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It is generally accepted that the asset price processes contain jumps. In
fact, pure jump models have been widely used to model asset prices and/or
stochastic volatilities. The question is: is there any statistical evidence from
the high-frequency financial data to support using pure jump models alone?
The purpose of this paper is to develop such a statistical test against the neces-
sity of a diffusion component. The test is very simple to use and yet effective.
Asymptotic properties of the proposed test statistic will be studied. Simula-
tion studies and some real-life examples are included to illustrate our results.

1. Introduction. It is now widely accepted that the asset price processes con-
tain jumps. This is partially based on many empirical evidences, such as heavy
tails in the asset returns; see Cont and Tankov (2004) and Carr et al. (2002) and
references therein. In the meantime, many statistical tests have been established
to detect jumps from discretely observed prices [e.g., Jiang and Oomen (2005),
Barndorff-Neilsen and Shepard (2006), Lee and Mykland (2008), Aït-Sahalia and
Jacod (2010)], and these test results all seem to support the claim of the existence
of jumps for the asset returns under their investigations.

In recent years, pure jump models have been widely used as an alternative model
for price process to the classical model, which has a continuous martingale com-
ponent; see Todorov and Tauchen (2010) and references within. The idea behind
the pure-jump modeling is that small jumps can eliminate the need for a continu-
ous martingale. The class of pure-jump models is extremely wide. It includes the
normal inverse Gaussian [Rydberg (1997), Barndorff-Nielsen (1997, 1998)], the
variance gamma [Madan, Carr and Chang (1998)], the CGMY model of Carr et
al. (2002), the time-changed Levy models of Carr et al. (2003), the COGARCH
model of Klüppelberg, Lindner and Maller (2004) for the financial prices, as well
as the non-Gaussian Ornstein–Uhlenbeck-based models of Barndorff-Nielsen and
Shephard (2001) and the Lévy-driven continuous-time moving average (CARMA)
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models of Brockwell (2001) for the stochastic volatility. Pure-jump models have
been extensively considered and used for general options pricing [Huang and Wu
(2004), Broadie and Detemple (2004), Levendorskii (2004), Schoutens (2006),
Ivanov (2007)], and for foreign exchange options pricing [Huang and Hung (2005),
Daal and Madan (2005), Carr and Wu (2007)]. Other applications of pure-jump
models include reliability theory [Drosen (1986)], insurance valuation [Ballotta
(2005)] and financial equilibrium analysis [Madan (2006)].

Given the wide usage of pure jump models, a natural question is: is there any
statistical evidence from the high-frequency financial data to support using the
purely discontinuous models alone without any continuous diffusion components?
The question is of significance from both theoretical and practical viewpoints:

• Many empirical evidences indicate that pure jump models can fit the data well;
see, for example, Cont and Tankov (2004), and Carr et al. (2002) and references
therein. Therefore, it would be of theoretical interest to establish some statistical
tests for this purpose.

• Given the existence of jumps, pure jump models are typically easier to handle
than mixture models in practice, and a preferred choice to mixture models for
users. However, before using a pure jump model, one must check its validity.

• Various jump models have been well studied in the literature, as mentioned ear-
lier. Should we decide to use pure jump models, we would have an array of
available tools at our disposal.

• Many results are strongly model dependent, and any model mis-specification
could have a severe effect on the results. Therefore, it is imperative to choose
the best possible model, and model selection is very critical.

To put our question into a mathematical context, suppose that the price pro-
cess Y is a jump diffusion process of the form

Yt = Xt + Jt ,(1.1)

for t ∈ [0, T ] with Xt and Jt being the continuous and discontinuous (or jump)
components, defined as

Xt = Y0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs,

(1.2)
Jt =

∫ t

0

∫
|x|≤1

x(μ − ν)(ds, dx) +
∫ t

0

∫
|x|>1

xμ(ds, dx),

where b and σ are some deterministic functions such that X has unique weak
solution, μ is the jump measure, with ν its predictable compensator; for details on
jump diffusion processes, see Jacod and Shiryaev (2003). Under this framework,
the above question is tantamount to testing

H0 :
∫ T

0
σ 2(Xs) ds > 0, (i.e., diffusion effect is present),(1.3)

H1 :
∫ T

0
σ 2(Xs) ds = 0, (i.e., diffusion effect is not present),(1.4)
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given the jump component Jt is present. Note that, under H0, Yt is a mixture model
of diffusion and jumps while, under H1, it is a pure jump model.

Cont and Mancini (2007) and Aït-Sahalia and Jacod (2010) considered the
above test using threshold power variation. They assumed a general continuous
semi-martingale form of X as opposed to a diffusion form in the present paper.
However, to perform their test, one needs to impose the condition that J is of finite
variation [e.g., Theorem 2 of Aït-Sahalia and Jacod (2010)]. This restriction rules
out some interesting models used in finance, where the jumps are shown to be of
infinite variation, as done in Aït-Sahalia and Jacod (2009), Zhao and Wu (2009)
and some other references mentioned earlier.

In this paper, we propose a simple-to-use, general purpose and yet powerful
goodness-of-fit test for differentiating a pure jump model from a mixture model.
The CLTs are also derived for the test statistics under H0, regardless whether the
jump component is of finite or infinite variation. In that aspect, our proposed test
works more generally than those proposed earlier by Cont and Mancini (2007)
and Aït-Sahalia and Jacod (2010). Even for the situations where tests by Cont and
Mancini (2007) and Aït-Sahalia and Jacod (2010) are applicable, our numerical
results also show the superior performance of our proposed test.

The paper is organized as follows. In Section 2, we give some motivations via a
simple example and then formally introduce our test statistics. Asymptotic results
are derived in Section 3. Some review of alternative tests are given in Section 4.
Numerical studies are given in Section 5. A real example is studied in Section 6.
Some discussion on microstructure noise is given in Section 7. All technical proofs
are postponed in the Appendix.

Throughout the paper, the available data set is denoted as {Yti ;0 ≤ i ≤ n} in
the fixed interval [0, T ], which is discretely sampled from Y . For simplicity, we
assume that {Yti ;0 ≤ i ≤ n} are equally spaced in [0, T ], that is, ti = i�n with
�n = T/n for 0 ≤ i ≤ n. Denote the j th one-step increment by

�n
jY = Ytj − Ytj−1, 1 ≤ i ≤ n.

2. Test statistics. We start with a simple motivating example first and then
introduce our test statistics for testing (1.3) and (1.4).

2.1. A simple motivating example. We draw two respective samples {Yti ;0 ≤
i ≤ n} from the following two models:

H0 : Yt = σWt + S
β
t (a mixture model),

H1 : Yt = S
β
t (a pure jump model),

where Wt and S
β
t are a standard Brownian motion and a symmetric β-stable Lévy

process, respectively. So the mixture model contains an extra continuous com-
ponent σWt , in comparison with the pure jump model. For illustration, we take
T = 1, β = 1.25 and σ = 0.25, 0.5.
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FIG. 1. Smoothed histograms for the increment of the mixture model (- -), pure jump model (-·), and
diffusion term alone (-). From left to right, the sample sizes are 195, 780 and 23,400, respectively.
From top to bottom, σ = 0.25 and 0.5, respectively.

The smoothed histograms (done by 106 replications) of the increments
{�n

jY,1 ≤ j ≤ n} under the two models are plotted in Figure 1 for sample sizes
n = 195, 780, and 23,400, which corresponds to sampling every 2 minutes, 30
seconds, and every second in a 6.5 hour trading day. From Figure 1, we can see
some very clear patterns:

(1) For small sample size n and small σ , it is difficult to distinguish the models
under H0 and H1 (the dashed line and dash-dotted line). However, as n and/or
σ increases, the difference is more significant under H0 and H1.

(2) The differences between the normal histogram and the mixture one (the solid
line and the dashed line) are small in all cases and become even more negligi-
ble as n increases. Literally, the jump component has been “absorbed” by the
diffusion component in the center.

(3) For fixed σ , as the sample size n increases, the differences between models
under H0 and H1 are getting sharper. Take n = 23,400 and σ = 0.5, for ex-
ample. The histogram under H1 (dash-dotted line) shows a very narrow peak
around the origin, while the histogram under H0 (the dashed line) stays rather
flat.

The example shows that there is a huge difference around the origin between
the models under H0 and H1. If we use the number of “small” increments as an
indicator, Un = ∑n

i=1{|�n
i Y | ≤ un} for some un, then it relies heavily on whether

the diffusion is present or not, particularly when the sample size n gets large. To
give a better idea, some values of Un under the above two models are presented
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TABLE 1
Numbers of increments ≤ α��

n for Y , W and Sβ , where α = 2, � = 1 and �n = 1/23,400. The
numbers are averaged over 500 replications

Parameter #{|�n
i Y | ≤ α��

n } #{|�n
i W | ≤ α��

n } #{|�n
i S| ≤ α��

n }

β = 1.50 408 488 942
β = 1.00 485 489 16,491
β = 0.50 487 487 23,313

in Table 1 when n = 23,400. The drastic difference for the two models strongly
suggests that we might be able to use Un to test whether the diffusion is present or
not.

2.2. Test statistics. Let us return to the testing problem given in (1.3) and (1.4).
We observe from Section 2.1 that the increments from a pure jump model and a
mixture model have fundamentally different behavior around the centers of their
distributions. Namely, the distribution for the increments from a pure jump model
shows a much higher peak in the center than that from a mixture model. In other
words, the number of small increments from a pure jump model is far greater than
than that from a mixture model. This suggests that we might use the number of
small increments

U(�n) =: U(α,�n,�,T ) =
[T/�n]∑

i=1

I (|�n
i Y | ≤ α��

n ),

to define a test statistic. Note that U(�n) simply counts the number of increments
smaller than α��

n , where α > 0 and � > 1/2. (Here, we suppress the dependence
on α, � and T for convenience.)

Under some mild conditions (given in Section 3), the behaviors of U(�n) are
different under H0 and H1. Here is a heuristic argument. Under H0, we have
�n

i Y ≈ σ(Xti−1)�
n
i W , and hence

EU(�n) ≈
[T/�n]∑

i=1

EPti−1

(|�n
i W | ≤ α��

n /σ(Xti−1)
)

≈ 2αφ(0)��−3/2
n T

∫ T

0
Eσ−1(Xs) ds,

where φ(x) is the density of the standard normal r.v., and Pti−1 is the probability

conditioned at time ti−1. Consequently, we have U(�n) is of order �
−3/2+�
n un-

der H0. Similarly, we can show that U(�n) is of order �
−(1+1/β)+�
n under H1.

Clearly, we have �
−3/2+�
n � �

−(1+1/β)+�
n . That is, there are far more small in-

crements under the pure jump model (H1) than those under the mixture model
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(H0), which agrees well with the above motivating example. Then, we will re-
ject H0 (a mixture model) in favor of H1 (a pure jump model), if U(�n) is large
enough.

From both Proposition 1 and (A.24) in the Appendix, we see that the probability
limit of U(�n) depends on unknown population quantities, and hence can not be
directly used for our testing purposes. To get around the problem, we adopt the
same strategy as in Zhang, Mykland and Aït-Sahalia (2005) and Aït-Sahalia and
Jacod (2010) by using a two-time scale test statistic,

Vn := U(�n)

U(k�n)
,

where U(k�n) =: U(α, k�n,�,T ) = ∑[T/(k�n)]
i=1 I (|�n

(i−1)k+1Y +· · ·+�n
ikY | ≤

α(k�n)
� ). As can be seen from (3.1) below, the distribution of Vn is model-free

under H0, and we can reject H0 (a mixture model) in favor of H1 (a pure jump
model) if Vn > C for some critical value C > 0.

We end the section by pointing out some differences between the above test and
the one by Aït-Sahalia and Jacod (2010). The test statistic given in (16) and (19) of
Aït-Sahalia and Jacod (2010) is based on the truncated pth power variations while
our test statistic given by U(�n) and Vn is simply based on the number of small
increments. Further comparisons will be made later in the paper.

3. Main results. We first list some assumptions and then present the main
results.

3.1. Model assumptions. Recall that Yt = Xt + Jt . Assume that Y is defined
on a filtered probability space (	, F Y , F Y

t ), where F Y
t is the history of Y up to

time t .

ASSUMPTION 1. Jt has a jump measure μ(dx, dt) with compensator ν(ω,

dx, dt) = dtFt (ω, dx), such that, for all (ω, t), we have Ft = F ′
t + F ′′

t , where:

(1) F ′
t has the form

F ′
t (dx) = 1 + |x|γ f (x)

|x|1+β

[
a(+)I (0 < x ≤ ε+) + a(−)I (−ε− ≤ x < 0)

]
dx,

for some positive constants a(+), a(−), γ , ε+ and ε− and some bounded func-
tion f (x), satisfying 1 + |x|γ f (x) > 0, |f (x)| ≤ L.

(2) F ′′
t is a singular measure with respect to F ′

t , satisfying
∫
R(|x|β ′ ∧ 1)F ′′

t (ω,

dx) ≤ L.

ASSUMPTION 2. X and J are mutually independent.

ASSUMPTION 3. b(·) is a bounded continuous functions, σ(·) is bounded
away from zero and infinity if it does not vanish and σ ′(·) exists and is bounded.
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Assumption 1 implies that the small jumps of J form a Lévy process with a
β-stable-like Lévy density, while almost no condition is placed on the large jumps
of J , and F ′′

t could even be random. Assumption 1 includes a rich class of mod-
els, like the variance gamma model, CGMY model, tempered stable process, etc.
Assumptions 2 and 3 are technical conditions.

3.2. Asymptotic results. Let N (0,1) denote a standard Gaussian random vari-
able. We will use the stable convergence in law below, which is slightly stronger
than weak convergence; see, for example, Jacod and Shiryaev (2003).

THEOREM 1. Suppose that � > β − 1/2 and that Assumptions 1–3 hold.

(1) We have

Vn →P

{
k3/2−� , under H0,

k1+(1/β−�)∧0, under H1 and Assumption 4 below.
(3.1)

(2) Let k = 2. Under H0, we have

�(�−3/2)/2
n (Vn − k3/2−� ) −→ σ N (0,1) stably,

where N (0,1) is independent of Y and

σ 2 = (1 + k3/2−� )k3−2�

2αφ(0)
∫ T

0 σ−1(Xs) ds
.

To apply Theorem 1, one needs to estimate the unknown σ 2. However, in view
of Proposition 1 in the Appendix and the stable convergence, we have the follow-
ing.

COROLLARY 1. Assuming the same assumptions as in Theorem 1, we have

�(�−3/2)/2
n (Vn − k3/2−� )/σ̂ −→d N (0,1) under H0,

where

σ̂ 2 = (1 + k3/2−� )k3−2�

�
3/2−�
n U(�n)

.

From Corollary 1, at significance level θ , we can reject H0 if Vn > k3/2−� +
z1−θ�

3/4−�/2
n σ̂ and P(N (0,1) > z1−θ ) = θ . It follows from Corollary 1 that the

size of the above test is asymptotically θ .
A slight variant of the test statistic Vn can be given below. Let

Ṽn = U(�n)

UL(2�n)
,



766 B.-Y. JING, X.-B. KONG AND Z. LIU

where UL(2�n) = [U(2�n) + U ′(2�n)]/2 and

U ′(2�n) =
[T/(2�n)]−1∑

i=1

I
(|�n

2i+1Y + �n
2iY | ≤ α(2�n)

� )
,

U(2�n) =
[T/(2�n)]∑

i=1

I
(|�n

2iY + �n
2i−1Y | ≤ α(2�n)

� )
.

In other words, we use linear combinations of U(2�n) with different starting time
points instead of a single U(2�n) starting from time t0 when nonoverlapping two-
step increments of Y are sampled. Similarly to Corollary 1, we can easily derive
the following result.

COROLLARY 2. Assuming the same assumptions as in Theorem 1, we have

�(�−3/2)/2
n (Ṽn − 23/2−� )/σ̃ −→d N (0,1) under H0,

where

σ̃ 2 = U(�n) + 23/2−� UL(2�n)/2

�
3/2−�
n UL(2�n)2

.

Our final decision rule is: at significance level θ , we reject H0 if

Ṽn > C̃,(3.2)

where C̃ = 23/2−� + z1−θ�
3/4−�/2
n σ̃ and P(N (0,1) > z1−θ ) = θ . It follows

from Corollary 2 that the size of the above test in (3.2) is asymptotically θ .

REMARK 1. The requirement � > β −1/2 in Theorem 1 and Corollaries 1–2
can be easily satisfied by choosing � = 3/2 as β ∈ (0,2). Moreover, whatever the
value of � , H0 and H1 can be differentiated since 1+1/β > 3/2 for all β ∈ (0,2).

On the other hand, the behaviors of test statistics Sn under H0 and H1 in Aït-
Sahalia and Jacod (2010) depend on the choice of p, that is, 2 > p > 1 ∨ β; see
Theorem 1 in that paper. Aït-Sahalia and Jacod (2010). Since β is unknown, it
is difficult to choose p. To be on the safe side, one might try to choose β close
to 2. However, this will render the test with very low power since Sn converges in
probability to roughly the same limit 1 under H0 and H1.

REMARK 2. In Theorem 1 and Corollaries 1–2, we have β ∈ (0,2), and no
further restriction on β is imposed, so that the jump component could be of finite
variation or infinite variation. By contrast, The CLT under H0 was developed by
Aït-Sahalia and Jacod (2010) only when β < 1, namely when J is of finite varia-
tion.



PURE JUMP MODELING 767

3.3. Asymptotic power. Before discussing the power of our test statistic, we
list one more condition, which basically assumes that the drift term is zero when
β ≤ 1. It is a standard assumption in the literature; see Jacod (2008) and Woerner
(2003), and the references therein.

ASSUMPTION 4. If β < 1, we assume that b(·) ≡ 0, and
∫
|x|≤1 xF ′(dx) ≡ 0.

If β = 1, we assume that b(·) ≡ 0 and F ′(dx) is symmetric about 0.

The next theorem gives the asymptotic power of our proposed test (3.2).

THEOREM 2. Under Assumptions 1 and 4, with prescribed level θ and for
� > 1, we have

P(Ṽn > C̃|H1) −→ 1,

that is, the asymptotic power is 1.

REMARK 3. We end this section with some remarks on finite sample per-
formance of our test statistics. Intuitively, the closer β gets to 2, the more the
pure jump process behaves like a diffusion process; thus, the more difficult it
is to tell their difference apart, the less power our test will have. Similarly, the
closer β gets to 0, the more power our test will have. In fact, simple algebra yields
C̃ − 23/2−� = Op(�

(1+1/β−�)/2
n ), from which we can see that, as β becomes

closer to 0, the power of our test increases soon. This is further confirmed in our
simulation studies given later.

4. A review of other approaches. The testing problem considered in this pa-
per has also been considered earlier by Cont and Mancini (2007) and Aït-Sahalia
and Jacod (2010). Since the work in both papers is similar, we will only review the
test by Aït-Sahalia and Jacod (2010) (hereafter AJ’s test) below.

The building block of the AJ’s test is based on the truncated p-power variation,

B(p,un,�n) =
[t/�n]∑
i=1

|�n
i Y |pI (|�n

i Y | ≤ un),(4.1)

where p ∈ (1,2), and un satisfies un/�
ρ−
n → 0, un/�

ρ+
n → ∞, for some 0 ≤

ρ− < ρ+ < 1/2. Similarly to Zhang, Mykland and Aït-Sahalia (2005), Aït-Sahalia
and Jacod (2010) defined a two-time scale estimator

Sn = B(p,un,�n)

B(p,un, k�n)
for an integer k ≥ 2,

and showed that

Sn →P

{
k1−p/2, under H0,
1, under H1, if 2 > p > 1 ∨ β and ρ+ ≤ (p − 1)/p

(4.2)
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and that when β < 1,

(Sn − k1−p/2)/
√

vn −→d N (0,1) under H0,(4.3)

where v2
n = CB(2p,un,�n)/B(p,un,�n)

2 for some constant C. Noting
k1−p/2 > 1, one would reject H0 if Sn ≤ C0, for some C0 determined from the
CLT. Aït-Sahalia and Jacod (2010) also showed that the asymptotic power of this
test is 1.

We make several remarks regarding the AJ’s test:

• From (4.2), the behaviors of test statistics Sn under H0 and H1 depend on
the choice of p, that is, 2 > p > 1 ∨ β . Since β is unknown, it is difficult to
choose p. To be on the safe side, one might try to choose β close to 2. However,
this will render the test with very low power since Sn converges in probability
to roughly the same limit 1 under H0 and H1.

• The CLT under H0, (4.3), was established in Aït-Sahalia and Jacod (2010) only
for the case β < 1, namely when J is of finite variation. However, when β > 1,
that is, when J is of infinite variation, no CLT is available, and hence the size
of the test cannot be controlled for that case. This rules out some interesting
applications when β > 1.

• For β ∈ (0,1), where the CLT is available for AJ’s test, we might expect that
AJ’s test should have very good power, particularly as β gets smaller toward 0.
However, our simulation studies give some counterintuitive results; see Table 6.

5. Numerical studies. In this section, we conduct simulations to evaluate the
performance of our proposed test statistics, and make some comparisons with that
of Aït-Sahilia and Jocod (2010).

The test statistics Vn and Ṽn involve choosing the threshold level un = α��
n . In

view of the requirement � > β − 1/2, a conservative choice of � would be 1.5.
To compensate for the conservative choice of � , we choose a relatively large α by
αn = δ(logn)κ for some positive constants δ and κ . This choice will not affect any
of the asymptotic results in the paper.

Assume that the data generating process under the null and alternative hypothe-
ses are, respectively,

H0 : Yt = Xt + θ ′Sβ,t ,(5.1)

H1 : Yt = exp(−γ t) + 0.5Sβ,t ,(5.2)

where Xt is an Ornstein–Urlenbeck process. dXt = −Xt dt + dWt , and W is a
standard Brownian motion, and Sβ is a symmetric β-stable process. Let T = 1,
θ ′ = 0.5. Also we take n = 1560,2340,4680,11,700 and 23,400, corresponding
to an intra day data set recorded every 15, 10, 5, 2 and 1 seconds in a 6.5-hour
trading day, respectively. We will simulate 10,000 samples from each model above.
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TABLE 2
Sizes of the test (%) under different n’s and β’s, (δ = 2, κ = 2)

Value of β 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

n = 1560 2.97 4.18 4.71 4.08 4.39 3.99 4.13 4.27
n = 2340 3.94 4.42 4.41 4.27 4.55 4.42 4.25 4.37
n = 4680 3.98 4.36 4.46 4.82 5.31 4.81 4.93 4.56
n = 11,700 4.34 4.50 4.94 5.06 4.93 5.06 4.78 4.29

Asymptotic sizes. Fix the nominal level θ = 5%, so the critical value is z0.95 =
1.645. The size of the test is calculated by the percentage of samples such that (3.2)
holds true over 10,000 samples.

Table 2 reports the asymptotic sizes for different sample sizes. From the table,
we see that the type I error is well controlled by 5%; as the sample size n increases,
the asymptotic sizes become closer to the true size 5%.

Table 3 reports the asymptotic sizes across different threshold levels which re-
flect the number of effective data. It shows that control of type I error is not affected
much by changes of δ.

Asymptotic power. We also consider the power performance of Ṽn. The power
of the test is the percentage of samples with (3.2) violated over 10,000 samples.
The results are listed in Table 4 for different values of β .

From Table 4, it is clear that, as the sample size n increases, the test becomes
more powerful overall, as expected. The test is powerful especially when β is
away from 2. When β approaches 2, the power gradually diminishes. This is easily
understandable as in this case the behavior of the discontinuous process resembles
that of a Brownian motion. This can also be seen from (3.1).

Finally, we examine the asymptotic sizes over different choices of θ ′. We fix
n = 2340, δ = 2, κ = 2 and θ = 5%. In Figure 2, the asymptotic sizes for β = 1.25
and 1.5 are plotted against θ ′. Clearly, the asymptotic sizes are not sensitive to
choices of θ ′.

TABLE 3
Sizes of the test (%) under different δ’s and β’s (n = 23,400, κ = 2)

Value of β 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

δ = 1.0 4.64 4.22 4.21 4.68 4.61 4.16 3.98 4.03
δ = 1.5 4.23 4.16 4.65 4.54 4.62 4.97 4.35 4.65
δ = 2.0 3.94 4.42 4.41 4.27 4.55 4.42 4.25 4.37
δ = 2.5 4.30 4.62 4.16 4.38 4.47 4.49 4.65 4.08
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TABLE 4
Powers of the test (%) under different n’s and β’s (δ = 2, κ = 2)

Value of β 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

n = 1560 100 100 100 94.10 48.79 19.86 9.85 5.38
n = 2340 100 100 100 91.36 46.46 20.53 10.43 5.82
n = 4680 100 100 100 89.55 48.52 21.85 17.55 6.14
n = 11,700 100 100 100 92.78 55.33 26.54 12.67 7.13
n = 23,400 100 100 100 96.01 63.80 31.05 14.59 7.34

Comparisons with AJ’s test. Now we compare the performance of our estima-
tor Ṽn with that of AJ’s estimator Sn, under the same settings as in (5.1) and (5.2).
However, since AJ’s test is only shown to be valid for the case β ∈ (0,1) (i.e.,
the jump process is of finite variation), our comparisons are also restricted to that
case. Tables 5 and 6 report the sizes and powers of our test and AJ’s test for various
values of β ∈ (0,1), respectively.

• For both tests, all sizes are close to to the nominal level, 5%, with AJ’s test being
slightly closer overall.

• Our test outperforms AJ’s in terms of power throughout. In fact, our test has
full power for all β ∈ (0,1], even for sample size n = 1560. On the other hand,
AJ’s test has very low power in detecting the alternatives for β ≤ 0.7, even when
n = 23,400.

The very low powers of AJ’s test for small β came as a surprise to us. Some
more detailed analysis suggests that the reason might be due to the large variation
of Sn for finite sample size n under H1. More precisely, from (69) in Aït-Sahalia
and Jacod (2010), we have Sn = OP (u

β/2
n ) under H1. So for finite sample n, Sn

may not be close to 0 for small β , which often places the test statistic Sn wrongly
within the acceptance region, resulting in low power. It also explains why the prob-
lem is mostly pronounced if β is closer to 0.

Figure 3 displays the histograms of the studentized Sn as given in (4.3) when
n = 4680. We see that values of studentized Sn’s are seldom less than z0.05 =
−1.645, except in the case β = 1.

FIG. 2. Sensitivity plot of asymptotic sizes to choices of θ ′.
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TABLE 5
Size of our test v.s. that of AJ’s test, (%), δ = 2, κ = 2

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n = 1560 Ṽn 4.19 3.81 4.18 3.90 4.08 3.84 3.62 3.59 4.06 4.11
AJ 4.08 4.23 4.22 3.94 3.99 4.29 4.24 4.10 4.37 4.41

n = 2340 Ṽn 4.31 4.37 3.97 3.98 4.16 4.10 4.18 3.93 4.11 4.32
AJ 4.36 4.33 4.23 3.89 4.67 4.47 4.61 4.29 4.54 4.47

n = 4680 Ṽn 4.07 4.38 4.01 4.57 3.87 4.24 4.34 4.18 4.52 4.43
AJ 4.52 4.53 4.33 4.64 4.56 4.43 4.41 4.71 4.89 4.76

Sensitivity to model misspecification of our test. In the model assumptions,
we assumed a local volatility function. Now we conduct a simulation study to
check the sensitivity of our test to model misspecification; see Figure 4. Instead
of using an Ornstein–Urlenbeck process as the continuous part of the full model,
we use a stochastic volatility process here, that is, dXt = σt dWt with σt = v

1/2
t ,

dvt = κ(η − vt ) dt + γ v
1/2
t dBt , E[dWt dBt ] = ρ dt . We take η = 1/16, γ = 0.5,

κ = 5, ρ = −0.5. We use θ ′Sβ,t as the jump process as in last two simulations.
Now we fix n = 23,400, δ = 1, κ = 2, θ ′ = 0.25 and θ = 5%. All simulations are
run 10,000 times. From Figure 4, the asymptotic sizes are not much affected by
using a stochastic volatility model as the continuous part.

6. A real data set analysis. In this section, we implement our test to some
real data sets. We use the stock price records of Microsoft (MFST) in there trading
days, Nov. 1, Dec. 1 and Dec. 11 in the year 2000. All data sets are from the TAQ
database. For prices recorded simultaneously, we use their averages. To weaken
the possible effect from microstructure noise, we sparsely sample observations ev-
ery 10 seconds and the sample sizes for the aforementioned three trading days are

TABLE 6
Power comparisons of our test v.s. that of AJ’s test when β ∈ (0,1], (%), δ = 2, κ = 2

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

n = 1560 Ṽn 100 100 100 100 100 100 100 100 100 100
AJ 0 0 0 0 0 0.01 0.25 2.03 7.61 24.03

n = 2340 Ṽn 100 100 100 100 100 100 100 100 100 100
AJ 0 0 0 0.01 0 0.07 0.43 3.32 14.82 48.36

n = 4680 Ṽn 100 100 100 100 100 100 100 100 100 100
AJ 0 0 0 0 0 0.08 0.97 8.66 48.26 97.02

n = 23,400 Ṽn 100 100 100 100 100 100 100 100 100 100
AJ 0 0 0 0 0 0.30 6.40 85 100 100
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FIG. 3. Upper left panel: β = 0.25; upper right panel: β = 0.50; lower left panel: β = 0.75; lower
right panel: β = 1.00.

1343, 1701 and 1253, respectively. Finally, we take the logarithm of the sparsely
sampled prices and use the log prices to calculate the test statistics. We set T = 1
(day) consisting of 6.5 hours of trading time.

We now discuss how to choose the parameters δ, κ and � . As argued theoreti-
cally at the beginning of Section 5, we fix � = 1.5. Since κ and δ are dependent
parameters, we fix κ = 2 and consider a grid of points of δ such that

δ(logn)κ��
n ≤ σ̂ ∗�1/2

n ,(6.1)

where σ̂ ∗ is approximately the averaged standard deviation of the diffusion compo-
nent of one 10-second log return in case the diffusion term exists in the underlying

FIG. 4. The data generating process is the combination of a stochastic volatility process and a
standard symmetric stable process.
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FIG. 5. The statistics evaluated over different values of δ. From left to right: test statistics for 01,
Nov., 01, Dec. and 11, Dec., respectively. The horizontal axis stands for the value of δ while the
vertical axis stands for the value of the test statistics.

dynamics. Mathematically, σ̂ ∗ is defined as

σ̂ ∗2 =: 1

T

∑
(�n

i X)2I (|�n
i X| ≤ �1/4

n ) →P 1

T

∫ T

0
σ 2(Xs) ds;

see Jacod (2008) for example. In virtue of (6.1), we can choose δ conservatively
as the grid points from 1 to 8 with equal step length 0.1 for all three data sets. The
plots are displayed in Figure 5.

From the plots, the observed test statistics are all larger than 1.645. Therefore
we can reject the existence of the diffusion component and simply use a pure jump
model to characterize the underlying dynamics of the prices for those three days.

7. Discussions on microstructure noise. It is widely accepted nowadays that
microstructure noise is present. Various methods have been studied to handle the
issue of the microstructure noise in the context of the integrated volatility estima-
tion for high-frequency data. See, for example, Aït-Sahalia, Mykland and Zhang
(2005), Zhang, Mykland and Aït-Sahalia (2005), Zhang (2006), Fan and Wang
(2007), Podolskij and Vetter (2009) and Jacod et al. (2009), among others. A very
effective technique in handling microstructure noise is the so-called “pre-averaging
method”; see Jacod et al. (2009) and Podolskij and Vetter (2009).

Suppose that the observation at time ti is

Zti = Yti + εti , i = 1, . . . , n,

where Yt is an unobserved semi-martingale of the form (1.1) and (1.2), and εti with
mean 0 and variance σ 2 is the microstructure noise at time ti . We wish to test (1.3)
and (1.4), that is, whether Yt can be modeled as a pure jump process, or not.

So far, we have not seen any work in the testing framework in the presence
of microstructure noise. We now apply the simplest pre-averaging technique as
follows. We first separate the full data set Zti , 1 ≤ i ≤ n into n/M nonoverlapped
blocks,

{Zt1, . . . ,ZtM }, . . . , {
ZtkM+1, . . . ,Z(k+1)M

}
.
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Then within each block, we take the average of all K-step increments, that is,

Zj = 1

n/M − K + 1

(k+1)M∑
i=kM+K+1

(Zti − Zti−K
) := Xj + J j + εj ,

j = 1, . . . , n/M.

Simple calculation yields Xj = Op(M−1/2), J j = Op(M−1/β), ε =
Op((M/n)1/2). By properly tuning M , for example, M = o(n1/2), one could make
εj asymptotically negligible. Based on the modified data set Z1, . . . ,ZM , the test
statistics can be defined (similarly to Vn) as

V n = U(�M)

U(k�M)
,

where �M = T/M , U(�M) and U(k�M) are defined as U(�M) and U(k�M)

by replacing Yi with Zi and by replacing �n by �M , for example, U(�M) =∑M
i=1 I (|Zi | ≤ α(�M)� ).
Under appropriate conditions, the results obtained in the paper should be ex-

pected to hold here as well, for instance,

V n →P

{
k1.5−� , under H0,

k1+(1/β−�)∧0, under H1.
(7.1)

Let us conduct a simple simulation study to investigate the feasibility of the test
statistic V n. Take Yt = Wt + St under H0 and Yt = St under H1, where Wt and St

are a standard Brownian motion and a symmetric Cauchy process (i.e., β = 1),
respectively. Also take σ 2 ∼ N(0, σ 2) with σ = 0.01. We let T = 1, n = 23,400
and k = 2. We further take M = 234, K = 50, α = 9, � = 1.5. Note that the choice
of M = 234 corresponds to taking averages about every 4 minutes. The simulation
is repeated 5000 times. Each time, we calculate V n both under H0 and H1. Their
histograms under H0 and H1 are plotted in Figure 6.

From Figure 6, we see that the means of V n under H0 and H1 (marked by ∗ in
the horizontal axis) are 1.0578 and 1.4781, respectively. These are rather close to
the asymptotic values 1 and 1.414, given by (7.1). Note that the effective sample
size after pre-averaging is 23,400/234 = 100, a rather small sample size for this
testing purpose. This explains partly why the variances of histograms plots are
rather large, and there are substantial overlaps between the plots under H0 and H1.
If we choose M = 120, or even 60, then the histograms under H0 and H1 will
become thinner and more easily separable.

The above simple simulation study suggests that the pre-averaging method
would work well in handling microstructure noise in the testing problems. Of
course, there remain many theoretical and practical issues to be resolved. For ex-
ample, we need to establish a CLT under H0; to study its asymptotic power; to find
a data-driven method to determine parameter M , etc. We will pursue these and
other related issues in our future work.
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FIG. 6. Histograms of V n.

APPENDIX

In the sequel, C will denote a constant which may take different values in dif-
ferent places, and χ is an arbitrarily small positive number. Also, Pti−1 and Eti−1

denote probability and expectation given time ti−1, respectively.

A.1. Proof of Theorem 1. Let σ 2
0 = 2αφ(0)

∫ T
0 σ−1(Xs) ds. Now

�(�−3/2)/2
n (Vn − k3/2−� )

= �
(�−3/2)/2
n (Ũ(�n) − σ 2

0 ) − k(3/2−�)/2(k�n)
(�−3/2)/2(Ũ(k�n) − σ 2

0 )

k�−3/2Ũ (k�n)

:= A

B
.

By Proposition 1 (below), A →S σ0z1 − k(3/2−�)/2σ0z2 with z1 and z2 inde-
pendent Gaussian random variables independent of F Y , while B →P k�−3/2σ 2

0 ,
which is random but depending only on F Y . Then Theorem 1 is proved.

Now, we prove Proposition 1, in which we need the following two lemmas.
Lemma 2 implies that the proportion of paths of a jump diffusion process having
“small” increments is the same as that of the diffusion component. This has its own
interest.

LEMMA 1. Let Ai = {ω : |�n
i X + x| ≤ α��

n }.
(1) For |x| < �

1/2
n , |Pti−1(Ai) − 2αφ(0)�

�−1/2
n

σ (−x+Xti−1 )
| ≤ C��

n (x2�
−3/2
n + �

−χ
n ).

(2) For any x ∈ R/{0}, we have Pti−1(Ai) ≤ C�
�−1/2
n .

PROOF. Define f (x) = ∫ x
0 σ−1(y) dy, then f ′(x) = σ−1(x) and f ′′(x) =

−σ ′(x)/σ 2(x). So f (x) is strictly increasing. Let �t = f (Xt), or equivalently,
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Xt = f −1(�t). By Itô’s formula,

d�t =
(

b ◦ f −1(�t)

σ ◦ f −1(�t)
− 1

2
σ ′ ◦ f −1(�t)

)
dt + dWt

(A.1)
:= b ◦ f −1(�t) dt + dWt .

Let F ′
t = Ft+ti−1 where ti−1 is the (i − 1)th observation time defined at the end of

the Introduction, and W̃t = Wt+ti−1 , t ≥ 0. It is easy to see that W̃ is a martingale
under (	, F , F ′

t , Pti−1) with quadratic variation t . Thus by Lévy’s characterization
theorem, W̃t is a Brownian motion under (	, F , F ′

t , Pti−1). By the Girsanov theo-
rem, there exists a probability measure Qti−1 , locally equivalent to Pti−1 , satisfying

dQti−1

dPti−1

∣∣∣∣
F ′

t

= exp
(
−

∫ t

0
b(Xs+ti−1) dW̃s − 1

2

∫ t

0
b

2
(Xs+ti−1) ds

)
,(A.2)

such that �t+ti−1 , t ≥ 0, is a Brownian motion under Qti−1 .
Now

Pti−1(Ai) = Pti−1(−x − α��
n + Xti−1 ≤ Xti ≤ −x + α��

n + Xti−1)

= Pti−1

(
f (−x + Xti−1 − α��

n )
(A.3)

≤ f (Xti ) ≤ f (−x + Xti−1 + α��
n )

)
= Pti−1(li ≤ �ti − �ti−1 ≤ ui),

where li = f (−x + Xti−1 − α��
n ) − f (Xti−1) and ui = f (−x + Xti−1 + α��

n ) −
f (Xti−1). Taking t = ti − ti−1 in (A.2), we then have

Pti−1(Ai) =
∫
Ai

dPti−1

dQti−1

dQti−1

=
∫
Ai

exp
(∫ ti

ti−1

b ◦ f −1(�s) dWs(A.4)

+ 1

2

∫ ti

ti−1

(b ◦ f −1)2(�s) ds

)
dQti−1 .

Since | exp(x) − 1| ≤ 2|x| for |x| ≤ log 2, by boundedness of the diffusion coeffi-
cient, Lévy’s theorem of continuity modulus and change of time,∣∣Pti−1(Ai) − (

�
(
ui/

√
�n

) − �
(
li/

√
�n

))∣∣
≤ C�1/2−χ

n

(
�

(
ui/

√
�n

) − �
(
li/

√
�n

))
,

for any arbitrarily small χ > 0. On the other hand, by the mean value theorem,

�
(
ui/

√
�n

) − �
(
li/

√
�n

) = φ(ξ)
(ui − li)√

�n

= 2α��−1/2
n

φ(ξ)

σ (η)
,(A.5)
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where ξ ∈ 1√
�n

(li, ui) and η ∈ (−x +Xti−1 −α��
n ,−x +Xti−1 +α��

n ). Then as
�n → 0, by Assumption 3, we have

|σ(η) − σ(−x + Xti−1)| ≤ C��
n .(A.6)

Since as n large enough |ui | ≤ C|x| and |li | ≤ C|x| which yields that ξ ∈
1√
�n

(−C|x|,C|x|). Then, since φ′(0) = 0 and φ′′(·) is bounded,

|φ(ξ) − φ(0)| ≤ C(x)2�−1
n .(A.7)

The combination of (A.3)–(A.7) completes the proof. �

LEMMA 2. Let Bi = {ω : |�n
i Y | ≤ α��

n }. Then,∣∣∣∣Pti−1(Bi) − 2αφ(0)

σ (Xti−1)
��−1/2

n

∣∣∣∣ ≤ C(��−1/2+1−β/2
n + ��−χ

n ).

PROOF. We write

Pti−1(Bi)

=
(∫

|x|<√
�n

+
∫
|x|≥√

�n

)
Pti−1(|�n

i X + x| ≤ α��
n )dPti−1(�

n
i J ≤ x)(A.8)

=: Pi,1 + Pi,2.

Since J is purely discontinuous, we can take the exponent in (64) of Aït-Sahalia
and Jacod (2009) as 1/2, and then by Lemma 1,

Pi,2 ≤ C��−1/2
n Pti−1

(|�n
i J | ≥ √

�n

) ≤ C��−1/2+1−β/2
n .(A.9)

By Lemma 1,

Pi,1 =
∫
|x|<√

�n

2αφ(0)�
�−1/2
n

σ (−x + Xti−1)
dPti−1(�

n
i J ≤ x) + Rn,i .(A.10)

Similarly, we can obtain

|Rn,i | ≤
∫
|x|<√

�n

C[(x)2��−3/2
n + ��−χ

n ]dPti−1(�
n
i J ≤ x)

= C��−3/2
n Eti−1(�

n
i J )2I

(|�n
i J | < √

�n

) + C��−χ
n(A.11)

≤ C(��−1/2+1−β/2
n + ��−χ

n ).

Since |x| <
√

�n, |σ(−x + Xti−1) − σ(Xti−1)| ≤ C
√

�n, by boundedness of the
diffusion coefficient,∫

|x|<√
�n

2αφ(0)��−1/2
n

(
1

σ(−x + Xti−1)
− 1

σ(Xti−1)

)
dPti−1(�

n
i J ≤ x)

(A.12)
≤ C��

n .
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On the other hand, as in (A.9), we have∣∣∣∣2αφ(0)�
�−1/2
n

σ (Xti−1)

(∫
|x|≤√

�n

dPti−1(�
n
i D ≤ x) − 1

)∣∣∣∣
(A.13)

≤ C��−1/2+1−β/2
n .

Combining (A.10), (A.12) and (A.13) gives∣∣∣∣Pi,1 − 2αφ(0)�
�−1/2
n

σ (Xti−1)

∣∣∣∣ ≤ C(��−1/2+1−β/2
n + ��−χ

n ),

which together with (A.9) completes the proof. �

Define Ũ (�n) = �
3/2−�
n U(�n), and so Ũ (k�n) = (k�n)

3/2−� U(k�n). Then
we have

PROPOSITION 1. We have

�(�−3/2)/2
n

(
Ũ (�n) − σ 2

0 , k(�−3/2)/2[Ũ (k�n) − σ 2
0 ])

→ σ0(z1, z2), F Y -stably,

where z1 and z2 are two independent Gaussian variables independent of F Y .

PROOF. Without loss of generality, assume k = 2. Denote Ii = I (|�n
i Y | ≤

α��
n ). In view of Lemma 2,∣∣∣∣∣�3/2−�

n

[T/�n]∑
i=1

Eti−1Ii − σ 2
0

∣∣∣∣∣ ≤ C(�1−β/2
n + �1/2−χ

n ).(A.14)

Since χ could be made arbitrarily small, and � > β − 1/2, or equivalently, 1 −
β/2 >

3/2−�
2 ,

�(�−3/2)/2
n

(
Ũ (�n) − σ 2

0
) = �3/2−�/2

n

[T/�n]∑
i=1

(Ii − Eti−1Ii) + o(1).(A.15)

Now the summands in (A.15) are centered martingale difference sequences w.r.t.
Fti−1 , 1 ≤ i ≤ [T/�n]. In view of Lemma 2, and making use of (A.14) again,

�3/2−�
n

[T/�n]∑
i=1

Eti−1(Ii − Eti−1Ii)
2 = �3/2−�

n

[T/�n]∑
i=1

Eti−1Ii + oP (1)

= σ 2
0 + oP (1).

Since the indicator function is bounded, the Linderberg condition for the martin-
gale central limit theorem holds automatically. Then by (A.14) and (A.15),

�(�−3/2)/2
n

(
Ũ (�n) − σ 2

0
) → σ0z1(A.16)
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F Y -stably if the following holds [c.f. Theorem IX 7.28 of Jacod and Shiryaev
(2003)]: for any bounded martingale N ∈ F Y

�(3/2−�)/2
n

[T/�n]∑
i=1

Eti−1(�
n
i N)Ii →P 0.(A.17)

Since F Y = F X ∨ F J , it suffices to show (A.17) with N replaced by X and
N1 ∈ F J , respectively, where N1 is a bounded martingale. By Lévy’s theorem
of continuity modulus, (A.14) and � > 1/2,

�(3/2−�)/2
n

[T/�n]∑
i=1

Eti−1(�
n
i X)Ii

(A.18)

≤ C�(3/2−�)/2+1/2−χ
n

[T/n]∑
i=1

Eti−1Ii →P 0.

Next, by independence of X from F J and Lemma 1,

�(3/2−�)/2
n

[T/�n]∑
i=1

Eti−1(�
n
i N1)Ii ≤ C��/2+1/4

n

[T/�n]∑
i=1

Eti−1 |�n
i N1|.(A.19)

By Cauchy–Schwarz and Jensen’s inequalities, the orthogonality of the martingale
increments, the expectation of the right-hand side in (A.19) is

≤ C��/2+1/4
n E

([T/�n]∑
i=1

√
Eti−1(�

n
i N1)2

)

≤ C��/2+1/4
n

T

�n

√√√√√�n

T
E

([T/�n]∑
i=1

Eti−1(�
n
i N1)2

)
(A.20)

≤ C�(�−1/2)/2
n

√
E(N1,T − N1,0)2.

Since � > 1/2, (A.17) holds. Similarly, we can deduce that

(k�n)
(�−3/2)/2(

Ũ (k�n) − σ 2
0
) → σ0z2(A.21)

F Y -stably. Finally in view of (A.16) and (A.21), and by virtue of Lemma 2
and (A.14), to complete the proof, it suffices to show that

�3/2−�
n

[T/k�n]∑
i=1

Eti−1

(
I
(|�n

i,kY | ≤ α(k�n)
� ) i+k−1∑

j=i

I (|�n
jY | ≤ α��

n )

)
(A.22)

→P 0,
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where �n
i,kY = ∑i+k−1

j=i �n
jY . To this end, we give an estimate of the sum-

mands in (A.22). Let �
n,−j
i,k Y = �n

i,kY − �n
jY , �

n,j−
i,k = ∑j−1

l=i �n
l Y and �

n,j+
i,k =∑i+k−1

l=j+1 �n
l Y , for i ≤ j ≤ i + k − 1. We make the convention that �

n,i−
i,k =

�
n,(i+k−1)+
i,k = 0. Then there exists a constant C such that

{|�n
i,kY | ≤ α(k�n)

� } ∩ {|�n
jY | ≤ α��

n }
⊂ {|�n,−j

i,k Y | ≤ C��
n } ∩ {|�n

jY | ≤ α��
n },

and consequently, in view of k = 2, we have

Eti−1I
(|�n

i,2Y | ≤ α(2�n)
� )

I (|�n
jY | ≤ α��

n )

≤ Eti−1[I (|�n,j−
i,2 Y | ≤ C��

n )Etj−1I (|�n
jY | ≤ α��

n )]
(A.23)

+ Eti−1[I (|�n
jY | ≤ α��

n )Etj I (|�n,j+
i,2 Y | ≤ C��

n )]
≤ C�2�−1

n (by Lemma 2).

Substituting (A.23) into the left-hand side of (A.22), we deduce that the left-hand
side of (A.22) is less than C�

�−1/2
n . Since � > 1/2, (A.22) is proved. �

A.2. Proof of Theorem 2. We start with the proof of the following equation
which is implied by Lemmas 3 and 4:

�1+(1/β−�)∧0
n U(�n) −→P 2αCβ under H1,(A.24)

where Cβ is some constant. Then Theorem 2 is a straight consequence of (A.24),
since now Ṽn →P 21+1/β−� > 23/2−� and C̃ →P 23/2−� .

Now X vanishes to a deterministic drift satisfying dXt = b(Xt) dt . For simplic-
ity, we assume that ε− = ε+ =: ε. Then Y admits the following decomposition:

Yt = Xt +
∫ t

0

∫
|x|≤ε

x(μ − ν)(dx, ds) +
∫ t

0

∫
|x|>ε

xμ(dx, ds)

−
∫ t

0

∫
ε<|x|≤1

xF ′′
s (dx) ds

:= Xt + J1,t + J2,t + J3,t .

The next lemma reveals that the count of small increments has almost nothing
to do with the large jumps.

LEMMA 3. Under the conditions in Theorem 2,∣∣Pti−1(|�n
i Y | ≤ α��

n ) − Pti−1

(|�n
i (Y − J2)| ≤ α��

n

)∣∣ ≤ C�n.
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PROOF. Let Mt = ∑
0≤s≤t I (|�sY | > ε). Then M is a Poisson counting pro-

cess with ω wise time dependent intensity function
∫
|x|>ε F ′′

s (dx) and

Pti−1(�
n
i M ≥ 1) ≤ 1 − exp

(
−

∫ ti

ti−1

∫
|x|>ε

F ′′
s (dx) ds

)
≤ C�n.(A.25)

Notice that on �n
i M = 0, �n

i Y = �n
i (Y −J2), so the difference within the absolute

value sign is

Eti−1

[
I (|�n

i Y | ≤ α��
n ) − I

(|�n
i (Y − J2)| ≤ α��

n

);�n
i M = 0 or ≥ 1

]
(A.26)

= Eti−1

[
I (|�n

i Y | ≤ α��
n ) − I

(|�n
i (Y − J2)| ≤ α��

n

);�n
i M ≥ 1

]
.

Lemma 3 is a consequence of (A.25) and (A.26). �

LEMMA 4. Under Assumption 4,

Pti−1

(|�n
i (X + J1 + J3)| ≤ α��

n

) = Cβ�(�−1/β)∧0
n + oP (��−1/β

n ).

PROOF. Let l̃i = −α�
�−1/β
n − �

−1/β
n (�n

i X + �n
i J3) and ũi = α�

�−1/β
n −

�
−1/β
n (�n

i X + �n
i J3). The required probability is equal to

Pti−1(l̃i ≤ �−1/β
n �n

i J1 ≤ ũi).(A.27)

Now we prove the lemma in two cases: (i) β ≥ 1 and (ii) β < 1.
Case (i): β > 1. By the Lévy–Khintchine formula,

Eti−1 exp(iθ�−1/β
n �n

i J1) = exp(�nψ(�−1/β
n θ)),

where ψ(u) = ∫
R{exp(iuy) − 1 − iuyI (|y| ≤ 1)}F ′(dy). By a change of variable,

we have

ψ(�−1/β
n θ) =

∫
R

(
exp(iθz) − 1 − iθzI (|z| ≤ 1)

)
F ′(�1/β

n z)�1/β
n dz

(A.28)
−

∫
R

iθzI (1 ≤ |z| ≤ �−1/β
n )F ′(�1/β

n z)�1/β
n dz.

Hence,

�nF
′(�1/β

n z)�1/β
n → 1

|z|1+β

(
a(+)I (z > 0) + a(−)I (z < 0)

) := ν̃(z).

By the dominant convergence theorem, E exp(iθ�
−1/β
n �n

i J1) converges to∫
R

(
exp(iθz) − 1 − iθzI (|z| ≤ 1)

)
ν̃(z) dz + iθ/(β − 1)

(
a(+) + a(−)).(A.29)

Therefore we have �
−1/β
n �n

i J1 converges in distribution to a stable random vari-

able. Since (�n
i X +�n

i J3)�
−1/β
n = o(1), by (A.27) and Assumption 4, the lemma

is proved in this case.
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Case (ii): β < 1. In this case, we can further decompose J1 as follows:

J1 = −
∫ t

0

∫
|x|≤ε

xν(dx, ds) +
∫ t

0

∫
|x|≤ε

xμ(dx, ds) := J11 + J12.

Then the required probability in (A.27) could be rewritten as

Pti−1(l̃i − �−1/β
n �n

i J11 ≤ �−1/β
n �n

i J12 ≤ ũi − �−1/β
n �n

i J12).(A.30)

By similar calculation to (A.29), one gets �
−1/β
n �n

i J12 converges to a stable
random variable. First, consider the case where � > 1/β . Now by (A.30) and
Assumption 4, the lemma is obtained straightforwardly. Second, if � ≤ 1/β ,
by (A.30), the required probability is asymptotically a constant. �

By Lemmas 3 and 4,

�1+(1/β−�)∧0
n

n∑
i=1

Eti−1I (|�n
i Y | ≤ α��

n ) →P Cβ2α,

which implies that the conditional variance goes to zero in probability, since
n∑

i=1

�2(1+(1/β−�)∧0)
n Eti−1I

2(|�n
i Y | ≤ α��

n ) →P 0.

Therefore, a direct use of Lenglart’s inequality yields (A.24).
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