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ROBUST RANK CORRELATION BASED SCREENING
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University and Hong Kong Baptist University

Independence screening is a variable selection method that uses a ranking
criterion to select significant variables, particularly for statistical models with
nonpolynomial dimensionality or “large p, small n” paradigms when p can
be as large as an exponential of the sample size n. In this paper we propose
a robust rank correlation screening (RRCS) method to deal with ultra-high
dimensional data. The new procedure is based on the Kendall t correlation
coefficient between response and predictor variables rather than the Pearson
correlation of existing methods. The new method has four desirable features
compared with existing independence screening methods. First, the sure in-
dependence screening property can hold only under the existence of a second
order moment of predictor variables, rather than exponential tails or alike-
ness, even when the number of predictor variables grows as fast as exponen-
tially of the sample size. Second, it can be used to deal with semiparametric
models such as transformation regression models and single-index models
under monotonic constraint to the link function without involving nonpara-
metric estimation even when there are nonparametric functions in the models.
Third, the procedure can be largely used against outliers and influence points
in the observations. Last, the use of indicator functions in rank correlation
screening greatly simplifies the theoretical derivation due to the boundedness
of the resulting statistics, compared with previous studies on variable screen-
ing. Simulations are carried out for comparisons with existing methods and a
real data example is analyzed.

1. Introduction. With the development of scientific techniques, ultra-high
dimensional data sets have appeared in diverse areas of the sciences, engineer-
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ing and humanities; Donoho (2000) and Fan and Li (2006) have provided com-
prehensive reviews. To handle statistical problems related to high dimensional
data, variable/model selection plays an important role in establishing working
models that include significant variables and exclude as many insignificant vari-
ables as possible. A very important and popular methodology is shrinkage esti-
mation with penalization, with examples given of bridge regression [Frank and
Friedman (1993), Huang, Horowitz and Ma (2008)], LASSO [Tibshirani (1996),
van de Geer (2008)], elastic-net [Zou and Hastie (2005)], adaptive LASSO [Zou
(2006)], SCAD [Fan and Li (2001), Fan and Lv (2011), Fan and Peng (2004)]
and Dantzig selector [Candes and Tao (2007)]. When irrepresentable conditions
are assumed, we can guarantee selection consistency for LASSO and Dantzig se-
lector even for “large p, small n” paradigms with nonpolynomial dimensionality
(NP-dimensionality). However, directly applying LASSO or Dantzig selector to
ultra-high dimensional modeling is not a good choice because the irrepresentable
conditions can be rather stringent in high dimensions; see, for example, Lv and
Fan (2009) and Fan and Lv (2010).

Fan and Lv (2008) proposed another promising approach called sure indepen-
dence screening (SIS). This methodology has been developed in the literature by
researchers recently. Fan and Song (2010) extended SIS to ultra-high dimensional
generalized linear models, and Fan, Feng and Song (2011) studied it for ultra-
high dimensional additive models. Moreover, based on the idea of dimension re-
duction, Zhu et al. (2011) suggested a model-free feature screening method for
most generalized parametric or semiparametric models. To sufficiently use the
correlation information among the predictor variables, Wang (2012) proposed a
factor profile sure screening method for the ultra-high dimensional linear regres-
sion model. Different from existing methods with penalization, SIS does not use
penalties to shrink estimation, but ranks the importance of predictors by corre-
lations between response and predictors marginally for variable/model selection.
To perform the ranking, Pearson correlation is adopted; see Fan and Lv (2008).
For NP-dimensionality, the tails of predictors need to be nonpolynomially light.
This is also the case for other shrinkage estimation methods such as the LASSO
and Dantzig selector. Moreover, to use more information among the predictor vari-
ables to make a sure screening such as Wang (2012), or to apply the sure screening
method to more general statistical models such as Zhu et al. (2011), more restric-
tive conditions, such as the normality assumption [Wang (2012)] or the linearity
and moment conditions [Zhu et al. (2011)], need be imposed on the predictor vari-
ables. To further improve estimation efficiency, Fan and Lv (2008) suggested a
two-stage procedure. First, SIS is used as a fast but crude method of reducing the
ultra-high dimensionality to a relatively large scale that is smaller than or equal
to the sample size n; then, a more sophisticated technique can be applied to per-
form the final variable selection and parameter estimation simultaneously. Note
that for linear models, the SIS procedure also depends on the explicit relation-
ship between the Pearson correlation and the least squares estimator [Fan and Lv
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(2008)]. For generalized linear models, Fan, Samworth and Wu (2009) and Fan and
Song (2010) selected significant predictors by sorting the corresponding marginal
likelihood estimator or marginal likelihood. That method can be viewed as a likeli-
hood ratio screening, as it builds on the increments of the log-likelihood. The rate
of p also depends on the tails of predictors. The lighter the tails are, the faster the
rate of p can be. Xu and Zhu (2010) also showed for longitudinal data that when
only the moment condition is assumed, the rate of p cannot exponentially diverge
to infinity unless moments of all orders exist.

For other semiparametric models such as transformation models and single-
index models, existing SIS procedures may involve nonparametric plug-in estima-
tion for the unknown transformation or link function. This plug-in may deteriorate
the estimation/selection efficiency for NP-dimensionality problems. Although the
innovative sure screening method proposed by Zhu et al. (2011) can be applied
to more general parametric or semiparametric models, as commented above, the
much more restrictive conditions are required for the predictor variables. Zhu et al.
(2011) imposed some requirements for the tail of the predictor variables which fur-
ther satisfy the so-called linearity condition. This condition is only slightly weaker
than elliptical symmetry of the distribution of the predictor vector [Li (1991)]. It
is obvious that their sure screening method does not have the robust properties as
the proposed method in this paper has. Further, when the categorial variables do
involve the ultra-high dimensional predictor vector, the restrictive conditions on
the predictor variables hinder the model-free feature screening method to apply di-
rectly. On the other hand, such a model-free feature screening method is based on
slice inverse regression [SIR, Li (1991)]. It is well known that SIR is not workable
to the model with symmetric regression function; see Cook and Weisberg (1991).

We note that the idea of SIS is based on Pearson correlation learning. However,
the Pearson correlation is not robust against heavy tailed distributions, outliers or
influence points, and the nonlinear relationship between response and predictors
cannot be discovered by the Pearson correlation. As suggested by Hall and Miller
(2009) and Huang, Horowitz and Ma (2008), independence screening could be
conducted with other criteria. For correlation relationships, there are several mea-
surements in the literature, and the Kendall 7 [Kendall (1938)] is a very commonly
used one that is a correlation coefficient in a nonparametric sense. Similar to the
Pearson correlation, the Kendall t also has wide applications in statistics. Kendall
(1962) gave an overview of its applications in statistics and showed its advantages
over the Pearson correlation. First, it is robust against heavy tailed distributions:
see Sen (1968) for parameter estimation in the linear regression model. Second,
the Kendall 7 is invariant under monotonic transformation. This property allows
us to discover the nonlinear relationship between the response and predictors. For
example, Han (1987) suggested a maximum rank correlation estimator (MRC) for
the transformation regression model with an unknown transformation link func-
tion. Third, the Kendall t based estimation is a U-statistic with a bounded kernel
function, which provides us a chance to obtain sure screening properties with only
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a moment condition. Another rank correlation is the Spearman correlation [see,
e.g., Wackerly, Mendenhall and Scheaffer (2002)]. The Spearman rank correlation
coefficient is equivalent to the traditional linear correlation coefficient computed
on ranks of items [Wackerly, Mendenhall and Scheaffer (2002)]. The Kendall t
distance between two ranked lists is proportional to the number of pairwise ad-
jacent swaps needed to convert one ranking into the other. The Spearman rank
correlation coefficient is the projection of the Kendall t rank correlation to linear
rank statistics. The Kendall t has become a standard statistic with which to com-
pare the correlation between two ranked lists. When various methods are proposed
to rank items, the Kendall 7 is often used to measure which method is better rel-
ative to a “gold standard.” The higher the correlation between the output ranking
of a method and the “gold standard,” the better the method is. Thus, we focus on
the Kendall t only. More interestingly, the Kendall 7 also has a close relationship
with the Pearson correlation, particularly when the underlying distribution of two
variables is a bivariate normal distribution (we will give the details in the next sec-
tion). As such, we can expect that a Kendall 7 based screening method will benefit
from the above mentioned advantages to be more robust than the SIS.

The reminder of this paper is organized as follows. In Section 2 we give the
details of the robust rank correlation screening method (RRCS) and present its ex-
tension to ultra-high dimensional transformation regression models. In Section 3
the screening properties of the RRCS are studied theoretically for linear regres-
sion models and transformation regression models. In Section 4 an iterative RRCS
procedure is presented. We also discuss RRCSs application to generalized linear
models with NP-dimensionality. Numerical studies are reported in Section 5 with
a comparison with the SIS. Section 6 concludes the paper. A real example and the
proofs of the main results can be found in the supplementary material for the paper
[Li et al. (2012)].

2. Robust rank correlation screening (RRCS).

2.1. Kendall T and its relationship with the Pearson correlation. Consider the
random vectors (X;, Y;),i = 1,2,...,n, and the Kendall t rank correlation be-
tween X; and Y; is defined as

n

21 _ ! Xi — X;)sen(Y; — Y;
@.1) f—m;_sgn( i — X;)sgn(Y; — Y)).

Given this definition, it is easy to know that |t| is invariant against the mono-
tonic transformation of X; or Y;. Furthermore, if (X;, Y;) follows a bivariate nor-
mal distribution with mean zero and the Pearson correlation p, it can be shown
that [Huber and Ronchetti (2009)]

2
E(t) = — arcsin p.
T
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In other words, when (X;, Y;) follows bivariate normal distribution, the Pearson
correlation and Kendall t have a monotonic relationship in the following sense.
If |p| > ¢ for a given positive constant ¢y, then there exists a positive constant
¢y such that |E(t)| > ¢2, and if and only if p = 0, E(r) = 0. Such a relationship
helps us to obtain the sure independence screening property for linear regression
models under the assumption of Fan and Lv (2008) without any difficulties when
the Kendall 7 is used.

When (X;, Y;) are not bivariate normal but p exists, according to an approxi-
mation of the Kendall  [Kendall (1949)], using the first fourth-order cumulants
and the bivariate Gram—Charlier series expansion yield that

2
E(tr) &~ — arcsin(p)
b4

1

3
+ m{(lﬂo +x04)(3p — 2p°) — 4(k31 + K13) + 6pK22},

where k40 = a0 — 3, k31 = 31 — 3p, k22 = U2 — 2,02 — 1. If under some cer-
tain conditions that x3; and k3 have a monotonic relationship with p and when
p =0, k31 =0 and k13 = 0, intuitively E(t) = 0 approximately when p =0, and
if |p| > c1, then there may exist ¢; such that |[E(t)| > ¢;. This means that the
Kendall’ T based method may enjoy similar properties as the SIS enjoys without
strong conditions.

2.2. Rank correlation screening. We start our procedure with the linear model
as

(2.2) Y=XB+e,

where Y = (Y1, ..., Y,)T is an n-vector of response, X = (X1, ..., X,)7T isann x
p random design matrix with independent and identically distributed X1, ..., X,
B=01,..., ,Bp)T is a p-vector of parameters and € = (¢, ..., g,)T is an n-vector

of i.i.d. random errors independent of X.
To motivate our approach, we briefly review the SIS first. Let

(2.3) 0= (01,...,0,)" =X"Y,

where each column of the n x p design matrix X has been standardized with mean
zero and variance one. Then, for any given d,, < n, take the selected submodel to
be

Mdn ={1<j < p:lw;| is among the first d, largest of all}.

This reduces the full model of size p >> n to a submodel with the size d,,. By appro-
priately choosing dy, all significant predictors can be selected into the submodel
indexed by M, with probability tending to 1; see Fan and Lv (2008).
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Similar to Li, Peng and Zhu (2011), let ® = (w1, w3, ...,a)p)T be a p-vector
each being

1 " 1
Q4) or=—> I X <Xl <Yj)——, k=1,...,p,
n(n—l)l.#j 4

where /() denotes the indictor function, and wy is the marginal rank correlation
coefficient between Y and Xk, which is equal to a quarter of the Kendall t between
Y and X ;. As a U-statistic, wy is easy to compute. We can then sort the magnitudes

of all the components of ® = (w1, ..., a)p)T in a decreasing order and select a
submodel

(2.5) f\/\ld” ={1 <k < p:|wi| is among the first d, largest of all}

or
(2.6) My, ={1 <k < p:lox| >y},

where d, or y, is a predefined threshold Value./:l" hus, 1/t\ shrinks the fllll model
indexed {1, ..., p} down to a submodel indexed M, or M,, with size [Mg,| <n

or |[M,, | < n. Because of the robustness of the Kendall T against heavy-tailed
distributions, such a screening method is expected to be more robust than the SIS.
Consider a more general model as

(2.7) HY)=X!B+e, i=1,....n,
where ¢;,i =1, ..., n, are i.i.d. random errors independent of X; with mean zero
and an unknown distribution F, and 8 = (81,..., 8 p)T is a p-vector of param-

eters, its norm constrained to 1 (||8|| = 1) for identifiability. H(-) is an unspeci-
fied strictly increasing function. Model (2.7) has been studied extensively in the
econometric and bioinformatic literature and is commonly used to stabilize the
variance of the error and to normalize/symmetrize the error distribution. With dif-
ferent forms of H and F, this model generates many different parametric families
of models. For example, when H takes the form of a power function and F fol-
lows a normal distribution, model (2.7) reduces to the familiar Box—Cox transfor-
mation models [Bickel and Doksum (1981), Box and Cox (1964)]. If H(y) =y or
H(y) =log(y), model (2.7) reduces to the additive and multiplicative error mod-
els, respectively. More parametric transformation models can be found in the work
of Carroll and Ruppert (1988).
For model (2.7), the invariance against any strictly increasing transformation
yields that
" 1
wp=——> IXix <Xj)l(Y; <Yj)— —
nn—1) oy 4
(2.8) X

n 1
“am—D D IXi < X1 (H(Y;) < H(Y))) — :

i#]
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fork=1,..., p. Thatis, wx,k=1,2,..., p, can still be applicable for the model
with unknown transformation function. Therefore, the RRCS method can also be
applied to transformation regression models that establish the nonlinear relation-
ship between the response and predictor variables.

3. Sure screening properties of RRCS. In this section we study the sure
screening properties of RRCS for the linear regression model (2.2) and the
transformation regression model (2.7). Without loss of generality, let (Y, X1x),
(Y2, Xok) be the independent copies of (Y, Xi), where EY =EX; =0 and EY?=
EX,% =1,k=1,..., p, and assume that

Mi={1<k=<p:B#0}

is the true sparse model with nonsparsity size s, = | M|, recalling that 8 =
B1,..., B p)T is the true parameter vector. The compliment of M, is

ME={1<k<p:k¢ M

Furthermore, for k = 1,..., p, let px = corr(Xy, Y) for model (2.2) and p; =
corr(Xy, H(Y)) for model (2.7). Recall the definition of @ = {wy,..., a)p}T
in (2.4) for both (2.2) and (2.7).

The following marginal conditions on the models are needed to ensure the sure
screening properties of RRCS.

Marginally symmetric condition and Multi-modal condition: For model (2.2):

(M1) Denote AY =Y — Y», then the conditional distribution Fay|ax, (¢) is
symmetric about zero when k € M¢, where AX; = X1 — Xok.

(M2) Denote Aey =Y — Yo — pp(X1x — X2r) and AXy = X1x — Xok, then
the conditional distribution Fae,ax, (t) = o Fo(t, og|AXx) + (1 — 7wox) Fi (2, 07|
AXy) follows a symmetric finite mixture distribution where Fy(z, 002|AX r) fol-
lows a symmetric unimodal distribution with the conditional variance 002 related
to AXy and Fi(z, 012|AX %) is a symmetric distribution function with the condi-
tional variance 012 related to AXy when k € M. mor > 7*, where 7* is a given
positive constant in (0, 1] for any A Xy and any k € M.

For model (2.7):

(M1’) Denote AH(Y) = H(Y1) — H(Y»), where H(-) is the link function of
the transformation regression model (2.7), and A X = X — X2x. The conditional
distribution Fa g (yv)|ax, (¢) is symmetric about zero when k € M.

(M2') Denote Aex = H(Y1) — H(Y2) — pf(X1x — X2k) and AXy = Xy —
Xor, where H(-) is the link function of the transformation regression model
(2.7), then the conditional distribution Fae ax, (t) = mox Fo(t, GOZIAXk) + (-
mor) F1(t, 012 | A X) follows a symmetric finite mixture distribution where Fy(¢, 002|

A Xy) follows a symmetric unimodal distribution with the conditional variance 002
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related to AXy and Fi(¢, (712|AXk) is a symmetric distribution function with the
conditional variance 012 related to AX; when k € M,. o, > 7*, where 7* is a
given positive constant in (0, 1] for any A Xy and any k € M.,,.

REMARK 1. According to the definition and symmetric form of AY, AXy
and Ag, the marginally symmetric conditions (M2) and (M2') are very mild.
When 7* is small enough, the distribution is close to F; which is naturally sym-
metric and has no stringent constraint.

A special case is that the conditional distribution of €;x = Y; — ppXjx or
€ix = H(Y;) — pf Xik, given X (i =1,...,n), is homogeneous (not depending
on X;i) with a finite number of modes. Actually, when this condition holds, the
conditional distribution of €;; given X is identical to the corresponding uncondi-
tional marginal distribution. Note that Ae; = €1 — €2x. When €, i = 1, 2, follows
multimodal distribution F¢(¢) with no more than K modes where K is not related
to k and n, such a distribution function can be rewritten as a weighted sum of K
unimodal distributions F;(-) as

K
Fe(t) =) _miFi(1),
i=1

where 7; > 0,i =1, ..., K, with 21'1(21 m; = 1. Then it is easy to see that the dis-
tribution of A€y = €1 — €y has the following form:

K K K
FAE(I):ZZTU”] (t)—ZﬂzF*(l‘)-i-ZﬁﬂTjF;;(t)

i=1j=1 i#j
2 K K
T
i=1 112 i=1 i#j LT 1177
=g Fy () + (1 — nak)Fl**(t),

where F}' (t) i,j=1,..., K, are the distributions of the differences of two inde-
pendent Vanables that 1S, Z,~ — Zj where Z; follows the distribution of F;(7) and
Z ; follows the distribution of F (), respectively. Because Fi(¢),i =1, ..., K, are
unimodal distributions, F}5,i =1,..., K, are then symmetric unimodal distribu-

tions. Hence, F{;*(¢) is a symmetric unimodal distribution. It is also easy to see
that F **(t) is a symmetric multimodal distribution function. On the other hand,

Ty = 71 > I/K(Z -1 )2 = 1/K. As such, (M2) or (M2') is satisfied.
Other than the marginally symmetric conditions, we also need the following
regularity conditions:

(C1) Asn — +o00, the dimensionality of X satisfies p = O(exp(n‘s)) for some
8 € (0, 1), satisfying § + 2« < 1 for any « € (0, 1).
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(C2) cm, =mingem, E| X 14| 1s a positive constant and is free of p.
(C3) The predictors X; and the error ¢;, i = 1,...,n, are independent of one
another.

REMARK 2. Condition (C1) guarantees that for the independence screening
method, we can select significant predictors into a working submodel with proba-
bility tending to 1. SIS also needs this condition; see Fan and Lv (2008) and Fan
and Song (2010). Condition (C2) is a mild technical condition that ensures the sure
screening property of the RRCS procedure. It is worth mentioning that we do not
need to have a uniform bound for all EX 12k' If the size of M, goes to infinity with a
relatively slow speed, we can relax this condition to cpq, > cn™* for some positive
constant ¢ and ¢ € (0, 1) with a suitable choice of the threshold y;,. Precisely, y,, can
be chosen as ¢’n~*~* for some positive constant ¢’ where « satisfies 2« + 2t < 1.
From Theorem 1 below, we can see that |E(wg)| > cn™*~* for k € M. To ensure
the sure screening properties, (C1) needs to be changed to § + 2k + 2t < 1.

THEOREM 1. Under the regularity condition (C2) and the marginal symmet-
ric conditions M1) and (M2) for model (2.2), we have the following:

(1) E(wy) =0 ifand only if px = 0.
Gi) If okl > cin™* for k € M, with a positive constant ¢1 > 0, then there

exists a positive constant ¢y such that minge p, |[E(wi)| > con™ .

For model (2.7), replacing conditions (M1) and (M2) with (M1") and (M2'),
then:

(") E(wr) =0 if and only if p} = 0.
Gi") If |,0,f| > cin~ " for k € M, with a positive constant ¢ > 0, then there

exists a positive constant ¢y such that minge p, |[E(wr)| > con™ .

REMARK 3. As Fan and Song (2010) mentioned, the marginally symmet-
ric condition (M1) is weaker than the partial orthogonality condition assumed
by Huang, Horowitz and Ma (2008), that is, {Xy, k € M} is independent of
{Xk, k € M.}, which can lead to the model selection consistency for the linear
model. Our results, together with the following Theorem 2, indicate that under
weaker conditions, consistency can also be achieved even for transformation re-
gression models. Furthermore, as in the discussion of Fan and Song (2010), a nec-
essary condition for the sure screening is that the significant predictors X; with
Br # 0 are correlated with the response in the sense that p; % 0. The result (i)
of Theorem 1 also shows that when the Kendall 7 is used, this property can be
held, which suggests that the insignificant predictors in M can be detected from
E(wy) at the population level. Result (ii) indicates that under marginally symmetric
conditions, a suitable threshold y,, can entail the sure screening in the sense of

[in [E@o)| 2y, max [E(@)] =0.
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REMARK 4. As a by-product, Theorem 1 reveals the relationship between
the Pearson correlation and the Kendall T under general conditions, especially the
multi-modal conditions (M2) or (M2') which in itself is of interest. However, either
condition (M2) or (M2') is a sufficient condition to guarantee that the Kendall t
has either the property (ii) or (ii’) of Theorem 1, and then has the sure screening
property. As in the discussion in Section 2.1, following the high order bivariate
Gram—Charlier series expansion to approximate the joint distribution of (X;, Y;),
under certain conditions such as either the condition or sub-Gaussian tail condition,
we could also obtain similar results of Theorem 1. It would involve some high
order of moments or cumulants. However, as shown in Theorem 1, either the multi-
modal condition (M2) or (M2') is to ensure the robust properties of the proposed
RRCS, and depicts those properties more clearly. Furthermore, we will show in
the proposition below that the bivariate normal copula family also makes another
sufficient condition for the following Theorem 1 to hold.

Bivariate normal copula family based marginal condition: We give another
sufficient condition for (X;, Y;) for the results of Theorem 1 to hold. Consider the
bivariate normal copula family which is defined as

Co(ur, up) = ®g(® '(u1), @ '),  O<ujur<l,

where @y is a bivariate standard normal distribution function with mean zero, vari-
ance one and correlation 0, ® is the one-dimensional standard normal distribution
function. Let F denote the collection of all distribution functions on R. We then
define the bivariate distribution family P as

P ={Co(Fx(x), Fr(y)), (x,y) e R?, Fx € F, Fy € F).

Copula now is a popular tool to study the dependence among multivariate random
variables. For details, see Nelsen (2006). The normal copula family is an important
copula family in practice. Particularly, the bivariate normal copula family can be
used to approximate most of the distributions of bivariate continuous or discrete
random vectors, for example, see Cario and Nelson (1997), Ghosh and Henderson
(2003), Pitt, Chan and Kohn (2006) and Channouf and L’Ecuyer (2009).

Based on the results of Klaassen and Wellner (1997) and the monotonic rela-
tionship between the Kendall 7 and the Pearson correlation, the multi-modality
can be replaced by the above copula distribution family. A proposition is stated
below.

PROPOSITION 1. Under the marginal symmetric condition (M1) for model
(2.2), we have the following:

(1) E(wyr) =0 ifand only if px = 0.
(i) If |pr| > c1n™" with a positive constant ¢y > 0 and the joint distribution
F(x,y) of (Xy,Y) is in P, for k € M, then there exists a positive constant c)

such that minge pq,, |[E(wr)| > con™ .
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For model (2.7), replacing condition (M1) with (M1"), then:

(i") E(wi) =0 ifand only if p{ =0.
(i") If |pj| > cin™" with a positive constant ¢\ > 0 and the joint distribution
F(x,y) of (Xk,Y) isin P for k € M., then there exists a positive constant ¢y such

that minge p,, |E(wr)| > con™ .

REMARK 5. If the joint distribution of (X,Y) is in P with the formula
F(X,Y)=Co(Fx(X), Fy(Y)), the results of Klaassen and Wellner (1997) sug-
gested that |6] equals the maximum correlation coefficient between X and Y. As
shown in the proof of the proposition, when we replace p by 6 in the proposition,
the results continue to hold. Hence, this proposition provides a bridge between our
method and the generalized correlation proposed by Hall and Miller (2009) be-
cause, according to their definitions, the generalized correlation coefficient is an
approximation of the maximum correlation coefficient.

Sure screening property of RRCS: Based on Theorem 1 or Proposition 1, the
sure screening property and model selection consistency of RRCS are stated in the
following results.

THEOREM 2. Under the conditions (C1)—(C3), and the conditions of Theo-
rem 1 or Proposition 1 corresponding to either model (2.2) or model (2.7), for
some 0 <k < 1/2 and c3 > 0, there exists a positive constant c4 > 0 such that

- 1-2
P(lrsnja;(p@j — E(wj)| > c3n K) < plexp(—can' ~)}.
Furthermore, by taking y, = csn™" with cs < c2/2, if |px| > cin™" for j € M,
we have

P(M, C M,,) = 1 = 2| M,|{exp(—can'~)).

REMARK 6. Theorem 2 shows that RRCS can handle the NP-dimensionality
problem for linear and semiparametric transformation regression models. It also
permits log p = o(n'=2¢), which is identical to that in Fan and Lv (2008) for the
linear model and is faster than log p = o(n1=29/4) with A = max(a + 4, 30 +2)
for some positive o in Fan and Song (2010) when the likelihood ratio screening is
used.

REMARK 7. It is obvious when the joint distribution of (Xl.T, Y;) follows
a multivariate normal distribution, conditions (M1) and (M2) are automatically
valid. The results of sure screening properties are equivalent to those of Fan and
Lv (2008) under weaker conditions. This is because of the definition of the rank
correlation Kendall t and its monotonic relationship with the Pearson correlation
as in the discussion in Section 2. The Kendall 7 can be regarded as a U-statistic
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and uses the indicator function as the link function. As the indicator function is
a bounded function, the exponential U-statistic inequality can be used to directly
control the tail of the rank correlation Kendall t rather than those of X; and Y;.

Under the conditions of Proposition 1, following similar steps, the same results
of Theorem 2 and the following Theorem 3 can be obtained without any diffi-
culties. Thus, we only present the relevant results without the detailed technical
proofs.

The following theorem states that the size of Myn can be controlled by the
RRCS procedure.

THEOREM 3. Under the conditions (C1)—(C3), and conditions of Theorem 1
or Proposition 1 for model (2.2), when |px| > cin™ for some positive constant ¢
uniformly in k € M, for any y, = csn™" there exists a constant ce¢ > 0 such that

G.D P(Iﬂynl = O{nZK)\max(Z)}) >1- p{exp(—c()nl_Z")},

where ¥ = Cov(X;) and X; = (X;1, ..., X;p). For model (2.7) in addition to
conditions (C1)—~(C3) and the marginal symmetric conditions (M1") and (M2'),
when |pf| > cin™* for some positive constant ci uniformly in k € My and
Var(H (Y)) = O(1), for y, = csn™" there exists a constant c¢ > 0 such that the
above inequality (3.1) holds.

REMARK 8. Compared with Theorem 5 of Fan and Song (2010), the con-
ditions of Theorem 3 are much weaker and the obtained inequalities are much
simpler in form although the rates are similar. The number of selected pre-
dictors is of the order || X8| /ynz, which is bounded by O{n* Amax(X)} when
Var(H (Y)) = O(1). Hence, when Amax (X) = O(n'), the size of the selected pre-
dictors is of the order O (n2¢*7), which can be smaller than n when 2x + 7 < 1.

From Theorems 1-3, the rank correlation has sure screening properties and
model selection consistency. However, it is also obvious that it does not sufficiently
use all of the information from data, particularly the correlations of predictors.
Hence, as most of the other sure screening methods, the rank sure screening can
be only regarded as an initial model selection reducing the ultra-high dimension
down to a dimension smaller than the sample size n without losing any important
significant predictor variables. As the numerical results in Section 5 and the discus-
sion of Fan and Lv (2008) show, the correlation of predictors could seriously affect
the sure screening results, and thus more subtle sure screening methods, such as
Iterative Sure Independence Screening (ISIS) [Fan and Lv (2008)], are in need.

4. IRRCS: Iterative robust rank correlation screening.

4.1. IRRCS. With RRCS, the dimension can be brought down to a value
smaller than the sample size with a probability tending to one. Thus, we can work
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on a smaller submodel. However, in most situations, RRCS can be only regarded
as a crude model selection method, and the resulting model may still contain many
superfluous predictors. It is partly because strong correlation always exists be-
tween predictors when too many predictors are involved [see Fan and Lv (2008)],
and the basic sure screening methods do not use this correlation information. We
also face some other issues. First, in modeling high dimensional data, it is often a
challenge to determine outliers. High dimensionality also increases the likelihood
of extreme values of predictors. Second, even when the model dimension is smaller
than the sample size, the design matrix may still be near singular when strong cor-
relation exists between predictors. Third, the usual normal or sub-Gaussian distri-
butional assumption on predictors/errors is not easy to substantiate. Fourth, it is
also an unfortunate fact that the RRCS procedure may break down if a predictor
is marginally unrelated but jointly related with the response, or if a predictor is
jointly unrelated with the response but has higher marginal correlation with the
response than some significant predictors. To deal with these issues, we develop a
robust iterative RRCS (IRRCS) that is motivated by the concept of Iterative Sure
Independence Screening (ISIS) in Fan and Lv (2008).

To this end, we first briefly describe a penalized smoothing maximum rank cor-
relation estimator (PSMRC) suggested by Lin and Peng (2013). This estimation
approach is applied to simultaneously further select and estimate a final working
submodel through working on 8.

For model (2.7), the monotonicity of H and the independence of X and & ensure
that

P(Y; > Y;1X;. X;) = P(Y; < ¥;X;.X;)  whenever X! 8 = X/ 8.

Hence, f can be estimated by maximizing

1
(4.1) Gu(B)=—— > 1(Y; > Y)I(X] B > X1p).
nn—1) <~
i#j
It is easy to see that G, () is another version of the Kendall t between Y; and
XlT B. The maximum rank correlation [MRC; Han (1987)] estimator 8, can be
applied to estimate 8. When p is fixed, the n'/2-consistency and the asymptotic
normality of 8, have been derived. However, because G, (f) is not a smooth func-
tion, the Newton—Raphson algorithm cannot be used directly, and the optimization

of G, (B) requires an intensive search at heavy computational cost. We then con-
sider PSMRC as follows. Define

d
(4.2) L,(B)=S.(B)—Y_ px,(18)1)
j=1
and
1
(4.3) Si(B)=— " 1(Y; > Y)®(X; = X)" B/ h),

n(n—l)l.#
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where ®(-) is the standard normal distribution function, a smooth function for
the purpose of reducing computational burden, % is a small positive constant, and
px(l - ) is a penalty function of L type such as that in LASSO, SCAD or MCP.
It is easy to see if b — 0, ®((X; — X))"B/h) - [(X]B > X B). As L,(B)
is a smoothing function of B, traditional optimal methods, such as the Newton
Raphson algorithm or newly developed LARS [Efron et al. (2004)] and LLA [Zou
and Li (2008)], can be used to obtain the maximizer of L, (f) to simultaneously
achieve the selection and estimation of B. For model (2.2), the problem is easier
and we do not repeatedly describe the estimation for it.

Next, we introduce our intuitive idea for the proposed IRRCS for the transfor-
mation regression model. Such an idea can be also applied to the linear model since
it is a special transformation regression model. In fact, given the i.i.d. sequences
Y; andXiTﬂ,i=1, , n, define Y* =I1(Y; <Yj) andX* B)=1X;B <X;p).
Then the Pearson correlation between Yl’; and X* B) 1s the rank correlation
Kendall 7 between Y; and X;B. According to the idea of the maximum rank cor-
relation [MRC; Han (1987)] estimator, the estimate of 8 for the transformation
regression model just maximizes the Pearson correlation between Y/ and X;kj B
or the rank correlation Kendall T between Y; and X; 8. If we do not care about the
norm of 3, the least squares estimate of B in the linear model just maximizes the
Pearson correlation between Y; and XiT B. If we regard the transformation model
as the following special linear model:

Y* _X* (ﬂ) +8l]9

where €;; = I(¢; < €j). Then it is easy to see that MRC for the transformation
model and the least squares estimate for the linear model are based on a similar
principle and, hence, the idea of Iterative Sure Independence Screening (ISIS) for
the linear model in Fan and Lv (2008) can be used for the transformation model.
Based on this intuitive insight, our proposed IRRCS procedure is as follows:

Step 1. First the RRCS procedure is used to reduce the original dimension to
a value [n/logn] smaller than n. Then, based on the joint information from the
[n/logn] predictors that survive after the RRCS, we select a subset of d; predic-
tors M1 ={X;,,.... X; n } by a model selection method such as the nonconcave
penalized M-estimation proposed by Li, Peng and Zhu (2011) for model (2.2) and
the penalized smoothing maximum correlation estimator [Lin and Peng (2013)]
for model (2.7).

Step 2. Let X; pm, = (X4, .-, X,-dl)T be the d; x 1 vector selected in step 1,
and/=1,...,p—d.

e For model (2.2), define Y* =Y; — X ﬂ M, then the Kendall 7 values for the
remaining p — dj predlctors are calculated as follows:

1
w = n(n_l)ZI F< Y (Xi < Xj1) —
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where B M, 1s a vector estimator of the di nonzero coefficients that are estimated
by the nonconcave penalized M-estimate method in Li, Peng and Zhu (2011).
Sort the p — d; values of the |w;| again and select another subset of [n/logn]
predictors from M — M;.

e For model (2.7), define I(Y;*, YF) = 1(Y;,Y)) — ITX] g, Ba, < XJT,MlﬂMI)

where 1(Y;,Y;) = 1(Y; <Y;) where ﬁMl is an estimator of the d; nonzero
coefficients, which are estimated with the penalized smoothing maximum cor-
relation estimator of Lin and Peng (2013). Then, compute the Kendall T through
the remaining p — dj predictors as

1
n(n_l)ZI Y (X < Xj0) = 7,

and sort the p — d; values of the |wy|’s again and select a subset of [r/logn]
predictors as in step 1.

Step 3. Replace Y; by Y in (2.2) and I(Y;, Y;) with I (Y7, Y;“) in (4.2), and
select a subset of dp predictors My = {X;,,..., X; dz} from the joint information
of the [n/logn] predictors that survived in step 2 as in step 1.

Step 4. lterate steps 2 and 3 until £ disjoint subsets My, ..., M} are obtained
whose union M = Uf: | M, has a size d less than sample size n. In the imple-
mentation, we can choose, for example, the largest k£ such that |[M| < n.

4.2. Discussion on RRCS for generalized linear and single-index models.
Consider the generalized linear model

(4.4) fr(y,0) =exp{yd — b(©®) +c(y)}

for known functions b(-) and c(-) and unknown function 6, where the dispersion
parameter is not considered as the mean regression modeled. The function 6 is
usually called canonical or a natural parameter, and the following structure of the
generalized linear model is often considered:

4.5) EYX=x)=b'(0(x) = (Z ﬁ,x,>

where x = (xg, ..., x p)T is a (p + 1)-dimensional predictor, xg = 1 represents the
intercept, and 0(x) = Zf:o Bjx;. In this case, g(-) should be a strictly increasing
function. Thus, we may use  of (2.8) with function g~! to rank the importance
of the predictors. Although the idea seems straightforward, the technical details
are not easily handled, and we leave them to further study. In the simulations, we
examine its performance; see the details in Section 5. In addition, after reducing
the dimension, we consider estimating the parameters in the working submodel.
Again, we can also see that

P(Y; > Y|X;, X)) > P(Y; <Y;|X;,X;)  whenever X/ 8 >X!8.
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Hence, Han’s (1987) MRC estimator can be used. Fan and Song (2010) applied
the idea of SIS to (4.4) with NP-dimensionality, and used the maximum marginal
likelihood estimator (MMLE). They showed that the MMLE g j"’ =0 if and only if

Cov (b’ (XTﬂ), X;) =Cov(Y, X;) =0. Thatis, MMLE is equivalent to the Pearson
correlation in a certain sense when SIS is applied.

A further generalization is with unknown canonical link function g(-). In this
case, the generalized linear model can be regarded as a special single index model
with a strictly increasing restriction as the link function 5'(-) or g(-). Based on
the discussion in Section 2, we can also use the Kendall T based method to select
predictors and PSMRC to estimate the parameters. The selection and estimation
could be more robust than with the MMLE based SIS.

5. Numerical studies and application.

5.1. Simulations. 1In the first 4 examples, we compare the performance of
the five methods: SIS, ISIS, RRCS, IRRCS, and the generalized correlation rank
method (gcorr) proposed by Hall and Miller (2009) by computing the frequencies
with which the selected models include all of the variables in the true model, that
is, their ability to correctly screen unimportant variables. The simulation examples
cover the linear models used by Fan and Lv (2008), the transformation models
used by Lin and Peng (2013), the Box—Cox transformation model used by Hall and
Miller (2009), and the generalized linear models used by Fan and Song (2010). We
also use a “semi-real” example as Example 5, in which a part of the data are from
a real data set and the other part of the data are artificial. The difference from the
other examples is that this data set contains categorical data.

EXAMPLE 1. Consider the following linear model:
(5.1 Yi =X+, i=1,...,n,

where B = (5,5,5,0,...,007, X; = (Xy;,..., Xpi)T is a p-dimensional predic-
tor and the noise ¢; is independent of the predictors, and is generated from three
different distributions: the standard normal, the standard normal with 10% of the
outliers following the Cauchy distribution and the standard ¢ distribution with three
degrees of freedom. The first k = 3 predictors are significant, but the others are not.
X; are generated from a multivariate normal distribution N (0, ¥) with entries of
¥ = (0ij)pxp beingo;; =1,i=1,..., p,and 0;; = p, i # j. For some combina-
tions with p = 100, 1000, n = 20, 50,70 and p =0, 0.1, 0.5, 0.9, the experiment
is repeated 200 times.

As different methods may select a working model with different sizes, to en-
sure a fair comparison, we select the same size of n — 1 predictors using the
four methods. Then we check their selection accuracy in including the true model
{X1, X2, X3}. The details of ISIS can be found in Section 4 of Fan and Lv (2008).
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In Table 1, we report the proportions of predictors containing the true model se-
lected by RRCS, SIS, IRRCS and ISIS.
From Table 1, we can draw the following conclusions:

(1) When noise ¢ is drawn from the standard normal, SIS and ISIS perform bet-
ter than RRCS and IRRCS according to higher proportions of predictors containing
the true model selected. The difference becomes smaller with a larger sample size
and smaller p. ISIS and IRRCS can greatly improve the performance of SIS and
RRCS. IRRCS can outperform ISIS.

(2) When p =0.5 or 0.9, SIS and RRCS perform worse than in the cases with
p =0 or 0.1. This coincides with our intuition that high collinearity deteriorates
the performance of SIS and RRCS.

(3) Itis also worth mentioning that even when there are outliers or the heavy-
tailed errors, RRCS is not necessarily better than SIS. This is an interesting obser-
vation. However, when we note the signal-to-noise ratio, we may have an answer.
Regardless of outliers, model (5.1) has a large signal-to-noise ratio by taking the
nonzero coefficients (81, B2, B3) = (5, 5, 5). This means that the impact of the out-
liers on the results is relatively small and RRCS, a nonparametric method, may not
be able to show its advantages. We have also tried other simulations with smaller
signal-to-noise ratios or larger percentages of outliers. When data has larger per-
centages of outliers, the performance of RRCS was better than SIS. Especially
when iteration is used, IRRCS can outperform the corresponding ISIS even in the
case without outliers. When the data has smaller signal-to-noise ratios, for exam-
ple, (B1, B2, B3,0,...,0)=(1,2/3,1/3,0,...,0), though the performance of SIS
and RRCS are comparable and encouraging, all of the results are not as good as
the results of SIS and RRCS in Table 1. This is reasonable, as for all variable selec-
tion methods, the phenomenon is the same: when the signal-to-noise ratio becomes
smaller, selecting significant predictors gets more difficult.

(4) When the data are contaminated with 10% outliers or are generated from
the #(3) distribution, the IRRCS performs better than the ISIS procedure because
we use the nonconcave penalized M-estimation in the iterative step for IRRCS.

EXAMPLE 2. Consider Example III in Section 4.2.3 of Fan and Lv (2008)
with the underlying model, for X = (X1, ..., X,,)T,

(5.2) Y =5X1+5X2+5X3—15/pX4+ X5 +¢,

except that X1, X, X3 and noise ¢ are distributed identical to those in Example 1
above. For model (5.2), X4 ~ N (0, 1) has correlation coefficient ,/o with all other
p — 1 variables, whereas X5 ~ N (0, 1) is uncorrelated with all the other p — 1
variables. X5 has the same proportion of contributions to the response as & does,
and has an even weaker marginal correlation with Y than Xg, ..., X, do. We take
p = 0.5 for simplicity. We generate 200 data sets for this model and report in



TABLE 1

Example 1: the proportion of predictors containing the true model {X1, X5, X3} selected by RRCS, SIS, IRRCS and ISIS

en~ N(,1) N (0, 1) with 10% outliers
(p,n) Method p=0 0.1 0.5 0.9 0 0.1 0.5 0.9 1] 0.1 0.5 0.9
(100, 20) RRCS 0.765 0.745 0.605 0.405 0.840 0.835 0.730 0.640 0.850 0.840 0.765 0.520
SIS 0.835 0.875 0.725 0.650 0.810 0.845 0.705 0.590 0.775 0.805 0.600 0.315
IRRCS 0.840 0.905 0.865 0.915 0.995 0.980 0.960 0.895 0.995 1 0.995 0.930
ISIS 1 1 0.985 0.985 0.885 0.850 0.855 0.845 0.895 0.910 0.865 0.845
(100, 50) RRCS 1 1 1 0.985 0.980 0.960 0.970 0.930 1 0.995 0.980 0.965
SIS 1 1 1 1 0.960 0.950 0.970 0.915 0.965 0.970 0.960 0.920
IRRCS 1 1 1 1 1 1 1 0.970 1 1 1 0.990
ISIS 1 1 1 1 0.985 0.975 0.975 0.945 1 1 0.980 0.955
(1000, 20) RRCS 0.145 0.165 0.060 0.235 0.245 0.250 0.155 0.110 0.245 0.325 0.225 0.150
SIS 0.255 0.285 0.110 0.140 0.250 0.265 0.125 0.110 0.300 0.270 0.220 0.110
IRRCS 0.475 0.460 0.480 0.345 0.825 0.840 0.620 0.465 0.860 0.895 0.680 0.580
ISIS 0.835 0.865 0.715 0.530 0.795 0.840 0.650 0.430 0.805 0.855 0.630 0.460
(1000, 50) RRCS 0.990 0.970 0.825 0.570 0.945 0.990 0.755 0.555 1 0.990 0.930 0.750
SIS 1 0.985 0.935 0.835 0.950 0.985 0.845 0.655 0.985 0.985 0.810 0.620
IRRCS 1 1 0.990 0.995 0.980 0.995 0.950 0.865 1 1 1 0.985
ISIS 1 1 1 0.995 0.955 0.990 0.940 0.850 1 0.990 0.935 0.850
(1000, 70) RRCS 1 1 0.990 0.870 0.945 0.990 0.965 0.835 1 1 0.980 0.860
SIS 1 1 0.990 0.965 0.960 0.950 0.925 0.875 1 0.990 0.950 0.850
IRRCS 1 1 1 1 1 1 0.975 0.965 1 1 1 1
ISIS 1 1 1 1 0.970 0.960 0.950 0.940 1 1 0.980 0.960
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TABLE 2
For Example 2: the proportion of RRCS, SIS, IRRCS and ISIS that include the true model
{X1, X2, X3, X4, X5} (0=0.5)

en N(@,1) N(0, 1) with 10% outliers t(3)

)/ Method n=20 n=50 n=70 n=20 n=50 n=70 n=20 n=50 n=70

100 RRCS 0 0.305  0.595 0 0.220  0.575 0 0.305  0.575
SIS 0 0.285  0.535 0 0.195  0.525 0 0.240  0.535
IRRCS 0 0.500  0.820 0 0.495  0.815 0 0.530  0.805
ISIS 0 0.465  0.855 0 0.415  0.805 0 0.405 0.775

1000 RRCS 0 0 0 0 0 0 0 0 0
SIS 0 0 0 0 0 0 0 0 0
IRRCS 0 0.035  0.085 0 0.030  0.055 0 0.030  0.085
ISIS 0 0.045  0.090 0 0.015  0.035 0 0 0.020

Table 2 the proportion of RRCS, SIS, IRRCS and ISIS that can include the true
model.

The results in Table 2 allow us to draw different conclusions than those from
Example 1. Even in the case without outliers or the heavy-tailed errors, SIS and
ISIS are not definitely better than RRCS and IRRCS, respectively, whereas in the
cases with outliers or heavy-tailed errors there is no exception for IRRCS to work
well and better than ISIS. However, the small proportions of RRCS and SIS show
their bad performance.

EXAMPLE 3. Consider the following generalized Box—Cox transformation
model:

(5.3) HY)=XB+¢, i=1,2,...,n,

where the transformation functions are unknown. In the simulations, we consider
the following forms:

A
e Box—Cox transformation, %, where A =0.25, 0.5, 0.75;
e Logarithm transformation function, H(Y) =logY.

The linear regression model and the logarithm transformation model are special
cases of the generalized Box—Cox transformation model with A =1 and A =0,
respectively. Again, noise ¢; follows the distributions as those in the above exam-
ples, 8 =(3,1.5,2,0,...,0)" and B/||B] = (0.7682,0.3841,0.5121,0, ...,0)7

isa p x 1 vector, and a sample of (X,..., X p)T with size n is generated from a
multivariate normal distribution N (0, ¥) whose covariance matrix ¥ = (0i;) pxp
has entries 0;; =1,i =1, ..., p, and 0;; = p, i # j. The replication time is again

200, and p = 100, 1000, n = 20, 50,70 and p =0, 0.1, 0.5, 0.9, respectively. We
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also compare the proposed method with the generalized correlation rank method
(gcorr) proposed by Hall and Miller (2009) for the logarithm transformation model
(the results for the Box—Cox transformation model are similar).

From Tables 3 and 4, we can see clearly that without exception RRCS outper-
forms SIS and gcorr significantly and IRRCS can greatly improve the performance
of RRCS.

EXAMPLE 4 (Logistic regression). In this example, the data (XT, YD,...,
(X; , Y,) are independent copies of a pair (XT, Y), where the conditional distribu-
tion of the response Y given X is a binomial distribution with

(5.4) log<lf(7;(()x)) —x7g.

The predictors are generated in the same setting as that of Fan and Song (2010),
that 1s,

X; = gj —i—ajj’
,/1+aj
p/3] }[217/3]
j=lp/

where ¢ and {81'}5»:1 are i.1.d. standard normal, {¢;} /341 are 1.1.d. and follow
a double exponential distribution with location parameter zero and scale parameter
one, and {¢; }5-”:] [2p/3]4+1 are i.i.d. and follow a mixture normal distribution with two
components N(—1, 1), N(1, 0.5) and equal mixture proportion. The predictors are
standardized to be mean zero and variance one. The constants {a ; }’]1.:1 are the same
and chosen such that the correlation p = corr(X;, X;) =0,0.2,0.4,0.6 and 0.8,
among the first g predictors, and a; = 0 for j > g. Parameter g is also related to
the overall correlation in the covariance matrix.

We vary the size of the nonsparse set of coefficients as s = 3,6, 12, 15 and 24,
and present the numerical results with g = 15 and ¢ = 50. Every method is eval-
uated by summarizing the median minimum model size (MMMS) of the selected
model and its associated RSD, which is the associated interquartile range (IQR) di-
vided by 1.34. The results, based on 200 replications in each scenario, are recorded
in Tables 5-7. The results of SIS-based MLR, SIS-based MMLE, LASSO and
SCAD in Tables 5-7 are cited from Fan and Song (2010).

From Tables 5-7, we can see that the RRCS procedure does a very reasonable
job similar to the SIS proposed by Fan and Song (2010) in screening insignifi-
cant predictors, and similarly sometimes outperforms LASSO and SCAD for NP-
dimensional generalized linear models.

EXAMPLE 5 (Logistic regression). This example is based on a real data set
from Example 11.3 of Albright, Winston and Zappe (1999). This data set con-



TABLE 3

Proportion of SIS, RRCS and IRRCS that include the true model for the Box—Cox transformation model {X 1, X, X3}

e N(@,1) N(0, 1) with 10% outliers t(3)

(p,n) A Method p=0 0.1 0.5 0.9 0 0.1 0.5 0.9 0 0.1 0.5 0.9
(100,20)  0.75 SIS 0.415 0470 0.190  0.030 0.380 0.435 0.170  0.005 0.420 0525 0.355  0.200
RRCS 0.440  0.525 0.400  0.225 0430 0510 0370  0.220 0.525 0555 0450  0.220
IRRCS 0985 0975 0975  0.850 0.940 0910 0.875  0.755 0960 0945 0.925 0.840
0.5 SIS 0.320  0.390 0.155  0.005 0.265 0345 0.160  0.005 0.360  0.490  0.325  0.090
RRCS 0.435 0.525 0400 0.225 0.450 0510 0.390 0.195 0.590 0545 0355 0.225
IRRCS 0.985 0970 0945  0.860 0.900 0.890 0.885  0.745 0935 0920 0910 0.815
0.25 SIS 0.150 0.195 0.090 0.0025 0.145 0.155 0.085 0.0015 0.190 0.225 0.175  0.005
RRCS 0435 0535 0395 0.225 0425 0495 0365 0.220 0.560 0.440 0.385 0.185
IRRCS 0.975 0985 0960  0.845 0.905 0.885 0.870  0.680 0910 0915 0.895 0.785
(100,50)  0.75 SIS 0.935 0915 0.855 0415 0.875 0905 0.795  0.385 0.890 0910 0.850  0.850
RRCS 0.965 0985 0955 0.890 0.965 0985 0945 0.870 0.960 0985 0910 0.875
IRRCS 1 1 1 0.980 1 1 0.965 0.925 1 1 0.960 0910
0.5 SIS 0.935 0905 0.810  0.390 0.795 0.845 0.740  0.355 0.855 0.890 0.730  0.380
RRCS 0.965 0985 0950  0.890 0.950 0980 0.950 0.880 0955 0940 0.930 0.840
IRRCS 1 1 1 0.980 1 1 0.955 0.915 1 1 0.955  0.930
0.25 SIS 0.815 0.880  0.680  0.305 0.680 0.740  0.585  0.260 0.760  0.860 0.720  0.370
RRCS 0.965 0985 0.955 0.900 0.955 0985 0955 0.885 0.900 0985 0.945 0.865
IRRCS 1 1 1 0.970 1 1 0975 0915 1 1 0.985 0910
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TABLE 3

(Continued)
enr N(@©,1) N (0, 1) with 10% outliers t(3)
(p,n) A Method p=0 0.1 0.5 0.9 0 0.1 0.5 0.9 0 0.1 0.5 0.9
(1000,50)  0.75 SIS 0.615 0.605 0.145 0 0.515 0490 0.130 0 0.530 0.570 0.130  0.005
RRCS 0.750 0.705 0.485 0.230 0.640 0.650 0435 0215 0.710 0.640 0.435 0.180
IRRCS 1 1 1 0.840 0940 0925 0940 0.780 0.930 0940 0935 0.710
0.5 SIS 0.490 0510 0.110 O 0.366 0370 0.080 O 0.455 039 0.150 O
RRCS 0.760  0.705 0.465 0.245 0.735 0.655 0440 0215 0.745 0.625 0.430 0.170
IRRCS 1 1 1 0.815 0.950 0920 0930 0.770 0975 0965 0.940 0.745
0.25 SIS 0.200 0.215 0.035 0 0.145 0.160 0.020 0 0.155 0.210 0.055 O
RRCS 0.755 0.695 0470 0.240 0.675 0.665 0.440 0.215 0.755 0.615 0375 0.215
IRRCS 1 1 1 0.780 0945 0930 0940 0.720 0.955 0930 0935 0.725
(1000,70)  0.75 SIS 0.860 0.860 0.375  0.005 0.670 0.690 0.270 0.015 0.840 0.865 0.370 0.105
RRCS 0.880 0.890 0.725 0.515 0.880 0.880 0.695 0.510 0.915 0.885 0.700  0.395
IRRCS 1 1 1 0.970 0.960 0945 0935 0910 0970 0985 0930 00915
0.5 SIS 0.775 0.765 0.275 0.0015 0.555 0585 0.230 O 0.760  0.750 0.280  0.0015
RRCS 0.885 0.900 0.715 0.470 0.865 0.875 0.670 0.515 0915 0.875 0.610 0.440
IRRCS 1 1 1 0.950 0955 0945 0935 0900 0.955 0950 0915 0.875
0.25 SIS 0.435 0445 0010 O 0.365 0290 0.075 O 0.440 0440 0.010 O
RRCS 0.875 0.880 0.725 0.490 0.830 0.795 0.710 0.500 0.835 0.830 0.655 0.410
IRRCS 1 1 1 0.920 0.960 0940 0935 0900 0.955 0935 0925 0.885
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Proportion of SIS, gcorr, RRCS and IRRCS that include the true model for the logarithm transformation model

TABLE 4

en N@©,1) N (0, 1) with 10% outliers t(3)
(p,n) Method p=0 0.1 0.5 0.9 0 0.1 0.5 0.9 0 0.1 0.5 0.9
(100, 20) SIS 0.100 0.060 0.070 0.030 0.055 0.065 0.020 0.020 0.040 0.060 0.030 0.015
gcorr 0.280 0.230 0.105 0.010 0.205 0.215 0.180 0.010 0.185 0.230 0.170 0.015
RRCS 0.580 0.460 0.385 0.290 0.570 0.410 0.375 0.215 0.575 0.425 0.355 0.170
IRRCS 1 0.975 0.975 0.715 0.875 0.870 0.875 0.560 0.905 0.875 0.840 0.580
(100, 50) SIS 0.550 0.650 0.450 0.225 0.470 0.585 0.395 0.250 0.470 0.585 0.455 0.230
georr 0.940 0.925 0.890 0.430 0.855 0.880 0.825 0.385 0.870 0.885 0.860 0.410
RRCS 0.960 0.985 0.975 0.880 0.960 0.975 0.965 0.930 0.985 0.975 0.945 0.865
IRRCS 1 1 1 0.980 1 1 1 0.955 0.990 1 1 0.975
(1000, 50) SIS 0.035 0.020 0.005 0 0.015 0.005 0.020 0.010 0.020 0.010 0.005 0
georr 0.420 0.415 0.285 0.015 0.385 0.405 0.025 0.005 0.340 0.410 0.265 0.010
RRCS 0.610 0.670 0.490 0.225 0.630 0.590 0.400 0.200 0.605 0.650 0.495 0.155
IRRCS 1 1 1 0.855 0.925 0.900 0.915 0.685 1 1 0.990 0.660
(1000, 70) SIS 0.125 0.080 0.005 0 0.075 0.040 0.005 0 0.080 0.055 0.010 0.005
gcorr 0.695 0.640 0.615 0.230 0.625 0.630 0.440 0.185 0.590 0.625 0.480 0.205
RRCS 0.915 0.845 0.785 0.475 0.870 0.880 0.665 0.485 0.860 0.840 0.650 0.450
IRRCS 1 1 1 0.940 1 1 0.960 0.930 1 1 1 0.925

8981

NHZ ANV DNVHZ ‘ONdd T1



TABLE 5

The MMMS and associated RSD (in parenthesis) of the simulated examples

for logistic regressions when p = 40,000

0 n SIS-MLR SIS-MMLE RRCS n SIS-MLR SIS-MMLE RRCS
Setting 1, g =15
s=3,8=(1,131DT s=6,8=(1,13,1,..)7

0 300 3 (1) 3(1) 3(0.74) 300 47 (164) 50 (170) 56 (188.05)
0.2 200 3 (0) 3 (0) 3 (0) 300 6 (0) 6 (0) 6 (0.74)
0.4 200 3 (0) 3 (0) 3 (0) 300 7 (1) 7 (1) 7 (1.49)
0.6 200 3 () 3(1) 3(0.74) 300 8 (1) 8 (2) 8 (2.23)
0.8 200 4 (1) 4 (1) 4(2) 300 9 (3) 9 (3) 9 (2.23)

s=12,8=(1,13,..)7 s=158=(1,13,..)7
0 500 297 (589) 302.5 (597) 298 (488) 600 350 (607) 359.5 (612) 359.5 (657.08)
0.2 300 13 (1) 13 (1) 13 (1.49) 300 15 (0) 15 (0) 15 (0)
0.4 300 14 (1) 14 (1) 14 (0.74) 300 15 (0) 15 (0) 15 (0)
0.6 300 14 (1) 14 (1) 14 (1.49) 300 15 (0) 15 (0) 15 (0)
0.8 300 14 (1) 14 (1) 14 (0.74) 300 15 (0) 15 (0) 15 (0)

Setting 2, ¢ =50
s=3,8=01,13DT s=6,=(,131,..)7

0 300 3 (1) 3(1) 3(0.74) 500 6 (1) 6 (1) 6(2)
0.2 300 3 (0) 3 (0) 3 (0) 500 6 (0) 6 (0) 6 (0)
0.4 300 3 (0) 3 (0) 3 (0) 500 6 (1) 6 (1) 7 (1.49)
0.6 300 3 (1) 3(1) 3 (1) 500 8.5 (4) 9 (5) 8 (3.73)
0.8 300 5 (4) 5 (4) 5(3.73) 500 13.5 (8) 14 (8) 15 (7.46)

s=12,8=(1,13,..)T s=15=(1,13,..)7
0 600 77 (114) 78.5 (118) 95 (115) 800 46 (82) 47 (83) 46 (83.88)
0.2 500 18 (7) 18 (7) 19 (6) 500 26 (6) 26 (6) 27 (8.20)
0.4 500 25 (8) 25 (10) 26 (9.70) 500 34 (7) 33 (8) 33 (8.39)
0.6 500 32(9) 31 (8) 32(9) 500 39 (7) 38 (7) 38 (6.71)
0.8 500 36 (8) 35 (9) 39 (7.46) 500 40 (6) 42 (7) 42 (6.15)
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TABLE 6
The MMMS and associated RSD (in parenthesis) of the simulated examples for logistic regressions
when p = 5000 and g = 15

o n SIS-MLR SIS-MMLE LASSO SCAD RRCS

s=3,8=(1,13,1DT

0 300 3 (0) 3(0) 3(1) 3(1) 3(0)
02 300 3 (0) 3(0) 3(0) 3(0) 3(0)
04 300 3 (0) 3(0) 3(0) 3(0) 3(0)
0.6 300 3 (0) 3(0) 3(0) 3(1) 3(0)
08 300 3(1) 3() 4 (1) 4 (1) 3(1.49)
s=6,=(1,13,1,13,1,1.3)T
0 300 12.5 (15) 13 (6) 7() 6 (1) 12 (24.62)
02 300 6 (0) 6 (0) 6 (0) 6 (0) 6 (0.18)
04 300 6 (1) 6 (1) 6 (1) 6 (0) 7 (1.49)
06 300 7Q) 7Q) 7() 6 (1) 8 (1.49)
08 300 9(2) 9 (3) 27.5 (3725) 6 (0) 9 (2.23)
s=12,=(1,13,..)7
0 300 297.5 (359) 300 (361) 72.5 (3704) 12 (0) 345 (522)
02 300 13 (1) 13 (1) 12 (1) 12 (0) 13 (1.49)
04 300 14 (1) 14 (1) 14 (1861) 13 (1865) 14 (0.74)
0.6 300 14 (1) 14 (1) 2552 (85) 12 (3721) 14 (1)
08 300 14 (1) 14 (1) 2556 (10) 12 (3722) 14 (0.74)
s=158=(3,4,..)T

0 300 479 (622) 482 (615) 69.5 (68) 15 (0) 629.5 (821)
02 300 15 (0) 15 (0) 16 (13) 15 (0) 15 (0)
04 300 15 (0) 15 (0) 38 (3719) 15 (3720) 15 (0)
0.6 300 15 (0) 15 (0) 2555 (87) 15 (1472) 15 (0)
08 300 15 (0) 15 (0) 2552 (8) 15 (1322) 15 (0)

sists of 208 employees with complete information on 8 recorded variables. These
variables include employee’s annual salary in thousands of dollars (Salary); edu-
cational level (EduLev), a categorical variable with categories 1 (finished school),
2 (finished some college courses), 3 (obtained a bachelor’s degree), 4 (took some
graduate courses), 5 (obtained a graduate degree); job grade (JobGrade), a categor-
ical variable indicating the current job level, the possible levels being 1-6 (6 the
highest); year that an employee was hired (YrHired); year that an employee was
born (YrBorn); a categorical variable with values “Female” and “Male” (Gender),
1 for female employee and O for male employee; number of years of work ex-
perience at another bank prior to working at the Fifth National Bank (YrsPrior);
a dummy variable with value 1 if the employee’s job is computer related and value
0 otherwise (PCJob). Such a data set had been analyzed by Fan and Peng (2004)
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The MMMS and associated RSD (in parenthesis) of the simulated examples for logistic regressions

when p = 2000 and g =50

P) n SIS-MLR SIS-MMLE LASSO SCAD RRCS
s=3,8=03,437
0 200 3(0) 3(0) 3(0) 3 (0) 3(0)
02 200 3(0) 3(0) 3(0) 3(0) 3(0)
04 200 3 (0) 3(0) 3(0) 3(1) 3(0)
0.6 200 3(1) 3(1) 3(1) 3(1) 3(0.74)
0.8 200 5(5) 5.5 (5) 6 (4) 6 (4) 4 (2.4)
s=6,8=3,-3,3,-3,3,-3)7
0 200 8 (6) 9 (7) 7 (1) 7 (1) 8 (5.97)
02 200 18 (38) 20 (39) 9 (4) 9(2) 14 (28.54)
04 200 51 (77) 64.5 (76) 20 (10) 16.5 (6) 72 (76.60)
0.6 300 77.5 (139) 77.5 (132) 20 (13) 19 (9) 84.5 (122.94)
0.8 400 306.5 (347) 313 (336) 86 (40) 70.5 (35) 249.5 (324.62)
s=12,=0.,4,..)T
0 600 13 (6) 13 (7) 12 (0) 12 (0) 13 (3.90)
02 600 19 (6) 19 (6) 13 (1) 13 (2) 16.5 (4)
04 600 32 (10) 30 (10) 18 (3) 17 (4) 23 (7)
0.6 600 38 (9) 38 (10) 22 (3) 22 (4) 29 (8.95)
0.8 600 38 (7) 39 (8) 1071 (6) 1042 (34) 35 (8)
s=24,8=03,4,..)T
0 600 180 (240) 182 (238) 35 (9) 31 (10) 190.5 (240.48)
02 600 45 (4) 45 (4) 35 (27) 32 (24) 40 (5)
04 600 46 (3) 47 (2) 1099 (17) 1093 (1456) 45 (4.40)
0.6 600 48 (2) 48 (2) 1078 (5) 1065 (23) 47 (3)
0.8 600 48 (1) 48 (1) 1072 (4) 1067 (13) 47 (2.98)

throughout the following linear model:
Salary = By + B1Female + B,PCJob

4 5
+ > BayiBdu; + ) BeiJobGrd;
i=1 i=1

+ B12YrsExp + Bi13Age + ¢,

(5.5)

where the variable YrsExp is total years of working experience, computed from
the variables YrHired and YrsPrior. Fan and Peng (2004) deleted the samples
with age over 60 or working experience over 30 and used only 199 samples to
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fit model (5.5). The SCAD-penalized least squares coefficient estimator of (5.5) is
ﬂO = (ﬁ09 ﬁlv ) 1313)T
= (55.835,-0.624,4.151,0, —1.073, —0.914, 0, —24.643,
—22.818, —18.803, —13.859, —7.770,0.193,0)” .

For this data set, we consider a larger artificial model as a full model with addi-
tional predictors:

13 [2p/5] p
Yi=Bo+ ) BiXij+ Y BiXij+ Y. BiXij+oej, j=1....n,
i=1 i=14 [2p/51+1

where we set (Bo, B1, ..., B13)7 = B, that is identical to that of (5.5) above by
Fan and Peng (2004), and set B; = 0, for i with 13 <i < p. Hence, X3;, X¢,
X13j and X;j, 13 <i < p, are insignificant covariates, whose corresponding coef-
ficients are zero. The data are generated as follows. (Xy;,..., X135, j=1,...,n)
are corresponding to the covariates in (5.5) and resampled from those 199 real
data without replacement. For each i, X;;, 14 <i < [2p/5], are generated inde-
pendently from the Bernoulli distribution with success probability p; where p}
is independently random sampled from the uniform distribution under the inter-
val [0.2,0.8], and X;;,[2p/5] + 1 <i < p, are generated independently from
the standard normal distribution. Further, the noises ¢;,1 < j < n, are, respec-
tively, generated from the normal distribution with zero mean and the standard
erroro = 1,2, 3.

To compare the performance of different methods, we set the sample size n to
be 180, and, respectively, consider the different dimensions p = 200, 400, 600 and
1000. Consider the different sizes of d, = 15, 30, 60, 120 and 179 predictors for
the sure screening by the three different methods: RRCS, SIS and the generalized
correlation rank method (gcorr) proposed by Hall and Miller (2009). Then we
compute the proportion of the models that include the true one, which are selected
by RRCS, SIS and gcorr, respectively. The experiment is repeated 200 times and
the results are reported in Table 8 for various combinations of p and d,.

From Table 8, we can see that the RRCS procedure works well in screening
out insignificant predictors when there are the categorical covariates. In contrast,
the SIS and gcorr methods almost cannot choose the true model. In most of the
repeated experiments, we find that there are always one or two significant predic-
tors not being selected by the SIS and gcorr methods even whend,, =n —1 =179
predictors are selected.

For SIS, such a result is consistent with the numerical study of Example 2 in
Fan, Feng and Song (2011). With complex correlation structure among predic-
tors and the response, SIS cannot work well. As for the generalized correlation
screening method, its computation is complicated, especially because it has to use
different methods to, respectively, calculate the generalized coefficients between



TABLE 8
For Example 5: the proportion of RRCS, SIS and gcorr that include the true model

o=1 o=2 o=3

dy Method p =200 400 600 1000 200 400 600 1000 200 400 600 1000
15 RRCS 0.280 0.080 0 0 0.085 0 0 0 0.005 0 0 0
SIS 0 0 0 0 0 0 0 0 0 0 0 0
georr 0 0 0 0 0 0 0 0 0 0 0 0
30 RRCS 0.955 0.765 0.425 0.165 0.685 0.255 0.085 0.020 0.210 0.030 0.005 0
SIS 0 0 0 0 0 0 0 0 0 0 0 0
gcorr 0 0 0 0 0 0 0 0 0 0 0 0

60 RRCS 1 0.990 0.915 0.735 0.965 0.765 0.490 0.275 0.620 0.310 0.070 0.025
SIS 0 0 0 0 0 0 0 0 0.005 0 0 0
georr 0 0 0 0 0 0 0 0 0 0 0 0

120 RRCS 1 1 0.995 0.990 0.985 0.995 0.885 0.665 0.920 0.670 0.410 0.215
SIS 0.045 0 0 0 0.070 0 0 0 0.125 0.005 0 0
georr 0 0 0 0 0 0 0 0 0.050 0 0 0

179 RRCS 1 1 1 0.995 1 1 0.965 0.860 0.970 0.865 0.640 0.410
SIS 0.670 0 0 0 0.660 0.010 0 0 0.715 0.015 0 0
gcorr 1 0 0 0 1 0 0 0 1 0 0 0

ONINHHYDS ddSVE NOILVTHIEOD JANVY LSNdOd

€L81



1874 LI, PENG, ZHANG AND ZHU

the response and both categorial and continuous predictors. The variation of those
coefficient estimations would be different, and make that the final sure screening
results are not as stable as RRCS and SIS are.

5.2. Application to cardiomyopathy microarray data. Please see the supple-
mentary material for the paper [Li et al. (2012)].

6. Concluding remarks. This paper studies the sure screening properties of
robust rank correlation screening (RRCS) for ultra-high dimensional linear regres-
sion models and transformation regression models. The method is based on the
Kendall t rank correlation, which is a robust correlation measurement between
two random variables and is invariant to strictly monotonic transformation. Our
results discover the relationship between the Pearson correlation and the Kendall
7 rank correlation under certain conditions. It suggests that the Kendall t rank cor-
relation can be used to replace the Pearson correlation such that the sure screening
is applicable not only to linear regression models but also to more general nonlin-
ear regression models.

In both the theoretical analysis and the numerical study, RRCS has been shown
to be capable of reducing the exponentially growing dimensionality of the model to
a value smaller than the sample size. It is also robust against the error distribution.
An iterative RRCS (IRRCS) has been also proposed to enhance the performance
of RRCS for more complicated ultra-high dimensional data.

Some issues deserve further study. From Fan and Song (2010), it is easy to know
that the sure screening properties of MMLE for generalized linear models really
depend on Cov(Xg, Y),i =1,2,...,n. Hence, it is an interesting problem to de-
termine whether the relationship between the Pearson correlation and the Kendall
T rank correlation can be identified for generalized linear models. If this can be
done, the sure screening properties of RRCS for generalized linear models can
also be studied theoretically. Note that the conditions required are much weaker
than SIS needs. Thus, it would be of interest to determine whether robust LASSO,
SCAD or other penalized methods can be defined when the idea described herein
is applied.

APPENDIX: PROOFS OF THEOREMS

Please see the supplementary material for the paper [Li et al. (2012)].
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Robust rank correlation based screening” (DOI: 10.1214/
12-A0S1024SUPP; .pdf). Application to Cardiomyopathy microarray Data and
the proofs of Theorems 1-3 and Proposition 1 require some technical and lengthy
arguments that we develop in this supplement.
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