.(8)

By the matrix l1 norm assumption, we could obtain that

‖(�∗
O)−1‖1→1 ≤ ‖S∗‖1→1 + ‖L∗‖1→1 ≤ 2Mp.(9)

From (8) and (9) we have

‖�n
O(S∗ − L∗) − I‖∞ = ‖(�n

O − �∗
O)(�∗

O)−1‖∞
≤ ‖�n

O − �∗
O‖∞‖(�∗

O)−1‖1→1 ≤ τn,
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which implies

‖�n
O(S∗ − L∗) − �n

OŜ1‖∞
(10)

≤ ‖�n
O(S∗ − L∗) − I‖∞ + ‖�n

OŜ1 − I‖∞ ≤ 2τn.

From the definition of Ŝ1 we obtain that

‖Ŝ1‖1→1 ≤ ‖S∗ − L∗‖1→1 ≤ 2Mp,(11)

which, together with equations (8) and (10), implies∥∥�∗
O

(
(S∗ − L∗) − Ŝ1

)∥∥∞
≤ ‖�n

O(S∗ − L∗) − Ŝ1‖∞ + ∥∥(�∗
O − �n

O)
(
(S∗ − L∗) − Ŝ1

)∥∥∞
≤ 2τn + ‖�n

O − �∗
O‖∞‖(S∗ − L∗) − Ŝ1‖1→1

≤ 2τn + 4Mp‖�n
O − �∗

O‖∞ ≤ 4τn.

Thus, we have

‖(S∗ − L∗) − Ŝ1‖∞ ≤ ‖(�∗
O)−1‖1→1

∥∥�∗
O

(
(S∗ − L∗) − Ŝ1

)∥∥∞ ≤ 8Mpτn. �

REMARK 1. By the choice of our τn and the eigen-decomposition of L∗, the
condition ‖L∗‖∞ ≤ Mpτn holds when r0(p)C0/p ≤ C1M

2
p

√
(logp)/n, that is,

p2 logp � nr2
0 (p)M−4

p . If Mp is slowly increasing (e.g., p1/4−τ for any small
τ > 0), the minimum requirement θ � M2

p

√
(logp)/n is weaker than θ � √

p/n

required in Corollary 4.2. Furthermore, it can be shown that the optimal rate of
minimum magnitude of nonzero entries for sign consistency is θ � Mp

√
(logp)/n

as in Cai, Liu and Zhou (2012).

REMARK 2. Cai, Liu and Zhou (2012) showed the minimum requirement for
θ , θ � Mp

√
(logp)/n is necessary for sign consistency for sparse concentration

matrices. Let US(c) denote the class of concentration matrices defined in (1) and
(2), satisfying assumption (5) and θ > cMp

√
(logp)/n. We can show that there

exists some constant c1 > 0 such that for all 0 < c < c1,

lim
n→∞ inf

(Ŝ,L̂)

sup
US(c)

P
(
sign(Ŝ) �= sign(S∗)

)
> 0,

similar to Cai, Liu and Zhou (2012).

2.2. Rank Consistency Procedure of L∗. In this section we propose a proce-
dure to estimate L∗ and its rank. We note that with high probability �n

O is in-
vertible, then define L̂ = (�n

O)−1 − S̃, where S̃ is defined in (4). Denote the eigen-

decomposition of L̂ by
∑p

i=1 λi(L̂)υiυ
T
i , and let λi(L̃) = λi(L̂)1{λi(L̂) > C3

√
p
n
},

where constant C3 will be specified later. Define L̃ = ∑p
i=1 λi(L̃)υiυ

T
i . The fol-

lowing theorem shows that estimator L̃ is a consistent estimator of L∗ under the
spectral norm and with high probability rank(L∗) = rank(L̃).
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THEOREM 2. Under the conditions in Theorem 1, we assume that√
p

n
≤ 1

16
√

2M2
and M2

ps0(p) ≤
√

p

logp
.(12)

Then there exists some constant C3 such that

‖L̂ − L∗‖ ≤ C3

√
p

n

with probability greater than 1 − 2e−p − Csp
−6. Hence, if σ > 2C3

√
p
n
, we have

rank(L∗) = rank(L̃) with high probability.

PROOF. From Corollary 5.5 of the paper and our assumption on the sample
size, we have

P

(
‖�∗

O − �n
O‖ ≥ √

128M

√
p

n

)
≤ 2 exp(−p).

Note that λmin(�
∗
O) ≥ 1/M , and

√
128M

√
p
n

≤ 1/(2M) under the assumption
(12), then λmin(�

n
O) ≥ 1/(2M) with high probability, which yields the same rate

of convergence for the concentration matrix, since

‖(�∗
O)−1 − (�n

O)−1‖ ≤ ‖(�∗
O)−1‖‖(�n

O)−1‖‖�∗
O − �n

O‖
(13)

≤ 2M2
√

128M

√
p

n
= 16

√
2M3

√
p

n
.

From Theorem 1 we know

sign(S̃) = sign(S∗) and ‖S̃ − S∗‖∞ ≤ 9Mpτn

with probability greater than 1 −Csp
−6. Since ‖B‖ ≤ ‖B‖1→1 for any symmetric

matrix B , we then have

‖S̃ − S∗‖ ≤ ‖S̃ − S∗‖1→1 ≤ s0(p)9Mpτn = 9C1M
2
ps0(p)

√
logp

n
.(14)

Equations (13) and (14), together with the assumption M2
ps0(p) ≤

√
p

logp
, imply

‖L̂ − L∗‖ ≤ ‖(�∗
O)−1 − (�n

O)−1‖ + ‖S̃ − S∗‖

≤ 16
√

2M3
√

p

n
+ 9C1M

2
ps0(p)

√
logp

n
≤ C3

√
p

n

with probability greater than 1 − 2e−p − Csp
−6. �
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REMARK 3. We should emphasize the fact that in order to consistently es-

timate the rank of L∗ we need only that σ > 2C3

√
p
n

, which is smaller than

s3
0(p)

√
p
n

required in the paper (see the footnote for Corollary 4.2), as long as

M2
ps0(p) ≤

√
p

logp
. In particular, we don’t explicitly constrain the rank r0(p). One

special case is that Mp is constant and s0(p) � p1/2−τ for some small τ > 0, for

which our requirement is
√

p
n

but the assumption in the paper is at an order of

p3(1/2−τ)
√

p
n

.

REMARK 4. Let UL(c) denote the class of concentration matrices defined in
(1), (2) and (3), satisfying assumptions (12), (5) and σ > c

√
p
n

. We can show that
there exists some constant c2 > 0 such that for all 0 < c < c2,

lim
n→∞ inf

(Ŝ,L̂)

sup
UL(c)

P
(
rank(L̂) �= rank(L∗)

)
> 0.

The proof of this lower bound is based on a modification of a lower bound argu-
ment in a personal communication of T. Tony Cai (2011).

3. Concluding remarks and further questions. In this discussion we at-
tempt to understand optimalities of results in the present paper by studying a rel-
atively simple model. Our preliminary analysis seems to indicate that their results
in this paper are suboptimal. In particular, we tend to conclude that assumptions
on θ and σ in the paper can be potentially very much weakened. However, it is
not clear to us whether the suboptimality is due to the methodology or just its
theoretical analysis. We want to emphasize that the preliminary results in this dis-
cussion can be strengthened, but for the purpose of simplicity of the discussion
we choose to present weaker but simpler results to hopefully shed some light on
understanding optimalities in estimation.
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