
The Annals of Statistics
2012, Vol. 40, No. 3, 1524–1549
DOI: 10.1214/12-AOS1011
© Institute of Mathematical Statistics, 2012

MINIMAX SIGNAL DETECTION IN ILL-POSED
INVERSE PROBLEMS
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Petersburg University of Information Technologies, Mechanics and Optics

Ill-posed inverse problems arise in various scientific fields. We consider
the signal detection problem for mildly, severely and extremely ill-posed in-
verse problems with lq -ellipsoids (bodies), q ∈ (0,2], for Sobolev, analytic
and generalized analytic classes of functions under the Gaussian white noise
model. We study both rate and sharp asymptotics for the error probabilities
in the minimax setup. By construction, the derived tests are, often, nonadap-
tive. Minimax rate-optimal adaptive tests of rather simple structure are also
constructed.

1. Introduction. We consider the detection problem in linear operator equa-
tions from noisy data. More precisely, we consider the Gaussian white noise model
(GWNM)

dYε(t) = Af (t) dt + ε dW(t), t ∈ D,(1.1)

where A : H �→ L2(D) is a known linear bounded operator, H ⊂ L2(D), D ⊂ R,
W is a standard Wiener process on D, ε > 0 is a small parameter (the noise level)
and f ∈ L2(D) is the unknown response function (that one needs to detect or
estimate).

We consider below the case where A has a kernel with the singular value de-
composition (SVD) A(t, x) = ∑

k∈N bkψk(t)ϕk(x), in the sense of

(Af )(t) =
∫
D

A(t, x)f (x) dx = ∑
k∈N

bkψk(t)

∫
D

f (x)ϕk(x) dx, t ∈ D,

with bk > 0, k ∈ N, and orthonormal bases {ψk}k∈N and {ϕk}k∈N. (Here, N =
{1,2, . . .} is the set of natural numbers.)

Thus, the GWNM (1.1) generates an equivalent discrete observational model in
the sequence space, called the Gaussian sequence model (GSM),

yk = bkθk + εξk, k ∈ N,(1.2)
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where yk = ∫
D ψk(t) dYε(t), bk > 0, θk = ∫

D f (t)ϕk(t) dt , ε > 0, and ξk
i.i.d.∼

N (0,1), k ∈ N. The effect of the ill-posedness of the inverse problem is clearly
seen in the decay of bk as k → ∞. As k → ∞, bkθk usually gets weaker and is
then more difficult to detect or estimate θ = {θk}k∈N.

The GSM (1.2) can be rewritten in the (equivalent) form

xk = θk + εσkξk, k ∈ N,(1.3)

where xk = yk/bk and σk = b−1
k > 0, k ∈ N. In this situation, the difficulty of ill-

posedness, and hence any asymptotic results, is measured by the rates (type of
growth) of σk as k → ∞. For polynomial rates, that is, σk � kβ , β > 0, the inverse
problem is called mildly (or softly) ill-posed, for exponential rates, that is, σk �
exp(βk), β > 0, is called severely ill-posed, and for the case where σk+1/σk → ∞
as k → ∞, is called extremely ill-posed. Note that an extremely ill-posed inverse
problem includes power-exponential rates, that is, σk � exp(βkγ ), β > 0, γ > 1.2

An important element of the GSMs (1.2) and (1.3) is the prior information
about the sequence θ = {θk}k∈N. Successful detection or estimation of the se-
quence θ = {θk}k∈N is possible only if its elements θk , k ∈ N, tend to zero suffi-
ciently fast as k tends to infinity, meaning that f in the GWNM (1.1) is sufficiently
smooth. A standard smoothness assumption on f is to assume that the sequence
θ = {θk}k∈N belongs to an lq -ellipsoid (body), 0 < q < ∞, in l2, of semi-axes
L/ak , k ∈ N, that is,


̃ = 
̃q(a,L) =
{
θ ∈ l2 :

∑
k∈N

|akθk|q ≤ Lq

}
,(1.4)

where a = {ak}k∈N, ak > 0, ak → ∞ as k → ∞ and L > 0. [Note that the re-
quirement ak > 0, ak → ∞ as k → ∞, ensures that 
̃q(a,L) is a compact subset
of l2.] The sequence a = {ak}k∈N characterizes the “shape” of the ellipsoid while
the parameter L characterizes its “size.” This means that for large values of k, the
elements θk , k ∈ N, will decrease in k and, hence, will be small for large k. In
what follows, we consider minimax signal detection in ill-posed problems with
lq -ellipsoids for the range q ∈ (0,2].

The functional sets of the form (1.4) that are often used in various ill-posed
inverse problems are the Sobolev classes of functions (see [14]) and the classes
of analytic functions; see [7]. We also consider a class of generalized analytic

2The relation cn � dn means that there exist constants 0 < C1 ≤ C2 < ∞ and n0 large enough
such that C1 ≤ cn/dn ≤ C2 for n ≥ n0. We say that cn(κ) � dn(κ) uniformly over κ ∈ K, if the
similar inequalities hold true for all κ ∈ K with constants 0 < C1 ≤ C2 < ∞ and n0 which do not
depend on κ . The relation cn ∼ dn means that for any δ ∈ (0,1) there exists n0 large enough such
that 1 − δ ≤ cn/dn ≤ 1 + δ for n ≥ n0. The uniform version of the relation cn(κ) ∼ dn(κ), κ ∈ K, is
defined similarly. Similar notation is used when 0 < ε ≤ ε0 for ε0 small enough.
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functions. Then, 
̃ in (1.4) takes, respectively, the form

Wq(α,L) =
{
θ ∈ l2 :

∑
k∈N

kαq |θk|q ≤ Lq

}
,

Aq(α,L) =
{
θ ∈ l2 :

∑
k∈N

eαkq |θk|q ≤ Lq

}
,

Gq(τ,α,L) =
{
θ ∈ l2 :

∑
k∈N

eαkτ q |θk|q ≤ Lq

}

for some α > 0, τ ≥ 1 (the case τ = 1 corresponds to the class of analytic func-
tions) and L > 0.

Despite the growing number of works for the estimation problem in ill-posed
inverse problems under the GWNM (1.1) (see, e.g., [2, 3, 5] and [6]), very lit-
tle work exists for the corresponding detection problem; see Section 4.3.3 of [11]
and [4] (although their results are obtained from models that are neither formu-
lated nor immediately seen as particular ill-posed inverse problems), and [9] for a
problem related to the Radon transform (see also, the supplementary material [10],
Remark 6.1). Our aim is to present a general framework for the minimax detection
study of the aforementioned ill-posed inverse problems. (Nonasymptotic minimax
rates of testing for some of the ill-posed inverse problems under consideration were
recently studied in [12].)

The rest of the paper is organized as follows. The general statement of minimax
signal detection in ill-posed inverse problems is given in Section 2, while a short
description of the main results and a comparison with similar results obtained in
the corresponding estimation problems are presented in Section 3. The general
methods for the study of minimax signal detection in ill-posed inverse problems
with l2-ellipsoids are given in Section 4.1. In Sections 4.2–4.7, we provide a com-
plete treatment to the minimax signal detection problem for mildly, severely and
extremely ill-posed inverse problems with lq -ellipsoids, q ∈ (0,2], for Sobolev,
analytic and generalized analytic classes of functions under the GSM (1.2). We
study both rate and sharp asymptotics for the error probabilities in the minimax
setup. By construction, the derived tests are, often, nonadaptive. In Section 5, for
the ill-posed inverse problems under consideration, we also construct minimax
rate-optimal adaptive tests of rather simple structure. The proofs along with other
relevant material can be found in the supplementary material [10].3

2. Signal detection in the GSM: The minimax framework. Consider the
GSM (1.2). In order to avoid having a trivial minimax hypothesis testing problem

3Some numbering that appears in the text corresponds to numbering in the supplementary mate-
rial [10], Sections 6–11. Also, some of the references that appear in the reference list are cited in the
supplementary material [10].
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(i.e., trivial power), one usually needs to remove a neighborhood around the func-
tional parameter under the null hypothesis and to add some additional constraints,
that are typically expressed in the form of some regularity conditions, such as con-
straints on the derivatives, of the unknown functional parameter of interest (see,
e.g., [11], Sections 1.3–1.4).

In view of the above observation, the main object of our study is the hypothesis
testing problem

H0 : θ = 0 versus H1 :
∑
k∈N

|akθk|q ≤ 1,
∑
k∈N

θ2
k ≥ r2

ε ,(2.1)

where θ = {θk}k∈N ∈ l2, a = {ak}k∈N, ak > 0, ak → ∞ as k → ∞, rε > 0, rε → 0,
is a given family, and q ∈ (0,2]. It means that the set under the alternative cor-
responds to an lq -ellipsoid of semi-axes 1/ak , k ∈ N, with an l2-ball of radius rε
removed. [For simplicity, in subsequent sections, we focus attention on ellipsoids
of the form (1.4) with “size” L = 1.]

Consider the sequence η = {ηk}k∈N, ηk = bkθk = θk/σk , k ∈ N. Recall that, in
the ill-posed inverse problems under consideration, σk = 1/bk → ∞ or bk → 0, as
k → ∞. Hence, η ∈ l2, and the GSM (1.2) is of the form

yk = ηk + εξk, k ∈ N.(2.2)

Thus, (2.1) can also be written in the following equivalent form:

H0 :η = 0 versus H1 :η ∈ 
q(rε),(2.3)

where the set under the alternative is determined by the constraints


q =
{
η ∈ l2 :

∑
k∈N

|akσkηk|q ≤ 1
}
,

(2.4)


q(rε) =
{
η ∈ 
q :

∑
k∈N

σ 2
k η2

k ≥ r2
ε

}
;

that is, the set under the alternative corresponds to an lq -ellipsoid of semi-axes
1/(akσk), k ∈ N, with an l2-ellipsoid of semi-axes rε/σk , k ∈ N, removed.

We are therefore interested in the minimax efficiency of the hypothesis testing
problem (2.3) and (2.4) for a given family of sets 
ε = 
q(rε) ⊂ l2. It is charac-
terized by asymptotics, as ε → 0, of the minimax error probabilities in the problem
at hand. Namely, for a (randomized) test ψ (i.e., a measurable function of the ob-
servation y = {yk}k∈N taking values in [0,1]), the null hypothesis is rejected with
probability ψ(y) and is accepted with probability 1 − ψ(y). Let Pε,η be the prob-
ability measure for the GSM (2.2), and denote by Eε,η the expectation over this
probability measure. Let αε(ψ) = Eε,0ψ be its type I error probability, and let
βε(
ε,ψ) = supη∈
ε

βε(η,ψ), βε(η,ψ) = Eε,η(1 − ψ), be its maximal type II
error probability. We consider two criteria of asymptotic optimality:
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(1) The first one corresponds to the classical Neyman–Pearson criterion. For α ∈
(0,1), we set βε(
ε,α) = infψ : αε(ψ)≤α βε(
ε,ψ). We call a family of tests ψε,α

asymptotically minimax if αε(ψε,α) ≤ α +o(1), βε(
ε,ψε,α) = βε(
ε,α)+o(1),

where o(1) is a family tending to zero (here, and in what follows, unless otherwise
stated, all limits are taken as ε → 0).

(2) The second one corresponds to the total error probabilities. Let γε(
ε,ψ)

be the sum of the type I and the maximal type II error probabilities, and let γε(
ε)

be the minimax total error probability, that is, γε(
ε) = infψ γε(
ε,ψ), where the
infimum is taken over all possible tests. We call a family of tests ψε asymptotically
minimax if γε(
ε,ψε) = γε(
ε)+o(1). It is known that (see, e.g., [11], Chapter 2)
that

βε(
ε,α) ∈ [0,1 − α], γε(
ε) = inf
α∈(0,1)

(
α + βε(
ε,α)

) ∈ [0,1].(2.5)

We consider the problems of rate and sharp asymptotics for the error probabili-
ties in the minimax setup. The rate optimality problem corresponds to the study of
the conditions for which γε(
ε) → 1 and γε(
ε) → 0 and, under the conditions of
the last relation, to the construction of asymptotically minimax consistent families
of tests ψε , that is, such that γε(
ε,ψε) → 0.

For the set of the form (2.4), we use the notation γε(
q(rε)) = γε(rε) and
βε(
q(rε), α) = βε(rε, α), and we are interested in the minimal decreasing rates
for the sequence rε such that γε(rε) → 0. Namely, we say that the positive se-
quence r∗

ε → 0 is a separation rate if

γε(rε) → 1, βε(rε, α) → 1 − α for any α ∈ (0,1)
(2.6)

as rε/r∗
ε → 0,

γε(rε) → 0, βε(rε, α) → 0 for any α ∈ (0,1)
(2.7)

as rε/r∗
ε → ∞.

In other words, it means that, for small ε, one can detect all sequences η ∈ 
q(rε)

if the ratio rε/r∗
ε is large, whereas if this ratio is small, then it is impossible to

distinguish between the null and the alternative hypothesis, with small minimax
total error probability. Hence, the rate optimality problem corresponds to finding
the separation rates r∗

ε and to constructing asymptotically minimax consistent fam-
ilies of tests.

On the other hand, the sharp optimality problem corresponds to the study of the
asymptotics of the quantities βε(
ε,α), γε(
ε) (up to vanishing terms) and to the
construction of asymptotically minimax families of tests ψε,α and ψε , respectively.
We shall see (see Section 4.1) that often the sharp asymptotics are of Gaussian
type, that is,

βε(rε, α) = �
(
H(α) − uε

) + o(1), γε(rε) = 2�(−uε/2) + o(1),(2.8)
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where � is the standard Gaussian distribution function, and H(α) is its (1 − α)-
quantile, that is, �(H(α)) = 1 − α. The quantity uε = uε(rε) is the value of the
specific extreme problem (3.1) on the sequence space l2, and the extreme sequence
of this problem determines the structure of the asymptotically minimax families of
tests ψε,α and ψε . Moreover, we shall see that if uε(rε) → ∞, then γε(rε) →
0, βε(rε, α) → 0, and if uε(rε) → 0, then γε(rε) → 1, βε(rε, α) → 1 − α for any
α ∈ (0,1); that is, the family uε(rε) characterizes distinguishability in the testing
problem. The separation rates r∗

ε are usually determined by the relation uε(r
∗
ε ) � 1

(see, e.g., [8, 11]). Hence, sharp and rate optimality problems correspond to the
study of the extreme problem (3.1) and of the asymptotics of the family uε(rε).

3. Minimax signal detection in ill-posed inverse problems: A short descrip-
tion of some of the main results. Sharp and rate optimality results for the spe-
cific ill-posed inverse problems under consideration are discussed in detail in Sec-
tion 4. We give below a short description of the corresponding results for mildly
and severely ill-posed inverse problems with lq -ellipsoids, q ∈ (0,2], for Sobolev
and analytic classes of functions.

We consider the hypothesis testing problem (2.3) and (2.4) in the GSM (2.2).
For the “standard” case q = 2, consider the extreme problem

u2
ε = u2

ε(rε) = 1

2ε4 inf
η∈
(rε)

∑
k∈N

η4
k.(3.1)

Suppose that 
(rε) �= ∅ and uε > 0, and let there exist an extreme sequence
{η̃k}k∈N in the extreme problem (3.1). Denote4

wk = η̃2
k√

2
∑

k∈N η̃4
k

, k ∈ N, w0 = sup
k∈N

wk,(3.2)

and consider the families of test statistics and tests

tε = ∑
k∈N

wk

(
(yk/ε)

2 − 1
)
, ψε,H = 1{tε>H },(3.3)

where 1A denotes indicator function of a set A.
The key tool for the study of the above mentioned hypothesis testing problem is

(the general) Theorem 4.1. It shows that the family uε = uε(rε) determines dis-
tinguishability in the problem; if w0 = o(1), then it also determines the sharp
asymptotics (2.8). The rate optimal tests correspond to a weighted χ2-statistic tε
of the form (3.3). The main reason is that, for q = 2, the problem (3.1) is quadrat-
ically convex or can be reduced to a convex problem.5 The key idea is that the
χ2-distance between P0 the probability measure of the observations under the null

4The values of η̃k , wk , k ∈ N, and w0 depend on ε, that is, η̃k = η̃k,ε , wk = wk,ε , k ∈ N, and
w0 = w0,ε .

5Rate optimal tests of simpler structure are also given in the supplementary material [10], Sections
7–9.
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hypothesis and the mixture Pπη over the product symmetric two-points prior πη

for a point η ∈ 
(rε) is characterized by the quantity
∑

k∈N η4
k , which leads to the

extreme problem (3.1). Moreover, if w0 = o(1), then the Bayesian log-likelihood
ratio is asymptotically Gaussian under P0, that is,

log(dPπη̃
/dP0) = −u2

ε/2 + uεtε + δε,

where uε is given by (3.1), tε is given by (3.3) and is asymptotically standard Gaus-
sian and δε → 0 in P0-probability. This yields the lower bounds of the Gaussian
form. On the other hand, the choice of the optimal coefficients of the test statistic tε
given by (3.3) leads to a maximin problem that is reduced to the extreme problem
(3.1) by convexity arguments. This yields the corresponding upper bounds. On the
other hand, if w0 �= o(1), then the test statistic tε given by (3.3) is not asymptoti-
cally Gaussian. This is due to that fact that, in this case, ak and bk , k ∈ N, converge
fast enough as k increases, implying that only a small number of observations is
important. [Often, but not always, using embedding properties, these results can
be extended to the case q ∈ (0,2); see Remark 4.11.]

The asymptotics of the quality of testing uε(rε) as rε → 0 is presented in Ta-
ble 1, where c1 = c1(α,β) > 0, c2 = c2(α,β) > 0 are some constants. We have
the sharp asymptotics of the form (2.8) for mildly ill-posed inverse problems with
Sobolev and analytic classes of functions, while the derived asymptotically mini-
max tests are based on weighted χ2-statistics with weights wk ≥ 0,

∑
k w2

k = 1/2
and are determined by the extreme problem (3.1). For severely ill-posed inverse
problems, however, we do not have sharp asymptotics of minimax error probabili-
ties but, instead, we get distinguishability conditions [i.e., γε(rε) → 0 if and only if
uε(rε) → ∞ and γε(rε) → 1 iff uε(rε) → 0]. The main reason is that the weights
are not “uniformly small,” that is, there exist a few coefficients wk that are bounded
away from zero, and, hence, in this case, we do not have asymptotic Gaussianity.

Furthermore, the separation rates r∗
ε as ε → 0 are presented in Table 2. (Similar

nonasymptotic minimax rates are recently given in [12].) Note that, despite the fact
that we have no sharp asymptotics for severely ill-posed inverse problems, we get
the sharp separation rates for severely ill-posed inverse problems with Sobolev f ,
when ak ∼ kα and bk � exp(−βk), k ∈ N [i.e., γε(rε) → 0 as lim rε/r∗

ε > 1 and
γε(rε) → 1 as lim rε/r∗

ε < 1].

TABLE 1
The asymptotics uε(rε) as rε → 0

Sobolev classes Analytic classes
Detection problem (ak = kα) (ak = exp{αk})

Mildly ill-posed (σk = kβ ) c1ε−2r
(4α+4β+1)/2α
ε c2ε−2r2

ε (log r−1
ε )−2β−1/2

Severely ill-posed (σk = exp{βk}) ε−2r2
ε e−2βr

−1/α
ε ε−2r

2(α+β)/α
ε
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TABLE 2
The separation rates r∗

ε as ε → 0

Sobolev classes Analytic classes
Detection problem (ak = kα) (ak = exp{αk})

Mildly ill-posed (σk = kβ ) ε4α/(4α+4β+1) ε(log ε−1)β+1/4

Severely ill-posed (σk = exp{βk}) ((log ε−1)/β)−α εα/(α+β)

We do not present the results for extremely ill-posed inverse problems with
generalized analytic f in this short description because the asymptotics are more
complicated in this case. Roughly speaking, these asymptotics are determined by a
piecewise linear function ulin

ε = ulin
ε (rε) and, principally, seem to be of a new type;

see Section 4.6 and remarks therein for details. (Moreover, in subsequent sections,
we consider this case only for q = 2.)

Consider now the “sparse” case q ∈ (0,2). Then, the results noted above still
hold true for severely ill-posed inverse problems with Sobolev f or analytic f . For
mildly ill-posed inverse problems with analytic f , we also get the same separation
rates r∗

ε . However, the situation for mildly ill-posed inverse problems with Sobolev
f is more delicate. More precisely, let α > 0, β > 0 and set λ = (α + β)/2 − β/q .
If λ > 0, then the sharp asymptotics are of the Gaussian type (2.8) with

uε = c3ε
−(2α+1/q−1/2)/(α+β(1−2/q))r(2(α+β)+1/q)/(α+β(1−2/q))

ε

for some constant c3 = c3(α,β, q) > 0, while the separation rates r∗
ε are of the

form

r∗
ε = ε(2α+1/q−1/2))/(2(α+β)+1/q).

The corresponding rate optimal tests are of more complicated structure and are
based on a different extreme problem; see Section 4.7.

On the other hand, if λ ≤ 0, then the sharp asymptotics are of the following
degenerate type:

βε(α) = (1 − α)�(−Dε) + o(1), γε = �(−Dε) + o(1),

where Dε = n
−β
ε rε/ε − √

2 log(nε), nε = r
−1/α
ε , while the separation rates r∗

ε are
of the form

r∗
ε = �εα/(α+β)(log

(
ε−1))α/2(α+β)

, � = (
2/(α + β)

)α/2(α+β)
.

The corresponding rate optimal tests are based on a simple thresholding rule.
It seems natural to compare the separation rates r∗

ε in the detection problem
with the minimax accuracy Rε in the corresponding estimation problem using loss
functions that correspond to the norm which is used for bounding the alternative
away from zero. We compare below the above mentioned minimax rates of test-
ing with the corresponding minimax rates of estimation. The minimax estimation
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TABLE 3
The estimation rates Rε = Rε(F ) as ε → 0

Sobolev classes Analytic classes
Estimation problem (ak = kα) (ak = exp{αk})

Mildly ill-posed (σk = kβ ) ε2α/(2α+2β+1) ε(log ε−1)β+1/2

Severely ill-posed (σk = exp{βk}) (log ε−1)−α εα/(α+β)

problem for the GWNM (1.1) [or, equivalently, for the GSM (1.2)] was studied
very intensively in statistical ill-posed inverse problems; see, for example, [1] (and
references therein), [2, 3, 5] and [6]. The main object of the study is the minimax
quadratic risk, defined by R2

ε (F ) = inf
f̂

supf ∈F Eε,f ‖f̂ − f ‖2, where the infi-

mum is taken over all possible estimators f̂ of f , based on observations from the
GWNM (1.1).

For the main types of the ill-posed inverse problems and classes of functions
under consideration, with q = 2, the estimation rates Rε = Rε(F ) as ε → 0 are
presented in Table 3; see, for example, [1]. For mildly ill-posed inverse problems
with Sobolev f , q ∈ (0,2), one has, for λ > 0,

Rε � ε(α−1/2+1/q)/(α+β+1/q),

while, for λ < 0, the estimation rates Rε coincide with the separation rates r∗
ε

in the corresponding detection problem; see, for example, [11], Section 2.8, and
references therein. Observe that the minimax rates of testing are faster than the
corresponding minimax rates of estimation (as it is common in nonparametric in-
ference, see, e.g., [11], Sections 2.10 and 3.5.1), except for the cases of mildly
ill-posed inverse problems with Sobolev f , q ∈ (0,2) and λ ≤ 0, and the cases
of severely ill-posed inverse problems with Sobolev f or analytic f , q = 2. [To
the best of our knowledge, we are not aware of any minimax estimation results
with the case of severely ill-posed inverse problems for Sobolev f or analytic f ,
q ∈ (0,2).]

Returning to the signal detection problem, note that, except for the mildly ill-
posed inverse problems with Sobolev f , q ∈ (0,2) and λ ≤ 0, or analytic f ,
the aforementioned separation rates r∗

ε still hold true for the known parameters
(α,β, q) associated with the classes of functions and the ill-posed inverse prob-
lems under consideration. For these cases, the rate-optimal tests also depend on
the parameters (α,β, q). In practice, the parameters α and q associated with the
considered functional classes are typically unknown and, very often, the statis-
tician is not confident about the value of the parameter β associated with the
sequence bk , k ∈ N. For unknown parameters (α,β, q) ∈ � ⊂ R

2+ × (0,2] :=
(0,∞) × (0,∞) × (0,2], we have the so-called adaptive problems: in order to
distinguish between the null hypothesis and the “combined” alternative, which
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TABLE 4
The adaptive separation rates rad

ε as ε → 0

Sobolev classes Analytic classes
Detection problem (ak = kα) (ak = exp{αk})

Mildly ill-posed (σk = kβ ) (ε̃1)4α/(4α+4β+1) ε(log ε−1)β+1/4

Severely ill-posed (σk = exp{βk}) ((log ε−1)/β)−α (ε̃2)α/(α+β)

corresponds to a wide enough compact set � ⊂ R
2+ × (0,2], it does not suffice

to just require uε = uε(rε(α,β, q),α,β, q) → ∞ for all (α,β, q) ∈ �; instead,
one needs that it should tend to ∞ faster than some family uad

ε → ∞, which is a
“payment” for adaptation; see [13].

Adaptive rate optimality results for the specific ill-posed inverse problems un-
der consideration are discussed in detail in Section 5. Below, we give a short de-
scription of these results for mildly and severely ill-posed inverse problems with
Sobolev f or analytic f , q ∈ (0,2].

For mildly ill-posed inverse problems with Sobolev f , λ ≤ 0, or analytic f , one

has uad
ε � 1, while for Sobolev f , with λ > 0, one has uad

ε =
√

log log ε−1. On the
other hand, for severely ill-posed inverse problems with Sobolev f or analytic f

(as well as for extremely ill-posed inverse problems for generalized analytic f ,
q = 2), one has uad

ε = log log ε−1. These yield the adaptive separation rates rad
ε

as ε → 0 presented in Table 4 (here q = 2 for mildly ill-posed problems with

Sobolev f ), where ε̃1 = ε 4
√

log log ε−1 and ε̃2 = ε
√

log log ε−1. On the other hand,
for the “sparse” case q ∈ (0,2) and λ > 0, for mildly ill-posed inverse problems
with Sobolev f , the adaptive separation rates rad

ε are of the form

rad
ε = ε̃

(2α+1/q−1/2))/(2(α+β)+1/q)
2 .

As we shall see in Section 5, the rate-optimal adaptive tests are of rather sim-
ple structure for all problems under consideration [except for the mildly ill-posed
problems with Sobolev f , q ∈ (0,2)]: they are based on combinations of tests
based on a grid of centered and normalized statistics of χ2-type and on simple
thresholding. For mildly ill-posed problems with Sobolev f , q ∈ (0,2), the rate-
optimal adaptive tests are, however, more complicated; see [11], Chapter 7.

Finally, we mention that, in most cases, the arguments for q = 2 do not work for
q ∈ (0,2) [e.g., for mildly ill-posed inverse problems with Sobolev f , q ∈ (0,2)];
instead, we have different extreme problems in the space of sequences of prob-
ability measures. The key ideas for the proofs of the main results for 0 < q < 2,
as well as possible extensions to 0 < q ≤ ∞ and to a wider range of sets under
the alternative (i.e., to replace the constraint in the �2-norm by a constraint in the
�p-norms, 0 < p ≤ ∞), are discussed in some detail in the supplementary material
[10], Section 10.
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4. Minimax signal detection in ill-posed inverse problems: Rate and sharp
asymptotics. In this section, we consider the GSM (2.2) and the hypothesis test-
ing problem (2.3) and (2.4).

4.1. A general result for lq -ellipsoids: The “standard” case q = 2.

THEOREM 4.1. Let q = 2, let uε be determined by the extreme problem (3.1),
let the coefficients wk , k ∈ N, and w0 be as in (3.2) and consider the family of tests
ψε,H given by (3.3).

(1) (a) If uε → 0, then βε(rε, α) → 1−α for any α ∈ (0,1) and γε(rε) → 1; that
is, minimax testing is impossible. If uε = O(1), then lim infβε(rε, α) > 0 for any
α ∈ (0,1) and lim infγε(rε) > 0; that is, minimax consistent testing is impossible.

(b) If uε � 1 and w0 = o(1), then the family of tests ψε,H of the form (3.3)
with H = H(α) and H = uε/2 are asymptotically minimax, that is,

αε(ψε,H(α)) ≤ α + o(1), βε

(

(rε),ψε,H(α)

) = βε(rε, α) + o(1),

γε

(

(rε),ψε,uε/2

) = γε(rε) + o(1),

and the sharp asymptotics (2.8) hold true.
(2) If uε → ∞, then the family of tests ψε,H of the form (3.3) with H ∼

cuε are asymptotically minimax consistent for any c ∈ (0,1), that is, γε(
(rε),

ψε,Tε ) → 0.

The proof is given in the supplementary material [10], Section 11.1.
Theorem 4.1 shows that the asymptotics of the quality of testing is determined

by the asymptotics of values uε of the the extreme problem (3.1). This latter prob-
lem is studied by using Lagrange multipliers. Then the extreme sequence in the
above mentioned extreme problem is of the form

η̃2
k = z2

0σ
2
k

(
1 − Aa2

k

)
+, k ∈ N,(4.1)

where (a)+ = max{0, a}, and the quantities z0 = z0,ε and A = Aε are determined
by the equations ∑

k∈N

σ 2
k η̃2

k = r2
ε ,

∑
k∈N

a2
kσ

2
k η̃2

k = 1.(4.2)

Note that the quantity A determines the efficient dimension m in the specific ill-
posed inverse problems considered below: if ak is an increasing sequence (it is
assumed further), the efficient dimension is a quantity m = mε ∈ [1,∞) such that
Aa2[m] ≤ 1 < Aa2[m]+1.

REMARK 4.1. Since, in the ill-posed problems under consideration, σk → ∞
as k → ∞, it is immediate that

∑
k∈N σ 4

k = ∞. Under this condition, and the fact
that ak → ∞ as k → ∞, one can see that, for rε small enough, the equations in
(4.2) have a unique solution; see Proposition 11.2 in the supplementary material
[10], Section 11.9.
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REMARK 4.2. Let uε = uε(rε) be the value of the extreme problem (3.1)
with a = {ak}k∈N and σ = {σk}k∈N associated with 
ε = 
(rε) given by (2.4),
and let ũε = ũε(rε) be the corresponding value of the extreme problem similar
to (3.1) with ã = Ca = {Cak}k∈N and σ̃ = Dσ = {Dσk}k∈N in (2.4), for some
positive constants C and D. Then it is easily seen that the relation ũε(rε) =
(CD)−2uε(Crε) holds true.

4.2. Application to mildly ill-posed inverse problems with the Sobolev class of
functions. Consider first the “standard” case q = 2.

THEOREM 4.2. Let q = 2, ak = kα and σk = kβ , k ∈ N, α > 0, β > 0.

(a) The sharp asymptotics (2.8) hold with the value uε of the extreme problem
(3.1) determined by (11.10) in [10].

(b) The asymptotically minimax family of tests ψε,H are determined by the fam-
ily of test statistics tε given by (3.3) with wk , k ∈ N, and w0 as in (3.2), and with
{η̃k}k∈N given by (11.9) with m determined by (11.10) in [10].

(c) The separation rates are of the form

r∗
ε = ε4α/(4α+4β+1).(4.3)

The proof is given in the supplementary material [10], Section 11.3.

REMARK 4.3. It follows from the evaluations of the functions J0, J1 and J2
used to express (4.2) (see (11.2) in [10]) that their asymptotics are determined by
the tails of the sequences ak = kα and σk = kβ , k ∈ N, α > 0, β > 0. For this
reason, in view of Remark 4.2, we get the sharp asymptotics (11.11) in [10] for
the sequences ak ∼ kα and σ ∼ kβ , k ∈ N, α > 0, β > 0, and similar rate asymp-
totics for the sequences ak � kα , σ � kβ , k ∈ N, α > 0, β > 0. In both cases, the
separation rates are still of the form (4.3).

Unlike the case q = 2, the “sparse” case q ∈ (0,2) is not directly linked to
Theorem 4.1; it will be considered separately in Section 4.7.

4.3. Application to severely ill-posed inverse problems with the class of analytic
functions.

THEOREM 4.3. Let q ∈ (0,2], ak = exp(αk) and σk = exp(βk), k ∈ N, α >

0, β > 0.

(a) The asymptotically minimax consistent family of tests ψε,H are determined
by the family of test statistics tε given by (3.3) with wk , k ∈ N, as in (3.2), and with
{η̃k}k∈N given by (11.17) with m determined by (11.18) in [10].
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(b) The separation rates are of the form

r∗
ε = εα/(α+β).(4.4)

The proof is given in the supplementary material [10], Section 11.5.

REMARK 4.4. We do not consider sharp asymptotics in this case, since the
assumption w0 = o(1) does not hold for β > 0 in the case q = 2.

REMARK 4.5. Similar to Remark 4.3, the asymptotics (11.19) in [10] hold
true for the sequences ak � exp(αk) and σk � exp(βk), k ∈ N, α > 0, β > 0. In
this case, the separation rates are still of the form (4.4). Remark 4.4 still applies to
these cases, too.

4.4. Application to severely ill-posed inverse problems with the Sobolev class
of functions.

THEOREM 4.4. Let q ∈ (0,2], ak = kα and σk = exp(βk), k ∈ N, α > 0,
β > 0.

(a) The asymptotically minimax consistent family of tests ψε,H are determined
by the family of test statistics tε given by (3.3) with wk , k ∈ N, as in (3.2), and with
{η̃k}k∈N given by (11.20) with m determined by (11.21) in [10].

(b) The separation rates are of the form

r∗
ε = ((

log
(
ε−1))

/β
)−α

.(4.5)

The proof is given in the supplementary material [10], Section 11.6.

REMARK 4.6. A stronger result is possible in this case. In view of (11.21)
in [10], the relation (4.5) determines sharp separation rates r∗

ε in the following
sense:

(a) if lim inf(rε/r∗
ε ) > 1, then uε → ∞, that is, γε(rε) → 0;

(b) if lim sup(rε/r∗
ε ) < 1, then uε → 0, that is, γε(rε) → 1, and the minimax

testing is impossible.

Moreover the relation (r∗
ε )−1/α = ((log(ε−1) − α log log(ε−1))/β) + O(1), de-

termines the sharper separation rates r∗
ε in the following sense:

(c) if lim inf(r−1/α
ε − (r∗

ε )−1/α) = −∞, then uε → ∞, that is, γε(rε) → 0;

(d) if lim sup(r
−1/α
ε − (r∗

ε )−1/α) = +∞, then uε → 0, that is, γε(rε) → 1, and
the testing is asymptotically impossible.

REMARK 4.7. We do not consider sharp asymptotics in this case, since the
assumption w0 = o(1) does not hold for β > 0 in the case q = 2.
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REMARK 4.8. Similar to Remark 4.3, the asymptotics (11.22) in [10] and the
sharp separation rates (4.5) mentioned in Remark 4.6 hold true for the sequences
σk � exp(βk), k ∈ N, β > 0. The dependence on the sequence {ak}k∈N is, how-
ever, more delicate. One can actually show that the sharp separation rates (4.5)
mentioned in Remark 4.6 are still of the same form for ak ∼ kα , k ∈ N, α > 0.
Remark 4.7 still applies to these cases too.

4.5. Application to mildly ill-posed inverse problems with the class of analytic
functions. Here, we consider the “standard” case q = 2. [The “sparse” case q ∈
(0,2) will be discussed in Remark 4.11.]

THEOREM 4.5. Let q = 2, ak = exp(αk) and σk = kβ , k ∈ N, α > 0, β > 0.

(a) The sharp asymptotics (2.8) hold with the the value uε of the extreme prob-
lem (3.1) determined by (11.29) in [10].

(b) The asymptotically minimax family of tests are determined by the test statis-
tics tε given by (3.3) with wk , k ∈ N and w0 as in (3.2), and with {η̃k}k∈N given by
(11.24) with m determined by (11.30) in [10].

(c) The separation rates are of the form

r∗
ε = ε

(
log ε−1)β+1/4

.(4.6)

The proof is given in the supplementary material [10], Section 11.7.

REMARK 4.9. It is also easy to see that, uniformly over (α,β) ∈ �, for any
compact set � ⊂ R

2+, the efficient dimension m = mε(α,β) satisfies

mε(α,β) ∼ 2 log(ε−1) − log(uε)

2α
(4.7)

� log
(
ε−1)

as log(uε) = o
(
log

(
ε−1))

.

REMARK 4.10. As in Remark 4.3, the asymptotics (11.30) in [10] hold true
for the sequences ak ∼ exp(αk) and σk ∼ kβ , k ∈ N, α > 0, β > 0. Similar rate
asymptotics hold true for the sequences ak � exp(αk) and σk � kβ , k ∈ N, α > 0,
β > 0. In both cases, the separation rates are still of the form (4.6).

REMARK 4.11. The rate asymptotics of Theorem 4.5 hold true uniformly in
q ∈ [δ,2], for any δ ∈ (0,2). Indeed, in view of the embedding


q ⊂ 
2, 
q(rε) ⊂ 
2(rε)(4.8)

for the sets defined by (2.4), it suffices to establish the lower bounds. Let 
α
q(L) =

{η ∈ l2 :
∑

k∈N | exp(αk)kβηk|q ≤ Lq}. [Note that the set 
α
q (1) just corresponds



1538 Y. I. INGSTER, T. SAPATINAS AND I. A. SUSLINA

to the set under the alternative considered above.] For any α1 = α + δ, δ > 0, we
have the embedding



α1
2 (cL) ⊂ 
α

q (L), c = c(q, δ) = (
exp

(
2qδ/(2 − q)

) − 1
)(2−q)/2q(4.9)

and c(q, δ) → exp(δ) as q ↗ 2. Using Hölder’s inequality, the above embedding
follows easily on noting that

∑
k∈N

∣∣eαkkβηk

∣∣q ≤
(∑

k∈N

(
eαkkβηk

)2
)2/q(∑

k∈N

e−2kqδ/(2−q)

)1−q/2

=
(
c−2

∑
k∈N

(
eαkkβηk

)2
)2/q

.

Since the separation rates from Theorem 4.5 do not depend on α and c, in view
of Remark 4.10, the rate asymptotics of Theorem 4.5 hold true uniformly in q ∈
[δ,2], for any δ ∈ (0,2).

4.6. Application to extremely ill-posed inverse problems with the class of gener-
alized analytic functions. We consider the case q = 2 only. Assume that {ak}k∈N

and {σk}k∈N are increasing sequences such that

lim
k→∞σk+1/σk → ∞, lim inf

k→∞ ak+1/ak = c, c ∈ (1,∞].(4.10)

In order to describe the asymptotics of the value uε = uε(r) of the extreme problem
(3.1), we introduce the following functions.

Let m ∈ N, m ≥ 2, �∗
m = [1/am,1/am−1], and for r < 1/a1 take m = m(r) ≥ 2

such that r ∈ �∗
m. Consider now the piecewise quadratic (in r2) function defined

by

(
u∗

ε(r)
)2 = 1

2ε4(a2
m − a2

m−1)
2

(
(a2

mr2 − 1)2

σ 4
m−1

+ (1 − a2
m−1r

2)2

σ 4
m

)
,(4.11)

and the piecewise linear (in r2) function defined by

ulin
ε (r) = 1

ε2(a2
m − a2

m−1)

(
a2
mr2 − 1

σ 2
m−1

+ 1 − a2
m−1r

2

σ 2
m

)
.(4.12)

THEOREM 4.6. Let uε = uε(r) be the value of the extreme problem (3.1).
Let (u∗

ε(r))
2 be the piecewise quadratic (in r2) function defined by (4.11), and let

ulin
ε (r) be the piecewise linear (in r2) function defined by (4.12), where {ak}k∈N

and {σk}k∈N be increasing sequences satisfying (4.10).

(a) (Sharp asymptotics of uε .) The families uε(r) and u∗
ε(r) are related by

uε(rε) ∼ u∗
ε(rε) as rε → 0.(4.13)
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(b) (Rate asymptotics of uε .) The families uε(r) and ulin
ε (r) are related by

ulin
ε (rε)

(
1/2 + o(1)

) ≤ uε(rε) ≤ ulin
ε (rε)

(
1/

√
2 + o(1)

)
as rε → 0.(4.14)

(c) (Distinguishability conditions.) Consider the GSM (2.2) and the hypothesis
testing problem (2.3) and (2.4). Then

γε(rε) → 0 if and only if ulin
ε (rε) → ∞;

γε(rε) → 1 if and only if ulin
ε (rε) → 0.

The proof is given in the supplementary material [10], Section 11.9.

REMARK 4.12. It is easy to see that relation (4.14) is true uniformly over all
sequences {ak}k∈N and {σk}k∈N such that σk+1/σk ≥ Bk , Bk → ∞, and ak+1/ak >

c, as k ≥ k0, k0 ≥ 1.

REMARK 4.13. We do not consider sharp asymptotics in this case, since the
assumption w0 = o(1) does not hold under assumption (4.10).

REMARK 4.14. The relation ulin
ε (r∗

ε ) � 1 determines the separation rates r∗
ε

that are rather sharp in the follows sense. Let r∗
ε = a−1

m for some m ∈ N,m →
∞, and let r2 = (1 + b)(r∗

ε )2 ∈ (a−2
m ,a−2

m−1), b > 0. Then, one has ulin
ε (r) =

ulin
ε (r∗

ε )(1 + kmb), where, as m → ∞,

km = σ 2
m

σ 2
m−1

1 − (σm−1am−1/σmam)2

1 − (am−1/am)2

∼ σ 2
m

σ 2
m−1(1 − (am−1/am)2)

� σ 2
m

σ 2
m−1

→ ∞.

Therefore, in order to obtain ulin
ε (rε) → ∞, it suffices to take rε = r∗

ε (1 + δ) for
any δ > 0. On the other hand, let r2 = (1 − b)(r∗

ε )2 ∈ (a−2
m+1, a

−2
m ), b ∈ (0,1).

Then, similarly, one has ulin
ε (r) = ulin

ε (r∗
ε )(1 − lmb), where, as m → ∞,

lm = 1 − (σmam/σm+1am+1)
2

1 − (am/am+1)2 ∼ 1

1 − (am/am+1)2 � 1.

If am+1/am → ∞ as m → ∞, then, in order to obtain ulin
ε (rε) → 0, one needs

to take rε such that rε/r∗
ε → 0, and if am+1/am → c,1 < c < ∞, then, for

ulin
ε (rε) → 0, one needs to take rε < r∗

ε /c. Thus, the conditions for distinguisha-
bility and nondistinguishability could be nonsymmetric in these problems.

REMARK 4.15. Let us consider the example

ak = exp
(
αkτ )

, α > 0, τ ≥ 1, σk = exp
(
βkγ )

, β > 0, γ > 1.
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For the moment, let us forget that m ∈ N and define m = m(r) ∈ R+ by the equality
r = a−1

m , that is, m(r) = (log(r−1)/α)1/τ . Set also

ûε(r) = (εam(r)σm(r))
−2 = (r/ε)2 exp

(−2β
(
log

(
r−1)

/α
)γ /τ )

.

Observe that ûε(r) = ulin
ε (r) as r = a−1

m ,m ∈ N. On the other hand, one can check
that the function ûε(r) is a convex function in r2 for r > 0 small enough. There-
fore, ûε(r) < ulin

ε (r) as r �= a−1
m for any m ∈ N, and the condition ûε(rε) → ∞

implies ulin
ε (rε) → ∞. However, it is possible that ulin

ε (rε) → ∞ when ûε(rε) =
O(1), in general. For instance, let τ = γ . Then

ûε(r) = ε−2r2+2β/α.

If rε = a−1
m and ulin

ε (rε) � 1, then it was noted in Remark 4.14 that ulin
ε (rε(1 +

δ)) → ∞ for any δ > 0, but ûε(rε(1 + δ)) � 1. The same holds for γ < τ .
The relation ûε(r̃ε) � 1 determines the family r̃ε . Note that if rε/r̃ε → ∞, then

ûε(rε) → ∞, and since ulin
ε (r) ≥ ûε(r), this yields ulin

ε (rε) → ∞ and γε(rε) → 0
by Theorem 4.6. However, this family is not a family of separation rates, at least if
γ ≤ τ , because the condition rε/r̃ε → 0 does not guaranty that γε(rε) → 1.

More precisely, there exists a sequence εm → 0 and r̂m = o(r̃εm) such that
γεm(r̂m) → 0. In fact, observe that if γ ≤ τ , then the function ûε(r) satisfies [uni-
formly over ε > 0 since ε2 is a factor in uε(r)]

ûε(Br) � ûε(r) iff B � 1, r → 0.

Take a sequence m → ∞ and put rm = a−1
m , (r

(1)
m )2 = r2

m(1 + δm), r̂2
m = r2

m(1 + δ),
where δm → 0, δmσ 2

m/σ 2
m−1 → ∞, δ > 0. Observe that similarly to evaluations in

Remark 4.14, one has, uniformly over ε > 0,

ûε(r̂m) � ûε

(
r(1)
m

) � ûε(rm) = ulin
ε (rm) � ulin

ε

(
r(1)
m

) � ulin
ε (r̂m), m → ∞.

Take now r̃m and εm such that ûεm(r̃m) � ulin
εm

(r
(1)
m ) � 1. This implies ûεm(r̃m) �

ûεm(rm) and r̃m � rm � r̂m. By construction, we see that the sequence r̃m satisfies
ûεm(r̃m) � 1 and r̂m = o(r̃m), but ulin

εm
(r̂m) → ∞, which yields γεm(r̂m) → 0.

4.7. Mildly ill-posed inverse problems with lq -ellipsoids for Sobolev classes of
functions: The “sparse” case q ∈ (0,2). Unlike the “standard” case q = 2, the
sharp and rate optimality results for the “sparse” case q ∈ (0,2) are of different
nature and are not directly linked with Theorem 4.1, but can be obtained from a
hitherto unknown link with results obtained in another context and presented in
Sections 4.4.2–4.4.3 of [11]. For completeness and an immediate access to these
results, we formulate and present them below.

Consider the extreme problem

u2
ε = 2 inf

∑
i∈N

h2
i sinh2(

z2
i /2

)
,(4.15)



DETECTION IN ILL-POSED INVERSE PROBLEMS 1541

where the infimum is taken over sequences (hi, zi), hi ∈ [0,1], zi ≥ 0, i ∈ N, such
that ∑

i∈N

i2βhiz
2
i ≥ (

r̃2
ε /ε2)

,
∑
i∈N

iq(α+β)hiz
q
i ≤ (

1/εq)
,(4.16)

where r̃ε = rε(1 − δε), δε > 0, δε → 0, δε log(ε−1) → ∞.
Set λ = (α + β)/2 − β/q . If λ > 0, then there exist extreme sequences hi,ε ∈

(0,1], zi,ε > 0, in the problem (4.15) and (4.16), and we have the asymptotics of
the form

u2
ε ∼ c0nh2

0,(4.17)

where the quantities n = nε and h0 = h0,ε are determined by the relations

c1n
β+1/2h

1/2
0 ∼ rε/εc2n

α+β+1/qh
1/q
0 ∼ 1/ε(4.18)

for some constants cl = cl(α,β, q) > 0, l = 0,1,2, which, in turn, imply

uε ∼ c3ε
−(2α+1/q−1/2)/(α+β(1−2/q))r(2(α+β)+1/q)/(α+β(1−2/q))

ε(4.19)

for some constant c3 = c3(α,β, q) > 0. (The quantity n = nε → ∞ plays the role
of the “efficient dimension” in the problem.)

Set Qε,i =
√

2(log i + log log i + 2 log log(ε−1)) and consider the events

Yε =
{
y = {yi}i∈N :

(
sup
i∈N

|yi |/(εQε,i)
)

> 1
}

(4.20)

and the following families of test statistics:

lε(y) = u−1
ε

∑
i∈N

hε,iξ(yi/ε, zε,i), ξ(t, z) = ez2/2 cosh(tz) − 1(4.21)

and tests

ψG
ε,H = 1{lε(y)>H }∩Yε , ψD

ε = 1Yε , ψD
ε,α = α + (1 − α)1Yε .(4.22)

THEOREM 4.7. Let q ∈ (0,2), ak = kα and σk = kβ , k ∈ N, α > 0, β > 0, and
set λ = (α + β)/2 − β/q .

(a) If λ > 0, then the sharp asymptotics are of the Gaussian type (2.8) with uε

from (4.15). The tests ψG
ε,H of the form (4.22) with H = H(α) and H = uε/2 are

asymptotically minimax, that is,

αε

(
ψG

ε,H(α)

) ≤ α + o(1), βε

(

(rε),ψ

G
ε,H(α)

) = βε(rε, α) + o(1),

γε

(

(rε),ψ

G
ε,uε/2

) = γε(rε) + o(1).
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(b) If λ ≤ 0, then the sharp asymptotics are of the following degenerate
type: βε(rε, α) = (1 − α)�(−Dε) + o(1), γε(rε) = �(−Dε) + o(1), where Dε =
n

−β
ε rε/ε − √

2 log(nε), nε = r
−1/α
ε . The tests ψD

ε and (the randomized) tests ψD
ε,α

of the form (4.22) are asymptotically minimax, that is,

αε

(
ψD

ε,α

) = α + o(1), βε

(

(rε),ψ

D
ε,α

) = βε(rε, α) + o(1),

γε

(

(rε),ψ

D
ε

) = γε(rε) + o(1).

(c) If λ > 0, then the separation rates are of the form

r∗
ε = ε(2α+1/q−1/2))/(2(α+β)+1/q).

(d) If λ ≤ 0, then the sharp separation rates are of the form

r∗
ε = �εα/(α+β)(log

(
ε−1))α/2(α+β)

, � = (
2/(α + β)

)α/2(α+β)
.

Theorem 4.7 is obtained by taking into account the minimax hypothesis testing
framework considered in Section 2 and Theorems 4.5 and 6.1 in [11], noting (from
their proofs) that the events (thresholding rule) (4.155) in [11] can be replaced by
the events (thresholding rule) (4.20). Its proof is omitted. The key ideas of the
study are discussed in the supplementary material [10], Section 10.

REMARK 4.16. Similar to Remark 4.3, we get the sharp asymptotics (4.19)
for the sequences ak ∼ kα and σk ∼ kβ , k ∈ N, α > 0, β > 0, and similar rate
asymptotics for the sequences ak � kα , σ � kβ , k ∈ N, α > 0, β > 0. In both
cases, the separation rates are still of the form given in Theorem 4.7.

5. Minimax signal detection in ill-posed inverse problems: Adaptivity and
rate optimality. The families of tests described in Section 4.1 (except those de-
scribed in the supplementary material [10], Theorem 7.1) depend on a parameter
κ ∈ � ⊂ R

n+ × (0,2], n ≥ 2, associated with the sequences {ak}k∈N and {σk}k∈N,
and q ∈ (0,2], that are involved in the ill-posed inverse problems under consid-
eration, that are usually unknown in practice. For example, if ak = exp(αkτ ) and
σk = exp(βkγ ), k ∈ N, α > 0, τ ≥ 1, β > 0, γ > 1, and if q ∈ (0,2], then κ ∈ � =
{(α, τ,β, γ, q)} = (0,∞) ∪ [1,∞) ∪ (0,∞) ∪ (1,∞) ∪ (0,2] ⊂ R

4+ × (0,2].
It is of paramount importance to construct families of tests that do not depend on

the unknown parameter κ and, at the same time, provide the best possible asymp-
totical minimax efficiency. These families of tests are called adaptive (to the pa-
rameter κ), and the formal setting is as follows.

5.1. Adaptive distinguisability and adaptive separation rates. Let a set � =
{κ} and a family rε(κ), κ ∈ �, be given, where ε > 0 is small. Let the set

ε(κ, rε(κ)) be determined by the constraints (2.4) with ak = ak(κ), σk = σk(κ),
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k ∈ N, q = q(κ), and rε = rε(κ), and set 
ε(�) = ⋃
κ∈� 
ε(κ, rε(κ)). We are

interested in the following hypothesis testing problem:

H0 :η = 0 versus H1 :η ∈ 
ε(�).

We are aiming to find conditions for either γε(
ε(�)) → 1 or γε(
ε(�)) → 0,
and to constructing asymptotically minimax adaptive consistent families of tests
ψad

ε such that γε(
ε(�),ψad
ε ) → 0 as γε(
ε(�)) → 0.

Let uε(κ) = uε(κ, rε(κ)) be the value of the extreme problem (3.1) for the set

ε = 
ε(κ, rε(κ)). Set uε(�) = infκ∈� uε(κ). We are interested in how large
uε(�) should be in order to provide the relation γε(
ε(�)) → 0. We say that
the family uad

ε = uad
ε (�) → ∞ characterizes adaptive distinguishability if there

exist constants 0 < d = d(�) ≤ D = D(�) < ∞ such that

γε

(

ε(�)

) → 1 as lim sup
κ∈�

uε(κ)/uad
ε < d,

γε

(

ε(�)

) → 0 as lim inf
κ∈�

uε(κ)/uad
ε > D.

We call a family rad
ε (κ), κ ∈ �, such that uad

ε � uε(κ, rad
ε (κ)), the family of adap-

tive separation rates.
The relation γε(
ε(�)) → 0 is possible if uε(�) → ∞. It was shown in the

supplementary material [10], Theorem 7.1, that this relation suffices for the con-
struction of minimax adaptive consistent families of tests for mildly ill-posed in-
verse problems with the class of analytic functions. This implication, however,
does not hold in the remaining ill-posed inverse problems under consideration.
In these cases, adaptive distinguishability conditions and adaptive separation rates
are sought, and they are the goal of the subsequent sections. In contrast to the
above mentioned theorem, there is price to pay for the adaptation. We show that

uad
ε =

√
log log ε−1 for the mildly ill-posed inverse problems with the Sobolev

class of functions and uad
ε = log log ε−1 for other problems under consideration

(except the case mildly ill-posed inverse problems with the class of analytic func-

tions). These yield a loss in the separation rates in terms of an extra 4
√

log log ε−1

factor for the mildly ill-posed inverse problems with the Sobolev class, and in

terms of an extra
√

log log ε−1 factor for severely problems with analytic classes
of functions. (A similar loss in the separation rates for a well-posed signal detec-
tion problem was first observed in [13].)

As we shall show below, the derived families of tests are of simple structure.
In particular, for the mildly ill-posed inverse problems with the Sobolev class of
functions, these are of the form

ψad
ε = 1{supk tε,mk

>Hk}, mk = 2k, Hk =
√

C log(k), k ≥ L,

where C > 2, for an integer-valued family L = Lε , Lε → ∞, and

tε,m = 1√
2m

m∑
k=1

(
(yk/ε)

2 − 1
)

(5.1)
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are centered and normalized version of χ2-statistics that correspond to the first m

observations.
For the severely ill-posed inverse problems with the Sobolev class of functions

or the class of analytic functions, the derived families of tests are of the form

ψad
ε = 1{supk |yk |>εHk}, Hk =

√
2 log(k), k < L,

Hk =
√

C log(k), k ≥ L,

where C > 2, for an integer-valued family L = Lε , Lε → ∞.
Finally, for the severely ill-posed inverse problems with the generalized analytic

class of functions, the derived tests are of the form

ψad
ε = 1{supk |yk |>εTε,k}, Tε,k = max

(
Tε,

√
2
(
log(k) + log log(k)

))
for a family Tε → ∞.

5.1.1. Mildly ill-posed inverse problems with the Sobolev class of functions.
Consider first the “standard” case q = 2. Let ak = kα and σk = kβ , k ∈ N, α > 0,
β > 0. Set κ = (α,β), and let � be a compact subset of R

2+. We show that, under

a weak assumption on the set �, uad
ε =

√
log log(ε−1). This corresponds to the

adaptive separation rates

rad
ε (κ) = (

ε
4
√

log log
(
ε−1

))4α/(4α+4β+1)
.(5.2)

The rate optimal adaptive family of tests is of the following structure. Take a
collection mk = 2k , k ∈ N, k ≥ L = Lε , for an integer-valued family Lε → ∞,
Lε = o(log(ε−1)), and a family of test statistics tε,mk

of the form (5.1). Consider
the thresholds and tests

Hk =
√

C log(k), Yε = {y : tε,mk
> Hk,∀k ≥ Lε}, ψε = 1Yε ,(5.3)

where C > 2. Denote also

φ(κ) = 4

4α + 4β + 1
, φ(�) = {

φ(κ) :κ ∈ �
} ⊂ (0,∞).(5.4)

THEOREM 5.1. Let q = 2, ak = kα and σk = kβ , k ∈ N, α > 0, β > 0.

(a) (Lower bounds.) Let the set φ(�) given by (5.4) contain an inter-
val [a, b],0 < a < b < ∞. Then, there exists constant d > 0 such that if

lim supκ∈� uε(κ)/
√

log log(ε−1) ≤ d , then γε(
ε(�)) → 1.
(b) (Upper bounds.) For the family of tests ψε given by (5.3), α(ψε) = o(1), and

there exists constant D = D(�) > 0 such that if lim infκ∈� uε(κ)/
√

log log(ε−1) >

D, then βε(ψε,
ε(�)) = o(1).
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(c) (Adaptive separation rates.) The adaptive separation rates rad
ε (κ), κ ∈ �,

are given by (5.2).

The proof is given in the supplementary material [10], Section 11.11.

REMARK 5.1. In view of Remark 4.3, similar rate optimality results and the
same adaptive separation rates hold for the sequences ak ∼ kα and σ ∼ kβ , k ∈ N,
α > 0, β > 0, and the sequences ak � kα and σ � kβ , k ∈ N, α > 0, β > 0.

As in the case of rate and sharp asymptotics, the “sparse” case q ∈ (0,2) is not
directly linked will Theorem 4.1. Rate-optimal adaptive tests in this case, however,
can also be constructed, based on the family of tests considered in Section 7.4.1
of [11], Chapter 7. Their construction is omitted.

5.1.2. Severely ill-posed inverse problems with the class of analytic functions.
Let ak = exp(αk) and σk = exp(βk), k ∈ N, α > 0, β > 0. Set κ = (α,β, q), and
let � be a compact subset of R

2+ × (0,2]. We show that, under a weak assumption
on the set �, uad

ε = log log(ε−1). This corresponds to the adaptive separation rates

rad
ε (κ) = (

ε

√
log log

(
ε−1

))α/(α+β)
.(5.5)

The rate optimal adaptive family of tests is of the following structure. Take
an integer-valued family L = Lε , Lε → ∞, Lε = o(log log(ε−1)). Consider the
families of thresholds and tests

Hk =
{√

2 log(L), k < L,√
C log(k), k ≥ L,

Yε = {
y : |yk| > εHk

}
, ψε = 1Yε ,(5.6)

where C > 2. Denote also

φ(κ) = 1

2(α + β)
, φ(�) = {

φ(κ) :κ ∈ �
} ⊂ (0,∞).(5.7)

THEOREM 5.2. Let ak = exp(αk), σk = exp(βk), k ∈ N, α > 0, β > 0.

(a) (Lower bounds.) Let the set φ(�) given by (5.7) contains an inter-
val [a, b],0 < a < b < ∞. Then, there exists constant d > 0 such that if
lim supκ∈� uε(κ)/ log log(ε−1) ≤ d , then γε(
ε(�)) → 1.

(b) (Upper bounds.) For the family of tests ψε given by (5.6), α(ψε) = o(1) and
there exists constant D = D(�) > 0 such that if lim infκ∈� uε(κ)/ log log(ε−1) >

D, then βε(
ε(�),ψε) = o(1).
(c) (Adaptive separation rates.) The adaptive separation rates rad

ε (κ), κ ∈ �,
are given by (5.5).

The proof is given in the supplementary material [10], Section 11.12.
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REMARK 5.2. In view of Remark 4.5, similar rate optimality results and
the adaptive separation rates (5.5) hold for the sequences ak � exp(αk) and
σ � exp(βk), k ∈ N, α > 0, β > 0.

5.1.3. Severely ill-posed inverse problems with the Sobolev class of functions.
Let ak = kα and σk = exp(βk), k ∈ N, α > 0, β > 0. Set κ = (α,β, q), and let �

be a compact subset of R
2+ × (0,2]. We show that, under a weak assumption on

the set �, uad
ε = log log(ε−1). This corresponds to the adaptive separation rates

rad
ε (κ) =

(
2β

2 log(ε−1) − 2α log log(ε−1) − log log log(ε−1)

)α

(5.8)

∼
(

β

log(ε−1)

)α

.

The rate optimal adaptive family of tests is of the following structure. Take an
integer-valued family L = Lε , Lε → ∞, Lε = o(log log(ε−1)), and consider the
families of thresholds and tests given by (5.6).

THEOREM 5.3. Let ak = kα and σk = exp(βk), k ∈ N, α > 0, β > 0.

(a) (Lower bounds.) Let the set � contains an interval of (α,β) :β ∈ [1/2b,
1/2a], 0 < a < b < ∞, and a fixed α > 0. Then there exists constant d > 0 such
that if lim supκ∈� uε(κ)/ log log(ε−1) ≤ d , then γε(
ε(�)) → 1.

(b) (Upper bounds.) For the family of tests ψε given by (5.6), α(ψε) = o(1) and
there exists constant D = D(�) > 0 such that if lim infκ∈� uε(κ)/ log log(ε−1) >

D, then βε(ψε,
ε(�)) = o(1).
(c) (Adaptive separation rates.) The adaptive separation rates rad

ε (κ), κ ∈ �,
are given by (5.8).

The proof is given in the supplementary material [10], Section 11.13.

REMARK 5.3. It is worth mentioning that a stronger result is possible in this
case. In view of (11.21) in [10], relation (5.8) determines sharp adaptive separa-
tion rates rad

ε (κ), κ ∈ �, in the following sense:

(a) if lim inf(rε(κ)/rad
ε (κ)) > 1, then uε → ∞, that is, γε(rε) → 0;

(b) if lim sup(rε(κ)/rad
ε (κ)) < 1, then uε → 0, that is, γε(rε) → 1, and the min-

imax testing is impossible.

REMARK 5.4. In view of Remark 4.8, similar rate optimality results and the
adaptive separation rates (5.8) (as well as the sharp adaptive separation rates men-
tion in Remark 5.3) hold for the sequences ak ∼ kα and σ � exp(βk), k ∈ N,
α > 0, β > 0.
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5.1.4. Extremely ill-posed inverse problems with the class of generalized ana-
lytic functions. We consider the case q = 2 only. By the results of Section 4.6,
in order to obtain distinguishability conditions, we can replace uε(κ), κ ∈ �, by
ulin

ε (κ) = ulin
ε (κ, rε(κ)), determined by (4.12), by ak = ak(κ) and σk = σk(κ),

k ∈ N. Set ulin
ε (�) = infκ∈� ulin

ε (κ). We are interested in how large ulin
ε (�) should

be in order to γε(
ε(�)) → 0.
Assume below the uniform version of (4.10): let σk(κ) and ak(κ), k ∈ N, be

increasing sequences such that, for all κ ∈ � and some constants 0 < b < B ,

b ≤ a1(κ) ≤ B, b ≤ σ1(κ) ≤ B(5.9)

and, for some increasing sequence τk > 1, τk → ∞ and some c0 > 1 for all κ ∈ �

and k ∈ N,

σk+1(κ)/σk(κ) ≥ τk, ak+1(κ)/ak(κ) ≥ c0.(5.10)

Similar to uad
ε , one can consider a family ulin

ε,ad which characterizes adaptive
distinguishability. We show that, under some assumption on the set �, one has
ulin

ε,ad = log log(ε−1).
For κ ∈ � and for A > 0 large enough, let an integer m = m(A,κ) be defined

by the relations

am−1(κ)σm−1(κ) ≤ A < am(κ)σm(κ).(5.11)

Under (5.9) and (5.10), one has am−1σm−1 ≥ b2cm−2
0

∏m−2
k=1 τk, which yields

sup
κ∈�

m(A,κ) = o
(
log(A)

)
as A → ∞.(5.12)

Set M(A,�) = {m(A,κ) ∈ N :κ ∈ �},M(A,�) = #(M(A,�)). Since M(A,
�) ≤ maxm∈M(A,�) m, one has, by (5.12), M(A,�) = o(log(A)) as A → ∞. Let
m = m(A,κ) be defined by (5.11) and set L(A,�) := supκ∈� log(m(A,κ)). By
(5.12) we have, as A → ∞,

lim supL(A,�)/ log log(A) ≤ 1.(5.13)

For the lower bounds we suppose one can find quantities b > 0,C ≥ 1 such that

lim inf
A→∞ log

(
M(A,�)

)
/ log log(A) = b,

(5.14)
sup
κ∈�

ulin
ε

(
κ, rε(κ)

) ≤ Culin
ε (�).

[The first relation in (5.14) is fulfilled for the example mentioned in Remark 4.15,
at least if the set � = {(α, τ,β, γ )} contains an interior point.]

The rate optimal adaptive family of tests is of the following structure. Take a

family Tε → ∞ such that Tε = o(
√

log log(ε−1)), and take a family of sequences
Tε,k of the form Tε,k = max(Tε,

√
2(log(k) + log log(k))).

Consider the families of events and of tests

Yε = {
y : |yk| > εTε,k,∀k ∈ N

}
, ψε = 1Yε .(5.15)
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THEOREM 5.4. Consider the GSM (2.2) and the hypothesis testing problem
(2.3) and (2.4) for q = 2. Let {ak}k∈N and {σk}k∈N be increasing sequences satis-
fying (5.9) and (5.10).

(a) (Lower bounds.) Assume (5.14). Then there exists a constant d > 0 such
that if lim supulin

ε (�)/ log log(ε−1) ≤ d , then γε(
ε(�)) → 1.
(b) (Upper bounds.) Assume (5.13). For the family of tests ψε given by

(5.15), there exists a constant D > 0 such that if ulin
ε (�) > D log log(ε−1), then

γε(
ε(�),ψε) = o(1).
(c) (Adaptive separation rates.) The adaptive separation rates rad

ε (κ), κ ∈ �,
are determined by the relation ulin

ε,ad � ulin
ε (κ, rad

ε (κ)).

The proof is given in the supplementary material [10], Section 11.14.
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SUPPLEMENTARY MATERIAL

Detailed proofs and other material (DOI: 10.1214/12-AOS1011SUPP; .pdf).
In this supplement, we present relevant material and the detailed proofs of the
previous sections.
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[7] IBRAGIMOV, I. A. and KHAS’MINSKIĬ, R. Z. (1985). On nonparametric estimation of the
value of a linear functional in Gaussian white noise. Theory Probab. Appl. 29 18–32.

[8] INGSTER, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alterna-
tives. I, II, III. Math. Methods Statist. 2 85–114, 171–189, 249–268.

[9] INGSTER, Y. I., SAPATINAS, T. and SUSLINA, I. A. (2011). Minimax nonparametric testing in
a problem related to the radon transform. Math. Methods Statist. 20 347–364. MR2886641

http://dx.doi.org/10.1214/12-AOS1011SUPP
http://www.ams.org/mathscinet-getitem?mr=2421941
http://www.ams.org/mathscinet-getitem?mr=1918537
http://www.ams.org/mathscinet-getitem?mr=1836573
http://www.ams.org/mathscinet-getitem?mr=1728907
http://www.ams.org/mathscinet-getitem?mr=2886641


DETECTION IN ILL-POSED INVERSE PROBLEMS 1549

[10] INGSTER, Y. I., SAPATINAS, T. and SUSLINA, I. A. (2012). Supplement to “Minimax signal
detection in ill-posed inverse problems.” DOI:10.1214/12-AOS1011SUPP.

[11] INGSTER, Y. I. and SUSLINA, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under
Gaussian Models. Lecture Notes in Statistics 169. Springer, New York. MR1991446

[12] LAURENT, B., LOUBES, J. M. and MARTEAU, C. (2012). Nonasymptotic minimax rates of
testing in signal detection with heterogeneous variances. Electron. J. Stat. 6 91–122.

[13] SPOKOINY, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–
2498. MR1425962

[14] WAHBA, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference
Series in Applied Mathematics 59. SIAM, Philadelphia, PA. MR1045442

Y. I. INGSTER

DEPARTMENT OF MATHEMATICS II
SAINT PETERSBURG ELECTROTECHNICAL UNIVERSITY

PROF. POPOV STR., 5
197376, ST. PETERSBURG

RUSSIA

E-MAIL: yurii_ingster@mail.ru

T. SAPATINAS

DEPARTMENT OF MATHEMATICS

AND STATISTICS

UNIVERSITY OF CYPRUS

P.O. BOX 20537
NICOSIA 1678
CYPRUS

E-MAIL: fanis@ucy.ac.cy

I. A. SUSLINA

DEPARTMENT OF MATHEMATICS

SAINT PETERSBURG UNIVERSITY OF INFORMATION

TECHNOLOGIES, MECHANICS AND OPTICS

KRONVERKSKIY PR., 49
197101, ST. PETERSBURG

RUSSIA

E-MAIL: isuslina@mail.ru

http://dx.doi.org/10.1214/12-AOS1011SUPP
http://www.ams.org/mathscinet-getitem?mr=1991446
http://www.ams.org/mathscinet-getitem?mr=1425962
http://www.ams.org/mathscinet-getitem?mr=1045442
mailto:yurii_ingster@mail.ru
mailto:fanis@ucy.ac.cy
mailto:isuslina@mail.ru

	Introduction
	Signal detection in the GSM: The minimax framework
	Minimax signal detection in ill-posed inverse problems: A short description of some of the main results
	Minimax signal detection in ill-posed inverse problems: Rate and sharp asymptotics
	A general result for lq-ellipsoids: The "standard" case q=2
	Application to mildly ill-posed inverse problems with the Sobolev class of functions
	Application to severely ill-posed inverse problems with the class of analytic functions
	Application to severely ill-posed inverse problems with the Sobolev class of functions
	Application to mildly ill-posed inverse problems with the class of analytic functions
	Application to extremely ill-posed inverse problems with the class of generalized analytic functions
	Mildly ill-posed inverse problems with lq-ellipsoids for Sobolev classes of functions: The "sparse" case q (0,2)

	Minimax signal detection in ill-posed inverse problems: Adaptivity and rate optimality
	Adaptive distinguisability and adaptive separation rates
	Mildly ill-posed inverse problems with the Sobolev class of functions
	Severely ill-posed inverse problems with the class of analytic functions
	Severely ill-posed inverse problems with the Sobolev class of functions
	Extremely ill-posed inverse problems with the class of generalized analytic functions


	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

