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SOME ASYMPTOTIC RESULTS OF GAUSSIAN RANDOM FIELDS
WITH VARYING MEAN FUNCTIONS AND THE

ASSOCIATED PROCESSES

BY JINGCHEN LIU1 AND GONGJUN XU

Columbia University

In this paper, we derive tail approximations of integrals of exponential
functions of Gaussian random fields with varying mean functions and ap-
proximations of the associated point processes. This study is motivated nat-
urally by multiple applications such as hypothesis testing for spatial models
and financial applications.

1. Introduction. Gaussian random fields and multivariate Gaussian random
vectors constitute a cornerstone of statistics models in many disciplines, such as
physical oceanography and hydrology [4, 48], atmosphere study [26], geostatistics
[21, 22], astronomy [33, 52] and brain imaging [49, 59–61]. The difficulty very
often lies in assessing the significance of the test statistics due to the dependence
structure induced by the random field. In recent studies, closed form approxima-
tions of the tail probabilities of supremum of random fields (the p-values) have
been studied intensively such as in [45, 59, 60]. In this paper, we develop asymp-
totic results of the integrals of exponential functions of smooth Gaussian random
fields with varying mean functions and the associated point processes.

For concreteness, let {f (t) : t ∈ T } be a centered Gaussian random field with
unit variance and living on a d-dimensional domain T ⊂ Rd . For every finite sub-
set of {t1, . . . , tn} ⊂ T , (f (t1), . . . , f (tn)) is a mean-zero multivariate Gaussian
random vector. In addition, let μ(t) be a (deterministic) function. The main quan-
tity of interest is the probability

P

(∫
T

eσf (t)+μ(t) dt > b

)
,(1.1)

where σ ∈ (0,∞) is the scale factor. In particular, we consider the asymptotic
regime where b tends to infinity and develop closed form approximations of the
above tail probabilities. We further consider a doubly stochastic Poisson process
{N(A) :A ⊂ T }, with intensity {λ(t) : t ∈ T }. More specifically, let logλ(t) =
σf (t) + μ(t) be a continuous Gaussian process. Conditional on {λ(t) : t ∈ T },
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{N(A) :A ⊂ T } is an inhomogeneous Poisson process with intensity λ(t). Note
that, conditional on the process f (t), N(A) is a Poisson random variable with ex-
pectation

∫
A eσf (t)+μ(t) dt . Then, we are interested in approximating the tail prob-

ability

P
(
N(T ) > b

)
.(1.2)

The approximations of tail probabilities in (1.1) and (1.2) are motivated by
multiple applications such as hypothesis testing for spatial models and financial
applications; see detailed discussions in Section 2. In fact, (1.1) and (1.2) are
asymptotically the same. Therefore, the main result of this paper lies in developing
approximations for (1.1).

In the statistics literature, closed form approximations of the tail probabilities
of Gaussian random fields have been widely employed for the computation of p-
values such as significance levels of the scanning statistics [7, 45, 49, 51]. The
works of [19, 59, 60] used expected Euler characteristics of the excursion set as
an approximation and applied it to neuroimaging. Rabinowitz and Siegmund [47]
used saddlepoint approximation for the tail of a smoothed Poisson point process.
Using a change of measure idea, [45] derived the approximations for non-Gaussian
fields in the context of a likelihood-based hypothesis test. In the probability liter-
ature, the extreme behavior of Gaussian random fields is also intensively studied.
The results range from general bounds to sharp asymptotic approximations. An
incomplete list of works includes [13, 16, 17, 23, 37, 39, 40, 43, 55, 57]. A few
lines of investigations on the supremum norm are given as follows. Assuming lo-
cally stationary structure, the double-sum method [46] provides the exact asymp-
totic approximation of supT f (t) over a compact set T , which is allowed to grow
as the threshold tends to infinity. For almost surely at least twice differentiable
fields, [1, 6, 58] derive the analytic form of the expected Euler–Poicaré Character-
istics of the excursion set [χ(Ab)] which serves as a good approximation of the
tail probability of the supremum. The tube method [56] takes advantage of the
Karhune–Loève expansion and Weyl’s formula. A recent related work along this
line is given by [45]. The Rice method [9–11] provides an implicit description
of supT f (t). The discussions also go beyond the Gaussian fields. For instance,
[38] discusses the situations of Gaussian process with random variances. See also
[5] for other discussions.

The analysis of integrals of nonlinear functions of Gaussian random fields is less
developed compared with that of the supremum. In the case that f (t) is the Brow-
nian motion, the distribution of

∫ ∞
0 ef (t) dt is discussed by [31, 63]. For smooth

and homogeneous Gaussian random fields, the tail approximation of
∫
T ef (t) dt

is given by [41] using a technique similar to the double-sum method. The result
and technique in [41] are restricted to the homogeneous fields (with a constant
mean). In statistical analysis, however, allowing spatially varying mean functions
is usually very important especially in presence of spatially varying covariates.
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Meanwhile, developing sharp asymptotic approximations for random fields with
spatially varying means is a much more complicated and more difficult problem.
The current work substantially generalizes the result of [41] and is applicable to
more practical settings such as the presence of spatially varying covariates.

The contribution of this paper is to develop asymptotic approximations of the
probabilities as in (1.1) and (1.2) by introducing a change-of-measure technique.
This change of measure was first proposed by [45] to derive tail asymptotics of
supremum of non-Gaussian random fields. This technique substantially simpli-
fies the analysis (though the derivations are still complicated) and may potentially
lead to efficient importance sampling algorithms to numerically compute (1.1) and
(1.2); see [2, 3, 15, 50] for a connection between the change of measure and effi-
cient computation of tail probabilities. In addition, without too many modifica-
tions, one can foresee that the proposed change of measure can be adapted to
certain non-Gaussian random fields such as those in [45], which uses a change-
of-measure technique to develop the approximations of suprema of non-Gaussian
random fields with functional expansions.

The organization of the rest of this paper is as follows. In Section 2, we present
several applications of the current study. The main results are given in Section 3
with proofs provided in Section 4. Some useful lemmas are stated in Section 5.
A simulation study and technical proofs of several lemmas are provided as supple-
mental article [42].

2. Applications. The integrals of exponential functions of random fields play
an important role in many applications. We present a few of them in this section.

2.1. Hypothesis testing.

Hypothesis testing for point processes. Consider the doubly stochastic Poisson
process N(·) with intensity λ(t) as defined in the Introduction. The mean function
of the log-intensity μ(t) is typically modeled as a linear combination of the ob-
served spatially varying covariates, that is,

μ(t) = x�(t)β,(2.1)

where x(t) = (x1(t), . . . , xp(t))�. The Gaussian process f (t) is then employed
to build in a spatial dependence structure by letting logλ(t) = f (t) + μ(t). This
modeling approach has been widely used in the literature. For instance, [20] con-
siders the time series setting in which T is a one-dimensional interval, μ(t) in
(2.1) is modeled as the observed covariate process and f (t) is an autoregressive
process. See [18, 24, 25, 27, 64] for more examples of such kind. For applications,
this approach has been used in many disciplines, such as astronomy, epidemiol-
ogy, geography, ecology and material science. Particularly, in the epidemiological
study, this model is used to describe the spatial distribution of positive (e.g., can-
cer) cases over a region T and the latent intensity process is used to account for
the unobserved factors that may affect the hazard.
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Under the above assumptions, we consider the related hypothesis testing prob-
lems admitting a (simple) null hypothesis that the point process has log-intensity
f (t) + x�(t)β with β and the covariance function known. The alternative hypoth-
esis could be any probability model under which the distribution of N(T ) stochas-
tically dominates the one under the null hypothesis. The one-sided p-value is then
given by

P
(
N(T ) > b

)
,(2.2)

where b is the observed count. This is equivalent to testing that a region T is of a
higher hazard level than the typical (null) level.

For concreteness, we consider one situation that is frequently encountered in
epidemiology. Let the process N(·) denote the spatial locations of positive asthma
cases in a certain region T such as the New York City metropolitan area. We as-
sume that N(·) admits the doubly stochastic structure described previously. To
keep the example simple, we only include one covariate in the model, that is,
logλ(t) = β0 + β1x(t), where x(t) is the pollution level at location t and has
been standardized so that

∫
T x(t) dt = 0. Suppose that β1 is known or an accu-

rate estimate of β1 is available. One is interested in testing the simple hypothesis
H0 :β0 = β∗

0 against H1 :β0 > β∗
0 , where β∗

0 is the national-wise log-intensity.
A p-value is given by P(N(T ) > b). In this case, it is necessary to consider a spa-
tially varying mean of the log-intensity to account for the inhomogeneity given that
regression coefficient β1 for pollution level is nonzero under the null hypothesis.

For other instances, the spatially varying covariates are sometimes chosen to
functions to reflect certain periodicity. One such case study is discussed in [64]
and further in [27] under the time series setting. In that example, positive cases
of poliomyelitis in the United States for the years 1970–1983 were observed. The
time-varying covariates x(t) are set to be a linear trend and harmonics at periods
of 6 and 12 months and more precisely

μ(t) = x(t)�β,

x(t) = (
1, t, cos(2πt/12), sin(2πt/12), cos(2πt/6), sin(2πt/6)

)
,

where t is in the unit of one month. Similar hypothesis testing problems to the
asthma case may be considered. The coefficients for most terms are significantly
nonzero. Thus, spatially varying covariates are ubiquitous in practice, which re-
sults in a nonconstant mean under the null hypothesis.

In order to apply the results in this paper to a composite null hypothesis, such
as the case in which the covariance function of f (t) is unknown, we need the
corresponding estimates for some characteristics of the covariance function of f

(see Theorem 3.4). The uncertainty of these estimates will definitely introduce ad-
ditional difficulty to the p-value calculation. On the other hand, with reasonably
large sample size, the necessary parameters can be estimated accurately. In addi-
tion, the approximations stated in later theorems only consist of the derivatives
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of the covariance function (equivalently spectral moments) and μ(t) at the global
maximum. Then, one can design estimators simply for these distributional charac-
teristics, which are much easier to estimate than the entire covariance functional
form. There are extensive discussions on the estimations of spectral moments both
parametrically and nonparametrically such as in the textbook [54]. This plug-in-
estimate strategy is used by [59] to handle such a composite null hypothesis com-
bined with a closed form p-value approximation by means of the expected Euler
characteristics. In that paper, the authors estimate and plug in the estimate of the
Lipschitz–Killing curvature to the expected Euler characteristic function to ap-
proximate the tail probability of the supremum of a t-field. Given that the main
focus of this paper is on developing the approximations for the tail probabilities,
we do not pursue parameter estimation aspects.

Hypothesis testing for aggregated data. The tail probability of
∫

eμ(t)+f (t) dt

itself can also serve as a p-value. In environmental science, the ozone concen-
tration fluctuation is typically modeled to follow a log-normal distribution. For
instance, it is found that the hourly averaged zone concentration typically ad-
mits a log-normal distribution; see [35]. We let logλ(t) = μ(t) + f (t) be the
log-concentration of ozone at location t . One is interested in testing whether a
region T has an unusually high ozone level, that is, H0 :E(logλ(t)) = μ(t) and
HA :E(logλ(t)) > λ(t) for t ∈ T . Similarly to the previous motivating example, in
a regression setting, one may model μ(t) = β0 +x�(t)β and consider H0 :β0 = β∗

0
and H1 :β0 > β∗

0 . One may reject the null if the observed aggregated ozone level,
b, in region T is too high and a p-value is given by

P

(∫
T

λ(t) dt =
∫
T

eμ(t)+f (t) dt > b

)
.

A similar argument as that for the point process application applies for the neces-
sity of incorporating a nonconstant mean function μ(t) to reflect spatial inhomo-
geneity such as spatially varying covariates and periodicity.

2.2. Financial applications. The integrals of exponential functions also play
an important role in financial applications. This is more related to the applied prob-
ability literature. In asset pricing, the asset price indexed by time t is typically
modeled as an exponential function of a Gaussian process, that is, S(t) = ef (t).
For instance, the Black–Scholes–Merton formula [14, 44] assumes that the price
follows a geometric Brownian motion. Then, the payoff of an Asian option is the
function of the averaged price

∫ T
0 ef (t) dt and (1.1) is the probability of exercising

an Asian call option.
In the portfolio risk analysis, consider a portfolio consisting of n assets

(S1, . . . , Sn) each of which is associated with a weight (e.g., number of shares)
(w1, . . . ,wn). One popular model assumes that (logS1, . . . , logSn) is a multivari-
ate Gaussian random vector. The value of the portfolio, S = ∑n

i=1 wiSi , is then the
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sum of correlated log-normal random variables (see [8, 12, 29, 30, 32]). Without
loss of generality, we let

∑
wi = n.

One typical situation is that the portfolio size is large and the asset prices
are usually highly correlated. One may employ a latent space approach used in
the literature of social network. More specifically, we construct a Gaussian pro-
cess {f (t) : t ∈ T } and associate each asset i with a latent variable ti ∈ T so
that logSi = f (ti). Then, the log asset prices fall into a subset of the contin-
uous Gaussian process. Further, there exists a (deterministic) process w(t) so
that w(ti) = wi . Then, the total asset one unit share value of the portfolio is
1
n

∑
wiSi = 1

n

∑
w(ti)e

f (ti ).
In this representation, the dependence among two assets is determined by |ti −

tj |, which indicates the economical distance between two firms. For instance, if
firm i is the supplier of firm j , then ti − tj tends to be small. The spatial index t

may also include other social–economical indices. This latent space approach has
become popular in recent social network studies. For instance, [36] considers a
graph of n nodes. The authors associate each node i with a spatial latent variable
ti and model the probability of generating an edge between two nodes (i and j ) in
a graph as a logistic function of |ti − tj |. Similar latent space models that project
nodes onto a latent space can be found in [34]. Other approaches to represent
interactions among variables via latent structures have been used; see, for instance,
[53, 62] and references therein.

In the asymptotic regime that n → ∞ and the correlations among the asset
prices become close to 1, the subset {ti} becomes denser in T . Ultimately, we
obtain the limit

1

n

n∑
i=1

wiSi →
∫

w(t)ef (t)h(t) dt,

where h(t) indicates the limiting spatial distribution of {ti} in T . Let μ(t) =
logw(t) + logh(t). Then the tail probability of the (limiting) unit share price is

P

(∫
ef (t)+μ(t) dt > b

)
.

It is necessary to include a varying mean in the above representation to incorporate
the variation of the weights assigned to different assets and the inhomogeneity of
the limiting distribution of ti ’s.

3. Main results.

3.1. Problem setting. Consider a homogeneous Gaussian random field {f (t) :
t ∈ T } living on a domain T ⊂ Rd . Let the covariance function be

C(t − s) = Cov(f (t), f (s)).

We impose the following assumptions:
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(C1) f is homogeneous with Ef (t) = 0 and Ef 2(t) = 1.
(C2) f is almost surely at least three times differentiable with respect to t and

μ(t) ∈ C3(T ).
(C3) T is a d-dimensional Borel measurable compact set of Rd with piecewise

smooth boundary.
(C4) The Hessian matrix of C(t) at the origin is −I , where I is the d × d

identity matrix.
(C5) For each t ∈ Rd , the function C(λt) is a nonincreasing function of λ ∈

R+.
(C6) If μ(t) is not a constant, the maximum of μ(t) is not attained at the bound-

ary of T .

Let N(·) be a point process such that conditional on {f (t) : t ∈ T }, N(·) is dis-
tributed as a Poisson process with intensity λ(t) = eμ(t)+σf (t). For each Borel
measurable set A ⊂ T , let

I (A) =
∫
A

eμ(t)+σf (t) dt.(3.1)

Throughout this paper, we are interested in developing closed form approximations
to

P

(∫
T

eμ(t)+σf (t) dt > b

)
and P

(
N(T ) > b

)
(3.2)

as b → ∞.

REMARK 3.1. Condition (C1) assumes unit variance. We treat the stan-
dard deviation σ as an additional parameter and consider

∫
eμ(t)+σf (t) dt . Con-

dition (C2) is rather a strong assumption. It implies that C(t) is at least six times
differentiable and the first, third and fifth derivatives at the origin are all zero. Con-
dition (C3) restricts the results to finite horizon. Condition (C4) is introduced to
simplify notation. For any Gaussian process g(t) with covariance function Cg(t)

and �Cg(0) = −� and det(�) > 0, (C4) can be obtained by an affine transforma-
tion by letting g(t) = f (�1/2t) and∫

T
eμ(t)+σg(t) dt = det(�−1/2)

∫
{s : �−1/2s∈T }

eμ(�−1/2s)+σf (s) ds,

where for each positive semidefinite matrix � we let �1/2 be a symmetric ma-
trix such that �1/2�1/2 = �. Conditions (C5) and (C6) are imposed for technical
reasons.

REMARK 3.2. The setting in (3.2) also incorporates the case in which the
integral is with respect to other measures with smooth densities with respect to the
Lebesgue measure. Then, if ν(dt) = κ(t) dt , we will have that∫

A
eμ(t)+σf (t)ν(dt) =

∫
A

eμ(t)+logκ(t)+σf (t) dt,
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which shows that the density can be absorbed by the mean function as long as κ(t)

is bounded away from zero and infinity on T .

REMARK 3.3. The results presented in the current paper are directly applica-
ble to some of the applications in Section 2 such as the approximation of p-value
for simple null hypothesis. Some conditions required by the theorems may need
to be relaxed to reflect practical circumstances for other applications. Nonetheless,
the current analysis forms a standpoint of further study of more general cases.

3.2. Notation. To simplify the discussion, we define a set of notation con-
stantly used in the later development and provide some basic calculations of Gaus-
sian random field. Let “∂” denote the gradient and “�” denote the Hessian matrix
with respect to t . The notation “∂2” is used to denote the vector of second deriva-
tives. The difference between ∂2f (t) and �f (t) is that �f (t) is a d × d sym-
metric matrix whose diagonal and upper triangle consists of elements of ∂2f (t).
Similarly, we will later use z (and z̃) to denote the matrix version of the vector z

(and z̃), that is, z (and z̃) is a symmetric matrix whose upper triangle consists of
elements in the vector z (and z̃). Further, let ∂jf (t) be the partial derivative with
respect to the j th element of t . We define u as the larger solution to

(
2π

σ

)d/2

u−d/2eσu = b.

Note that when b is large, the above equation generally has two solutions. One is
on the order of logb; the other one is close to zero. We choose the larger solution
as our u. Lastly, we define the following notation:

μ1(t) = −(∂1C(t), . . . , ∂dC(t)),

μ2(t) = (
∂2
iiC(t), i = 1, . . . , d; ∂2

ijC(t), i = 1, . . . , d − 1, j = i + 1, . . . , d
)
,

μ�
02 = μ20 = μ2(0).

It is well known that (cf. Chapter 5.5 of [6]) (f (0), ∂2f (0), ∂f (0), f (t)) is a
multivariate Gaussian random vector with mean zero and covariance matrix⎛

⎜⎜⎜⎝
1 μ20 0 C(t)

μ02 μ22 0 μ�
2 (t)

0 0 I μ�
1 (t)

C(t) μ2(t) μ1(t) 1

⎞
⎟⎟⎟⎠ ,

where the matrix μ22 is a d(d +1)/2-dimensional positive definite matrix and con-
tains the fourth-order spectral moments arranged in an appropriate order according
to the order of elements in ∂2f (0). Define

� =
(

1 μ20
μ02 μ22

)
.(3.3)
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For notational convenience, we write au = O(bu) if there exists a constant c > 0
independent of everything such that au ≤ cbu for all u > 1, and au = o(bu) if
au/bu → 0 as u → ∞ and the convergence is uniform in other quantities. We write
au = 
(bu) if au = O(bu) and bu = O(au). In addition, we write Xu = op(au) if

Xu/au
p→ 0 as u → ∞ and EθXu/au → 1 uniformly for θ over a compact interval

around the origin. Similarly, we define that Xu = Op(au) if EθXu/au is bounded
away from zero and infinity for all u ∈ R+ and θ in a compact interval around
zero. We write au ∼ bu if au/bu → 1 as u → ∞.

3.3. The main theorems. The main theorems of this paper are presented as
follows. The following theorem is the central result of this paper whose proof is
provided in Section 4.

THEOREM 3.4. Consider a Gaussian random field {f (t) : t ∈ T } living on a
domain T satisfying conditions (C1)–(C6). Let I (T ) be as defined in (3.1). Then,

P
(
I (T ) > b

) ∼ ud−1
∫
T

exp
{
−(u − μσ (t))2

2

}
· H(μ,σ, t) dt

as b → ∞, where

μσ (t) = μ(t)/σ,(3.4)

u is the larger solution to (
2π

σ

)d/2

u−d/2eσu = b,

H(μ,σ, t) is defined as

|�|−1/2

(2π)(d+1)(d+2)/4 exp
{

1T μ221 + ∑
i ∂

4
iiiiC(0)

8σ 2

+ d · μσ (t) + Tr(�μσ (t))

2σ
+ |∂μσ (t)|2

}

×
∫
z∈Rd(d+1)/2

exp
{
−1

2

[ |μ20μ
−1
22 z|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z − μ
1/2
22 1
2σ

∣∣∣∣
2]}

dz

and

1 = (1, . . . ,1︸ ︷︷ ︸
d

,0, . . . ,0︸ ︷︷ ︸
d(d−1)/2

)�.

COROLLARY 3.5. Under the conditions of Theorem 3.4, if μ(t) has one
unique maximum in T denoted by t∗, then

P
(
I (T ) > b

) ∼ (2π)d/2 det(�μσ (t∗))−1/2H(μ,σ, t∗)ud/2−1

× exp
{
−(u − μσ (t∗))2

2

}
.
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PROOF. The result is immediate by expanding μσ (t) around t∗ up to the sec-
ond order. �

THEOREM 3.6. Assume that the Gaussian process f (t) satisfies the condi-
tions in Theorem 3.4. Consider a point process {N(A) :A ∈ B(T )}, where B(T )

denotes the Borel subsets of T . Suppose that there exists a process logλ(t) =
μ(t) + σf (t) such that given {λ(t) : t ∈ T }, N(·) is a Poisson process with in-
tensity λ(t). Then,

P
(
N(T ) > b

) ∼ P
(
I (T ) > b

)
as b → ∞.

PROOF. We prove this approximation from both sides. For ε > 0 small
enough, we have that

P
(
N(T ) > b

) ≥ P
(
N(T ) > b; I (T ) ≥ b + b1/2+ε)

= (
1 + o(1)

)
P
(
I (T ) ≥ b + b1/2+ε)(3.5)

= (
1 + o(1)

)
P
(
I (T ) ≥ b

)
.

The second step is due to the fact that conditional on I (T )

N(T ) − I (T )√
I (T )

→ N(0,1)

in distribution as I (T ) → ∞. Therefore, we obtain that

P
(
N(T ) > b|I (T ) ≥ b + b1/2+ε) → 1.

Together with the fact that

P
(
N(T ) > b; I (T ) ≥ b + b1/2+ε)

= P
(
N(T ) > b|I (T ) ≥ b + b1/2+ε)P (

I (T ) ≥ b + b1/2+ε),
we obtain the second step of (3.5). The last step that P(I (T ) ≥ b + b1/2+ε) =
(1+o(1))P (I (T ) ≥ b) is a direct application of Theorem 3.4. For the upper bound,
we have that

P
(
N(T ) > b

) = P
(
N(T ) > b; I (T ) ≥ b − b1−ε)

+ P
(
N(T ) > b; I (T ) ≤ b − b1−ε)

≤ (
1 + o(1)

)
P
(
I (T ) > b

) + P
(
N(T ) > b|I (T ) = b − b1−ε)

= (
1 + o(1)

)
P
(
I (T ) > b

)
.

The last step uses the fact that

P
(
N(T ) > b|I (T ) = b − b1−ε) ≤ exp

{−(
1/2 + o(1)

)
b1−2ε} = o(1)P

(
I (T ) > b

)
.

The bound of the tail of a Poisson distribution can be derived by the standard
technique of large deviations theory [28] and therefore is omitted. �
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REMARK 3.7. The result in Theorem 3.6 suggests that an observation of a
large number of points in a region T is mainly caused by a high level of its under-
lying intensity. Technically, this is because the distribution of N(T ) can be roughly
considered as a convolution of the distribution of

∫
ef (t) dt and a Poisson distri-

bution. Note that
∫

ef (t) dt is approximately a log-normal random variable, which
has a much heavier tail than that of a Poisson random variable. Therefore, the tail
behavior of N(T ) is mostly dominated by the tail of its underlying intensity.

3.4. The change of measure. In this subsection, we propose a change of mea-
sure Q which is central to the proof of Theorem 3.4. Let P be the original measure.
The measure Q is defined such that P and Q are mutually absolutely continuous
with the Radon–Nikodym derivative being

dQ

dP
=

∫
T

1

mes(T )
· exp{−(1/2)(f (t) − u + μσ (t))2}

exp{−(1/2)f (t)2} dt,(3.6)

where mes(·) denotes Lebesgue measure. This change of measure was first pro-
posed by [45] to derive the high excursion probabilities of approximately Gaussian
processes. It is more intuitive to describe the measure Q from a simulation point
of view. In order to simulate f (t) under the measure Q, one can do the following
two steps:

(1) Simulate a random variable τ uniformly over T with respect to the
Lebesgue measure.

(2) Given the realized τ , simulate the Gaussian process f (t) with mean (u −
μσ (τ))C(t − τ) and covariance function C(t).

It is not hard to verify that the above two-step procedure is consistent with the
Radon–Nikodym derivative in (3.6). The measure Q is designed such that the dis-
tribution of f under the measure Q is approximately the conditional distribution
of f given

∫
T ef (t) dt > b under the measure P . Under Q, a random variable τ

is first sampled uniformly over T , then f (τ) is simulated with a large mean at
level u − μσ (τ). This implies that the high level of the integral

∫
T eμ(t)+σf (t) dt is

mostly caused by the fact that the field reaches a high level at one location t∗ and
such a location t∗ is very close to τ . Therefore, the random index τ localizes the
maximum of the field. In particular, one can write the tail probability as

P

(∫
T

eμ(t)+σf (t) dt > b

)
= EQ

[
dP

dQ
;
∫
T

eμ(t)+σf (t) dt > b

]
,

where we use EQ to denote the expectation under Q and E to denote that under P .
In what follows, we explain the main result in Theorem 3.4 and how the

change of measure helps in deriving the asymptotics. To simplify the discussion,
we proceed by assuming that μ(t) ≡ 0 and σ = 1. Upon considering zero (con-
stant) mean, we obtain from the result of Theorem 3.4 that P(

∫
T ef (t) dt > b) =
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(1)P (supT f (t) > u) (cf. [6]). This suggests that the large value of the exponen-
tial integral at the level b is largely caused by the high excursion of supT f (t) at
a level u. The conditional distribution of f (t) given a high excursion at level u

(the Slepian model) is well known [7]. We proceed with a rough mean calculation.
Suppose that f (t) attains a large value at the origin of level u. Then the conditional
field will have expectation E[f (t)|f (0) = u] = uC(t). We expand the covariance
function as

uC(t) ≈ u − u

2
|t |2.

Therefore, one may expect to choose u such that conditional on f (0) = u∫
T

ef (t) dt ≈
∫
Rd

eu−(u/2)|t |2 dt = (2π)d/2u−d/2eu = b.(3.7)

This is precisely how u is selected in Theorem 3.4. The above calculation ignores
the higher-order expansions of C(t) and the deviation of the conditional field from
its expectation. It turns out that these variations do not affect the asymptotic de-
caying rate of the tail probability. They only contribute to the constant term.

4. Proof of Theorem 3.4. The proof of Theorem 3.4 requires several lemmas.
To facilitate the reading, we arrange their statements in Section 5.

Note that

P

(∫
T

eμ(t)+σf (t) dt > b

)
= EQ

[
dP

dQ
;
∫
T

eμ(t)+σf (t) dt > b

]

=
∫
T

1

mes(T )
EQ

[
dP

dQ
;
∫
T

eμ(t)+σf (t) dt > b
∣∣∣τ

]
dτ.

Furthermore, we use the notation that E
Q
τ [·] = EQ[·|τ ]. For each τ , we plug in

(3.6) and further write the expectation inside the above integral as

EQ
τ

[
dP

dQ
;
∫
T

eμ(t)+σf (t) dt > b

]

= mes(T )EQ
τ

[
1∫

T e−(1/2)(f (t)−u+μσ (t))2+(1/2)f 2(t) dt
;

∫
T

eμ(t)+σf (t) dt > b

]
(4.1)

= mes(T )eu2/2EQ
τ

[
1∫

T e(u−μσ (t))(f (t)+μσ (t))+(1/2)μ2
σ (t) dt

;
∫
T

eμ(t)+σf (t) dt > b

]
.
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We write

�(τ) = eu2/2EQ
τ

[
1∫

T e(u−μσ (t))(f (t)+μσ (t))+(1/2)μ2
σ (t) dt

;
(4.2) ∫

T
eμ(t)+σf (t) dt > b

]
.

Note that conditional on τ , for every set A,

Q
(
f (·) ∈ A|τ ) = P

(
f (·) + (

u − μσ (τ)
)
C(· − τ) ∈ A

)
,(4.3)

that is, the conditional distribution of f (t) (given τ ) under Q equals the distri-
bution of f (t) + (u − μσ (τ))C(t − τ) under P . This equivalence can be derived
from the two-step simulation procedure in Section 3.4. Therefore, we can simply
replace f (t) by f (t) + (u − μσ (τ))C(t − τ), replace Q by P , and write

�(τ) = eu2/2E

[
1∫

T e(u−μσ (t))[f (t)+(u−μσ (τ))C(t−τ)+μσ (t)]+(1/2)μ2
σ (t) dt

;
(4.4) ∫

T
eσ {f (t)+(u−μσ (τ))C(t−τ)+μσ (t)} dt > b

]
.

Let

Eb =
{∫

T
eσ {f (t)+(u−μσ (t))C(t−τ)+μσ (t)} dt > b

}
,(4.5)

K =
∫
T

e(u−μσ (t))[f (t)+(u−μσ (τ))C(t−τ)+μσ (t)]+(1/2)μ2
σ (t) dt.(4.6)

Then, (4.4) can be written as

�(τ) = eu2/2
∫

E[K−1; Eb|f (τ) = w,∂f (τ) = ỹ, ∂2f (τ) = z̃]
(4.7)

× h(w, ỹ, z̃) dw dỹ dz̃,

where h(w, ỹ, z̃) is the density function of (f (τ ), ∂f (τ ), ∂2f (τ)) evaluated at
(w, ỹ, z̃).

For a given δ′ > 0 small enough, we consider two cases for τ : first, {t : |t −
τ | ≤ u−1/2+δ′ } ⊂ T and otherwise. For the first situation, τ is “far away” from
the boundary of T , which is the important case in our analysis. For the second
situation, τ is close to the boundary. We will show that the second situation is of
less importance given that the maximum of μ(t) is attained at the interior of T .

For the first situation, the analysis consists of three main parts.

Part 1. Conditional on (τ, f (τ ), ∂f (τ ), ∂2f (τ)), we study the event

Eb =
{∫

T
eσ {f (t)+(u−μσ (τ))C(t−τ)+μσ (t)} dt > b

}
(4.8)
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and write the occurrence of this event almost as a deterministic function of f (τ),
∂f (τ) and ∂2f (τ).

Part 2. Conditional on (τ, f (τ ), ∂f (τ ), ∂2f (τ)), we write K defined in (4.6)
as a function of f (τ), ∂f (τ), ∂2f (τ) and a small correction term.

Part 3. We combine the results from the first two parts and obtain an approxi-
mation of (4.1) through the right-hand side of (4.7).

All the subsequent derivations are conditional on a specific value of τ .

Preliminary calculations. For 0 < ε < δ′ sufficiently small, let

LQ = {|f (τ) − u + μσ (τ)| ≤ u1/2+ε,

|∂f (τ)| < u1/2+ε,(4.9) ∣∣∂2f (τ) − (
u − μσ (τ)

)
μ02

∣∣ < u1/2+ε}.
According to Lemma 5.2, we only need to consider the integral on the set LQ, that
is,

EQ
τ

[
1∫

exp{(u − μσ (t))(f (t) + μσ (t)) + (1/2)μ2
σ (t)}dt

;
∫
T

eμ(t)+σf (t) dt > b, LQ

]
.

The above display equals

E[K−1; Eb, L],
where

L = {|f (τ)| ≤ u1/2+ε, |∂f (τ)| < u1/2+ε, |∂2f (τ)| < u1/2+ε}(4.10)

corresponds to LQ under the transform (4.3). Therefore, throughout the rest of the
proof, all the derivations are on the set L. Note that the sets LQ and L depend on
τ and u. Since all the subsequent derivations are for specific τ and u, we omit the
indices of τ and u in the notation L and LQ.

We first provide the Taylor expansions for f (t), C(t) and μ(t).

• Expansion of f (t) given (f (τ ), ∂f (τ ), ∂2f (τ)). Let t − τ = ((t − τ)1, . . . ,

(t − τ)d). Conditional on (f (τ ), ∂f (τ ), ∂2f (τ)), we first expand the random
function

f (t) = E[f (t)|f (τ), ∂f (τ ), ∂2f (τ)] + g(t − τ)

= f (τ) + ∂f (τ)�(t − τ) + 1
2(t − τ)��f (τ)(t − τ)(4.11)

+ g3(t − τ) + Rf (t − τ) + g(t − τ),
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where

g3(t − τ) = 1

6

∑
i,j,k

E[∂3
ijkf (τ )|f (τ), ∂f (τ ), ∂2f (τ)](t − τ)i(t − τ)j (t − τ)k.

Note that ∂3
ijkf (τ ) is independent of (f (τ ),�f (τ)) and

E[∂3
ijkf (τ )|f (τ), ∂f (τ ), ∂2f (τ)] = −∑

l

∂4
ijklC(0)∂lf (τ ).

g(t) is a mean-zero Gaussian random field such that Eg2(t) = O(|t |6) as t → 0.
In addition, the distribution of g(t) is independent of τ, f (τ ), ∂f (τ ) and ∂2f (τ).
Rf (t − τ) = O(|t − τ |4) is the remainder term of the Taylor expansion of
E[f (t)|f (τ), ∂f (τ ), ∂2f (τ)].

• Expansion of C(t):

C(t) = 1 − 1
2 t�t + C4(t) + RC(t),(4.12)

where RC(t) = O(|t |6) and

C4(t) = 1

24

∑
ijkl

∂4
ijklC(0)ti tj tktl .

• Expansion of μ(t):

μσ (t) = μσ (τ) + ∂μσ (τ)�(t − τ)
(4.13)

+ 1
2(t − τ)��μσ (τ)(t − τ) + Rμ(t − τ),

where Rμ(t − τ) = O(|t − τ |3).
Let I be the d × d identity matrix. We define the following notation that will be

constantly used later:

ũ = u − μσ (τ), ỹ = ∂f (τ),

z̃ = �f (τ), y = ∂f (τ) + ∂μσ (τ),

z = �f (τ) + μσ (τ)I + �μσ (τ),

R(t) = Rf (t) + (
u − μσ (τ)

)
RC(t) + Rμ(t).

As mentioned earlier, we let z and z̃ be the vector version of the matrices z and z̃.
Now, we start to carry out our three-step program.

Part 1. All the derivations in this part are conditional on specific values of τ ,
f (τ), ∂f (τ) and ∂2f (τ). Define

I1 �
∫
T

eσ {f (t)+(u−μσ (τ))C(t−τ)+μσ (t)} dt.
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We insert the expansions in (4.11), (4.12) and (4.13) into the expression of I1 and
obtain that

I1 =
∫
t∈T

exp
{
σ

[
f (τ) + ∂f (τ)�(t − τ) + 1

2
(t − τ)��f (τ)(t − τ)

+ g3(t − τ) + Rf (t − τ) + g(t − τ)

+ (
u − μσ (τ)

)(
1 − 1

2
(t − τ)�(t − τ)

(4.14)

+ C4(t − τ) + RC(t − τ)

)

+ μσ (τ) + ∂μσ (τ )�(t − τ)

+ 1

2
(t − τ)��μσ (τ)(t − τ) + Rμ(t − τ)

]}
dt.

We write the exponent inside the integral in a quadratic form of (t − τ) and obtain
that

I1 = exp
{
σu + σf (τ) + σ

2
y�(uI − z)−1y

}

×
∫
t∈T

exp
{
−σ

2

(
t − (uI − z)−1y

)�
(uI − z)

(
s − (uI − z)−1y

)}
(4.15)

× exp
{
σg3(t) + σ

(
u − μσ (τ)

)
C4(t) + σR(t)

}
× exp{σg(t)}dt.

Further, consider the change of variable that s = (uI − z)1/2(t − τ), write the big
integral in above display as a product of expectations and a normalizing constant,
and obtain that

I1 = det(uI − z)−1/2 exp
{
σu + σf (τ) + σ

2
y�(uI − z)−1y

}

×
∫
(uI−z)−1/2s+τ∈T

exp
{
−σ

2

(
s − (uI − z)−1/2y

)�(
s − (uI − z)−1/2y

)}
ds

× E

[
exp

{
σg3

(
(uI − z)−1/2S

) + σ
(
u − μσ (τ)

)
C4

(
(uI − z)−1/2S

)

+ σR
(
(uI − z)−1/2S

)}]

× E
[
exp

{
σg

(
(uI − z)−1/2S̃

)}]
.

The two expectations in the above display are taken with respect to S and S̃ given
the process g(t). S is a random variable taking values in the set {s : (uI −z)−1/2s +
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τ ∈ T } with density proportional to

exp
{
−σ

2

(
s − (uI − z)−1/2y

)�(
s − (uI − z)−1/2y

)}

and S̃ is a random variable taking values in the set {s : (uI − z)−1/2s + τ ∈ T } with
density proportional to

exp
{
−σ

2

(
s − (uI − z)−1/2y

)�(
s − (uI − z)−1/2y

)}

× exp
{
σg3

(
(uI − z)−1/2s

) + σ
(
u − μσ (τ)

)
C4

(
(uI − z)−1/2s

)
(4.16)

+ σR
(
(uI − z)−1/2s

)}
.

Together with the definition of u that

(
2π

σ

)d/2

u−d/2eσu = b,

we obtain that

I1 =
∫
T

eσ {f (t)+(u−μσ (t))C(t−τ)+μσ (t)} dt > b

if and only if

I1 = det(uI − z)−1/2 exp
{
σu + σf (τ) + σ

2
y�(uI − z)−1y

}

×
∫
(uI−z)−1/2s+τ∈T

exp
{
−σ

2

(
s − (uI − z)−1/2y

)�

× (
s − (uI − z)−1/2y

)}
ds

× E exp
{
σg3

(
(uI − z)−1/2S

)
(4.17)

+ σ
(
u − μσ (τ)

)
C4

(
(uI − z)−1/2S

) + σR
(
(uI − z)−1/2S

)}
× exp{−u−1ξu}

>

(
2π

σ

)d/2

u−d/2eσu,

where

ξu = −u log
{
E exp

[
σg

(
(uI − z)−1/2S̃

)]}
.(4.18)
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We take log on both sides and plug in the result of Lemma 5.4 that handles the big
expectation term in (4.17). Then, inequality (4.17) is equivalent to

A � σf (τ) + σ

2
y�(uI − z)−1y

− 1

2
log det(I − u−1z) + σB + o(u−1)(4.19)

> u−1ξu,

where

B � − 1

8u
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ)

(4.20)

+ 1�μ221
8σ 2u

+ 1

8σ 2u

∑
i

∂4
iiiiC(0)

and

Y = {y2
i , i = 1, . . . , d;2yiyj ,1 ≤ i < j ≤ d},

1 = (1, . . . ,1︸ ︷︷ ︸
d

,0, . . . ,0︸ ︷︷ ︸
d(d−1)/2

)�.

Roughly speaking, according to Lemma 5.3, the event Eb is the same as the event
{A > Op(u−3/2+3δ)}.

Part 2. Similarly to part 1, all the derivations in this part are conditional on
(τ, f (τ ), ∂f (τ ), ∂2f (τ)). We now proceed to the second part of the proof. More
precisely, we simplify the term K defined as in (4.6) and write it as a deterministic
function of (f (τ ), ∂f (τ ), ∂2f (τ)) with a small correction term. For ε < δ < δ′
with all of them sufficiently small, we let λu = u−1/2+δ . We first split the integral
into two parts, that is,

K =
∫
T

e(u−μσ (t))[f (t)+(u−μσ (τ))C(t−τ)+μσ (t)]+(1/2)μ2
σ (t) dt

=
∫
|t−τ |<λu

+· · · +
∫
|t−τ |>λu

+· · ·
= I2 + I3.

For the leading term, note that |t − τ | ≤ λn = u−1/2+δ . We insert the Taylor ex-
pansion of μσ (t):

I2 =
∫
|t−τ |<λu

e(u−μσ (t))[f (t)+(u−μσ (τ))C(t−τ)+μσ (t)]+(1/2)μ2
σ (t) dt

= (
1 + o(1)

)
eu2−uμσ (τ)+(1/2)μ2

σ (τ )

×
∫
|t−τ |<λu

e(u−μσ (t))[f (t)+(u−μσ (τ))C(t−τ)−u+μσ (τ)] dt.
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Let ζu = O(u−1/2+δ). In what follows, we insert the expansions in (4.11), (4.12)
and (4.13), write the exponent as a quadratic function of t − τ , and obtain that on
the set L:

∫
|t−τ |<λu

e(u−μσ (t))[f (t)+(u−μσ (τ))C(t−τ)−u+μσ (τ)] dt

=
∫
|t−τ |<λu

exp
{
(ũ + ζu)

[
f (τ) + (t − τ)�ỹ

− 1

2
(t − τ)�(ũI − z̃)(t − τ) + g3(t − τ)

+ ũC4(t − τ) + g(t − τ) + O(u−3/2+3δ)

]}
dt

= (
1 + o(1)

)
exp

{
(ũ + ζu)

(
f (τ) + 1

2
ỹ�(ũI − z̃)−1ỹ

)}
(4.21)

×
∫
|t−τ |<λu

exp
{
(ũ + ζu)

[
−1

2

(
t − τ − (ũI − z̃)−1ỹ

)�

× (ũI − z̃)
(
t − τ − (ũI − z̃)−1ỹ

)
+ g3(t − τ) + ũC4(t − τ)

+ g(t − τ) + O(u−3/2+3δ)

]}
dt.

We consider the change of variable that s = (ũ + ζu)
1/2(ũI − z̃)1/2(t − τ) and

obtain that (4.21) equals

(
1 + o(1)

)
× det(ũI − z̃)−1/2ũ−d/2

× exp
{
(ũ + ζu)

(
f (τ) + 1

2
ỹ�(ũI − z̃)−1ỹ

)}

×
∫
|ũ−1/2(ũI−z̃)−1/2s|<λu

exp
{
−1

2
|s − (ũ + ζu)

1/2(ũI − z̃)−1/2ỹ|2
}

(4.22)

× exp
{
(ũ + ζu)g3

(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)

+ ũ(ũ + ζu)C4
(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)

+ (ũ + ζu)g
(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)}

ds.

Note that the variation of the last term in (4.22), the g(t) term, is tiny. Then, we
first focus on the leading term. Similar to the proof of Lemma 5.4, we can write
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the integral [without the g(t) term] as
∫
|ũ−1/2(ũI−z̃)−1/2s|<λu

exp
{
−1

2
|s − (ũ + ζu)

1/2(ũI − z̃)−1/2ỹ|2
}

× exp
{
(ũ + ζu)g3

(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)

+ ũ(ũ + ζu)C4
(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)}

ds

= (
1 + o(1)

)
e−(ũ−2/8)Ỹ�μ22Ỹ

×
∫
|ũ−1/2(ũI−z̃)−1/2s|<λu

e−(1/2)|s−(ũ+ζu)1/2(ũI−z̃)−1/2ỹ|2 ds,

where

Ỹ = {ỹ2
i , i = 1, . . . , d;2ỹi ỹj ,1 ≤ i < j ≤ d}

is arranged in the same order as that of the elements in Y . Therefore, (4.21) equals
(
1 + o(1)

)
det(ũI − z̃)−1/2ũ−d/2

× exp
{
(ũ + ζu)

(
f (τ) + 1

2
ỹ�(ũI − z̃)−1ỹ

)
− ũ−2

8
Ỹ�μ22Ỹ

}
(4.23)

×
∫
|ũ−1/2(ũI−z̃)−1/2s|<λu

exp
{
−1

2
|s − (ũ + ζu)

1/2(ũI − z̃)−1/2ỹ|2
}

ds

× E
[
exp

{
(ũ + ζu)g

(
(ũ + ζu)

−1/2(ũI − z̃)−1/2S′)}],
where S′ is a random variable taking values on the set {s : |ũ−1/2(ũI − z̃)−1/2s| <
λu} with density proportional to

exp
{−1

2 |s − (ũ + ζu)
1/2(ũI − z̃)−1/2ỹ|2}

× exp
{
(ũ + ζu)g3

(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)

+ ũ(ũ + ζu)C4
(
(ũ + ζu)

−1/2(ũI − z̃)−1/2s
)}

.

We use κ to denote the last two terms of (4.23):

κ =
∫
|ũ−1/2(ũI−z̃)−1/2s|<λu

exp
{
−1

2
|s − (ũ + ζu)

1/2(ũI − z̃)−1/2ỹ|2
}

ds

(4.24)
× E

[
exp

{
(ũ + ζu)g

(
(ũ + ζu)

−1/2(ũI − z̃)−1/2S′)}].
It is helpful to keep in mind that κ = (2π)d/2 + o(1). Now, we continue the calcu-
lations in (4.23) and write (4.21) in the form of A defined as in (4.19) to facilitate
the change of variable later. Then, on the set L, we plug in the form of A and B
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defined in part 1 of the proof and obtain that (4.21) equals

(4.21) = (
1 + o(1)

)
κ det(ũI − z̃)−1/2u−d/2

× exp
{
(ũ + ζu)

(
f (τ) + 1

2
ỹ�(ũI − z̃)−1ỹ − ũ−2

8
Ỹ�μ22Ỹ

)}

= (
1 + o(1)

)
κu−d exp

{
ũ

σ
A − ũB + ũ

2σ
log det(I − u−1z)

+ ũ

2

(
ỹ�(ũI − z̃)−1ỹ − y�(uI − z)−1y

)
(4.25)

+ u−1/2+δO
(|y|2 + f (τ)

)}

= (
1 + o(1)

)
κu−d exp

{
ũ

σ
A − ũB − 1

2σ
Tr

(
z̃ + μσ (τ)I + �μσ (τ)

)

− ỹ�∂μσ (τ ) − 1

2
|∂μσ (τ )|2

+ u−1/2+δO
(|y|2 + |z|2 + f (τ)

)}
,

where Tr(z) is the trace of matrix z. The last step in the above display is thanks to
Lemma 5.6 and the fact that y = ỹ + ∂μσ (τ ). We insert the result of (4.25) into
the definition of I2 and obtain that

I2 = (
1 + o(1)

)
κu−deu2−uμσ (τ)+(1/2)μ2

σ (τ )

× exp
{

ũ

σ
A − ũB − 1

2σ
Tr

(
z̃ + μσ (τ)I + �μσ (τ)

)

− ỹ�∂μσ (τ ) − 1

2
|∂μσ (τ )|2 + u−1/2+δO

(|y|2 + |z|2 + f (τ)
)}

.

Thanks to Lemma 5.5, I3 is of a much smaller order than I2 and we obtain that

K = I2 + I3

= (
1 + o(1)

)(
κ + O

(
e−δ∗u1+2δ

eu sup|g(t)|))u−deu2−uμσ (τ)+(1/2)μ2
σ (τ )

(4.26)

× exp
{

ũ

σ
A − ũB − 1

2σ
Tr

(
z̃ + μσ (τ)I + �μσ (τ)

)

− ỹ�∂μσ (τ ) − 1

2
|∂μσ (τ )|2 + u−1/2+δO

(|y|2 + |z|2 + f (τ)
)}

.

Part 3. Use the notation f (τ) = w, ∂f (τ) = ỹ and ∂2f (τ) = z̃. We now put
together the results from parts 1 and 2 and obtain an approximation of �(τ) defined
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as in (4.2). Note that

�∗(τ ) � EQ
τ

[
1∫

T e−(1/2)(f (t)−u+μσ (t))2+(1/2)f 2(t) dt
;

∫
T

eμ(t)+σf (t) dt > b, LQ

]

= eu2/2E

[
1

I2 + I3
;u · A > ξu, L

]

= eu2/2
∫

L
E

[
1

I2 + I3
;u · A > ξu

∣∣∣f (τ) = w,∂f (τ) = ỹ, ∂2f (τ) = z̃

]

× h(w, ỹ, z̃) dw dỹ dz̃.

Plugging in (4.26), we have that

�∗(τ ) = (
1 + o(1)

)
ud exp

{
−u2/2 + uμσ (τ) − 1

2
μ2

σ (τ )

}

×
∫

L
γu(u · A)

× exp
{
− ũ

σ
A + ũB + 1

2σ
Tr

(
z̃ + μσ (τ)I + �μσ (τ)

)

+ ỹ�∂μσ (τ ) + 1

2
|∂μσ (τ )|2 + u−1/2+δO(|ỹ|2 + |z̃|2 + w)

}

× h(w, ỹ, z̃) dw dỹ dz̃,

where h is the density function of (f (τ ), ∂f (τ ), ∂2f (τ)) under the measure P .
The above display also uses the fact that both A and B are functions of (w, ỹ, z̃)

and therefore can be pulled outside of the conditional expectation. The notation

γu(x) = E

[
1

κ + O(e−δ∗u1+2δ
eu sup|g(t)|)

;x > ξu

∣∣∣w, ỹ, z̃

]
,(4.27)

where the expectation is taken with respect to the process g(t). Note that 1�z̃ =
Tr(z̃). Plugging in the analytic forms of h (Lemma 5.7) and B as in (4.20) and
moving all the constants out of the integral, we obtain that

�∗(τ ) = (
1 + o(1)

)

× ud exp
{
−u2/2 + uμσ (τ) − 1

2
μ2

σ (τ )

+ 1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

)

+ 1

2
|∂μσ (τ )|2 + 1�μ221

8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

}
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× |�|−1/2

(2π)(d+1)(d+2)/4

×
∫

L
γu(u · A) exp

{
− ũ

σ
A + 1

2σ
1�z̃ + ỹ�∂μσ (τ )

}

× exp
{
−1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ)

− 1

2

[
ỹ�ỹ + (w − μ20μ

−1
22 z̃)2

1 − μ20μ
−1
22 μ02

+ z̃�μ−1
22 z̃

]}

× exp{u−1/2+δO(|ỹ|2 + |z̃|2 + w)}dw dỹ dz̃.

We insert

−1

8
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ)

= − 1

8σ 2 1�μ221 + u−1/2+δO(|ỹ|2 + 1)

into the above display. With some elementary calculation, we obtain that

�∗(τ ) = (
1 + o(1)

)
ud

× exp
{
−u2/2 + uμσ (τ) − 1

2
μ2

σ (τ )

+ 1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

) + |∂μσ (τ )|2

+ 1�μ221
8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

}

× |�|−1/2

(2π)(d+1)(d+2)/4

×
∫

L
γu(u · A) exp

{
− ũ

σ
A + u−1/2+δO(|ỹ|2 + |z̃|2 + w + 1)

}

× exp
{
−1

2

[
|ỹ − ∂μσ (τ )|2 + (w − μ20μ

−1
22 z̃)2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z̃ − μ
1/2
22

1
2σ

∣∣∣∣
2]}

dw dỹ dz̃.

Furthermore, on the set L, according to the definition of A in (4.19) and

w = A/σ + O(u−1/2+ε|ỹ|) + o(1),
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we obtain that

�∗(τ ) = (
1 + o(1)

)
ud

× exp
{
−u2/2 + uμσ (τ) − 1

2
μ2

σ (τ ) + 1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

)

+ |∂μσ (τ )|2 + 1�μ221
8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

}

× |�|−1/2

(2π)(d+1)(d+2)/4

×
∫

L
γu(u · A) exp

{
− ũ

σ
A + u−1/2+δO(|ỹ|2 + |z̃|2 + A)

}

× exp
{
−1

2

[
|ỹ − ∂μσ (τ )|2

+ (A/σ + O(u−1/2+ε|ỹ|) + o(1) − μ20μ
−1
22 z̃)2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z̃ − μ
1/2
22

1
2σ

∣∣∣∣
2]}

dw dỹ dz̃

= (
1 + o(1)

)
ud−1

× exp
{
−1

2

(
u − μσ (τ)

)2 + 1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

)

+ |∂μσ (τ )|2 + 1�μ221
8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

}

× |�|−1/2

(2π)(d+1)(d+2)/4

×
∫

L
γu

((
σ + o(1)

)
Ã
)

exp{−Ã + u−1/2+δO(|ỹ|2 + |z̃|2 + A)}

× exp
{
−1

2

[
|ỹ − ∂μσ (τ )|2

+ (Ã/u + O(u−1/2+ε|ỹ|) + o(1) − μ20μ
−1
22 z̃)2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z̃ − μ
1/2
22

1
2σ

∣∣∣∣
2]}

dÃdỹ dz̃.

The last step changes the integral from “dw dỹ dz̃” to “dÃdỹ dz̃,” where Ã =
ũA/σ . Thanks to the Borel–TIS inequality (Lemma 5.1), Lemma 5.3 and the def-
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inition of κ in (4.24), for x > 0, γu(x) is bounded and as b → ∞,

γu(x) = E

[
1

κ + O(e−δ∗u1+2δ
eu sup |g(t)|)

;x > ξu

]
→ (2π)−d/2.

Note that on the set L, Ã > −u3/2+ε . By Lemma 5.8, for −u3/2+ε < x < 0, we
have that

γu(x) ≤ euδ∗x.

Therefore,

γu(x)I (x �= 0, x > −u3/2+ε)

= I (x > 0)
(
(2π)−d/2 + o(1)

)
(4.28)

+ I (−u3/2+ε < x < 0)O(euδ∗x).

The above approximation of γu(x) and the dominated convergence theorem (ap-
plied to the region where A > 0) imply that

∫ ∞
−u3/2+ε

γu(A)e−A dA = 1 + o(1)

(2π)d/2

∫ ∞
0

e−A dA = 1 + o(1)

(2π)d/2 .

Then, we continue the calculation of �∗(τ ) and obtain, by the dominated conver-
gence theorem and the above results, that

�(τ) = (
1 + o(1)

)
�∗(τ )

= (
1 + o(1)

)
ud−1

× exp
{
−1

2

(
u − μσ (τ)

)2

+ 1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

)
(4.29)

+ |∂μσ (τ )|2 + 1�μ221
8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

} |�|−1/2

(2π)(d+1)(d+2)/4

×
∫

I (Ã > 0)

(2π)d/2 e−Ã

× exp
{
−1

2

[
|ỹ − ∂μσ (τ )|2 + |μ20μ

−1
22 z̃|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z̃ − μ
1/2
22

1
2σ

∣∣∣∣
2]}

dÃdỹ dz̃.
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The integrand factorizes. Then, we integrate out dÃ and dỹ and obtain that

�(τ) = (
1 + o(1)

)
ud−1

× exp
{
−1

2

(
u − μσ (τ)

)2 + 1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

)

+ |∂μσ (τ )|2 + 1�μ221
8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

} |�|−1/2

(2π)(d+1)(d+2)/4

×
∫
z̃∈Rd(d+1)/2

exp
{
−1

2

[ |μ20μ
−1
22 z̃|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z̃ − μ
1/2
22

1
2σ

∣∣∣∣
2]}

dz̃.

Thus, we conclude the situation when τ is at least u−1/2+δ′
away from the bound-

ary.

The case in which τ is close to the boundary of T . For the case in which τ

is within u−1/2+δ′
distance from the boundary of T , Lemma 5.9 establishes that

the contribution of the boundary case is ignorable. An intuitive interpretation of
Lemma 5.9 is that the important region of the integral

∫
ef (t) dt might be cut off

by the boundary of T . Therefore, in cases that τ is too close to the boundary, the
tail

∫
ef (t) dt is not heavier than that of the interior case.

Summary. Note that μσ (τ) does not achieve its maximum at the boundary
of T . Together with (4.29) and Lemma 5.9, we obtain that

P

(∫
T

eμ(t)+σf (t) dt > b

)

= EQ

[
dP

dQ
;
∫
T

eμ(t)+σf (t) dt > b

]

=
∫
T

�(τ) dτ = (
1 + o(1)

) ∫
T

�∗(τ ) dτ

= (
1 + o(1)

)
ud−1

∫
T

H(μ,σ, τ ) exp
{
−1

2

(
u − μσ (τ)

)2
}

dτ,

where

H(μ,σ, τ )

= |�|−1/2

(2π)(d+1)(d+2)/4 exp
{

1

2σ
Tr

(
μσ (τ)I + �μσ (τ)

)

+ |∂μσ (τ )|2 + 1�μ221
8σ 2 + 1

8σ 2

∑
i

∂4
iiiiC(0)

}

×
∫
z̃∈Rd(d+1)/2

exp
{
−1

2

[ |μ20μ
−1
22 z̃|2

1 − μ20μ
−1
22 μ02

+
∣∣∣∣μ−1/2

22 z̃ − μ
1/2
22

1
2σ

∣∣∣∣
2]}

dz̃.
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5. Lemmas. In this section, we state all the lemmas used in the previous sec-
tion. To facilitate reading, we move several lengthy proofs to the supplemental
article [42].

The first lemma is known as the Borel–TIS lemma, which was proved indepen-
dently by [16, 23].

LEMMA 5.1 (Borel–TIS). Let f (t), t ∈ U , U is a parameter set, be a mean-
zero Gaussian random field. f is almost surely bounded on U . Then,

E
(
sup

U
f (t)

)
< ∞

and

P
(
max
t∈U

f (t) − E
[
max
t∈U

f (t)
]
≥ b

)
≤ e−b2/(2σ 2

U ),

where

σ 2
U = max

t∈U
Var[f (t)].

LEMMA 5.2. For each ε > 0, let LQ be as defined in (4.9). There exists some
λ > 0, such that

EQ
τ

[
1∫

T exp{(u − μσ (t))(f (t) + μσ (t)) + (1/2)μ2
σ (t)}dt

;
∫
T

eμ(t)+σf (t) dt > b, Lc
Q

]

= o(1)e−u2−u1+λ

,

where Lc
Q is the complement of set LQ.

LEMMA 5.3. Let ξu be as defined in (4.18); then there exists a λ > 0 such that
for all x > 0

P(u1/2−3δ|ξu| > x) ≤ e−λx2 + e−λu2

for u sufficiently large.

PROOF. We split the expectation into two parts {|S̃| ≤ uδ} and {|S̃| > uδ, τ +
(uI −z)−1/2S̃ ∈ T }. Note that |S| ≤ κuδ and g(t) is a mean-zero Gaussian random
field with Var(g(t)) = O(|t |6). A direct application of the Borel–TIS inequality
(Lemma 5.1) yields the result of this lemma. �
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LEMMA 5.4. Let S be a random variable taking values in {s : (uI − z)−1/2s +
τ ∈ T } with density proportional to

exp
{
−σ

2

(
s − (uI − z)−1/2y

)�(
s − (uI − z)−1/2y

)}
.

Then, on the set L

log
{
E exp

[
σg3

(
(uI − z)−1/2S

)
+ σ

(
u − μσ (τ)

)
C4

(
(uI − z)−1/2S

) + σR
(
(uI − z)−1/2S

)]}

= − σ

8u
(u−1Y + 1/σ)�μ22(u

−1Y + 1/σ) + 1�μ221
8σu

+ 1

8σu

∑
i

∂4
iiiiC(0) + o(u−1),

where the expectation is taken with respect to S as in (4.15).

LEMMA 5.5. Let I3 be as defined in part 2 of the proof of Theorem 3.4. On
the set L, there exists some δ∗ > 0 such that

I3 = O(e−δ∗u1+2δ

)eu sup|g(t)|u−deu2−uμσ (τ)+(1/2)μ2
σ (τ )

× exp
{

ũ

σ
A − ũB − 1

2σ
Tr

(
�f (τ) + μσ (τ)I + �μσ (τ)

)

− ỹ�∂μσ (τ ) − 1

2
|∂μσ (τ )|2 + u−1/2+δO

(|y|2 + |z|2 + f (τ)
)}

.

LEMMA 5.6.

log
(
det(I − u−1z)

) = −u−1 Tr(z) + 1
2u−2I2(z) + o(u−2),

where Tr is the trace of a matrix, I2(z) = ∑d
i=1 λ2

i , and λi ’s are the eigenvalues
of z.

PROOF. The result is immediate by noting that

det(I − u−1z) =
d∏

i=1

(1 − λi/u)

and Tr(z) = ∑d
i=1 λi . �

LEMMA 5.7. For the homogeneous Gaussian random field f (t) in Theo-
rem 3.4, let h(w, ỹ, z̃) be the density of (f (τ ), ∂f (τ), ∂2f (τ)) evaluated at
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(w, ỹ, z̃). Then,

h(w, ỹ, z̃) = |�|−1/2

(2π)(d+1)(d+2)/4
(5.1)

× exp
{
−1

2

[
ỹ�ỹ + (w − μ20μ

−1
22 z̃)2

1 − μ20μ
−1
22 μ02

+ z̃�μ−1
22 z̃

]}
,

where � is the covariance matrix of (f (τ ), ∂2f (τ)) whose inverse is

�−1 =

⎛
⎜⎜⎜⎜⎝

1

1 − μ20μ
−1
22 μ02

−μ20μ
−1
22

1 − μ20μ
−1
22 μ02

−μ20μ
−1
22

1 − μ20μ
−1
22 μ02

μ−1
22 + μ−1

22 μ02μ20μ
−1
22

1 − μ20μ
−1
22 μ02

⎞
⎟⎟⎟⎟⎠ .(5.2)

PROOF. The form of (5.2) results from direct application of the block matric
inverse of linear algebra. Note that

h(w, ỹ, z̃) = 1

(2π)(d+1)(d+2)/4 |�|−1/2

× exp
{
−1

2
(w, z̃�, ỹ�)

(
�−1 0

0 I

)
(w, z̃�, ỹ�)�

}
.

By plugging in the form of �−1, we get the conclusion. �

LEMMA 5.8. Consider that {t : |t − τ | ≤ u−1/2+δ′ } ⊂ T . Let γu(x) be as de-
fined in (4.27). There exists some δ∗ > 0 such that for all 0 < x < u3/2+ε ,

γu(−x) ≤ e−uδ∗x.

LEMMA 5.9. For each τ within u−1/2+δ′
distance from the boundary of T ,

that is, there exists an s such that |s − τ | ≤ u−1/2+δ′
and s /∈ T , we have that

EQ
τ

[
dP

dQ
;
∫
T

eμ(t)+σf (t) dt > b, LQ

]
= O(1)ud−1e−(1/2)(u−μσ (τ))2

.

SUPPLEMENTARY MATERIAL

Proofs of several lemmas in Section 5 and the numerical results (DOI:
10.1214/11-AOS960SUPP; .pdf). This supplement contains proofs of Lemmas 5.2,
5.4, 5.5, 5.8 and 5.9 as well as numerical results.
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