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CHARACTERIZING L2BOOSTING

BY JOHN EHRLINGER AND HEMANT ISHWARAN

Cleveland Clinic and University of Miami

We consider L2Boosting, a special case of Friedman’s generic boosting
algorithm applied to linear regression under L2-loss. We study L2Boosting
for an arbitrary regularization parameter and derive an exact closed form ex-
pression for the number of steps taken along a fixed coordinate direction.
This relationship is used to describe L2Boosting’s solution path, to describe
new tools for studying its path, and to characterize some of the algorithm’s
unique properties, including active set cycling, a property where the algo-
rithm spends lengthy periods of time cycling between the same coordinates
when the regularization parameter is arbitrarily small. Our fixed descent
analysis also reveals a repressible condition that limits the effectiveness of
L2Boosting in correlated problems by preventing desirable variables from
entering the solution path. As a simple remedy, a data augmentation method
similar to that used for the elastic net is used to introduce L2-penalization
and is shown, in combination with decorrelation, to reverse the repressible
condition and circumvents L2Boosting’s deficiencies in correlated problems.
In itself, this presents a new explanation for why the elastic net is success-
ful in correlated problems and why methods like LAR and lasso can perform
poorly in such settings.

1. Introduction. Given data {yi,xi}n1, where yi is the response and xi =
(xi,1, . . . , xi,p) ∈ R

p is the p-dimensional covariate, the goal in many analyses
is to approximate the unknown function F(x) = E(y|x) by minimizing a specified
loss function L(y,F ) [a common choice is L2-loss, L(y,F ) = (y − F)2/2]. In
trying to estimate F , one strategy is to make use of a large system of possibly re-
dundant functions H. If H is rich enough, then it is reasonable to expect F to be
well approximated by an additive expansion of the form

F(x; {βk,αk}K1 ) =
K∑

k=1

βkh(x;αk),

where h(x;α) ∈ H are base learners parameterized by α ∈ �. To estimate F ,
a joint multivariable optimization over {βk,αk}K1 may be used. But such an op-
timization may be computationally slow or even infeasible for large dictionaries.
Overfitting may also result. To circumvent this problem, iterative descent algo-
rithms are often used.
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One popular method is the gradient descent algorithm described by Friedman
(2001), closely related to the method of “matching pursuit” used in the signal pro-
cessing literature [Mallat and Zhang (1993)]. This algorithm is applicable to a wide
range of problems and loss functions, and is now widely perceived to be a generic
form of boosting. For the mth step, m = 1, . . . ,M , one solves

ρm = arg min
ρ∈R

n∑
i=1

L
(
yi,Fm−1(xi ) + ρh(xi;αm)

)
,(1.1)

where

αm = arg min
α∈�

n∑
i=1

[gm(xi ) − h(xi;α)]2(1.2)

identifies the closest base learner to the gradient gm = (gm(x1), . . . , gm(xn))
T in

L2-distance, where gm(xi ) is the gradient evaluated at the current value Fm−1(xi ),
and is defined by

gm(xi ) = −
[
∂L(yi,F (xi ))

∂F (xi )

]
Fm−1(xi )

= −L′(yi,Fm−1(xi )).

The mth update for the predictor of F is

Fm(x) = Fm−1(x) + νρmh(x;αm),

where 0 < ν ≤ 1 is a regularization (learning) parameter.
In this paper, we study Friedman’s algorithm under L2-loss in linear regres-

sion settings assuming an n × p design matrix X = [X1, . . . ,Xp], where Xk =
(x1,k, . . . , xn,k)

T denotes the kth column. Here Xk represents the kth base learner;
that is, h(xi;k) = xi,k where k = α and � = {1, . . . , p}. It is well known that un-
der L2-loss the gradient simplifies to the residual gm(xi ) = yi − Fm−1(xi ). This
is particularly attractive for a theoretical treatment as it allows one to combine the
line-search (1.1) and the learner-search (1.2) into a single step because the L2-loss
function can be expressed as L(yi,Fm−1(xi ) + ρxi,k) = (gm(xi ) − ρxi,k)

2. The
optimization problem becomes

{ρm, km} = arg min
ρ∈R,1≤k≤p

‖gm − ρXk‖2.

It is common practice to standardize the response by removing its mean which
eliminates the issue of whether an intercept should be included as a column of X.
It is also common to standardize the columns of X to have a mean of zero and
squared-length of one. Thus, throughout, we assume the data is standardized ac-
cording to

n∑
i=1

yi = 0,

n∑
i=1

xi,k = 0,

n∑
i=1

x2
i,k = 1, k = 1, . . . , p.(1.3)
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Algorithm 1 L2Boosting
1: Initialize F0,i = 0 for i = 1, . . . , n

2: for m = 1 to M do
3: km = arg max1≤k≤p|XT

k gm|, where gm = y − Fm−1

4: Fm = Fm−1 + νρmXkm , where ρm = XT
km

gm

5: end for

The condition
∑n

i=1 x2
i,k = 1 leads to a particularly useful simplification:

ρm = XT
km

gm, km = arg max
1≤k≤p

|XT
k gm|.

Thus, the search for the most favorable direction is equivalent to determining the
largest absolute value |XT

k gm|. We refer to XT
k gm as the gradient-correlation for k.

We shall refer to Friedman’s algorithm under the above settings as L2Boosting.
Algorithm 1 provides a formal description of the algorithm [we use Fm−1 =
(Fm−1(x1), . . . ,Fm−1(xn))

T for notational convenience].
Properties of stagewise algorithms similar to L2Boosting have been studied ex-

tensively under the assumption of an infinitesimally small regularization parame-
ter. Efron et al. (2004) considered a forward stagewise algorithm FSε , and showed
under a convex cone condition that the Least Angle Regression (LAR) algorithm
yields the solution path for FS0, the limit of FSε as ε → 0. This shows that FSε ,
a variant of boosting, and the lasso [Tibshirani (1996)] are related in some settings.
Hastie et al. (2007) showed in general that the solution path of FS0 is equivalent to
the path of the monotone lasso.

However, much less work has focused on stagewise algorithms assuming an ar-
bitrary learning parameter 0 < ν ≤ 1. An important exception is Bühlmann (2006)
who studied L2Boosting with componentwise linear least squares, the same algo-
rithm studied here, and proved consistency for arbitrary ν under a sparsity assump-
tion where p can increase at an exponential rate relative to n. As pointed out in
Bühlmann (2006), the FSε algorithm studied by Efron et al. (2004) bears similari-
ties to L2Boosting. It is identical to Algorithm 1, except for line 4, where ε is used
in place of ν and

Fm = Fm−1 + εδmXkm, where δm = sgn[corr(gm,Xkm)].
Thus, FSε replaces the gradient-correlation ρm with the sign of the gradient-
correlation δm. For infinitesimally small ν this difference appears to be inconse-
quential, and it is generally believed that the two limiting solution paths are equal
[Hastie (2007)]. In general, however, for arbitrary 0 < ν ≤ 1, the two solution paths
are different. Indeed, Bühlmann (2006) indicated certain unique advantages pos-
sessed by L2Boosting. Other related work includes Bühlmann and Yu (2003), who
described a bias-variance decomposition of the mean-squared-error of a variant of
L2Boosting.
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1.1. Outline and contributions. In this paper, we investigate the properties
of L2Boosting assuming an arbitrary learning parameter 0 < ν ≤ 1. During
L2Boosting’s descent along a fixed coordinate direction, a new coordinate be-
comes more favorable when it becomes closest to the current gradient. But when
does this actually occur? We provide an exact simple closed form expression for
this quantity: the number of iterations to favorability (Theorem 2 of Section 2).
This core identity is used to describe L2Boosting’s solution path (Theorem 3), to
introduce new tools for studying its path and to study and characterize some of the
algorithm’s unique properties. One of these is active set cycling, a property where
the algorithm spends lengthy periods of time cycling between the same coordinates
when ν is small (Section 3).

Our fixed descent identity also reveals how correlation affects L2Boosting’s
ability to select variables in highly correlated problems. We identify a repressible
condition that prevents a new variable from entering the active set, even though that
variable may be highly desirable (Section 4). Using a data augmentation approach,
similar to that used for calculating the elastic net [Zou and Hastie (2005)], we
describe a simple method for adding L2-penalization to L2Boosting (Section 5).
In combination with decorrelation, this reverses the repressible condition and im-
proves L2Boosting’s performance in correlated problems. Because L2Boosting is
known to approximate forward stagewise algorithms for arbitrarily small ν, it is
natural to expect these results to apply to such algorithms like LAR and lasso, and
thus our results provide a new explanation for why these algorithms may perform
poorly in correlated settings and why methods like the elastic net, which makes use
of L2-penalization, are more adept in such settings. All proofs in this manuscript
can be found in the supplemental article [Ehrlinger and Ishwaran (2012)].

2. Fixed descent analysis. To analyze L2Boosting we introduce the fol-
lowing notation useful for describing its solution path. Let {l1, . . . , lM∗} be the
M∗ ≤ M nonduplicated values in order of appearance of the selected coordinate
directions BM = {k1, . . . , kM}. We refer to these ordered, nonduplicated values as
critical directions of the path. For example, if BM = {5,5,5,3,5,1,4,4,5}, the
critical directions are {5,3,5,1,4,5} and M∗ = 6. To formally describe the solu-
tion path we introduce the following nomenclature.

DEFINITION 1. The descent length along a critical direction lr is denoted
by Lr . The critical point Sr is the step number at which the descent along lr ends.
Thus, following step Sr−1, the descent is along lr for a total of Lr steps, ending at
step Sr .

The set of values (lr ,Lr, Sr)
M∗
1 can be used to formally describe the solution

path of L2Boosting: the algorithm begins by descending along direction l1 (the first
critical direction) for L1 steps, after which it switches to a descent along direction
l2 (the second critical direction) for a total of L2 steps. This continues with the last
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FIG. 1. Solution path for L2Boosting where BM = {5,5,5,3,5,1,4,4,5}. The M∗ = 6 critical
directions are (lr )

6
1 = (5,3,5,1,4,5) with critical descent step lengths (Lr )

6
1 = (3,1,1,1,2,1) and

critical points (Sr )
6
1 = (3,4,5,6,8,9).

descent along lM∗ (the final critical direction) for a total of LM∗ steps. See Figure 1
for illustration of the notation.

A key observation is that L2Boosting’s behavior along a given descent is deter-
ministic except for its descent length Lr (number of steps). If we could determine
the descent length, a quantity we show is highly amenable to analysis, then an
exact description of the solution path becomes possible as L2Boosting can be con-
ceptualized as collection of such fixed paths.

Imagine then that we are at step m′ of the algorithm and that in the following
step a new critical direction k is formed. Let us study the descent along k for
the next m = 1, . . . ,M ′ steps. Thus, in the mth step of the descent along k, the
predictor is

Fk,m = Fk,m−1 + νρk,mXk, where ρk,m = XT
k (y − Fk,m−1).

Consider then Algorithm 2 which repeatedly boosts the predictor along the kth
direction for a total of M ′ steps.

The following result states a closed form solution for the m-step predictor of
Algorithm 2 and will be crucial to our characterization of L2Boosting.

THEOREM 1. Fk,m = Fk,0 + νmρk,1Xk , where νm = 1 − (1 − ν)m and ρk,1 =
XT

k (y − Fk,0).
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Algorithm 2 L2Boosting (Fixed direction, k)
1: Fk,0 = Fm′
2: for m = 1 to M ′ do
3: Fk,m = Fk,m−1 + νρk,mXk , where ρk,m = XT

k (y − Fk,m−1)

4: end for

Theorem 1 shows that taking a single step with learning parameter νm yields the
same limit as taking m steps with the smaller learning parameter ν. The result also
sheds insight into how ν slows the descent relative to stagewise regression. Notice
that the m-step predictor can be written as

Fk,m = Fk,0 + ρk,1Xk︸ ︷︷ ︸
stagewise

− (1 − ν)mρk,1Xk︸ ︷︷ ︸
slow learning

.

The first term on the right is the predictor from a greedy stagewise step, while the
second term represents the effect of slow-learning. This latter term is what slows
the descent relative to a greedy step. When m → ∞ this term vanishes, and we end
up with stagewise fitting, ν = 1.

2.1. Directional change in the descent. Theorem 1 shows how to take a large
boosting step in place of many small steps, but it does not indicate how many steps
must be taken along k before a new variable enters the solution path. If this were
known, then the entire k-descent could be characterized in terms of a single step.

To determine the descent length, suppose that L2Boosting has descended along
k for a total of m steps. At step m + 1 the algorithm must decide whether to con-
tinue along k or to select a new direction j . To determine when to switch directions,
we introduce the following definition.

DEFINITION 2. A direction j is said to be more favorable than k at step m+1
if |ρk,m| ≥ |ρj,m| and |ρk,m+1| < |ρj,m+1|. Thus, if j is more favorable at m + 1,
the descent switches to j for step m + 1.

To determine when j becomes more favorable, it will be useful to have a closed
form expression for ρk,m+1 and ρj,m+1. By Theorem 1,

ρj,m+1 = XT
j (y − Fk,m)

= XT
j [(y − Fk,0) − νmρk,1Xk]

= ρj,1 − νmρk,1Rj,k,

where Rj,k = XT
j Xk . Setting j = k yields ρk,m+1 = (1 − ν)mρk,1. Therefore,

|ρk,m+1| < |ρj,m+1| if and only if

(1 − ν)2mρ2
k,1 < (ρj,1 − νmρk,1Rj,k)

2.
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Dividing throughout by ρk,1, with a little bit of rearrangement, this becomes

(1 − ν)2m < [(1 − ν)mRj,k + (dj,k − Rj,k)]2,(2.1)

where dj,k = ρj,1/ρk,1. Notice importantly that |dj,k| ≤ 1 because k is the direc-
tion with maximal gradient-correlation at the start of the descent. It is also useful
to keep in mind that Rj,k is the sample correlation of Xj and Xk due to (1.3),
and thus |Rj,k| ≤ 1. The following result states the number of steps taken along k

before j becomes more favorable.

THEOREM 2. The number of steps mj,k taken along k so that j becomes more
favorable than k at mj,k + 1 is the largest integer m such that

(1 − ν)m−1 ≥ |dj,k − Rj,k|
1 − Rj,k sgn(dj,k − Rj,k)

.(2.2)

It follows that for 0 < ν < 1

mj,k = floor
[
1 + log |dj,k − Rj,k| − log(1 − Rj,k sgn(dj,k − Rj,k))

log(1 − ν)

]
,(2.3)

where floor(z) is the largest integer less than or equal to z.

REMARK 1. In particular, notice that mj,k = ∞ when dj,k = Rj,k [adopting
the standard convention that sgn(0) = 0 and assuming that ν < 1]. We call dj,k =
Rj,k the repressible condition. Section 4 will show that repressibility plays a key
role in L2Boosting’s behavior in correlated settings.

REMARK 2. When ν = 1 we obtain mj,k = 1 from (2.2) which corresponds
to greedy stagewise fitting. Because this makes the ν = 1 case uninteresting, we
shall hereafter assume that 0 < ν < 1.

2.2. Defining the solution path. Theorem 2 immediately shows that the prob-
lem of determining the next variable to enter the solution path can be recast as
finding the direction requiring the fewest number of steps mj,k to favorability.
When combined with Theorem 1, this characterizes the entire descent and can be
used to characterize L2Boosting’s solution path.

As before, assume that k corresponds to the first critical direction of the path,
that is, l1 = k. By Theorem 2, L2Boosting descends along k for a total of S1 = L1
steps, where L1 = ml2,k and l2 is the coordinate requiring the smallest number of
steps to become more favorable than k. By Theorem 1, the predictor at step S1 is

FS1 = F0 + νL1ρ
(1)
l1

Xl1, where ρ
(1)
l1

= XT
l1
(y − F0).

Applying Theorem 1 once again, but now using a descent along l2 initialized at
FS1 , and continuing this argument recursively, as well as using the representation
for the number of steps from Theorem 2, yields Theorem 3, which presents a re-
cursive description of L2Boosting’s solution path.
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THEOREM 3. FSr = FSr−1 + νLr ρ
(r)
lr

Xlr , where {(lr ,Lr, Sr, ρ
(r)
lr

)}M∗
1 are de-

termined recursively from

l1 = arg max
1≤j≤p

|XT
j (y − F0)|, lr+1 = arg max

j 
=lr

∣∣ρ(r+1)
j

∣∣,

M
(r)
j = floor

[
1 + log |D(r)

j − Rj,lr | − log(1 − Rj,lr sgn(D
(r)
j − Rj,lr ))

log(1 − ν)

]
,

Lr = M
(r)
lr+1

, Sr = Sr−1 + Lr, S0 = 0,

D
(r)
j = ρ

(r)
j

ρ
(r)
lr

, ρ
(r+1)
j = XT

j (y − FSr ) = ρ
(r)
j − νLr ρ

(r)
lr

Rj,lr .

REMARK 3. A technical issue arises in Theorem 3 when M
(r)
j is not unique.

Non-uniqueness can occur due to rounding which is caused by the floor function
used in the definition of mj,k . This is why line 1 selects the next critical value, lr+1,

by maximizing the absolute gradient-correlation |ρ(r+1)
j | and not by minimizing

the step number M
(r)
j . This definition for lr+1 is equivalent to the two-step solution

lr+1 ← arg max
j∈lr+1

∣∣ρ(r+1)
j

∣∣, where lr+1 = arg min
j 
=lr

{
M

(r)
j

}
.

REMARK 4. Another technical issue arises when there is a tie in the absolute
gradient-correlation. In line 3 of Algorithm 1 it may be possible for two coordi-
nates, say j and k, to have equal gradient-correlations at step m > 1. Theorem 3
implicitly deals with such ties due to Definition 2. For example, suppose that the
first m − 1 steps are along k with the tie occurring at step m. In the language of
Theorem 2, because j becomes more favorable than k at m + 1, where m = mj,k ,
we have

|ρj,m−1| < |ρk,m−1|, |ρj,m| = |ρk,m|, |ρj,m+1| > |ρk,m+1|.
In this example, Theorem 3 resolves the tie at m by continuing to descend along k,
then switching to j at step m+1. Although Algorithm 1 does not explicitly address
this issue, the potential discrepancy is minor because such ties should rarely occur
in practice. This is because for |ρj,m| = |ρk,m| to hold, the value inside the floor
function of (2.3) used to define mj,k must be an integer (a careful analysis of the
proof of Theorem 2 shows why). A tie can occur only when this value is an integer
which is numerically unlikely to occur.

REMARK 5. Theorem 3 immediately yields a recursive solution for the coef-
ficient vector, β . The solution path for β is the piecewise solution

β(r) = β(r−1) + νLr ρ
(r)
lr

1lr , β(0) = 0,

where 1lr ∈ R
p is the vector with one in coordinate lr and zero elsewhere.
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Algorithm 3 L2Boosting (Solution path)

1: F0 = 0; S0 = 0; l1 = arg max1≤j≤p|XT
j y|

2: for r = 1 to M∗ do
3: lr+1 = arg maxj 
=lr

|ρ(r+1)
j |; ρ

(r+1)
j = ρ

(r)
j − νLr ρ

(r)
lr

Rj,lr

4: Lr = M
(r)
lr+1

; Sr = Sr−1 + Lr

5: FSr = FSr−1 + νLr ρ
(r)
lr

Xlr

6: end for

2.3. Illustration: Diabetes data. Aside from the technical issue of ties, The-
orem 3 and Algorithm 1 are equivalent. For convenience, we state Theorem 3 in
an algorithmic form to facilitate comparison with Algorithm 1; see Algorithm 3.
Computationally, Algorithm 3 improves upon Algorithm 1 by avoiding taking
many small steps along a given descent. However, the difference is not substan-
tial because the benefits only apply when ν is small, and as we will show later
(Section 3), this forces the algorithm to cycle between its variables following the
first descent, thus mitigating its ability to take large steps. Thus, strictly speaking,
the benefit of Algorithm 3 is confined primarily to the first descent.

To investigate the differences between the two algorithms we analyzed the di-
abetes data used in Efron et al. (2004). The data consists of n = 442 patients in
which the response of interest, y, is a quantitative measure of disease progression
for a patient. In total there are 64 variables, that includes 10 baseline measurements
for each patient, 45 interactions and 9 quadratic terms.

In order to compare results, we translated each iteration, r , used by Algorithm 3
into its corresponding number of steps, m. Thus, while we ran Algorithm 3 for
M∗ = 250 iterations, this translated into M = 332 steps. As expected, this differ-
ence is primarily due to the first iteration r = 1 which took m = 14 steps along
the first critical direction (first panel of Figure 2; the rug indicates critical points,
Sr ). There are other instances where Algorithm 3 took more than one step (corre-
sponding to the light grey tick marks on the rug), but these were generally steps of
length 2. The standardized gradient-correlation is plotted along the y-axis of the
figure. The standardized gradient-correlation for step m was defined as (using the
notation of Algorithm 1)

ρ∗
m = XT

km
gm√

XT
km

Xkm

√
gT
mgm

= ρm√
gT
mgm

.(2.4)

The middle panel displays the results using Algorithm 1 with M = 250 steps.
Clearly, the greatest gains from Algorithm 3 occur along the r = 1 descent. One
can see this most clearly from the last panel which superimposes the first two
panels.
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FIG. 2. L2Boosting applied to the diabetes data. First two panels display standardized gradient-
correlation ρ∗

m against step number m for Algorithms 3 and 1, respectively. Only coordinates in the
solution path are displayed (a total of four). The third panel superimposes the first two panels. All
analyses used ν = 0.005.

REMARK 6. Note a potential computational optimization exists in Algo-
rithm 3. It is possible to calculate the correlation values only once as each new
variable enters the active set, then cache these values for future calculations. Thus,
when lr+1 is a new variable in the active set, we calculate (Rj,lr+1)

p
j=1. The updated

gradient-correlation is calculated efficiently by using addition and scalar multipli-
cation using the previous gradient-correlation and the cached correlation coeffi-
cients

ρ
(r+1)
j = ρ

(r)
j − νLr ρ

(r)
lr

Rj,lr .

This is in contrast to Algorithm 1 which requires a vector multiplication of dimen-
sion p at each step m to update the gradient-correlation: ρm = XT

km
gm.

REMARK 7. Above, when we refer to the “active set,” we mean the unique set
of critical directions in the current solution path. This term will be used repeatedly
throughout the paper.

2.4. Visualizing the solution path. Throughout the paper we illustrate differ-
ent ways of utilizing mj,k of Theorem 2 to explore L2Boosting. So far we have
confined the use of Theorem 2 to determining the descent length along a fixed di-
rection, but another interesting application is determining how far a given variable
is from the active set. Note that although Theorem 2 was described in terms of an
active set of only one coordinate, it applies in general, regardless of the size of the
active set. Thus, mj,k can be calculated at any step m to determine the number of
steps required for j to become more favorable than the current direction, k. This
value represents the distance of j to the solution path and can be used to visualize
it.

To demonstrate this, we applied Algorithm 1 to the diabetes data for M =
10,000 steps and recorded mj,k for each of the p = 64 variables. Figure 3 records
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FIG. 3. Distance mj,k of each variable j to favorability relative to the current descent k (results
based on Algorithm 1 where ν = 0.005). For visual clarity the mj,k values have been smoothed using
a running median smoother.

these values. Each “jagged path” in the figure is the trace over the 10,000 steps for
a variable j . Each point on the path equals the number of steps mj,k to favorability
relative to the current descent k 
= j . The patterns are quite interesting. The top
variables have mj,k values which quickly drop within the first 1000 steps. Another
group of variables have values which take much longer to drop, doing so some-
where between 2000 to 4000 steps, but then increase almost immediately. These
variables enter the solution path but then quickly become unattractive regardless
of the descent direction.

It has become popular to visualize the solution path of forward stagewise al-
gorithms by plotting their gradient-correlation paths and/or their coefficient paths.
Figure 3 is a similar tool. A unique feature of mj,k is that it depends not only on
the gradient-correlation (via dj,k), but also the correlation in the x-variables (via
Rj,k) and the learning parameter ν. In this manner, Figure 3 offers a new tool for
understanding and exploring such algorithms.

3. Cycling behavior. It has been widely observed that decreasing the regular-
ization parameter slows the convergence of stagewise descent algorithms. Efron
et al. (2004) showed that the FSε algorithm tracks the equiangular direction of the
LAR path for arbitrarily small ε. To achieve what LAR does in a single step, the
FSε algorithm may require thousands of small steps in a direction tightly clustered
around the equiangular vector, eventually ending up at nearly the same point as
LAR.

We show that L2Boosting exhibits this same phenomenon. We do so by de-
scribing this property as an active set cycling phenomenon. Using results from the
earlier fixed descent analysis, we show in the case of an active set of two variables
that L2Boosting systematically switches (cycles) between its two variables when
ν is small. For an arbitrarily small ν this forces the absolute gradient-correlations
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for the active set variables to be nearly equal. This point of equality represents
a singularity point that triggers a near-perpetual deterministic cycle between the
variables, ending only when a new variable enters the active set with nearly the
same absolute gradient-correlation.

3.1. L2Boosting’s gradient equality point. Our insight will come from look-
ing at Theorem 2 in more depth. As before, assume the algorithm has been initial-
ized so that k is the first critical step. Previously the descent along k was described
in terms of steps, but this can be equivalently expressed in units of the “step size”
taken. Define

νj,k = νmj,k
= 1 − (1 − ν)mj,k .

Recall that Theorem 1 showed that a single step along k with ν replaced with νj,k

yields the same limit as mj,k steps along k using ν. We call νj,k the step size
taken along k. Because j becomes more favorable than k at mj,k + 1, the gradient
following a step size of νj,k along k satisfies

|XT
j (y − F0 − νj,kρk,1Xk)| < |XT

k (y − F0 − νj,kρk,1Xk)|.(3.1)

This applies to all coordinates j 
= k, and in particular holds for the second critical
direction, l2, which rephrased in terms of step size, is the smallest νj,k value,

l2 = arg min
j 
=k

{νj,k}.

Although inequality (3.1) is strict, it becomes arbitrarily close to equality with
shrinking ν. With a little bit of rearranging, (2.2) implies that

ν̂j < νj,k, where ν̂j = 1 − |dj,k − Rj,k|
1 − Rj,k sgn(dj,k − Rj,k)

.(3.2)

We will show ν̂j is the step size making the absolute gradient-correlation between
j and k equal

|XT
j (y − F0 − ν̂j ρk,1Xk)| = |XT

k (y − F0 − ν̂j ρk,1Xk)|.(3.3)

The next theorem shows that νl2,k converges to the smallest ν̂j satisfying (3.3);
thus, (3.1) becomes an equality in the limit. For convenience, we define ν−

j,k =
νmj,k−1.

THEOREM 4. Let ρ̂j = XT
j (y − F0 − ν̂j ρk,1Xk). Then |ρ̂j | = |ρ̂k|. Further-

more, if l∗ = arg minj 
=k{ν̂j } and ν̂ = ν̂l∗ , then ν−
l2,k

≤ ν̂ < νl2,k and νl2,k → ν̂ as
ν → 0.

Therefore, for arbitrarily small ν, νl2,k � ν̂ and k and l2 will have near-equal ab-
solute gradient-correlations. This latter property triggers two-cycling. To see why,
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let us assume for the moment that the active set variables have equal absolute
gradient-correlations. Then by a direct application of Theorem 2, one can show
that the number of steps taken along l2 before k becomes more favorable is m = 1.
Thus, following the descent along k, the algorithm switches to l2, but then imme-
diately switches back to k. If ν is small enough, this process is repeated, setting off
a two-cycling pattern.

The next result is a formal statement of these arguments. Define

d
(m)
j,k = ρj,m

ρk,m

, where ρl,m = XT
l (y − Fm−1),1 ≤ l ≤ p.

For notational convenience, let j = l2 and m = mj,k . For technical reasons we shall

assume d
(m)
j,k 
= Rj,k . Recall Remark 1 showed that d

(m)
j,k = Rj,k , the repressible

condition, yields an infinite number of steps to favorability. Thus, for k to be even
eligible for favorability we must have d

(m)
j,k 
= Rj,k .

THEOREM 5. If the first two critical directions are (k, j) and νj,k = ν̂j , then

k is favored over j for the next step after j if d
(m)
j,k 
= Rj,k .

Theorem 5 assumes that νj,k = ν̂j . While this only holds in the limit, the two
values should be nearly equal for arbitrarily small ν, and thus the assumption is
reasonable. Notice also that Theorem 5 only shows that k is more favorable than j ,
and not that the algorithm switches to k. However, we can see that this must be the
case. For arbitrarily small ν, k’s gradient-correlation should be nearly equal to j ’s,
and by definition, j has maximal absolute gradient-correlation along the second
descent.

Indeed, the following result shows that the absolute gradient-correlations for k

and j can be made arbitrarily close for small enough ν for any step r ≥ 1 following
the descent along k. The result also shows that the sign of the gradient-correlation
is preserved when ν is arbitrarily small, a fact that we shall use later.

THEOREM 6. ρj,m+r/ρk,m+r → sgn(ρ̂j )/ sgn(ρ̂k) as ν → 0 for each r ≥ 1.

Combining Theorems 5 and 6, we see that if ν is small enough, the first three
critical directions of the path must be (k, j, k) with critical points (m,m + 1,

m + 2). And once the descent switches back to k, it is clear from the same ar-
gument that the next critical direction, l4, will be j , and so forth.

3.2. Illustration of two-cycling. We present a numerical example demonstrat-
ing two-cycling. For our example, we simulated data according to

y = Xβ + ε, ε ∼ N(0, I),
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FIG. 4. Standardized gradient-correlation path for ν = 0.01. Top left panel details the path through
the first three active variables, the remaining panels detail each active variable descent.

where n = 100, and p = 40. The first 10 coordinates of β were set to 5, with the
remaining coordinates set to 0. The design matrix X was simulated by drawing its
entries independently from a standard normal distribution.

Figure 4 plots the standardized gradient-correlations (2.4) from Algorithm 3
using ν = 0.01. As done earlier, we have converted iterations r into step numbers
m along the x-axis. The plots show the behavior of each coordinate within an
active set descent. The rug marks show each step m for clarity, and dashed vertical
lines indicate the step mj,k where the next step adds a new critical direction to the
solution path. The top left panel shows the complete descent along the first three
active variables. The remaining panels detail the coordinate behavior as the active
set increases from one to three coordinates.

The top right panel shows repeated selection of the l1 direction shown in black.
The last step along l1 occurs at mj,k marked with the vertical dashed line, where
the next step is along the l2 direction shown in red. This point marks the be-
ginning of the two-cycling behavior, which continues in the lower left panel.
At each step, the algorithm systematically switches between the l1 and l2 direc-
tions, until an additional direction becomes more favorable. The cycling pattern is
{l1, l2, l1, l2, . . .}. The lower right panel demonstrates three-cycling behavior. Here
it is instructive to note that the order of selection within three-cycling is nondeter-
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ministic. In this panel the order starts as {l3, l2, l1, . . .}, but changes near m = 70 to
{. . . , l3, l1, l2, . . .}. As discussed later, nondeterministic cycling patterns are typical
behavior of higher order cycling (active sets of size greater than two).

3.3. The limiting path. Here we provide a formal limiting result of two-
cycling. The result can be viewed as the analog of Theorem 4 when the active
set involves two variables. Using a slightly modified version of L2Boosting we
show that for arbitrarily small ν, if the algorithm cycles between its two active
variables, it does so until a new variable enters the active set with the same abso-
lute gradient-correlation.

Assume the active set is A = {k, j} and that k and j are cycling according to
(k, j, k, j, . . .). The m-step predictor for m = 1, . . . ,M is

Fm =
{

Fm−1 + νρk,mXk, if m is odd,
Fm−1 + νρj,mXj , if m is even,(3.4)

where ρl,m = XT
l (y − Fm−1). The cycling pattern (3.4) is assumed to persist for a

minimum length of M ≥ 3.
It will simplify matters if the cycling is assumed to be initialized with strict

equality of the gradient correlations: |ρk,1| = |ρj,1|. With an arbitrarily small ν,
this will force near equal absolute gradient-correlations at each step and by Theo-
rem 6 will preserve the sign of the gradient-correlation. We assume

ρj,m

ρk,m

= sgn(ρj,1)

sgn(ρk,1)
for m ≥ 1.

It should be emphasized that the above assumptions represent a simplified version
of L2Boosting. In practice, we would have

ρj,m = sρk,m + O(ν),

where s = sgn(ρj,1)/ sgn(ρk,1). However, for convenience we will not concern
ourselves with this level of detail here. Readers can consult Ehrlinger (2011) for a
more refined analysis.

One way to ensure |ρk,1| = |ρj,1| is to initialize the algorithm with the limit-
ing predictor F0 + ν̂j ρk,1Xk of Theorem 4 obtained by letting ν → 0 along the
k-descent. With a slight abuse of notation denote this initial estimator by F0. How-
ever, the fact that this specific F0 is used does not play a direct role in the results.
Under the above assumptions, the following closed form expression for the m-step
predictor under two-cycling holds.

THEOREM 7. Assume that ρj,m = sρk,m for m ≥ 1. If dj,k 
= Rj,k , then for
any 0 < ν < 1/2 satisfying 1 + sRj,k > νR2

j,k , we have for each m ≥ 1,

Fm =
⎧⎨
⎩F0 + Vm+1ρk,1

[
Xk + Vm−1

Vm+1
(s − νRj,k)Xj

]
, if m is odd,

F0 + Vmρk,1[Xk + (s − νRj,k)Xj ], if m is even,
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where Vm = νν−1
A [1 − (1 − νA)m/2] and νA = ν(1 + sRj,k − νR2

j,k). Note that
0 < νA < 1 under the asserted conditions.

To determine the above limit requires first determining when a new direction
l /∈ A becomes more favorable. For l to be more favorable at m + 1, we must have
|ρj,m+1| < |ρl,m+1| when m is odd, or |ρk,m+1| < |ρl,m+1| when m is even. The
following result determines the number of steps to favorability. For simplicity only
the case when m is odd is considered, but this does not affect the limiting result.

THEOREM 8. Assume the same conditions as Theorem 7. Then l becomes
more favorable than j at step m + 1 where m is the largest odd integer m ≥ 3
such that

(1 − νA)(m−1)/2 ≥ |dl,k − Rj,k,l|
1 − Rj,k,l sgn(dl,k − Rj,k,l)

(3.5)

where dl,k = ρl,1/ρk,1 and

Rj,k,l = Rl,k + (s − νRj,k)Rl,j

1 + sRj,k − νR2
j,k

.

Clearly (3.5) shares common features with (2.2). This is no coincidence. The
bounds are similar in nature because both are derived by seeking the point where
the absolute gradient-correlation between sets of variables are equal. In the case
of two-cycling, this is the singularity point where k, j and l are all equivalent in
terms of absolute gradient-correlation. The following result states the limit of the
predictor under two-cycling.

THEOREM 9. Under the conditions of Theorem 7, the limit of Fm as ν → 0 at
the next critical direction l∗ equals

F̂ = F0 + ν̂ρk,1[Xk + sXj ],
where l∗ = arg minl /∈A{ν̂l}, ν̂ = ν̂l∗ ,

ν̂l =
(

1 − |dl,k − R̂j,k,l|
1 − R̂j,k,l sgn(dl,k − R̂j,k,l)

)
(1 + sRj,k)

−1,(3.6)

and R̂j,k,l = (Rl,k + sRl,j )/(1 + sRj,k). Furthermore, |ρ̂l∗ | = |ρ̂k| = |ρ̂j |, where
for each l, ρ̂l = XT

l (y − F̂).

This shows that the predictor moves along the combined direction Xk + sXj

taking a step size ν̂ that makes the absolute gradient-correlation for l∗ equal to
that of the active set A = {k, j}. Theorem 9 is a direct analog of Theorem 4 to
two-cycling.
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Not surprisingly, one can easily show that this limit coincides with the LAR
solution. To show this, we rewrite F̂ in a form comparable to LAR,

F̂ = F0 + ν̂|ρk,1|[sgn(ρk,1)Xk + sgn(ρj,1)Xj ].
Recall that LAR moves the shortest distance along the equiangular vector de-
fined by the current active set until a new variable with equal absolute gradient-
correlation is reached. The term in square brackets above is proportional to this
equiangular vector. Thus, since F̂ is obtained by moving the shortest distance along
the equiangular vector such that {j, k, l∗} have equal absolute gradient-correlation,
F̂ must be identical to the LAR solution.

3.4. General cycling. Analysis of cycling in the general case where the ac-
tive set A = {ki}di=1 is comprised of d ≥ 2 variables is more complex. In two-
cycling we observed cycling patterns of the form (l1, l2, l1, l2, . . .), but when d > 2,
L2Boosting’s cycling patterns are often observed to be nondeterministic with no
discernible pattern in the order of selected critical directions. Moreover, one often
observes some coordinates being selected more frequently than others.

A study of d-cycling has been given by Ehrlinger (2011). However, the analysis
assumes deterministic cycling of the form

(l1, l2, . . . , ld , ld+1, . . .) = (k1, k2, . . . , kd, k1, . . .),

which is the natural extension of the two-cycling just studied. To accommodate
this framework, a modified L2Boosting procedure involving coordinate-dependent
step sizes was used. This models L2Boosting’s cycling tendency of selecting some
coordinates more frequently by using the size of a step to dictate the relative fre-
quency of selection. Under constraints to the coordinate step sizes, equivalent to
solving a system of linear equations defining the equiangular vector used by LAR,
it was shown that the modified L2Boosting procedure yields the LAR solution in
the limit. Interested readers should consult Ehrlinger (2011) for details.

4. Repressibility affects variable selection in correlated settings. Now we
turn our attention to the issue of correlation. We have shown that regardless of the
size of the active set a new direction j becomes more favorable than the current
direction k at step mj,k + 1 where mj,k is the smallest integer value satisfying

1 − |dj,k − Rj,k|
1 − Rj,k sgn(dj,k − Rj,k)

< 1 − (1 − ν)mj,k .(4.1)

Using our previous notation, let ν̂j and νj,k denote the left and right-hand sides of
the above inequality, respectively.

Generally, large values of mj,k are designed to hinder noninformative variables
from entering the solution path. If j requires a large number of steps to become fa-
vorable, it is noninformative relative to the current gradient and therefore unattrac-
tive as a candidate. Surprisingly, however, such an interpretation does not always
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apply in correlated problems. There are situations where j is informative, but mj,k

can be artificially large due to correlation.
To see why, suppose that j is an informative variable with a relatively large

value of dj,k . Now, if j and k are correlated, so much so that Rj,k ≈ dj,k , then
|dj,k −Rj,k| ≈ 0. Hence, mj,k ≈ ∞ and νj,k ≈ 1 due to (4.1). Thus, even though j

is promising with a large gradient-correlation, it is unlikely to be selected because
of its high correlation with k.

The problem is that j becomes an unlikely candidate for selection when dj,k

is close to Rj,k . In fact, mj,k = ∞ when dj,k = Rj,k so that j can never become
more favorable than k when the two values are equal. We have already discussed
the condition dj,k = Rj,k several times now, and have referred to it as the repress-
ible condition. Repressibility plays an important role in correlated settings. We dis-
tinguish between two types of repressibility: weak and strong repressibility. Weak
repressibility occurs in the trivial case when |Rj,k| = 1. Weak repressibility im-
plies that |dj,k| = |Rj,k| = 1. Hence the gradient-correlation for j and k are equal
in absolute value and j , and k are perfectly correlated. This trivial case simply
reflects a numerical issue arising from the redundancy of the j and k columns of
the X design matrix. The stronger notion of repressibility, which we refer to as
strong repressibility, is required to address the nontrivial case |Rj,k| 
= 1 in which
j is repressed without being perfectly correlated with k. The following definition
summarizes these ideas.

DEFINITION 3. We say j has the strong repressible condition if dj,k = Rj,k

and |Rj,k| < 1. We say that j is (strongly) repressed by k when this happens.
On the other hand, j has the weak repressible condition if j and k are perfectly
correlated (|Rj,k| = 1) and dj,k = Rj,k .

4.1. An illustrative example. We present a numerical example of how repress-
ibility can hinder variables from being selected. For our illustration we use exam-
ple (d) of Section 5 from Zou and Hastie (2005). The data was simulated according
to

y = Xβ + σε, ε ∼ N(0, I),

where n = 100, p = 40 and σ = 15. The first 15 coordinates of β were set to 3; all
other coordinates were 0. The design matrix X = [X1, . . . ,X40]100×40 was simu-
lated according to

Xj = Z1 + τεj , j = 1, . . . ,5,

Xj = Z2 + τεj , j = 6, . . . ,10,
(4.2)

Xj = Z3 + τεj , j = 11, . . . ,15,

Xj = εj , j > 15,
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FIG. 5. First 5 panels display (νj,k)
5
j=1 for the first 5 coefficients from simulation (4.2): red points

are iterations r where the descent direction k ∈ {1, . . . ,5}. Variables 2 and 3 are never selected due
to their excessively large νj,k step sizes: an artifact of the correlation between the 5 variables. The

last panel (bottom right) displays (dj,k)
5
j=1 for those iterations r where k ∈ {1,4,5}.

where (Zj )
3
1 and (εj )

40
1 were i.i.d. N(0, I) and τ = 0.1. In this simulation, only co-

ordinates 1 to 5, 6 to 10 and 11 to 15 have nonzero coefficients. These x-variables
are uncorrelated across a group, but share the same correlation within a group. Be-
cause the within group correlation is high, but less than 1, the simulation is ideal
for exploring the effects of strong repressibility.

Figure 5 displays results from fitting Algorithm 3 for M∗ = 500 iterations with
ν = 0.05. The first 5 panels are the values (νj,k)

5
j=1 against the iteration r =

1, . . . ,500, with points colored in red indicating iterations r where k ∈ {1, . . . ,5}
and k is used generically to denote the current descent direction. Notationally, the
descent at iteration r is along k for a step size of νl,k , at which point l becomes
more favorable than k and the descent switches to l, the next critical direction. The
value plotted, νj,k ≤ νl,k , is the step size for j = 1, . . . ,5.

Whenever the selected coordinate is from the first group of variables (we are
referring to the red points) one of the coordinates j = 1,4,5 achieves a small νj,k

value. However, coordinates j = 2 and j = 3 maintain very large values through-
out all iterations. This is despite the fact that the two coordinates generally have
large values of dj,k , especially during the early iterations (see the bottom right
panel). This suggests that 1, 4 and 5 become active variables at some point in the



CHARACTERIZING L2BOOSTING 1093

solution path, whereas coordinates 2 and 3 are never selected (indeed, this is ex-
actly what happened). We can conclude that coordinates 2 and 3 are being strongly
repressed by k ∈ {1,4,5}. Interestingly, coordinate 4 also appears to be repressed
at later iterations of the algorithm. Observe how its dj,k values decrease with in-
creasing r (blue line in bottom right panel), and that its νj,k values are only small
at earlier iterations. Thus, we can also conclude that coordinates {1,5} eventually
repress coordinate 4 as well.

We note that the number of iterations M∗ = 500 used in the example is not very
large, and if L2Boosting were run for a longer period of time, coordinates 2 and 3
will eventually enter the solution path (panels 2 and 3 of Figure 5 show evidence
of this already happening with νj,k steadily decreasing as r increases). However,
doing so leads to overfitting and poor test-set performance (we provide evidence
of this shortly). Using different values of ν also did not resolve the problem. Thus,
similar to the lasso, we find that L2Boosting is unable to select entire groups of
correlated variables. Like the lasso this means it also will perform suboptimally in
highly correlated settings. In the next section we introduce a simple way of adding
L2-regularization as a way to correct this deficiency.

5. Elastic net boosting. The tendency of the lasso to select only a handful
of variables from among a group of correlated variables was noted in Zou and
Hastie (2005). To address this deficiency, Zou and Hastie (2005) described an opti-
mization problem different from the classical lasso framework. Rather than relying
only on L1-penalization, they included an additional L2-regularization parameter
designed to encourage a ridge-type grouping effect, and termed the resulting esti-
mator “the elastic net.” Specifically, for a fixed λ > 0 (the ridge parameter) and a
fixed λ0 > 0 (the lasso parameter), the elastic net was defined as

β̂enet = (1 + λ) arg min
β∈Rp

{
‖y − Xβ‖2 + λ

p∑
k=1

β2
k + λ0

p∑
k=1

|βk|
}
.(5.1)

To calculate the elastic net, Zou and Hastie (2005) showed that (5.1) could be re-
cast as a lasso optimization problem by replacing the original data with suitably
constructed augmented values. They replaced y (n × 1) and X (n × p) with aug-
mented values y∗ and X∗, defined as follows:

y∗ =

⎡
⎢⎢⎣

y
0
...

0

⎤
⎥⎥⎦

(n+p)×1

, X∗ = 1√
1 + λ

[
X√
λI

]
(n+p)×p

= [X∗
1, . . . ,X∗

p].(5.2)

The elastic net optimization can be written in terms of the augmented data by
reparameterizing β as β∗ = β

√
1 + λ. By Lemma 1 of Zou and Hastie (2005), it

follows that (5.1) can be expressed as

β̂enet = √
1 + λ arg min

β∈Rp

{
‖y∗ − X∗β‖2 + λ0√

1 + λ

p∑
k=1

|βk|
}
,
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which is an L1-optimization problem that can be solved using the lasso.
One explanation for why the elastic net is so successful in correlated problems

is due to its decorrelation property. Let R∗
j,k = X∗T

j X∗
k . Because the data is stan-

dardized such that XT
j Xj = XT

k Xk = 1 [recall (1.3)], we have

R∗
j,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

XT
j Xk

1 + λ
= Rj,k

1 + λ
, if j 
= k,

XT
j Xj + λ

1 + λ
= 1, if j = k.

One can see that λ is a decorrelation parameter, with larger values reducing the
correlation between coordinates. Zou and Hastie (2005) argued that this effect pro-
motes a “grouping property” for the elastic net that overcomes the lasso’s inability
to select groups of correlated variables.

We believe that decorrelation is an important component of the elastic net’s
success. However, we will argue that in addition to its role in decorrelation, λ has
a surprising connection to repressibility that further explains its role in regularizing
the elastic net.

The argument for the elastic net follows as a special case (the limit) of a gen-
eralized L2Boosting procedure we refer to as elasticBoost. The elasticBoost al-
gorithm is a modification of L2Boosting applied to the augmented problem. To
implement elasticBoost one runs L2Boosting on the augmented data (5.2), adding
a post-processing step to rescale the coefficient solution path: see Algorithm 4 for
a precise description. For arbitrarily small ν, the solution path for elasticBoost
approximates the elastic net, but for general 0 < ν ≤ 1, elasticBoost represents
a novel extension of L2Boosting. We study the general elasticBoost algorithm,
for arbitrary 0 < ν ≤ 1, and present a detailed explanation of how λ imposes L2-
regularization.

5.1. How λ regularizes the solution path. To study the effect λ has on elastic-
Boost’s solution path we consider in detail how λ effects m∗

j,k , the number of steps
to favorability [defined as in (2.3) but with y and X replaced by their augmented

Algorithm 4 elasticBoost
1: Augment the data (5.2). Set F ∗

0,i = 0 for i = 1, . . . , n + p.
2: Run Algorithm 3 for M iterations using the augmented data.
3: Let F ∗

M,i denote the M-step predictor (discard F ∗
M,i for i > n). Let β∗

M,k de-
note the M-step coefficient estimate.

4: Rescale the regression estimates: βM,k = √
1 + λβ∗

M,k .
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values y∗ and X∗]. At initialization, the gradient-correlation for j 
= k is

ρ∗
j,1 = X∗T

j (y∗ − F̂∗
0)

= 1√
1 + λ

XT
j y − 1√

1 + λ

(
n∑

i=1

xi,jF
∗
0,i + √

λF ∗
0,n+j

)
.

In the special case when F ∗
0,i = 0, corresponding to the first descent of the algo-

rithm,

ρ∗
j,1 = 1√

1 + λ
XT

j y = 1√
1 + λ

ρj,1.

Therefore, d∗
j,k = ρj,1/ρk,1 = dj,k , and hence

m∗
j,k = floor

[
1 + log |dj,k − R∗

j,k| − log(1 − R∗
j,k sgn(dj,k − R∗

j,k))

log(1 − ν)

]
.

This equals the number of steps in the original (nonaugmented) problem but where
X is replaced with variables decorrelated by a factor of

√
1 + λ. For large val-

ues of λ this addresses the problem seen in Figure 5. Recall we argued that
mj,k can became inflated due to the near equality of dj,k with Rj,k . However,
R∗

j,k = Rj,k/
√

1 + λ shrinks to zero with increasing λ, which keeps m∗
j,k from

becoming inflated.
This provides one explanation for λ’s role in regularization, at least for the case

when λ is large. But we now suggest another theory that applies for both small
and large λ. We argue that regularization is imposed not just by decorrelation, but
through a combination of decorrelation and reversal of repressibility. Thus λ’s role
is more subtle than our previous argument suggests.

To show this, let us suppose that near-repressibility holds. We assume therefore
that Rj,k = dj,k(1 + δ) for some small |δ| < 1. Then,

log |dj,k − R∗
j,k| − log

(
1 − R∗

j,k sgn(dj,k − R∗
j,k)

)
=
[
log |dj,k| + log

∣∣∣∣1 − 1 + δ√
1 + λ

∣∣∣∣
]

︸ ︷︷ ︸
Repressibility effect

(5.3)

− log
(

1 − Rj,k√
1 + λ

sgn
(
Rj,k

[
1

1 + δ
− 1√

1 + λ

]))
︸ ︷︷ ︸

Decorrelation effect

.

The first term on the right captures the effect of repressibility. When δ is small,
λ plays a crucial role in controlling its size. If λ = 0, the expression reduces to
log |dj,k| + log |δ| which converges to −∞ as |δ| → 0; thus precluding j from be-
ing selected [keep in mind that (5.3) is divided by log(1 − ν), which is negative;
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thus m∗
j,k → ∞]. On the other hand, any λ > 0, even a relatively small value, en-

sures that the expression remains small even for arbitrarily small δ, thus reversing
the effect of repressibility.

The second term on the right of (5.3) is related to decorrelation. If 1 + λ >

(1 + δ)2 (which holds if λ is large enough when δ > 0, or for all λ > 0 if δ < 0),
the term reduces to

− log
(

1 − Rj,k√
1 + λ

sgn(Rj,k)

)
,

which remains bounded when λ > 0 if Rj,k → 1. On the other hand, if 1 + λ <

(1 + δ)2, the term reduces to

− log
(

1 + Rj,k√
1 + λ

sgn(Rj,k)

)
,

which remains bounded if Rj,k → 1 and shrinks in absolute size as λ increases.
Taken together, these arguments show λ imposes L2-regularization through a

combination of decorrelation and the reversal of repressibility which applies even
when λ is relatively small.

These arguments apply to the first descent. The general case when F ∗
0,i 
= 0

requires a detailed analysis of d∗
j,k . In general,

d∗
j,k = XT

j y −∑n
i=1 xi,jF

∗
0,i − √

λF ∗
0,n+j

XT
k y −∑n

i=1 xi,kF
∗
0,i − √

λF ∗
0,n+k

.

We break up the analysis into two cases depending on the size of λ. Suppose first
that λ is small. Then

d∗
j,k � XT

j y −∑n
i=1 xi,jF

∗
0,i

XT
k y −∑n

i=1 xi,kF
∗
0,i

,

which is the ratio of gradient correlations based on the original X without pseudo-
data. If j is a promising variable, then d∗

j,k will be relatively large, and our argu-
ment from above applies. On the other hand if λ is large, then the third term in the
numerator and the denominator of d∗

j,k become the dominating terms and

d∗
j,k � F ∗

0,n+j

F ∗
0,n+k

.

The growth rate of F ∗
0,i for the pseudo data is O(ν) for a group of variables that

are actively being explored by the algorithm. Thus |d∗
j,k| � 1 and our previous

argument applies.
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FIG. 6. elasticBoost applied to simulation (4.2) (plots are constructed as in Figure 5). Now each
of the first 5 coordinates are selected and each has d∗

j,k values near one.

5.2. Illustration. As evidence of this, and to demonstrate the effectiveness of
elasticBoost, we re-analyzed (4.2) using Algorithm 4. We used the same param-
eters as in Figure 5 (M∗ = 500 and ν = 0.05). We set λ = 0.5. The results are
displayed in Figure 6. In contrast to Figure 5, notice that all 5 of the first group
of correlated variables achieve small ν∗

j,k values (and we confirmed that all 5 vari-
ables enter the solution path). It is interesting to note that d∗

j,k is nearly 1 for each
of these variables.

To compare L2Boosting and elasticBoost more evenly, we used 10-fold cross-
validation to determine the optimal number of iterations (for elasticBoost, we used
doubly-optimized cross-validation to determine both the optimal number of iter-
ations and the optimal λ value; the latter was found to equal λ = 0.1). Figure 7
displays the results. The top row displays L2Boosting, while the bottom row is
elasticBoost (fit under the optimized λ). The minimum mean-squared-error (MSE)
is slightly smaller for elasticBoost (217.9) than L2Boosting (231.7) (first panels in
top and bottom rows). Curiously, the MSE is minimized using about same num-
ber of iterations for both methods (190 for L2Boosting and 169 for elasticBoost).
The middle panels display the coefficient paths. The vertical blue line indicates the
MSE optimized number of iterations. In the case of L2Boosting only 4 nonzero co-
efficients are identified within the optimal number of steps, whereas elasticBoost
finds all 15 nonzero coefficients. This can be seen more clearly in the right panels
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FIG. 7. L2Boosting (top row) versus elasticBoost (bottom row) from simulation (4.2).

which show coefficient estimates at the optimized stopping time. Not only are all
15 nonzero coefficients identified by elasticBoost, but their estimated coefficient
values are all roughly near the true value of 3. In contrast, L2Boosting finds only
4 coefficients due to strong repressibility. Its coefficient estimates are also wildly
inaccurate. While this does not overly degrade prediction error performance (as ev-
idenced by the first panel), variable selection performance is seriously impacted.

The entire experiment was then repeated 250 times using 250 independent learn-
ing sets. Figure 8 displays the coefficient estimates from these 250 experiments for
elasticBoost (left side) and L2Boosting (right side) as boxplots. The top panel are
based on the original sample size of n = 100 and the bottom panel use a larger
sample size n = 1000. The results confirm our previous finding: elasticBoost is
consistently able to group variables and outperform L2Boosting in terms of vari-
able selection.

Finally, the left panel of Figure 9 displays the difference in test set MSE
for L2Boosting and elasticBoost as a function of λ over the 250 experiments
(n = 100). Negative values indicate a lower MSE for elasticBoost, which is gen-
erally the case for larger λ. The right panel displays the MSE optimized number
of iterations for L2Boosting compared to elasticBoost. Generally, elasticBoost re-
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FIG. 8. elasticBoost (left) versus L2Boosting (right) from simulation (4.2) for n = 100 (top) and
n = 1000 (bottom) based on 250 independent learning samples. The distribution of coefficient esti-
mates are displayed as boxplots; mean values are given in red.

quires fewer steps as λ increases. This is interesting, because as pointed out, this
generally coincides with better MSE performance.

6. Discussion. A key observation is that L2Boosting’s behavior along a fixed
descent direction is fully specified with the exception of the descent length, Lr .
In Theorem 2, we described a closed form solution for mj,k , the number of steps
until favorability, where k = lr is the currently selected coordinate direction and
j = lr+1 is the next most favorable direction. Theorem 2 quantifies L2Boosting’s
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FIG. 9. Left: difference in test set performance of L2Boosting compared to elasticBoost. Right:
difference in MSE optimized number of iterations for L2Boosting compared to elasticBoost.

descent length, thus allowing us to characterize its solution path as a series of fixed
descents where the next coordinate direction, chosen from all candidates j 
= k,
is determined as that with the minimal descent length mj,k (assuming no ties).
Since we choose from among all directions j 
= k, mj,k , and equivalently the step
length νj,k , can be characterized as measures to favorability, a property of each
coordinate at any iteration r . These measures are a function of ν and the ratio of
gradient-correlations dj,k and the correlation coefficient Rj,k relative to the cur-
rently selected direction k.

Characterizing the L2Boosting solution path by mj,k provides considerable in-
sight when examining the limiting conditions. When mj,k → 1, L2Boosting ex-
hibits active set cycling, a property explored in detail in Section 3. We note that
this condition is fundamentally a result of the optimization method which drives
|dj,k| → 1 when ν is arbitrarily small. This virtually guarantees the notorious slow
convergence seen with infinitesimal forward stagewise algorithms.

The repressibility condition occurs in the alternative limiting condition
mj,k → ∞. Repressibility arises when the gradient correlation ratio dj,k equals
the correlation Rj,k . When |Rj,k| < 1, j is said to be strongly repressed by k,
and while descending along k, the absolute gradient-correlation for j can never
be equal to or surpass the absolute gradient-correlation for k. Strong repressibil-
ity plays a crucial role in correlated settings, hindering variables from being ac-
tively selected. Adding L2 regularization reverses repressibility and substantially
improves variable selection for elasticBoost, an L2Boosting implementation in-
volving the data augmentation framework used by the elastic net.
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SUPPLEMENTARY MATERIAL

Proofs of results from “Characterizing L2Boosting” (DOI: 10.1214/12-
AOS997SUPP; .pdf). An online supplementary file contains the detailed proofs
for Theorems 1 through 9. These proofs make use of various notation described in
the paper.
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