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MULTI-OBJECTIVE OPTIMAL DESIGNS IN COMPARATIVE
CLINICAL TRIALS WITH COVARIATES: THE REINFORCED

DOUBLY ADAPTIVE BIASED COIN DESIGN

BY ALESSANDRO BALDI ANTOGNINI AND MAROUSSA ZAGORAIOU

University of Bologna

The present paper deals with the problem of allocating patients to two
competing treatments in the presence of covariates or prognostic factors in
order to achieve a good trade-off among ethical concerns, inferential preci-
sion and randomness in the treatment allocations. In particular we suggest a
multipurpose design methodology that combines efficiency and ethical gain
when the linear homoscedastic model with both treatment/covariate interac-
tions and interactions among covariates is adopted. The ensuing compound
optimal allocations of the treatments depend on the covariates and their dis-
tribution on the population of interest, as well as on the unknown parameters
of the model. Therefore, we introduce the reinforced doubly adaptive biased
coin design, namely a general class of covariate-adjusted response-adaptive
procedures that includes both continuous and discontinuous randomization
functions, aimed to target any desired allocation proportion. The properties
of this proposal are described both theoretically and through simulations.

1. Introduction. In the medical profession physicians are expected to act in
the best interests of each patient under their care, but in clinical trials the patients
are statistical units in an experiment, and the demands of individual care and exper-
imental information often come into conflict. Thus the ensuing ethical problem is
how to balance the welfare of the patients in the trial against a possible knowledge
gain that will improve the care of future patients. In experimental medicine it is
commonly believed that randomized trials are the answer, especially in the case of
Phase III clinical trials, where the aim is to compare the efficacy of two available
treatments and patients are sequentially randomized to one of them. In this con-
text, several design methodologies have been recently proposed in order to derive
suitable target allocations of the treatments that represent a compromise between
ethical demands and inferential goals [4, 17, 22]. These targets depend in general
on the unknown model parameters and can be implemented by adopting suitable
response-adaptive procedures, such as the sequential maximum likelihood design
[15], the doubly adaptive biased coin design [13] and the efficient randomized-
adaptive design (ERADE) [14], converging to them.

An additional peculiarity of Phase III trials is that they usually involve some
set of important prognostic factors or covariates. The role of these factors may be
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crucial in order to derive correct inferential conclusions about the treatment effects
and this is one of the reasons for which taking into account the covariates has now
become of primary importance not only from an inferential point of view but also
from a design perspective (for a recent literature [2, 5, 18, 20]).

In the last decade there has been a growing statistical interest in the topic of
adaptive designs adjusted for covariates and, in particular, in covariate-adjusted
response-adaptive (CARA) randomization methods; see [12, 19, 23]. This is a
class of sequential allocation procedures that modifies the probabilities of treat-
ment assignments on the basis of the available information—that is, earlier re-
sponses and allocations, past covariate profiles and the covariate information of
the present patient—with the aim of skewing the allocations towards the treatment
that appears to be superior or, more generally, of converging to a desired target
that should incorporate inferential demands related to optimal inference about the
treatment effects and, eventually, ethical concerns.

Even if in the presence of prognostic factors the inferential methods, as well as
the ethical goals, change on the basis of the nature of the responses and the co-
variates, the design literature has essentially focused on the simplified scenario of
absence of treatment/covariate interactions; see, for instance, [3, 7, 8]. In this con-
text, the relative performance of the treatments is the same for every subject’s pro-
file, so that the ethical demand simply consists of allocating the best treatment to
as many patients as possible, independently on their covariates. This also explains
the absence of methodological proposals through which one can derive target al-
locations that, by incorporating both inferential and ethical considerations, depend
on the covariates. Whereas, in the more complex scenario of treatment/covariate
interactions, the covariates play a fundamental role also from an ethical viewpoint,
since the superiority/inferiority of a given treatment, as well as the discrepancy
between the treatment effects, depend on the subject’s profiles.

Therefore, one of the primary aims of the present paper consists of analyzing,
from a design perspective, the linear model with both treatment/covariate inter-
actions and interactions among covariates, in terms of ethical impact as well as
inferential efficiency. After deriving the analytical expressions of the most popular
information criteria, we propose a multipurpose design strategy based on a com-
pound optimization approach, that combines inferential precision and ethical gain
by means of flexible weights, which can be fixed a priori by the experimenter, or
they may be functions of the unknown model parameters.

This multipurpose criterion leads to a locally optimal allocation which depends,
in general, on the covariates and their population distribution, as well as on the un-
known model parameters, and allows to promote for every profile a suitable com-
promise between information and ethical demands. Furthermore, we introduce the
reinforced doubly adaptive biased coin design (RDBCD), namely a new class of
CARA procedures that generalizes some earlier works [1, 23] and also extends
several procedures proposed in the literature, such as the doubly adaptive biased
coin design and the ERADE, to the covariate setting. The RDBCD, which admits
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both continuous and discontinuous randomization functions, can target any desired
allocation proportion, allowing also to force closeness to the chosen target in an ap-
propriate way, while maintaining randomization. We show, both theoretically and
through simulations, that the proposed procedure has desirable properties, asymp-
totically and, in particular, for small samples.

The paper is structured as follows. Starting from the notation in Section 2, Sec-
tions 3 and 4 deal with the optimal designs for inference and ethics, respectively.
Section 5 describes the combined approach, while the properties of the ensuing
optimal compound target are discussed in Section 6. In Section 7 we introduce the
RDBCD, showing its asymptotic properties as well as the asymptotic inference
related to the adoption of such a procedure. Section 8 deals with some finite sam-
ple comparisons between our proposal and some of the fundamental procedures
proposed in the literature. We end the paper with a brief discussion in Section 9.

Motivated by the clinical practice, the present paper takes into account cate-
gorical covariates, since in the large majority of real Phase III clinical trials the
prognostic factors are polytomous and, even if quantitative, they are often catego-
rized by adopting suitable thresholds. Furthermore, for ease of notation we deal
with just two covariates, but the extension to the case of several factors is straight-
forward (see [6]).

2. The linear model with covariates. Let A and B be two competing treat-
ments. We suppose that for each subject entering the trial we observe a vector Z
of concomitant categorical variables. Moreover, we assume the covariates to be
random, that is, they are not under the experimenters’ control when the subjects
turn up for the trial, but they can be measured before assigning a treatment. Then
the treatments are assigned according to a given randomization rule, with δ an
indicator variable such that δ = 1 or 0 if the subject is assigned to A or B , re-
spectively, and an outcome Y is observed. Conditionally on the covariates and the
treatments, patients’ responses are assumed to be independent. A common model
for the response that accounts for treatment/covariate interactions is the following
linear homoscedastic model:

E(Yi) = δiμA + (1 − δi)μB + f(zi )
t (δiβA + (1 − δi)βB

)
,

(2.1)
V (Yi) = σ 2, i = 1, . . . , n,

where Yi is the outcome of the ith subject, μA and μB are the baseline treatment
effects, f(·) is a known vector function, zi is the vector of covariates observed on
the ith individual and βA,βB are p-dim vectors of possibly different regression
parameters related to A and B , respectively. Under this model μA,μB,βA and
βB are of interest since the relative performance of the treatments depends on the
patient’s covariates. Indeed, for any given covariate profile zi , we obtain

θ(zi ) = E(Yi | δi = 1,Zi = zi ) − E(Yi | δi = 0,Zi = zi )
(2.2)

= μA − μB + f(zi )
t (βA − βB) = α + f(zi )

tτ .
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After n assignments, let F = (f(z)t )n×p , δn = (δ1, . . . , δn)
t , �n = diag(δn) and

X = [δn : 1n −δn :�nF : (In −�n)F], where 1n and In are the n-dim vector of ones
and the n-dim identity matrix, respectively. Moreover, let γ̂ n = (μ̂A, μ̂B, β̂ t

A, β̂ t
B)t

be the least square estimator of γ = (μA,μB,β t
A,β t

B)t , then if (XtX)−1 exists, the
variance–covariance matrix is

V (γ̂ n) = σ 2(XtX)−1 = n−1σ 2M−1,

where M is the (2 + 2p)-dim average (per observation) information matrix

M = 1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

δi 0 δt
nF 01×p

0 n −
n∑

i=1

δi 01×p (1n − δn)
tF

Ftδn 0p×1 Ft�nF 0p×p

0p×1 Ft (1n − δn) 0p×p Ft (In − �n)F

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(2.3)

REMARK 2.1. In the absence of treatment/covariate interactions βA = βB =
β , that is, τ = 0, and the homoscedastic model (2.1) becomes

E(Yi) = δiμA + (1 − δi)μB + f(zi )
tβ, i = 1, . . . , n.(2.4)

In this case, it is customary to regard β as a nuisance parameter, since from (2.2)
θ(zi ) = μA − μB for any given covariate profile zi , so that the inferential interest
typically lies in estimating μA and μB , or μA − μB , as precisely as possible.

3. Inferential optimality and balanced designs. In order to avoid cumber-
some notation, from now on we assume, without loss of generality, only two
categorical covariates, that is, Z = (T ,W). Suppose that T is categorized into
levels t0, t1, . . . , tJ and let w0,w1, . . . ,wL be the levels of W , so that T and
W can be represented by a J -dimensional vector T and a L-dimensional vec-
tor W of dummy variables, respectively, where t0 and w0 are the reference cate-
gories. Assume that {Zi, i ≥ 1} is a sequence of i.i.d. random vectors, where each
Zi is distributed in the population according to Pr{Zi = (tj ,wl)} = p(j, l) > 0
(j = 0, . . . , J ; l = 0 . . . ,L), where

∑J
j=0

∑L
l=0 p(j, l) = 1. Moreover, in order to

account for the general situation of both treatment/covariate interactions and inter-
action among covariates in the rest of the paper, we let

ft (z) = (Tt ,W
t ,T

t ⊗ W
t ),(3.1)

that is, f(·) is the p-dim vector including all interaction effects, with p = J + L +
J · L.

At the end of a trial with n assignments, let Nn(j, l) = ∑n
i=1 1{Zi=(tj ,wl)}

be the number of subjects within the stratum (tj ,wl), where 1{·} represents
the indicator function, Ñn(j, l) = ∑n

i=1 δi1{Zi=(tj ,wl)} the number of allocations
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to A within this stratum and πn(j, l) the corresponding proportion, that is,
πn(j, l) = Nn(j, l)

−1Ñn(j, l), for any j = 0, . . . , J and l = 0, . . . ,L. More-
over, let Nn = {Nn(j, l) : j = 0, . . . , J ; l = 0, . . . ,L} and πn = {πn(j, l) : j =
0, . . . , J ; l = 0, . . . ,L}.

Adopting model (2.1), the design for optimal inference consists in allocating the
treatments so as to minimize one of the following criteria:

C1 detV (γ̂ n) = det(n−1σ 2M−1);

C2 detV
(β̂A

β̂B

) = det(n−1σ 2DtM−1D), where Dt = (02p×2 : I2p);

C3 trV (γ̂ n) = tr(n−1σ 2M−1);

C4 trV
(β̂A

β̂B

) = tr(n−1σ 2DtM−1D);

C5 trV (β̂A − β̂B) = tr(n−1σ 2EtM−1E),Et = (0p×2 : Ip :−Ip)

with M−1 replaced by the Moore–Penrose inverse, if needed. It is easy to check
that C1–C5 are convex functions of M, invariant with respect to permutations of
the bottom two block rows and the two right-hand block columns of M.

For given covariates, the jointly balanced design

π∗
I = {π∗

I (j, l) = 1/2, for any j = 0, . . . , J and l = 0, . . . ,L},(3.2)

is optimal for model (2.1) with respect to any criterion �I of the information
matrix M, which is convex and invariant w.r.t. permutations of the bottom two
block rows and the two right-hand block columns, as well as the first two rows and
columns. To see this, it is straightforward to check that assuming (3.2) the ensuing
information matrix

M∗ = 1

2n

⎛⎜⎜⎝
n 0 1t

nF 01×p

0 n 01×p 1t
nF

Ft1n 0p×1 FtF 0p×p

0p×1 Ft1n 0p×p FtF

⎞⎟⎟⎠(3.3)

is invariant w.r.t. permutations of the bottom two block rows and the two right-
hand block columns, as well as the first two rows and columns. For any informa-
tion matrix M of the type (2.3), by the simultaneous permutation of the first two
rows and two columns as well as the bottom two block rows and the two right-
hand block columns, we get the information matrix M̃ corresponding to the design
which switches treatments A and B . Clearly �I(M̃) = �I(M), (M + M̃)/2 = M∗
and then by convexity

�I(M∗) = �I

(1
2(M + M̃)

) ≤ 1
2 [�I(M) + �I(M̃)] = �I(M).

Note that, independently on the presence or absence of treatment/covariate inter-
actions, the jointly balanced allocation (3.2) is still optimal, even in the absence of
interactions among covariates; see [5] for a detailed discussion.
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PROPOSITION 3.1. Assuming model (2.1) with (3.1), inferential criteria C1–
C5 can be simplified as follows:

C1: det
(

σ 2

n
M−1

)
= σ 4+4p∏J

j=0
∏L

l=0 πn(j, l)[1 − πn(j, l)]Nn(j, l)2
,(3.4)

C2: det
(

σ 2

n
DtM−1D

)
= (

∑n
i=1 δi)(n − ∑n

i=1 δi)σ
4p∏J

j=0
∏L

l=0 πn(j, l)[1 − πn(j, l)]Nn(j, l)2
,(3.5)

C3: tr
(

σ 2

n
M−1

)
= σ 2 ×

[
J∑

j=1

L∑
l=1

1

Nn(j, l)πn(j, l)[1 − πn(j, l)]

+
J∑

j=1

L + 1

Nn(j,0)πn(j,0)[1 − πn(j,0)]
(3.6)

+
L∑

l=1

J + 1

Nn(0, l)πn(0, l)[1 − πn(0, l)]

+ (J + 1) × (L + 1)

Nn(0,0)πn(0,0)[1 − πn(0,0)]
]
.

Furthermore, criterion C4 coincides with C5 and is given by

tr
(

σ 2

n
DtM−1D

)
= tr

(
σ 2

n
EtM−1E

)
(3.7)

= tr
(

σ 2

n
M−1

)
− σ 2

Nn(0,0)πn(0,0)[1 − πn(0,0)] .

PROOF. See Appendix A.1. �

REMARK 3.1. Contrary to C1 and C2, from (3.6) and (3.7) it is easy to see
that the trace criteria C3–C5 treat the covariate profiles in a different way due to
the nature of the OLS estimators and the fact that these criteria correspond to the
minimization of the mean variance of the estimators of the parameters of interest
without taking into account their covariance structure.

Note that C1–C5 depend on the design only through the allocation vector π ; it
is also straightforward to check that the above criteria are strictly convex in π and
will be minimized by (3.2) independently on the covariates. However, the loss of
inferential precision expressed by C1–C5 is random since it depends on the number
of subjects within the different strata Nn, that is, �I = �I(πn,Nn). Therefore, in
order to remove the effect due to the random covariates, from now on we take into
account the loss of inferential precision induced by the design

�̃I (πn) = EZ[�I(πn,Nn)].(3.8)
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4. Optimal design for ethics. From an ethical viewpoint, a natural demand
consists in an overall benefit for the entire sample of patients involved in the trial,
for instance maximizing for any given sample size the percentage of patients who
receive the best treatment. This make sense if and only if the treatment effects
are different; otherwise there is no longer a worse treatment, stressing that the
comparative experiment degenerates to just one treatment.

Assuming model (2.1), at each stratum (tj ,wl) the superiority/inferiority of A

or B depends only on the sign of θ in (2.2), and from now on we let for sim-
plicity θ(j, l). Assuming “the-larger-the-better” scenario, for each subject with
covariate profile (tj ,wl) the allocation will be made to the superior treatment if
δi1{θ(j,l)>0} + (1 − δi)1{θ(j,l)<0}; otherwise, if θ(j, l) = 0 the two treatment arms
collapse and all the allocations are equivalent (i.e., any ethical measurement is no
longer useful). Thus, the percentage of patients assigned to the best treatment is

1

n

J∑
j=0

L∑
l=0

Nn(j, l)

{
1

2
−

[
1

2
− πn(j, l)

]
sgn(θ(j, l))

}
,

where sgn(x) represents the sign of x. However, from (2.2) the relative perfor-
mance of the treatments depends on the subject’s covariates, so that a reasonable
ethical measure is

�E(πn,Nn)
(4.1)

= 1

n

J∑
j=0

L∑
l=0

Nn(j, l)|θ(j, l)|
{

1

2
−

[
1

2
− πn(j, l)

]
sgn(θ(j, l))

}
,

under which every choice is weighed by the relative ethical gain |θ(j, l)|. Ob-
viously, criterion (4.1) depends on both the covariate profiles and the unknown
parameters of the model and the optimal ethical target, namely the allocation that
assigns all the patients to the better treatment, is

π∗
E = {

π∗
E(j, l) = 1{θ(j,l)>0} for any j = 0, . . . , J and l = 0, . . . ,L

}
.(4.2)

REMARK 4.1. In the absence of treatment/covariate interactions, θ(j, l) = α

for any j = 0, . . . , J and l = 0, . . . ,L, so that criterion (4.1) simply becomes

�E(πn) = |α|
2

+
(

1

n

n∑
i=1

δi − 1

2

)
α,

that depends on the design only through the total proportion of assignments to
A. Thus, under (2.4) the percentage of allocations to the best treatment does not
depend on the covariates, which are irrelevant from an ethical viewpoint, so that
the optimal ethical target is π∗

E(j, l) = 1{α>0} for any (j, l).
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Analogously to (3.8), in order to remove the random effect due to covariates
from now on we adopt as ethical criterion �̃E(πn) = EZ[�E(πn,Nn)] given by

�̃E(πn) =
J∑

j=0

L∑
l=0

p(j, l)|θ(j, l)|
{

1

2
−

[
1

2
− πn(j, l)

]
sgn(θ(j, l))

}
.(4.3)

5. The compromise criterion. In order to obtain a suitable compromise be-
tween inferential precision and ethical demands, there are several possible ap-
proaches. Among them, a trade-off the criteria via a combined or a constrained
optimization has, to the best of our knowledge, the strongest theoretical justifica-
tion; see, for example, [4, 9–11, 17, 22]. For the sake of generality, we now suggest
a methodology based on the optimization of a compound criterion that mediates
between information and ethics, since the constrained optimization approach can
be regarded as a special case of this proposal (as it will be shown in Remark 6.1).

Note that, for any chosen inferential criterion C1–C5, �̃I and �̃E are not ho-
mogeneous measures, and in order to put them in a comparable scale, we consider
their standardized version, that is,

�E(πn) = �̃E(πn)

�̃E(π∗
E)

and �I(πn) = �̃I (π
∗
I )

�̃I (πn)
,(5.1)

where π∗
I in (3.2) is the optimal inferential target minimizing �̃I and π∗

E in (4.2)
maximizes (4.3) by assigning all subjects to the best treatment, with �̃E(π∗

E) =
EZ[|θ(z)|] = ∑J

j=0
∑L

l=0 |θ(j, l)|p(j, l).

Clearly, �E,�I : [0,1](J+1)·(L+1) → [0,1] represent standardized measures of
ethical and inferential efficiency, respectively, that will be maximized. Therefore,
by introducing an ethical weight ω, we let, as a compromise criterion,

�ω(πn) = ω

{
1

�E(πn)

}
+ (1 − ω)

{
1

�I(πn)

}
,(5.2)

which can be seen as the reciprocal of the weighted harmonic mean of �E and �I ;
see also [4, 11].

The ethical weight ω in the compound criterion can be chosen by the experi-
menter, with 0 ≤ ω < 1 (we assume ω �= 1 in order to avoid that the ethical im-
pact completely overcomes the inferential goal). It may be fixed a priori or could
be modeled as a function of the unknown parameters on the basis of the given
real situation. In the latter case ω is allowed to depend on the true state of na-
ture, since it is reasonable to suppose that the more the effects of the treatments
differ, the more important for the patients are the chances of receiving the best
treatment, whereas in the case of a small difference, which is more difficult to de-
tect correctly, more emphasis is given on inferential precision. In particular, under
(2.1) the ethical impact depends on the covariates, and thus, in order to express
an overall measure of ethical risk for the population of interest, from now on we
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let ω(EZ[|θ(z)|]) : R+ ∪ {0} → [0;1) to be a a continuous and increasing function
with ω(0) → 0.

In general, the choice of the weight function depends on the given applied con-
text. For instance, in Phase III trials the experimenters have often some information
gathered from previous stage trials, and more attention is usually needed for infer-
ence, provided that the ethical costs are not prohibitive (such as deaths of patients).
Thus, ω can be chosen to be an S-shaped function as

ωs(x) = (1 + x−2)−2(s+1)[2 − (1 + x−2)−2] with s ≥ 0.(5.3)

Additionally, since in several clinical situations it is reasonable to assume that the
ethical concern is negligible in the case of small difference between the treatment
performances, for example, up to a value ς of the overall risk, and then increases
rapidly, we may assume ω(x) = 0 for x ≤ ς , with ω(x) → 0 for x → ς+, and
ω(x) → 1 for x → ∞. Whereas, an alternative choice for the ethical weight is
the cdf of a chi-square r.v. χ2

(r), where ω decreases as the degrees of freedom r

increases. By fixing small degrees of freedom, the latter choice allows us to model
the ethical impact in order to grow rapidly, even when the overall ethical risk is
moderate.

THEOREM 5.1. For every inferential criterion C1–C5, the compound crite-
rion �ω(πn) is a strictly convex function of πn, so there exists a unique target
allocation minimizing (5.2) which is the solution of the system of equations

[�̃E(πn)]2 ∂�̃I (πn)

∂πn(j, l)
(5.4)

=
(

ω

1 − ω

)
�̃E(π∗

E)�̃I (π
∗
I )θ(j, l)p(j, l) ∀(j, l).

PROOF. The suggested compound criterion is a linear combination of the re-
ciprocals of �I and �E . Clearly, [�I ]−1 is strictly convex; moreover �̃E in (4.3)
is linear, and thus concave, and it is also non-negative, so that �E is strictly con-
vex in πn. Therefore, criterion (5.2) leads to a unique target allocation satisfying
∇�ω(πn) = 0, namely

ω�̃E(π∗
E)

∂{[�̃E(πn)]−1}
∂πn(j, l)

+ 1 − ω

�̃I (π
∗
I )

{
∂�̃I (πn)

∂πn(j, l)

}
= 0 ∀(j, l),(5.5)

that leads to (5.4) after simple algebra. �

6. The optimal compound target. In this section we describe the properties
of the allocation π∗

ω = {π∗
ω(j, l) : j = 0, . . . , J ; l = 0, . . . ,L} that minimizes the

compromise criterion �ω in (5.2), and we shall refer to it as “optimal compound
target.” In general, π∗

ω depends on the experimental choice of the inferential cri-
terion �̃I and the ethical weight ω, as well as on the true state of the nature,
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that is, the unknown parameters and the probability distribution p = {p(j, l) : j =
0, . . . , J ; l = 0, . . . ,L} of the covariates.

THEOREM 6.1. For every chosen inferential criterion C1–C5, at each stratum
(tj ,wl) the optimal compound target π∗

ω(j, l) satisfies the following properties:

• π∗
ω(j, l) ∈ (0,1) is a continuous function of α, τ and p, that is, π∗

ω(j, l) =
π∗

ω(j, l;α,τ ,p), and it is increasing in θ(j, l);
• if (α′,τ ′) and (α′′,τ ′′) are parameter values with corresponding ethical gains

θ ′(j, l) = −θ ′′(j, l), then for any given covariate distribution p,

π∗
ω(j, l;α′,τ ′,p) = 1 − π∗

ω(j, l;α′′,τ ′′,p),(6.1)

so that the optimal compound target always assigns more than half the subjects
to the better treatment;

• if θ(j, l) > 0, then π∗
ω(j, l) is increasing in p(j, l), whereas when θ(j, l) < 0,

then π∗
ω(j, l) is decreasing in p(j, l).

PROOF. For any given stratum (tj ,wl), let k(πn(j, l)) = ∂�̃I (πn)/∂πn(j, l).
From the convexity of the inferential criterion, the function k(·) is monotonically
increasing with k(1/2) = 0, due to the optimality of the jointly balanced design
in (3.2). Furthermore, the right-hand side of (5.4) is a continuous function of α,
τ and p, due to the properties of ω(·); it is straightforward to check that, for any
given p(j, l), it is also an increasing function of θ(j, l) and is monotone in p(j, l)

(increasing when θ(j, l) > 0 and decreasing if θ(j, l) < 0). Since the sign of the
left-hand side of (5.4) depends only on the sign of k(·), if θ(j, l) > 0 (i.e., A is
better than B for this stratum), then the right-hand side of (5.4) is positive and
thus the optimal compound target π∗

ω(j, l) > 1/2; otherwise, if θ(j, l) < 0, then
π∗

ω(j, l) < 1/2 and θ(j, l) = 0 if and only if π∗
ω(j, l) = 1/2. Moreover, observe

that limζ→0 k(ζ ) = −∞ and limζ→1 k(ζ ) = +∞ and thus π∗
ω(j, l) �= {0,1}, since

�̃E(·) is limited. By taking the derivative of the left-hand side of (5.4) with respect
to πn(j, l) we obtain

∂k(πn(j, l))

∂πn(j, l)
[�̃E(πn)]2 + 2�̃E(πn)k(πn(j, l))θ(j, l)p(j, l),

where the first term is always positive, due to the convexity of the inferential cri-
terion. Furthermore, locally around π∗

ω(j, l)

k(π∗
ω(j, l))θ(j, l)p(j, l) > 0,

since if θ(j, l) > 0, then π∗
ω(j, l) > 1/2 and k(π∗

ω(j, l)) > 0 (and, analogously,
when θ(j, l) < 0). Thus, as a function of πn(j, l) the left-hand side of (5.4) is
locally increasing around π∗

ω(j, l), so that π∗
ω(j, l) is a continuous function of α,
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τ and p and it is increasing in θ(j, l) and p(j, l), due to the property of the right-
hand side of (5.4). Concerning (6.1), for a given covariate distribution p the ethical
criterion in (4.3) can be regarded as a function of πn(j, l) and θ(j, l) by letting

J∑
j=0

L∑
l=0

|θ(j, l)|p(j, l)

{
1

2
−

[
1

2
−πn(j, l)

]
sgn(θ(j, l))

}
= υ +g(πn(j, l), θ(j, l)),

where

g(πn(j, l), θ(j, l)) = |θ(j, l)|p(j, l)

{
1

2
−

[
1

2
− πn(j, l)

]
sgn(θ(j, l))

}
,

so the left-hand side of (5.4) can be rewritten as [υ + g(πn(j, l), θ(j, l))] ·
k(πn(j, l)). First of all note that, for every chosen inferential criterion C1–C5 the
function k(·) is symmetric around the point (1/2;0) since k(1/2 + ε) = −k(1/2 −
ε) for any ε ∈ (0;1/2). Moreover, g(1/2 + ε, θ(j, l)) = g(1/2 − ε,−θ(j, l)), so
that the left-hand side of (5.4) is also symmetric around (1/2;0), and this implies
the symmetric property of the compound target. �

6.1. Example: the inferential criteria based on the determinant. From (3.4)
and (3.5) it is easy to see that C1 and C2 have the same standardized version,

�I(πn) = 4(J+1)(L+1)
J∏

j=0

L∏
l=0

πn(j, l)[1 − πn(j, l)].(6.2)

Assuming now two binary covariates and two different scenarios for their popu-
lation distribution, that is, a uniform one U where each stratum is equally repre-
sented, that is, p(0,0) = p(1,0) = p(0,1) = p(1,1) = 0.25, and a nonuniform
distribution N U with p(0,0) = 0.2, p(1,0) = 0.3, p(0,1) = 0.4, p(1,1) = 0.1.
Table 1 shows the derived optimal compound targets in the case of four differ-
ent ethical weights, namely the cdf’s of a χ2

(r) with r = 1, 2 and ωs in (5.3) with
s = 1,2.

The optimal compound target always assigns the majority of subjects to the
better treatment. The ethical weight increases as r and s decrease, and therefore
less emphasis is given to the inferential precision and more attention to ethical
demands, as expected. Furthermore, since criteria C1 and C2 treat every stratum
in the same way, when p(j, l) = p(j̃ , l̃) and θ(j, l) = 1 − θ(j̃ , l̃), then π∗

ω(j, l) =
1 − π∗

ω(j̃ , l̃).

6.2. Example: the inferential criteria based on the trace. Consider two bi-
nary covariates under the same settings of the previous example. By taking the ap-
proximation EZ[Nn(j, l)

−1] = [np(j, l)]−1, Table 2 shows the optimal compound
targets when the inferential criterion C3 is adopted, whereas Table 3 deals with
criterion C4 (or, equivalently, C5).



1326
A

.B
A

L
D

I
A

N
T

O
G

N
IN

I
A

N
D

M
.Z

A
G

O
R

A
IO

U

TABLE 1
Optimal compound targets adopting criteria C1–C2

(α, τ t ) = (1,1,1,1) (α, τ t ) = (−4,−1,3,3)

θ(0,0) = 1 θ(1,0) = 2 θ(0,1) = 2 θ(1,1) = 4 θ(0,0) = −4 θ(1,0) = −5 θ(0,1) = −1 θ(1,1) = 1
π∗

ω(0,0) π∗
ω(1,0) π∗

ω(0,1) π∗
ω(1,1) π∗

ω(0,0) π∗
ω(1,0) π∗

ω(0,1) π∗
ω(1,1)

χ2
(1)

N U 0.578 0.700 0.743 0.646 0.278 0.186 0.371 0.534
U 0.593 0.670 0.670 0.771 0.242 0.209 0.415 0.585

χ2
(2)

N U 0.544 0.623 0.660 0.587 0.352 0.264 0.421 0.520
U 0.554 0.605 0.605 0.689 0.319 0.287 0.449 0.551

ω1 N U 0.537 0.606 0.637 0.572 0.353 0.265 0.421 0.520
U 0.549 0.596 0.596 0.674 0.321 0.289 0.449 0.551

ω2 N U 0.521 0.562 0.581 0.541 0.397 0.324 0.447 0.513
U 0.530 0.559 0.559 0.614 0.373 0.346 0.466 0.534

TABLE 2
Optimal compound targets adopting criterion C3

(α, τ t ) = (1,1,1,1) (α, τ t ) = (−4,−1,3,3)

θ(0,0) = 1 θ(1,0) = 2 θ(0,1) = 2 θ(1,1) = 4 θ(0,0) = −4 θ(1,0) = −5 θ(0,1) = −1 θ(1,1) = 1
π∗

ω(0,0) π∗
ω(1,0) π∗

ω(0,1) π∗
ω(1,1) π∗

ω(0,0) π∗
ω(1,0) π∗

ω(0,1) π∗
ω(1,1)

χ2
(1)

N U 0.658 0.868 0.900 0.805 0.179 0.077 0.128 0.677
U 0.697 0.835 0.835 0.916 0.154 0.099 0.214 0.846

χ2
(2)

N U 0.572 0.792 0.841 0.706 0.277 0.125 0.205 0.582
U 0.598 0.745 0.745 0.866 0.241 0.158 0.318 0.759

ω1 N U 0.557 0.767 0.821 0.678 0.279 0.126 0.206 0.581
U 0.586 0.728 0.728 0.856 0.243 0.159 0.320 0.757

ω2 N U 0.530 0.696 0.760 0.610 0.346 0.169 0.268 0.546
U 0.548 0.658 0.658 0.806 0.308 0.210 0.382 0.692
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TABLE 3
Optimal compound targets adopting criteria C4 or C5

(α, τ t ) = (1,1,1,1) (α, τ t ) = (−4,−1,3,3)

θ(0,0) = 1 θ(1,0) = 2 θ(0,1) = 2 θ(1,1) = 4 θ(0,0) = −4 θ(1,0) = −5 θ(0,1) = −1 θ(1,1) = 1
π∗

ω(0,0) π∗
ω(1,0) π∗

ω(0,1) π∗
ω(1,1) π∗

ω(0,0) π∗
ω(1,0) π∗

ω(0,1) π∗
ω(1,1)

χ2
(1)

N U 0.677 0.860 0.895 0.795 0.166 0.082 0.137 0.663
U 0.717 0.827 0.827 0.912 0.142 0.105 0.225 0.837

χ2
(2)

N U 0.585 0.782 0.833 0.694 0.259 0.133 0.217 0.573
U 0.615 0.734 0.734 0.859 0.223 0.167 0.331 0.747

ω1 N U 0.567 0.756 0.812 0.666 0.261 0.134 0.218 0.572
U 0.601 0.717 0.717 0.849 0.225 0.169 0.333 0.744

ω2 N U 0.536 0.685 0.749 0.601 0.328 0.179 0.282 0.541
U 0.558 0.645 0.645 0.797 0.289 0.221 0.393 0.679
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Note that, since C3–C5 treat the strata in a different way, even if p(0,1) =
p(1,1) = 0.25 and θ(0,1) = −θ(1,1) = −1, that is, when (α,τ t ) = (−4,−1,

3,3), then π∗
ω(0,1) �= 1 − π∗

ω(1,1).
In general, when r = s the ethical skew is larger if we adopt the cdf of χ2

(r) w.r.t.
ωs , and this skew is particularly high for r = 1, which could induce strong imbal-
ances among the treatment groups (see Tables 1–3 with (α,τ t ) = (−4,−1,3,3))
and, consequently, a great loss of inferential efficiency. This behavior suggests that
the adoption of the cdf of χ2

(1) is adequate only in situations with prohibitive ethical
costs.

REMARK 6.1. Using the analytical expressions of the inferential criteria given
in Proposition 3.1, by (5.1) it is also possible to derive optimal targets via a con-
strained optimization approach. In the same spirit of [22], the problem lies in
finding the allocation that maximizes the ethical impact for a chosen inferential
efficiency. In our context this corresponds to minimize �−1

E under the constraint
�−1

I ≤ C−1 for a prefixed constant C < 1 (we exclude the degenerate case C = 1
that corresponds to assume �I = 1, i.e., no ethical concerns), representing a spe-
cial case of our combined optimization approach; see also [4, 9, 10]. Indeed, due to
the strict convexity of both �−1

E and �−1
I , this is a convex optimization problem,

and therefore the Karush–Kuhn–Tucker (KKT) first order conditions are necessary
and sufficient and guarantee a unique optimal solution π∗ solving

∇(�−1
E (π∗)) + κ∇(�−1

I (π∗)) = 0,(6.3)

where κ ≥ 0 is the KKT multiplier and

κ
(
�−1

I (π∗) − C−1) = 0.(6.4)

First, note that (6.3) corresponds to (5.4) with κ = (1−ω)/ω (where clearly ω �= 0,
since C �= 1); thus, the candidate solution π∗ belongs to the class of compound
optimal targets and should satisfy �−1

I (π∗) = C−1, since κ > 0. By using the same
arguments of the proof of Theorem 6.1, any compound target π∗

ω solving (5.4) is a
continuous and monotone function of ω and, from the properties of �−1

I , for any
fixed C < 1 there exists a unique constant weight ω = ωC such that π∗ = π∗

ωC

satisfies (6.4).
As a numerical example, consider now the standardized inferential criterion

(6.2) in the case of two binary covariates with (α,τ t ) = (1,1,1,1) and uniform
distribution U . The upper block of Table 4 shows the derived constrained optimal
targets as C varies, together with the corresponding ethical weight ωC of our com-
bined optimization approach and the value of the ethical criterion �E . Moreover,
the bottom part of the Table gives the asymptotic allocations of the procedure sug-
gested by Bandyopadhyay and Biswas [7] (and further analyzed in [3]), which are
given at each stratum (j, l) by the standard normal cdf evaluated at θ(j, l)/T , for
T = 1,2 and 3. For instance, an inferential efficiency equal to 75% under the con-



THE REINFORCED DOUBLY-ADAPTIVE BIASED COIN DESIGN 1329

TABLE 4
Constrained optimal targets adopting criteria C1–C2 and Bandyopadhyay and Biswas’s allocations

πT , with (α,τ t ) = (1,1,1,1) and uniform distribution

θ(0,0) = 1 θ(1,0) = 2 θ(0,1) = 2 θ(1,1) = 4 �E �I = C

π∗
ωC

(0,0) π∗
ωC

(1,0) π∗
ωC

(0,1) π∗
ωC

(1,1)

ωC = 0.356 0.523 0.546 0.546 0.589 0.56 0.95
ωC = 0.483 0.528 0.566 0.566 0.612 0.59 0.9
ωC = 0.700 0.558 0.612 0.612 0.698 0.64 0.75
ωC = 0.883 0.599 0.679 0.679 0.781 0.72 0.5
ωC = 0.969 0.656 0.756 0.756 0.851 0.79 0.25

πT (0,0) πT (1,0) πT (0,1) πT (1,1)

T = 1 0.841 0.977 0.977 0.999 0.97 10−6

T = 2 0.691 0.841 0.841 0.977 0.88 0.02
T = 3 0.631 0.748 0.748 0.909 0.81 0.17

strained approach corresponds to an ethical weight equal to 70% in the combined
framework; whereas, assuming C = 0.25 means that the role of ethics is almost
dominant in the combined optimization. Clearly, the arbitrary choice of the con-
stant C in the constrained setting can be directly translated in the subjective choice
of ω in the combined approach; however, the possibility of modeling the ethical
weight as a function of the unknown parameters allows us to discriminate among
different situations that could be a-priori only partially known or, more commonly,
completely unknown. For instance, if we set ωC = 0.483, then the 38.8% of sub-
jects within the stratum (1,1) will receive the worst treatment; whereas, the per-
centage of allocations to the worst treatment is only 22.9% or 32,6% if the cdf
of χ2

(1) or ω1 are assumed as weight functions, respectively; see Table 1. More-
over, the allocations proposed by Bandyopadhyay and Biswas (2001) are strongly
skewed toward the better treatment, so that the inferential precision collapses. This
is particularly true for small values of T , as emphasized in [18], and this behavior
is also confirmed, even if we adopt criteria C3–C5.

7. The reinforced doubly adaptive biased coin design. As shown previ-
ously, the compound target allocation π∗

ω depends in general on the unknown pa-
rameters of the model and, since this function is continuous, covariate-adjusted
response-adaptive procedures may be called for. These designs use at each step
the observed responses, the covariates and the previous assignments, as well as the
covariate profile of the current subject, to modify the allocations as the experiment
goes along in order to gradually approach the desired target.

In this section we introduce the reinforced doubly adaptive biased coin design.
This is a general class of CARA procedures, which admits both continuous and
discontinuous randomization functions, aimed at targeting any chosen allocation
proportion by forcing closeness to the target when necessary.
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Let now π∗ = {π∗(j, l) : j = 0, . . . , J ; l = 0, . . . ,L} be a desired allocation
such that, at each stratum (tj ,wl), π∗(j, l) ∈ (0,1) is a continuous function of
the unknown model parameters γ and p. Suppose that patients come to the trial
sequentially and are assigned to either treatment. Starting with m observations on
each treatment, usually assigned by using restricted randomization, an initial non-
trivial parameter estimation γ̂ 2m and p̂2m is derived. Then, at each step n (n > 2m)

let γ̂ n and p̂n be the estimators of the parameters based on the first n observations,
where we assume them consistent in case of i.i.d. observations, so that the opti-
mal target will be estimated by all the data up to that step by π̂∗

n = π∗(γ̂ n, p̂n).
When the (n + 1)st patient with covariate profile Zn+1 = (tj ,wl) is ready to be
randomized, the reinforced doubly adaptive biased coin design assigns to him/her
treatment A with probability

ϕ(πn(j, l); π̂∗
n (j, l); p̂n(j, l)),(7.1)

where the function ϕ(x, y, z) : (0,1)3 → [0,1] satisfies the following properties:

(i) ϕ is decreasing in x and increasing in y, for any z ∈ (0,1);
(ii) ϕ(x, x, z) = x for any z ∈ (0,1);

(iii) ϕ is decreasing in z if x < y, and increasing in z if x > y;
(iv) ϕ(x, y, z) = 1 − ϕ(1 − x,1 − y, z) for any z ∈ (0,1).

Adopting the RDBCD in (7.1), within each stratum the allocation proportion will
be forced to the corresponding target, since from conditions (i)–(ii) when x ≥ y,
then ϕ(x, y, z) ≤ y and if x < y, then ϕ(x, y, z) > y for any z ∈ (0,1). Further-
more, condition (iv) simply guarantees that A and B are treated symmetrically,
whereas (iii) means that the allocation is forced towards optimality increasingly
as the representativeness of the strata in the population decreases. This property
is of great importance since the convergence of the allocation proportion depends
on the number of subjects belonging to each stratum, and therefore it is related to
the population distribution of the covariates. This may be particularly critical for
small samples, where some profiles could be strongly under-represented so that,
both from the ethical and inferential viewpoint, the need to force the closeness to
the target could be greater.

REMARK 7.1. In general, at each step the allocation probability (7.1) does
not depend only on the estimates of the unknown parameters related to the stratum
where the current subject belongs; in fact, π̂∗

n (j, l) could involve the estimation
of the entire set of parameters γ and p. For example, if we adopt the optimal
compound target π∗

ω, at each stratum π∗
ω(j, l) depends on α, τ and p [see, for

instance, (5.4)], so that (7.1) depends on the information gathered up to that step
from all the strata.

Observe that we do not assume the continuity of ϕ, and therefore it is possible to
consider discontinuous randomization functions. For instance, a natural extension
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of the ERADE proposed by [14] in the presence of covariates is

ϕERADE(x;y; z) =
⎧⎨⎩

1 − ρ(1 − y), x < y,
y, x = y, ∀z ∈ (0,1),
ρy, x > y

(7.2)

where the constant ρ ∈ [0,1) controls the degree of randomness.

REMARK 7.2. The randomization function in (7.1) could also be chosen in a
different way for each stratum (tj ,wl) by letting ϕ = ϕjl , in order to discriminate
the importance of each of them and the corresponding closeness to the target. Fur-
thermore, the RDBCD can be naturally extended to the case of several treatments.

An interesting family of allocation functions belonging to the RDBCD is

ϕ(x;y; z) = F
[
D(x;y)H(z)F−1(y)

]
/
(
F

[
D(x;y)H(z)F−1(y)

]
(7.3)

+ F
[
D(1 − x;1 − y)H(z)F−1(1 − y)

])
,

where F : R+ → R
+ is continuous and strictly increasing, H(z) is decreasing,

while D(x;y) : (0;1)2 → R
+ represents a dissimilarity measure between the ac-

tual allocation proportion x and the current estimate of the optimal target y, and D

is assumed to be decreasing in x and increasing in y, with D(x;x) = 1.

EXAMPLE 7.1. Letting D(x;y) = 1 for any (x, y) ∈ (0,1)2, then (7.3) corre-
sponds to the CARA design analyzed by Zhang et al. [23], namely

ϕZ(x;y; z) = y ∀(x, z) ∈ (0,1)2,(7.4)

which represents an analog of the sequential maximum likelihood design in the
presence of covariates. Whereas if we let F(t) = t , D(x;y) = y/x and H(z) =
ν ≥ 0 ∀z ∈ (0,1), we obtain a natural extension in the presence of covariates of the
family of doubly adaptive biased coin designs, that is,

y(y/x)ν

y(y/x)ν + (1 − y)[(1 − y)/(1 − x)]ν ∀z ∈ (0,1).

However, note that the previous allocation function does not correspond to the
covariate-adjusted doubly adaptive biased coin design suggested by Zhang and
Hu in [24], due to the fact that these authors assume at each step n a dissimilar-
ity measure between the actual allocation proportion πn(j, l) and the mean (over
the steps) of the estimates of the optimal target n−1 ∑n

i=1 π̂∗
i (j, l), instead of the

current estimate of the target π̂∗
n (j, l) itself.



1332 A. BALDI ANTOGNINI AND M. ZAGORAIOU

EXAMPLE 7.2. If we set F(t) = tk with k > 0, D(x;y) = 1 − (x − y) and
H(z) = z−1 ∀z ∈ (0,1), then (7.3) becomes

ϕBAZ1(x;y; z) = y[1 − (x − y)]k/z

y[1 − (x − y)]k/z + (1 − y)[1 − (y − x)]k/z
.(7.5)

In order to account for discontinuous allocation functions, let for instance F(t) = t ,
H(z) = {(J + 1)(L + 1)z}−1 and

D(x;y) =
⎧⎨⎩

1 + ε, x < y,
1, x = y,
1 − ε, x > y,

with ε ∈ [0,1). Then (7.3) becomes

ϕBAZ2(x;y; z)
(7.6)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(1 + ε){(J+1)(L+1)z}−1

y(1 + ε){(J+1)(L+1)z}−1 + (1 − y)(1 − ε){(J+1)(L+1)z}−1 ,

x < y,

y, x = y,

y(1 − ε){(J+1)(L+1)z}−1

y(1 − ε){(J+1)(L+1)z}−1 + (1 − y)(1 + ε){(J+1)(L+1)z}−1 ,

x > y,

which allows us to force the allocations toward the chosen target increasingly the
more we move away from the uniform distribution, maintaining at the same time
a good degree of randomness.

REMARK 7.3. If we assume only an inferential viewpoint by letting ω = 0,
then the optimal target is the jointly balanced allocation in (3.2), so that the al-
location probability (7.1) corresponds to a stratified randomization. For instance,
letting F(t) = t2, H(z) = 1 and D(x;y = 1/2) = 1 − 2(x − 1/2), then procedure
(7.3) corresponds to the DA-optimal design proposed by Atkinson [1],

[1 − πn(j, l)]2

[1 − πn(j, l)]2 + πn(j, l)2 ;
see the supplementary data in [5] for details.

Let π∗
tj⊗W

= (π∗(j,1)p(j,1), . . . , π∗(j,L)p(j,L))t and π̃∗t = (π∗t
T

,π∗t
W

,

π∗t
T⊗W

), where

π∗
T

=
(

L∑
l=0

π∗(1, l)p(1, l), . . . ,

L∑
l=0

π∗(J, l)p(J, l)

)t

,

π∗
W

=
(

J∑
j=0

π∗(j,1)p(j,1), . . . ,

J∑
j=0

π∗(j,L)p(j,L)

)t
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and π∗
T⊗W

given by

(π∗(1,1)p(1,1), . . . , π∗(1,L)p(1,L), . . . ,

π∗(J,1)p(J,1), . . . , π∗(J,L)p(J,L))t .

The following theorem establishes the strong consistency of both the allocation
proportion and the estimator of the target, as well as the strong consistency and
asymptotic normality of the estimators of the unknown parameters of the model.

THEOREM 7.1. For any given target allocation π∗ ∈ (0,1)(J+1)·(L+1) which
is a continuous function of the unknown model parameters γ and p, then adopting
the reinforced doubly adaptive biased coin design (7.1), as n tends to infinity

πn → π∗ a.s. and π̂∗
n → π∗ a.s.(7.7)

Furthermore,

γ̂ n → γ a.s. and
√

n(γ̂ n − γ ) → N(0;M−1(π∗)) in law,(7.8)

where M(π∗) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J∑
j=0

L∑
l=0

π∗(j, l)p(j, l) 0 π̃∗t 01×p

0 1 −
J∑

j=0

L∑
l=0

π∗(j, l)p(j, l) 01×p 1t
p − π̃∗t

π̃∗ 0p×1 MA 0p×p

0p×1 1p − π̃∗ 0p×p MB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

MA =
(

MA
11 MA

12

(MA
12)

t MA
22

)
,(7.9)

such that MA
22 = diag(π∗

T⊗W
),

MA
11 =

⎛⎜⎜⎜⎜⎝
π∗t

t1⊗W

diag(π∗
T
)

...

π∗t
tJ ⊗W

π∗
t1⊗W

. . . π∗
tJ ⊗W

diag(π∗
W

)

⎞⎟⎟⎟⎟⎠ ,

MA
12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

π∗t
t1⊗W

0 0 . . . 0
0 π∗t

t2⊗W
0 . . . 0

...
. . . 0

0 0 . . . π∗t
tJ ⊗W

diag(π∗
t1⊗W

) diag(π∗
t2⊗W

) . . . diag(π∗
tJ ⊗W

)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Moreover, MB is partitioned similarly to (7.9) with treatment A replaced by B ,
that is, MB

22 = diag(1JL − π∗
T⊗W

),

MB
11 =

⎛⎜⎜⎜⎜⎝
1t
L − π∗t

t1⊗W

diag(1J − π∗
T
)

...

1t
L − π∗t

tJ ⊗W

1L − π∗
t1⊗W

. . . 1L − π∗
tJ ⊗W

diag(1L − π∗
W

)

⎞⎟⎟⎟⎟⎠ ,

MB
12 =

⎛⎜⎜⎜⎜⎜⎜⎝

1t
L − π∗t

t1⊗W
0 0 . . . 0

0 1t
L − π∗t

t2⊗W
0 . . . 0

...
. . . 0

0 0 . . . 1t
L − π∗t

tJ ⊗W

diag(1L − π∗
t1⊗W

) diag(1L − π∗
t2⊗W

) . . . diag(1L − π∗
tJ ⊗W

)

⎞⎟⎟⎟⎟⎟⎟⎠ .

PROOF. See Appendix A.2. �

Note that the asymptotic normality of the allocation proportions can be derived
as in [13, 14, 23] by adding suitable conditions of differentiability for the target
π∗ and, eventually, for ϕ.

COROLLARY 7.1. Let the optimal compound target π∗
ω be the desired alloca-

tion, then adopting the RDBCD in (7.1), as n tends to infinity

πn → π∗
ω a.s. and π̂∗

n → π∗
ω a.s.

γ̂ n → γ a.s. and
√

n(γ̂ n − γ ) → N(0;M−1(π∗
ω)) in law.

8. Finite sample properties. In order to perform some finite sample compar-
isons, we have conducted a simulation study by adopting the inferential criterion
C1 and assuming as ethical weight function ω the cdf of χ2

(1). Moreover, we have

taken into account normal responses with σ 2 = 1 and two binary covariates with
the previously used settings, that is, (i) two population scenarios, namely the uni-
form distribution U and the nonuniform one N U with p(0,0) = 0.2, p(1,0) = 0.3,
p(0,1) = 0.4, p(1,1) = 0.1, (ii) two parameter settings: (α,τ t ) = (1,1,1,1) and
(α,τ t ) = (−4,−1,3,3). The results come from h = 500 simulations with m = 4
and n = 500. Concerning the continuous randomization functions, we consider the
CARA design ϕZ in (7.4) and the RDBCD in (7.5) with k = 1. As regards the dis-
continuous case, we perform the simulations adopting ϕBAZ2 in (7.6) and ϕERADE
in (7.2), where we put ε = ρ = 2/3, for homogeneity. Expectation and standard de-
viation (within brackets) of the proportion of allocations to treatment A are given
in Tables 5–8.

In general, ϕZ in (7.4) is characterized by the strongest variability with respect
to the other procedures, since it is based only on the current estimate of the tar-
get, independently on the actual allocation proportion. Moreover, as theoretically
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TABLE 5
Expectation and standard deviation (within brackets) of the proportion of allocations to A under the

uniform distribution U with (α,τ t ) = (1,1,1,1), so that the optimal compound target is
π∗

ω(0,0) = 0.593, π∗
ω(1,0) = π∗

ω(0,1) = 0.670 and π∗
ω(1,1) = 0.771

πn(0,0) πn(1,0) πn(0,1) πn(1,1)

ϕZ 0.592 0.667 0.666 0.764
(0.051) (0.049) (0.045) (0.041)

ϕBAZ1 0.592 0.667 0.670 0.768
(0.027) (0.027) (0.026) (0.025)

ϕBAZ2 0.591 0.668 0.669 0.769
(0.017) (0.016) (0.016) (0.014)

ϕERADE 0.589 0.665 0.666 0.764
(0.019) (0.019) (0.019) (0.018)

shown in [23], the variability of this design increases as the representativeness of
the strata decreases, and this behavior is also confirmed by ϕERADE; see Tables 7
and 8. On the other hand, ϕBAZ1 and ϕBAZ2 tend to balance the variability of the
allocation proportions between the different population strata. Indeed, the standard
deviations of the design in the different patterns are similar, since the reinforced
doubly adaptive biased coin design forces the closeness to the desired target the
more the strata are under-represented.

Note that, in general, discontinuous randomization functions perform better
with respect to the continuous ones. This is quite natural since, when the allocation
proportion is around the target—in particular, for sufficiently large samples, due to
the almost sure convergence—the continuous allocation procedures randomize the

TABLE 6
Expectation and standard deviation (within brackets) of the proportion of allocations to A under the

uniform distribution U with (α,τ t ) = (−4,−1,3,3), so that the optimal compound target is
π∗

ω(0,0) = 0.242, π∗
ω(1,0) = 0.209, π∗

ω(0,1) = 0.415 and π∗
ω(1,1) = 0.585

πn(0,0) πn(1,0) πn(0,1) πn(1,1)

ϕZ 0.250 0.217 0.416 0.582
(0.042) (0.041) (0.049) (0.050)

ϕBAZ1 0.244 0.211 0.412 0.585
(0.024) (0.022) (0.024) (0.026)

ϕBAZ2 0.244 0.212 0.415 0.585
(0.013) (0.013) (0.017) (0.016)

ϕERADE 0.251 0.217 0.417 0.584
(0.017) (0.016) (0.018) (0.019)
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TABLE 7
Expectation and standard deviation (within brackets) of the proportion of allocations to A under the

nonuniform distribution N U with (α,τ t ) = (1,1,1,1), so that the optimal compound target is
π∗

ω(0,0) = 0.578, π∗
ω(1,0) = 0.700, π∗

ω(0,1) = 0.743 and π∗
ω(1,1) = 0.646

πn(0,0) πn(1,0) πn(0,1) πn(1,1)

ϕZ 0.576 0.696 0.732 0.651
(0.054) (0.041) (0.034) (0.071)

ϕBAZ1 0.577 0.699 0.739 0.646
(0.026) (0.025) (0.024) (0.028)

ϕBAZ2 0.577 0.698 0.740 0.646
(0.017) (0.015) (0.014) (0.017)

ϕERADE 0.576 0.694 0.738 0.640
(0.021) (0.018) (0.014) (0.030)

assignment with probability close to the target, while the discontinuous ones tend
to force the allocation in the same way at each step, even asymptotically.

Moreover, our simulation study points to the fact that ϕBAZ2 guarantees always
a stable behavior and tends to have better performances w.r.t. ϕERADE, especially
for strongly under-represented strata. For instance, in the case of a nonuniform co-
variate distribution, when (tj ,wl) = (1,1) the standard deviation of the allocation
proportions under ϕBAZ2 is almost half of the ϕERADE’s one (see Tables 7 and 8).

The same conclusions have been observed through further simulations, omitted
here for brevity, with larger sample size. However, in this paper we decided to
present the case of n = 500 in order to emphasize the evolution of our procedure,
with respect to the others, especially for strongly under-represented strata (note

TABLE 8
Expectation and standard deviation (within brackets) of the proportion of allocations to A under the
nonuniform distribution N U with (α,τ t ) = (−4,−1,3,3), so that the optimal compound target is

π∗
ω(0,0) = 0.279, π∗

ω(1,0) = 0.186, π∗
ω(0,1) = 0.371 and π∗

ω(1,1) = 0.534

πn(0,0) πn(1,0) πn(0,1) πn(1,1)

ϕZ 0.284 0.197 0.377 0.539
(0.050) (0.041) (0.035) (0.073)

ϕBAZ1 0.279 0.188 0.373 0.535
(0.026) (0.021) (0.026) (0.024)

ϕBAZ2 0.280 0.189 0.373 0.534
(0.015) (0.015) (0.013) (0.013)

ϕERADE 0.286 0.195 0.375 0.533
(0.019) (0.018) (0.014) (0.023)
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that the expected number of patients within stratum (1,1) under the nonuniform
distribution N U is 50).

9. Discussion. In the context of clinical trials for treatment comparisons, sev-
eral different approaches have been proposed in the literature in order to provide
a valid trade-off between ethical concerns and inferential precision (such as group
sequential designs, interim analysis, etc.) and over the past 20 years there has been
a growing stream of statistical papers on the topic of response-adaptive random-
ization; see, for instance, the seminal books of [12, 16]. Within this framework, in
this paper we suggest a design strategy that combines efficiency and ethical gain
for responses following a linear homoscedastic model. By using a compound op-
timization approach we derive optimal target allocations for the treatments that
can be implemented via the adoption of a new class of CARA randomization pro-
cedure. Through the proposed methodology, the optimal compound allocations
move away from balance (i.e., the optimal inferential target) toward the better treat-
ment adaptively, on the basis of the treatment effects. Since joint balance implies
marginal one, the proposed design strategy is robust with respect to possible mis-
specification of the model in terms of presence or absence of interactions among
prognostic factors, or between treatments and covariates. Moreover, the proposed
methodology is quite robust and performs well, even in the case of approximate
homoscedasticity of the outcomes (perhaps after suitable transformations), as also
pointed out by [3, 18]. On the other hand, in the case of heteroscedastic responses
and, more generally, for generalized linear models, balance does not imply effi-
ciency; our approach could still be applied, but with different inferential criteria
(that could be optimized numerically) and different weight functions. Further re-
search is needed on this topic.

APPENDIX

A.1. Proof of Proposition 3.1.
C1. For the sake of simplicity in this Appendix, we will often omit the subscripts

indicating the dimensions of vectors and matrices. Let M̃ = nM, then

det M̃ = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

δi δtF 0 01×p

Ftδ Ft�F 0p×1 0p×p

0 01×p n −
n∑

i=1

δi (1 − δ)tF

0p×1 0p×p Ft (1 − δ) Ft (I − �)F

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let �A = Ft�F and �B = Ft (I − �)F, and we obtain that

det M̃ = det�A

{
n∑

i=1

δi − δtF�−1
A Ftδ

}
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× det�B

{(
n −

n∑
i=1

δi

)
− (1 − δ)tF�−1

B Ft (1 − δ)

}
.

Let now δtF = (Ñt
T
, Ñt

W
, Ñt

T⊗W
), where Ñt

T
= (Ñ(t1), . . . , Ñ(tJ )), Ñt

W
=

(Ñ(w1), . . . , Ñ(wL)) with Ñ(tj ) = ∑L
l=0 Ñ(j, l) and Ñ(wl) = ∑J

j=0 Ñ(j, l),

and Ñt
T⊗W

= (Ñ(1,1), . . . , Ñ(1,L), . . . , Ñ(J,1), . . . , Ñ(J,L)). Clearly, Ñ(tj )

and Ñ(wl) are the number of subjects assigned to treatment A within cate-
gory tj of T (j = 0, . . . , J ) and wl of W (l = 0, . . . ,L), respectively. Also, let
Ñt

tj⊗W
= (Ñ(j,1), . . . , Ñ(j,L)) and Ñt

T⊗wl
= (Ñ(1, l), . . . , Ñ(J, l)). Then, the

matrix �A can be partitioned as follows:

�A =
(

A B
Bt C

)
,(A.1)

where

A = diag(ÑT, ÑW) +

⎛⎜⎜⎜⎜⎜⎜⎝

Ñt
t1⊗W

0J×J

...

Ñt
tJ ⊗W

Ñt1⊗W · · · ÑtJ ⊗W 0L×L

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ñt
t1⊗W

0 0 · · · 0
0 Ñt

t2⊗W
0 · · · 0

...
. . . 0

0 0 · · · Ñt
tJ ⊗W

diag(Ñt1⊗W) diag(Ñt2⊗W) · · · diag(ÑtJ ⊗W)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and C = diag(ÑT⊗W), where 0K×K is the K-dim zero matrix. Thus,

�−1
A =

(
0 0
0 C−1

)
+

(
IJ+L

−C−1Bt

)
−1(IJ+L,−BC−1),(A.2)

where  = A − BC−1Bt = diag(ÑT⊗w0, Ñt0⊗W). Note that �A is nonsingu-
lar if and only if C and  are nonsingular and det�A = det C · det =∏J,L

j,l=1 Ñ(j, l)
∏J

j=1 Ñ(j,0)
∏L

l=1 Ñ(0, l). From (A.2) it follows that

δtF�−1
A Ftδ = δtF

(
0 0
0 C−1

)
Ftδ + δtF

(
IJ+L

−C−1Bt

)
−1(IJ+L,−BC−1)Ftδ,

where

δtF

(
0 0
0 C−1

)
Ftδ =

J∑
j=1

L∑
l=1

Ñ(j, l)
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and

δtF

(
IJ+L

−C−1Bt

)
−1(IJ+L,−BC−1)Ftδ =

J∑
j=1

Ñ(j,0) +
L∑

l=1

Ñ(0, l),

since

BC−1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1t
L 0 · · · 0
0 1t

L · · · 0
...

. . .
...

0 0 · · · 1t
L

IL IL · · · IL

⎞⎟⎟⎟⎟⎟⎟⎠(A.3)

and

−1BC−1

(A.4)

=

⎛⎜⎜⎜⎜⎜⎜⎝
Ñ(1,0)−11t

L 0 · · · 0
0 Ñ(2,0)−11t

L · · · 0
...

. . .
...

0 · · · Ñ(J,0)−11t
L

diag(Ñt0⊗W)−1 diag(Ñt0⊗W)−1 · · · diag(Ñt0⊗W)−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Therefore, δtF�−1
A Ftδ = ∑J

j=1
∑L

l=1 Ñ(j, l)+∑J
j=1 Ñ(j,0)+∑L

l=1 Ñ(0, l), and

consequently
∑n

i=1 δi − δtF(�A)−1Ftδ = Ñ(0,0). Hence,

det M̃ =
J∏

j=0

L∏
l=0

N(j, l)2π(j, l)[1 − π(j, l)]

and thus (3.4) follows directly.
C2. Note that M̃−1 can be partitioned as follows:

M̃−1 =
(

M̃−1
11 M̃−1

12

(M̃−1
12 )t M̃−1

22

)
,

where M̃−1
11 is given by⎡⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎝
n∑

i=1

δi 0

0 n −
n∑

i=1

δi

⎞⎟⎟⎟⎟⎠ −
(

δtF�−1
A Ftδ 0
0 (1 − δ)tF�−1

B Ft (1 − δ)

)⎤⎥⎥⎥⎥⎦
−1

=
(

N(0,0)π(0,0) 0
0 N(0,0)[1 − π(0,0)]

)−1

,
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M̃−1
12 = −M̃−1

11

(
δtF 0
0 (1 − δ)tF

)(
�−1

A 0
0 �−1

B

)
,

and

M̃−1
22 =

(
�−1

A 0
0 �−1

B

)[
I2p −

(
Ftδ 0
0 Ft (1 − δ)

)
M̃−1

12

]
.

Thus, det(DtM−1D) = det M−1
22 , which is given by

det�−1
A det

[
Ip + FtδδtF�−1

A

N(0,0)π(0,0)

]
det�−1

B det
[
Ip + Ft (1 − δ)(1 − δ)tF�−1

B

N(0,0)[1 − π(0,0)]
]
.

Applying Sylvester’s determinant theorem, we obtain that

det�−1
A det

[
Ip + FtδδtF�−1

A

N(0,0)π(0,0)

]
= det�−1

A

(
1 + δtF�−1

A Ftδ

N(0,0)π(0,0)

)

=
∑n

i=1 δi∏J
j=0

∏L
l=0 N(j, l)π(j, l)

.

Analogously for treatment B , so that (3.5) follows easily after simple algebra.
C3–C4. Clearly tr(n−1DtM−1D) = tr M̃−1

22 , so criterion C3 is given by

σ 2 tr
(
�−1

A + 1

N(0,0)π(0,0)
�−1

A FtδδtF�−1
A

)
(A.5)

+ σ 2 tr
(
�−1

B + 1

N(0,0)[1 − π(0,0)]�
−1
B Ft (1 − δ)(1 − δ)tF�−1

B

)
.

Note that tr(n−1σ 2EtM−1E) coincides with (A.5) and thus C4 is equal to C3.
Since

�−1
A =

(
−1 −−1BC−1

−C−1Bt−1 C−1 + C−1Bt−1BC−1

)
,

we obtain tr(�−1
A ) = tr(−1) + tr(C−1) + tr(C−1Bt−1BC−1). From (A.3) and

(A.4), it follows that

tr(C−1Bt−1BC−1) =
J∑

j=1

L∑
l=1

(
1

Ñ(j,0)
+ 1

Ñ(0, l)

)
=

J∑
j=1

L

Ñ(j,0)
+

L∑
l=1

J

Ñ(0, l)
,

and thus tr(�−1
A ) is

J∑
j=1

L∑
l=1

(
1

Ñ(0, l)
+ 1

Ñ(j,0)

)
+

J∑
j=1

L∑
l=1

(
1

Ñ(j, l)

)
+

J∑
j=1

L∑
l=1

(
1

Ñ(0, l)
+ 1

Ñ(j,0)

)
.

Moreover, from (A.2), (A.3) and (A.4) we obtain δtF�−1
A = (1t

J+L,−1t
J ·L) and

thus �−1
A FtδδtF�−1

A has unitary diagonal elements, so that tr(�−1
A FtδδtF�−1

A ) =
J + L + J · L. Analogously for treatment B .
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A.2. Proof of Theorem 7.1. As regards the first statement (7.7), at each stra-
tum (tj ,wl) we will prove the convergence of both πn(j, l) and π̂∗

n (j, l) to the tar-
get π∗(j, l); for ease of notation we will often omit the subscript (j, l) assuming
that we are fixing the stratum (tj ,wl). Let Fn = σ(Y1, . . . , Yn, δ1, . . . , δn,Z1, . . . ,

Zn) denote the σ -field representing the history of the trial, with F0 the trivial σ -
field, and Gn = σ(Fn,Zn+1). Moreover, let �Mi = [δi −E(δi |Gi−1)]1{Zi=(tj ,wl)},
then {�Mi; i ≥ 1} is a sequence of bounded martingale differences with |�Mi | ≤
1 for any i ≥ 1; thus the sequence {Mn = ∑n

i=1 �Mi;Gn} is a martingale with∑n
k=1 E[(�Mi)

2|Gk−1] ≤ Nn.
Let ln = max{s : 2m + 1 ≤ s ≤ n, Ñs − Nsπ̂

∗
s ≤ 0}, with max ∅ = 2m, and note

that

Ñn = Ñln+1 +
n∑

k=ln+2

�Mk +
n∑

k=ln+2

E(δk|Gk−1)1{Zk=(tj ,wl)}

≤ Ñln + 1 + Mn − Mln+1 +
n∑

k=ln+2

ϕ(πk−1; π̂∗
k−1; p̂k−1)1{Zk=(tj ,wl)}

< Ñln + 1 + Mn − Mln+1 +
n∑

k=ln+2

π̂∗
k−11{Zk=(tj ,wl)}

= Ñln + 1 + Mn − Mln+1 +
n∑

k=1

π̂∗
k−11{Zk=(tj ,wl)} −

ln+1∑
k=1

π̂∗
k−11{Zk=(tj ,wl)},

since for any i ≥ ln + 1, ϕ(πi; π̂∗
i ; p̂i) < π̂∗

i < πi ; whereas Ñln ≤ Nlnπ̂
∗
ln

and thus

Ñn − Nnπ̂
∗
n ≤

(
Nlnπ̂

∗
ln

−
ln+1∑
k=1

π̂∗
k−11{Zk=(tj ,wl)}

)
+ Mn − Mln+1 + 1

−
(
Nnπ̂

∗
n −

n∑
k=1

π̂∗
k−11{Zk=(tj ,wl)}

)
.

Since p(j, l) > 0 for each stratum (tj ,wl), then as n → ∞, Nn → ∞ a.s. and
therefore N−1

n Mn → 0 a.s.; see, for instance, [21]. Furthermore, as n → ∞, p̂n →
p a.s. and at least one of the the number of assignments to the treatments, namely
Ñn and (Nn − Ñn), tends to infinity a.s. As showed in [14], in any case γ̂ n has
finite limit so that, from the properties of π∗, there exists a v ∈ (0,1) such that

π̂∗
n → v a.s.(A.6)

and so

π̂∗
n −

∑n
k=1 π̂∗

k−11{Zk=(tj ,wl)}∑n
k=1 1{Zk=(tj ,wl)}

→ 0 a.s.
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As n → ∞, then ln → ∞ or supn ln < ∞; in either case,

π̂∗
ln

Nln

Nn

−
∑ln+1

k=1 π̂∗
k−11{Zk=(tj ,wl)}∑n

k=1 1{Zk=(tj ,wl)}
→ 0 a.s.

and therefore

(πn − π̂∗
n )+ → 0 a.s.(A.7)

Let λn = max{s : 2m+1 ≤ s ≤ n, (Ns −Ñs)−Ns(1− π̂∗
s ) ≤ 0}, for any i ≥ λn +1,

we have ϕ(πi; π̂∗
i ; p̂i) = 1 − ϕ(1 − πi;1 − π̂∗

i ; p̂i) > π̂∗
i > πi . Then,

Nn − Ñn = Nλn+1 − Ñλn+1 +
n∑

k=λn+2

E
(
(1 − δk)|Gk−1

)
1{Zk=(tj ,wl)}

+
n∑

k=λn+2

[
(1 − δk) − E

(
(1 − δk)|Gk−1

)]
1{Zk=(tj ,wl)}

≤ Nλn + 1 − Ñλn − (Mn − Mλn+1)

+
n∑

k=λn+2

ϕ(1 − πk−1;1 − π̂∗
k−1; p̂k−1)1{Zk=(tj ,wl)}

< Nλn + 1 − Ñλn − (Mn − Mλn+1) +
n∑

k=λn+2

(1 − π̂∗
k−1)1{Zk=(tj ,wl)}

= Nλn + 1 − Ñλn − (Mn − Mλn+1) +
n∑

k=1

(1 − π̂∗
k−1)1{Zk=(tj ,wl)}

−
λn+1∑
k=1

(1 − π̂∗
k−1)1{Zk=(tj ,wl)}.

Hence,

(Nn − Ñn) − Nn(1 − π̂∗
n )

≤
{
Nλn(1 − π̂∗

λn
) −

λn+1∑
k=1

(1 − π̂∗
k−1)1{Zk=(tj ,wl)}

}

+ 1 − (Mn − Mλn+1) −
{
Nn(1 − π̂∗

n ) −
n∑

k=1

(1 − π̂∗
k−1)1{Zk=(tj ,wl)}

}
,

so that (
(1 − πn) − (1 − π̂∗

n )
)+ → 0 a.s.(A.8)
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From (A.7) and (A.8), as n tends to infinity

πn − π̂∗
n → 0 a.s.

and by (A.6)

lim
n→∞πn = lim

n→∞ π̂∗
n = v a.s.

Since 0 < v < 1, then 0 < 1 − v < 1 and thus

lim
n→∞ Ñn → ∞ a.s. and lim

n→∞(Nn − Ñn) → ∞ a.s.

Therefore, limn→∞ γ̂ n→γ a.s. and from the continuity of the target limn→∞ π̂∗
n =

π∗ = v a.s., that is,

lim
n→∞πn = π∗ a.s.(A.9)

Taking into account the average information matrix M in (2.3), from (A.9) and the
proof of Proposition 3.1 it follows that

lim
n→∞n−1

n∑
i=1

δi =
J∑

j=0

L∑
l=0

π∗(j, l)p(j, l) a.s.

lim
n→∞n−1δtF = π̃∗t a.s. and lim

n→∞n−1Ft�F = MA a.s.

Thus, as n goes to infinity the information matrix converges almost surely to
M(π∗), which is nonsingular since

∑J
j=0

∑L
l=0 π∗(j, l)p(j, l) ∈ (0,1), MA and

MB are nonsingular, and the matrix⎛⎜⎜⎜⎜⎜⎝
J∑

j=0

L∑
l=0

π∗(j, l)p(j, l) 0

0 1 −
J∑

j=0

L∑
l=0

π∗(j, l)p(j, l)

⎞⎟⎟⎟⎟⎟⎠

−
(

δtF 0
0 (1 − δ)tF

)(
MA 0

0 MB

)−1 (
Ftδ 0
0 Ft (1 − δ)

)

=
(

π∗(0,0)p(0,0) 0
0 1 − π∗(0,0)p(0,0)

)
is nonsingular too, since π∗(0,0)p(0,0) ∈ (0,1). Thus, the asymptotic normality
of γ̂ n follows directly.
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SUPPLEMENTARY MATERIAL

Supplement to “Multi-objective optimal designs in comparative clinical tri-
als with covariates: the reinforced doubly adaptive biased coin design” (DOI:
10.1214/12-AOS1007SUPP; .pdf). An online supplementary file contains the ex-
tension of inferential criteria C1–C5 to the case of several covariates.
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