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SEQUENTIAL MONITORING WITH CONDITIONAL
RANDOMIZATION TESTS

BY VICTORIA PLAMADEALA AND WILLIAM F. ROSENBERGER1

Precision Therapeutics and George Mason University

Sequential monitoring in clinical trials is often employed to allow for
early stopping and other interim decisions, while maintaining the type I error
rate. However, sequential monitoring is typically described only in the context
of a population model. We describe a computational method to implement se-
quential monitoring in a randomization-based context. In particular, we dis-
cuss a new technique for the computation of approximate conditional tests
following restricted randomization procedures and then apply this technique
to approximate the joint distribution of sequentially computed conditional
randomization tests. We also describe the computation of a randomization-
based analog of the information fraction. We apply these techniques to a re-
stricted randomization procedure, Efron’s [Biometrika 58 (1971) 403–417]
biased coin design. These techniques require derivation of certain conditional
probabilities and conditional covariances of the randomization procedure. We
employ combinatoric techniques to derive these for the biased coin design.

1. Introduction. Sequential monitoring refers to analyzing data periodically
during the course of a clinical trial, with the purpose of detecting early evidence in
support of or against a hypothesis. A desirable feature of such a monitoring plan
would be flexible inspections of the data that can occur at arbitrary time points.
At the same time, sequentially tested hypotheses must maintain the overall prob-
ability of type I error at the prespecified level, since repeated testing is known to
inflate it. The Lan and DeMets (1983) error spending approach for sequential mon-
itoring allows this. The approach makes use of a type I error spending function,
which depends on the amount of “statistical information” available at the time of
the interim inspection. In the context of sequential monitoring, the statistical infor-
mation is a measure of how far a trial has progressed. Under a population model,
the amount of interim information—the information fraction—is defined as the
proportion of Fisher’s information observed thus far in the trial. The type I error
spending function rations the amount of type I error that may be spent at each
look commensurate to the information fraction. The critical value associated with
the allowable probability of type I error at a certain interim look is obtained and
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compared to the observed value of the statistic. The decision whether to continue,
or stop, the trial is based on this comparison. Sequential monitoring is typically
discussed in the context of a population model. However, it is not uncommon for
the FDA to require a “re-analysis” of data using a “re-randomization test,” or, as
we call it here, a randomization test, defined below.

Let T = T1, . . . , Tn be a randomization sequence, where Ti = 1 if subject i

is randomized to treatment 1; Ti = 0 if subject i is randomized to treatment 2,
i = 1, . . . , n. Let N1(j) = ∑j

i=1 Ti be the number of subjects randomized to treat-
ment 1 after j assignments. Let X = (X1, . . . ,Xn) be the responses based on some
primary outcome variable, and let x be the realization. A valid test of the treat-
ment effect can be conducted permuting T in all possible ways [e.g., Lehmann
(1986), Chapter 5]. However, if one wishes to incorporate the randomized de-
sign into the analysis, under restricted randomization, such permutations are not
equiprobable [e.g., Rosenberger and Lachin (2002), Chapter 7]. The family of
linear rank tests provides a large class of test statistics with which to conduct
randomization tests. The form of the statistic is V (T) = a′

nT, for a score vector
an = (a1n − ān, . . . , ann − ān)

′, where ajn is some function of the rank of the j th
observation and ān = ∑n

j=1 ajn/n. The p-value of the randomization test is com-
puted with respect to a reference set of sequences. The unconditional reference
set contains all possible allocation sequences, including those that give little or no
information about the treatment effect (e.g., 1,1, . . . ,1). Also, the random num-
bers on each treatment arm, N1(n) and N2(n), are ancillary statistics, and therefore
the conditional reference set is preferred, which finds probabilities conditional on
N1(n) = n1, that is, the observed number on treatment 1 [e.g., Cox (1982), Berger
(2000)]. This leads to a conditional test.

The literature is largely silent on the subject of sequential monitoring of ran-
domization tests (brief exceptions are found in Rosenberger and Lachin [(2002),
Section 7.10] and Zhang and Rosenberger (2008), whose techniques only extend to
one interim inspection). The computation of conditional randomization tests is also
inherently difficult, even without sequential monitoring. We address these issues
in this paper by proposing a technique, based on deriving exact conditional distri-
butions of randomization procedures, that leads to a simple computational method
for approximating the distribution of sequentially computed randomization tests.
We also discuss the appropriate analog for “information fraction” in the context
of a randomization model. Our focus will be on one particular restricted random-
ization procedure, Efron’s (1971) biased coin design, which induces a beautiful
closed-form combinatoric structure that facilitates such an analysis. However, the
technique can be applied to any randomization procedure for which we can deter-
mine certain exact conditional distributional results.

Let φj+1 be a restricted randomization procedure such that

φj+1 = Pr
(
Tj+1 = 1|N1(j)

)
.
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Efron’s (1971) biased coin design is a restricted randomization procedure for
clinical trials that has exceptional properties: it balances treatment assignments
throughout the course of the trial with low variability [e.g., Antognini (2008)], and
it mitigates selection and accidental biases [Rosenberger and Lachin (2002)]. Then
the biased coin design BCD(p) for a parameter p ∈ [1/2,1], q = 1 −p, is defined
as

φj+1 =
⎧⎨
⎩

1/2, when N1(j) = j/2,
p, when N1(j) < j/2, j = 0,1,2, . . . ,

q, when N1(j) > j/2.
(1.1)

Note that p = 0.5 results in complete randomization and p = 1 results in permuted
blocks with block size 2. When p < 1, the design is fully randomized, in that each
subject will be assigned to treatment randomly, which differs markedly from the
permuted block design, where some subjects in the tail of each block are assigned
with probability 1. Let Dj = 2N1(j) − j be the difference in numbers assigned
to treatments 1 and 2; {|Dn|}∞n=1 forms an asymmetric random walk when p ∈
(1/2,1). Markaryan and Rosenberger (2010) derive the exact distribution of Dj

for the BCD(p), from which the exact distribution of N1(n) follows immediately:

P
(
N1(n) = n1

)
(1.2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pn1

n1−1∑
l=0

n − 2l

n + 2l

(
n1 + l

l

)
ql, n1 = n

2
,

pn1

2

n1∑
l=0

n − n1 − l

n − n1 + l

(
n − n1 + l

l

)
qn−2n1+l−1, 0 ≤ n1 <

n

2
,

pn−n1

2

n−n1∑
l=0

n1 − l

n1 + l

(
n1 + l

l

)
q2n1−n+l−1,

n

2
< n1 ≤ n.

Their paper also provides the exact expression for the variance–covariance matrix
of the treatment assignments T.

In this paper we provide the exact conditional distribution of N1(n) given
N1(j),1 ≤ j < n, and the expression for the variance–covariance matrix of T
given N1(n), �|n1 . While these are heretofore unknown results on theoretical prop-
erties of a random walk, our primary interest is that these results give us a com-
putational method to approximate conditional randomization tests following the
BCD(p). We then extend these results to the case where sequential analysis is
implemented in the course of a clinical trial.

Rosenberger and Lachin (2002) distinguish among three techniques that can be
used to compute randomization tests: exact, Monte Carlo and asymptotic. Exact
tests are computationally intensive, even with today’s computing, and require net-
working algorithms [Mehta, Patel and Wei (1988)]. Hollander and Peña (1988)
developed a clever recursive algorithm to determine the exact distribution of both
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conditional and unconditional randomization tests following Efron’s biased coin
design and applied it to a sample of size of n = 37. It can be assumed that such
computational techniques would be able to solve much larger problems with to-
day’s computing resources. While authors have determined the asymptotic normal-
ity of conditional randomization tests under various score functions and random-
ization procedures [e.g., Smythe (1988)], Efron’s biased coin induces a stationary
distribution, and hence the test statistic may not be asymptotically normal. This
phenomenon was noted in a number of papers, first by counterexample in Smythe
and Wei (1983) for the unconditional test, and then by simulation by Hollander
and Peña (1988) for the conditional test.

Mehta, Patel and Senchaudhuri (1988) use importance sampling to estimate the
conditional randomization test’s p-value; their technique employs an elegant, but
complex, networking algorithm. The efficiency of the estimator relies on the con-
vergence to normality of the test statistic, which may not hold under the biased
coin design. One might be able to modify the network algorithm in Mehta, Patel
and Wei (1988) or the recursive algorithm in Hollander and Peña (1988) to com-
pute the exact distribution of sequentially monitored conditional randomization
tests, but here we provide a method that is not very computationally intensive and
allows us to sample directly from the conditional reference set under a broad class
of restricted randomization procedures.

The paper is organized as follows. In Section 2, we present a method for sam-
pling directly from the conditional distribution of V (T), which facilitates the com-
putation of conditional tests. We need to compute certain exact conditional prob-
abilities to apply this method, and we do this for Efron’s biased coin design. We
extend this application to develop a computational technique for sequential mon-
itoring of conditional randomization tests in Section 3. In Section 4, we describe
the analog of “information” in the context of a randomization model. In defin-
ing a randomization-based information fraction, we must derive the conditional
variance–covariance matrix of T, which we do for Efron’s biased coin design. We
draw conclusions in Section 5. All the major proofs, some of which require careful
combinatorics, are relegated to the online supplement.

2. Computation of conditional randomization tests.

2.1. Generating sequences from the unconditional reference set. Suppose a
total of n subjects are randomized to two treatments. Let n1 be the observed num-
ber of assignments on treatment 1. A conditional randomization test can be ap-
proximated by sampling sufficiently many sequences from the conditional refer-
ence set, �c, the collection of sequences that satisfy N1(n) = n1. This can be
achieved by generating sequences from the unconditional reference set, the set of
all possible assignments, and retaining those that belong to �c.

Suppose at least Nc number of sequences that satisfy N1(n) = n1 are suffi-
cient to approximate the conditional randomization distribution of V (T). Let K
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sequences be sampled, T1, . . . ,TK , independently and with replacement from the
unconditional reference using φj+1 as the sampling mechanism. This number of
Monte Carlo sequences must be large enough such that at least Nc sequences sat-
isfy the condition N1(n) = n1. The requisite number of sequences, K , follows
a negative binomial random variable with parameters π = P(N1(n) = n1) and
r = Nc [Zhang and Rosenberger (2011)]. Let N denote a value in the range of K ,
N = Nc,Nc + 1, . . . . For k = 1, . . . ,N , a sequence Tk = t is sampled from the
unconditional reference set with probability

f (t) = (1/2)

n−1∏
j=1

(φj+1)
tj+1(1 − φj+1)

1−tj+1,(2.1)

where tj+1 are the observed values of Tj+1. The j th sampled sequence induces
two Bernoulli random variables

Yj =
{

1, if N1(n) = n1,
0, otherwise,

and

Xj =
{

1, if N1(n) = n1 and V (Tj ) ≥ v∗,
0, otherwise,

where v∗ is the observed value of the statistic. A strongly consistent estimator for
the p-value of the upper-tailed conditional test can be computed as

p̂c =
∑N

j=1 Xj∑N
j=1 Yj

.(2.2)

Table 1 reports the 95th percentile of K when sampling from the unconditional
reference set and Nc = 2500 for Efron’s biased coin design. These sample sizes are
reasonable when there is perfect balance in the assignments, but increase consid-
erably in the presence of imbalance. This technique cannot be used in the presence
of any imbalance.

TABLE 1
Approximate 95th percentile of K for various n, n1, Nc = 2500

n n1 = 0.45n n1 = 0.48n n1 = 0.50n

BCD(p = 2/3)

100 3,531,344 55,060 5117
200 3,611,280,266 881,557 5117
500 3,877,310 × 1012 3,611,026,232 5117

BCD(p = 3/4)

100 114,384,212 156,865 3822
200 6,754,269 × 106 12,709,307 3822
500 1,390,644 × 1021 6,754,269 × 106 3822
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2.2. Our method: Generating sequences from the conditional reference set.
Rather than sampling too many sequences and discarding those that do not sat-
isfy the condition N1(n) = n1, it is more efficient to sample directly from �c—the
collection of all randomization sequences that satisfy the condition N1(n) = n1.
The set �c will be called the conditional reference set. Let Nc randomization
sequences, T1, . . . ,TNc , be sampled independently and with replacement strictly
from �c, each with respective probabilities h(t1), . . . , h(tNc). For an upper-tailed
test, the kth sampled sequence induces a Bernoulli random variable

Vk =
{

1, if V (Tk) ≥ v∗,
0, otherwise.

(2.3)

The Monte Carlo estimator of the upper-tailed test’s p-value is the strongly con-
sistent and unbiased estimator V̄ = ∑Nc

k=1 Vk/Nc. (It may be possible to find an
estimator with a smaller variance, but we do not address the issue of estimation of
p-values in this paper.)

To guarantee a sequence from �c, Tj+1 in φj+1 must be conditioned on both
N1(j) and N1(n). Consequently, for 0 ≤ mj ≤ j , the procedure

pj+1 =
{

P
(
Tj+1 = 1|N1(j) = mj,N1(n) = n1

)
, 1 ≤ j ≤ n − 1,

P
(
Tj+1 = 1|N1(n) = n1

)
, j = 0,

(2.4)

must be applied to generate a random sequence strictly from �c. We now provide
a general formula relating the conditional and the unconditional reference sets,
which facilitates the generation of sequences from the conditional reference set for
any restricted randomization procedure of the form φj+1 = Pr(Tj+1 = 1|N1(j)).

THEOREM 2.1. For n = 1,2,3, . . . ,0 ≤ n1 ≤ n, 0 ≤ j < n, 0 ≤ mj ≤ j and
φj+1(mj ) = P(Tj+1 = 1|N1(j) = mj), the rule

pj+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φj+1(mj )
P (N1(n) = n1|N1(j + 1) = mj + 1)

P (N1(n) = n1|N1(j) = mj)
,

1 ≤ j ≤ n − 1,

φj+1(mj )
P (N1(n) = n1|Tj+1 = 1)

P (N1(n) = n1)
, j = 0,

(2.5)

can be used to sample a sequence that satisfies N1(n) = n1.

PROOF. The result follows from an application of Bayes theorem to (2.4) and
the Markovian property of N1. �

Furthermore, for k = 1, . . . ,Nc, a sequence Tk = t is sampled from �c with
probability

h(t) =
n−1∏
j=0

(pj+1)
tj+1(1 − pj+1)

1−tj+1 .(2.6)
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In the simplest case, complete randomization, pj+1 = (n1 −mj)/(n− j),0 ≤ j ≤
n − 1, and this is the random allocation rule [see Rosenberger and Lachin (2002)],
which is sometimes used to fill permuted blocks.

The following theorem gives these probabilities for Efron’s biased coin de-
sign. The distribution of N1(n) given N1(j) = mj , 0 ≤ mj ≤ j , has three cases
depending on the value of mj with respect to j , 1 ≤ j < n. Within each case,
P(N1(n) = n1|N1(j) = mj) depends the value of n1 with respect to n, j and mj .

THEOREM 2.2. Let n = 2,3,4, . . . ,1 ≤ j < n, 0 ≤ mj ≤ j and mj ≤ n1 ≤
n − j + mj . Denote

C(x, l) := x − l

x + l

(
x + l

l

)
and D :=

(
n − j

n1 − mj

)
−

(
n − j

n1 − j + mj

)
.

For the BCD(p):

(1) When 0 ≤ mj < j/2, P(N1(n) = n1|N1(j) = mj) is(
n − j

n1 − mj

)
pn1−mj qn−j−n1+mj if mj ≤ n1 < j − mj,

0.5pn1−mj

n1+mj−j∑
l=0

C(n − n1 − mj, l)q
n−2n1−1+l

+ Dpn1−mj qn−j−n1+mj if j − mj ≤ n1 < n/2,

pn1−mj

n−j−n1+mj∑
l=0

C(n1 − mj, l)q
l if n1 = n/2,

0.5pn−n1−mj

n−j−n1+mj∑
l=0

C(n1 − mj, l)q
2n1−n−1+l

if n/2 < n1 ≤ n − j + mj .

(2) When mj = j/2,

P
(
N1(n) = n1|N1(j) = mj

)
= P

(
N1(n − j) = n1 − mj

)
, mj ≤ n1 ≤ n − j + mj,

where the unconditional distribution is derived in Markaryan and Rosenberger
(2010).

(3) When j/2 < mj ≤ j , P(N1(n) = n1|N1(j) = mj) is

0.5pn1+mj−j

n1−mj∑
l=0

C(n − j − n1 + mj, l)q
n−2n1−1+l if mj ≤ n1 < n/2,
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pn−j−n1+mj

n1−mj∑
l=0

C(n − j − n1 + mj, l)q
l if n1 = n/2,

0.5pn−j−n1+mj

n−n1−mj∑
l=0

C(n1 + mj − j, l)q2n1−n−1+l

+ Dpn−j−n1+mj qn1−mj if n/2 < n1 ≤ n − mj,(
n − j

n1 − mj

)
pn−j−n1+mj qn1−mj if n − mj < n1 ≤ n − j + mj .

PROOF. See Appendix A in the supplementary material [Plamadeala and
Rosenberger (2011)]. �

Note that if n = j and n1 = mj , P(N1(n) = n1|N1(j) = mj) = 1, and if
mj > n1 or n − j < n1 − mj , P(N1(n) = n1|N1(j) = mj) = 0. Also, P(N1(n) =
n1|N1(0) = 0) = P(N1(n) = n1).

The procedure then follows by simply generating Nc sequences using (2.5). This
allows us to reduce the magnitude of the problem from the astronomical num-
bers in Table 1 to just Nc. A satisfactory value for Nc can be obtained from the
constraint MSE(V̄ ) = pc(1 − pc)/Nc ≤ 1/4Nc ≤ ε. For ε = 0.0001, Nc ≥ 2500.
Higher precision in estimation is possible by finding Nc that ensures P(|V̄ −pc| ≤
0.1pc) = 0.99, for instance. It follows that Nc ≈ (2.576/0.1)2(1 − pc)/pc. Thus,
to estimate a p-value as large as 0.04 with an error of 10% of 0.04 with 0.99 prob-
ability, the Monte Carlo sample size must be Nc = 15,924. If a smaller p-value is
expected, Nc will be larger.

Table 2 provides approximations for the upper 0.1 tail of the linear rank statis-
tic with simple rank scores under the BCD(0.6) randomization. For small samples
sizes, we also provide the exact p-value for comparison purposes; Monte Carlo

TABLE 2
Approximations for the upper 0.1 tail of the randomization distribution of the linear rank statistic

by sampling from �c; Nc = 2500, BCD(0.6)

n n1 Exact 1000 Monte Carlo runs; mean (SD)

P(V (T) ≥ 21.5) 30 15 0.1057 0.1053 (0.0061)
P(V (T) ≥ 23) 30 12 0.1009 0.1008 (0.0059)
P(V (T) ≥ 31) 40 20 0.1011 0.1009 (0.0061)
P(V (T) ≥ 34) 40 16 0.1000 0.0997 (0.0060)
P(V (T) ≥ 82) 100 50 0.1055 (0.0060)
P(V (T) ≥ 113) 100 40 0.1043 (0.0062)
P(V (T) ≥ 299) 500 250 0.1104 (0.0063)
P(V (T) ≥ 1000) 500 200 0.1030 (0.0058)
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estimates are very close with small variability. As expected, the variability of the
estimates does not change across different sample sizes n. The computational com-
plexity of the sampling scheme for the BCD is invariant to the value of p. Compar-
ing Tables 1 and 2, the conditional distribution method reduces the Monte Carlo
sample size to a few thousand.

Following stratification on known covariates, the computation of a stratified lin-
ear rank test based on the conditional randomization distribution is straightfor-
ward by summing the stratum-specific linear-rank test statistics over I independent
strata. Using the methodology described in this section, a sequence is sampled in-
dependently from the conditional reference of each stratum; the linear-rank statis-
tic is evaluated in each stratum and the stratum-specific test statistics are summed.
The process is repeated Nc times, and the stratified test’s p-value is estimated by
the proportion of summed statistics as or more extreme than the one observed.

3. Extension to sequential monitoring. Suppose there are L − 1 interim in-
spections of the data after 1 ≤ r1 < r2 < · · · < rL−1 < rL = n patients responded.
Let 0 < t1 < t2 < · · · < tL−1 < tL = 1 be the corresponding information fraction
at those inspections. For conditional tests, let N1(r1),N1(r2), . . . ,N1(rL−1), and
N1(rL) = N1(n) be the sample sizes randomized to treatment 1 after inspections
1, . . . ,L and let n11, . . . , n1(L−1), and n1L = n1 be realizations of these sample
sizes. Let the linear-rank randomization test statistic computed at each of the in-
spections be given by Vrl = ∑rl

j=1(ajrl − ārl )Tj = a′
rl

T(rl), l = 1, . . . ,L. Using the
alpha-spending function approach [Lan and DeMets (1983)], let α∗(t), t ∈ [0,1],
be a nondecreasing function such that α∗(0) = 0 and α∗(1) = α, the significance
level of the one-sided test. One such function is α∗(t) = 2 − 2�(zα/2/

√
t),0 <

t ≤ 1; α∗(0) = 0, where � is the standard normal distribution function and
zα/2 = �−1(1 − α/2) [Lan and DeMets (1983), O’Brien and Fleming (1979)].
Following Zhang and Rosenberger (2008), the upper-tailed, conditional random-
ization test with L interim looks involves finding d1, . . . , dL such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
Vr1 > d1|N1(r1) = n11

) = α∗(t1),
P

(
Vr1 ≤ d1,Vr2 > d2|N1(r1) = n11,N1(r2) = n12

) = α∗(t2) − α∗(t1),

P

(
Vr1 ≤ d1,Vr2 ≤ d2,Vr3 > d3

∣∣∣ 3⋂
j=1

N1(rj ) = n1j

)
= α∗(t3) − α∗(t2),

...

P

(
Vr1 ≤ d1, . . . , VL > dL

∣∣∣ L⋂
j=1

N1(rj ) = n1j

)
= α − α∗(tL−1).

(3.1)

The asymptotic joint normality of these conditional distributions has not been
shown, except in the case of L = 2 under the generalized biased coin design
[Zhang and Rosenberger (2008)].
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We express (3.1) in terms of univariate conditional distributions, which are
much easier to sample from than the joint distributions in (3.1).

LEMMA 3.1. The set of conditions (3.1) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
Vr1 > d1|N1(r1) = n11

) = α∗(t1),

P

(
Vr2 > d2|Vr1 ≤ d1,

2⋂
j=1

{N1(rj ) = n1j }
)

= α∗(t2) − α∗(t1)
1 − α∗(t1)

,

P

(
Vr3 > d3

∣∣∣ 2⋂
j=1

{Vrj ≤ dj },
3⋂

j=1

{N1(rj ) = n1j }
)

= α∗(t3) − α∗(t2)
1 − α∗(t2)

,

...

P

(
Vn > dL

∣∣∣ L−1⋂
j=1

{Vrj ≤ dj },
L⋂

j=1

{N1(rj ) = n1j }
)

= α − α∗(tL−1)

1 − α∗(tL−1)
.

(3.2)

PROOF. See Appendix B in the supplementary material [Plamadeala and
Rosenberger (2011)]. �

At each inspection l in (3.2), the conditional reference set is the collection of all
sequences satisfying

⋂l
i=1{N1(ri) = n1i}. The following theorem can be used to

sample sequences from such sets.

THEOREM 3.1. Let 1 ≤ l ≤ L, r0, r1, r2, . . . , rl and n10, n11, . . . , n1l be de-
fined as before, with r0 = 0 and n10 = 0. Let k = 1, . . . , l. For rk−1 ≤ j < rk ,
n1(k−1) ≤ mj ≤ j and φj+1(mj ) = P(Tj+1 = 1|N1(j) = mj), the rule

ψj+1 = φj+1(mj )
P (N1(rk) = n1k|N1(j + 1) = mj + 1)

P (N1(rk) = n1k|N1(j) = mj)
(3.3)

can be used to sample a sequence that satisfies
⋂l

i=1{N1(ri) = n1i}.
PROOF. See Appendix C in the supplementary material [Plamadeala and

Rosenberger (2011)]. �

Note that equation (3.3) reduces succinctly to the expected ψj+1 = (n1k −
mj)/(rk − j) for complete randomization, l = 1, . . . ,L, k = 1, . . . , l, rk−1 ≤ j <

rk and n1(k−1) ≤ mj ≤ j . For the BCD(p) the numerator and the denominator of
ψj+1 must be evaluated according to Theorem 2.2. To obtain a sequence from
the reference set satisfying

⋂l
i=1{N1(ri) = n1i}, the sampling must be done in

k = 1, . . . , l steps as follows:

(1) At stage k = 1, apply ψj+1 with r0 ≤ j < r1 to sample the first r1 assign-
ments.



40 V. PLAMADEALA AND W. F. ROSENBERGER

(2) At stage k = 2, apply ψj+1 with r1 ≤ j < r2 to sample the next r2 − r1
assignments.

(3) At stage 3 ≤ k ≤ l, apply ψj+1 with rk−1 ≤ j < rk to sample the next rk −
rk−1 assignments.

Suppose a sample of size Nc (sequences) is sufficient to estimate a distribution
quantile using some quantile estimator. The Monte Carlo algorithm that estimates
the boundary d1, . . . , dL for an α-level, upper-tailed, conditional randomization
test with L − 1 interim inspections is as follows:

(1) At stage 1, generate Nc randomization sequences of r1 assignments from
the reference set satisfying N1(r1) = n11. Evaluate Vr1 for each sequence; estimate
d1 using the nonparametric quantile estimator of Chen and Lazar (2010) based on
the values of Vr1 .

(2) At stage 2, generate Nc/(1−α∗(t1)) randomization sequences of r2 assign-
ments from the reference set satisfying

⋂2
i=1{N1(ri) = n1i}. For each sequence,

evaluate Vr1 using the first r1 of r2 assignments only. Retain those sequences that
satisfy {Vr1 ≤ d1}. Evaluate Vr2 for each retained sequence. Estimate d2 using the
quantile estimator of Chen and Lazar (2010) based on the values of Vr2 .

(3) At stage 3 ≤ l ≤ L, generate Nc/
∏l−1

i=1(1 − [α∗(ti) − α∗(ti−1)]/[1 −
α∗(ti−1)]) randomization sequences of rl assignments from the reference set sat-
isfying

⋂l
i=1{N1(ri) = n1i}. Note that α∗(t0) = 0 and α∗(tL) = α. For each se-

quence, evaluate Vr1,Vr2, . . . , Vrl−1 using the first r1, r2, . . . , rl−1 assignments, re-
spectively. Retain those sequences that satisfy

⋂l−1
i=1{Vri ≤ di}. Evaluate Vrl for

each retained sequence. Estimate dl using the quantile estimator of Chen and Lazar
(2010) based on the values of Vrl .

Requiring that Nc/
∏l−1

i=1(1 − [α∗(ti) − α∗(ti−1)]/[1 − α∗(ti−1)]) randomization
sequences be sampled at stage l simply ensures that at least Nc sequences are used
for the estimation of dl at each stage l.

4. Randomization-based information. Fisher’s information is defined under
a population model, and hence it is not defined in the context of randomization-
based inference. However, since the Fisher’s information approximates the in-
verse of the asymptotic variance of the test, it seems reasonable to define
the randomization-based analog of information as the ratio of the variances
[Rosenberger and Lachin (2002)].

tl = a′
rl
�|rl arl

a′
n�|nan

,(4.1)

where �|rl = Var(T(rl)|N1(r1) = n11, . . . ,N1(rl) = n1l). This requires specifica-
tion of �|rl and �|n. We now derive these for Efron’s biased coin design. We
begin with three lemmas:
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LEMMA 4.1. Let n = 2,3, . . . and 0 ≤ n1 ≤ n. Let φi(a) = P(Ti = 1|N1(i −
1) = a) and f

(i,a+1)
j−1,b = P(N1(j − 1) = b|N1(i) = a + 1). For 1 ≤ i < j ≤ n,

E
(
TiTj |N1(n) = n1

)

=
∑i−1

a=0 φi(a)P (N1(i − 1) = a)
∑j−1

b=a+1 φj (b)f
(i,a+1)
j−1,b f

(j,b+1)
n,n1

P(N1(n) = n1)
.

The conditional probabilities f
(i,a+1)
j−1,b and f

(j,b+1)
n,n1 are given by Theorem 2.2.

PROOF. The result follows from an application of Bayes theorem to P(Ti =
1, Tj = 1|N1(n) = n1) and the Markovian property of N1. �

Given that we observe N1(n) = n1, we now derive the variance–covariance ma-
trix of T, denoted by �|n1 .

LEMMA 4.2. Let n = 1,2, . . . ,0 ≤ n1 ≤ n, ϑi|n1 = E(Ti |N1(n) = n1) and
φi(a) = P(Ti = 1|N1(i − 1) = a). For the BCD(p)

ϑi|n1 =
∑i−1

a=0 P(N1(i − 1) = a)φi(a)P (N1(n) = n1|N1(i) = a + 1)

P (N1(n) = n1)
,

where

ϑ1|n1 = 1/2P
(
N1(n) = n1|N1(1) = 1

)
/P

(
N1(n) = n1

)
.

If i < j , the (i, j)th entry of �|n1 is

σij =
∑i−1

a=0 φi(a)P (N1(i − 1) = a)
∑j−1

b=a+1 φj (b)f
(i,a+1)
j−1,b f

(j,b+1)
n,n1

P(N1(n) = n1)
− ϑi|n1ϑj |n1 .

If i = j , the (i, j)th entry of �|n1 is

σij = ϑi|n1(1 − ϑi|n1).

PROOF. The result follows from an application of Bayes theorem to P(Ti =
1|N1(n) = n1), the Markovian property of N1 and Lemma 4.1. �

LEMMA 4.3. Let 1 ≤ l ≤ L, r0, r1, r2, . . . , rl and n10, n11, . . . , n1l be de-
fined as before, with r0 = n10 = 0. Let φi(a) = P(Ti = 1|N1(i − 1) = a),

k = 1, . . . , l, and f
(rk−1,n1(k−1))

i−1,a = P(N1(i − 1) = a|N1(rk−1) = n1(k−1)). Denote

ϑi|rl = E(Ti |⋂l
q=1{N1(rq) = n1q}) and λij |rl = E(TiTj |⋂l

q=1{N1(rq) = n1q}).
For 1 ≤ k ≤ l, rk−1 < i ≤ rk ,

ϑi|rl =
∑i−1

a=n1(k−1)
φi(a)f

(rk−1,n1(k−1))

i−1,a f
(i,a+1)
rk,n1k

P (N1(rk) = n1k|N1(rk−1) = n1(k−1))
.
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For 1 ≤ k ≤ l and rk−1 < i < j ≤ rk ,

λij |rl =
∑i−1

a=n1(k−1)
φi(a)f

(rk−1,n1(k−1))

i−1,a

∑j−1
b=n1(k−1)+1

φj (b)f
(i,a+1)
j−1,b f

(j,b+1)
rk,n1k

f
(rk−1,n1(k−1))
rk,n1k

.

For all other i, j ,

λij |rl = E

(
Ti

∣∣∣ l⋂
q=1

{N1(rq) = n1q}
)
E

(
Tj

∣∣∣ l⋂
q=1

{N1(rq) = n1q}
)
.

The probabilities f
(rk−1,n1(k−1))

i−1,a , f
(i,a+1)
rk,n1k

, f
(i,a+1)
j−1,b , f

(j,b+1)
rk,n1k

and f
(rk−1,n1(k−1))
rk,n1k

are
given by Theorem 2.2.

PROOF. See Appendix D in the supplementary material [Plamadeala and
Rosenberger (2011)]. �

Finally, the closed form of �|rl is given in the following theorem, which follows
immediately from Lemma 4.3:

THEOREM 4.1. Let 1 ≤ l ≤ L, k = 1, . . . , l, r0, r1, r2, . . . , rl and n10, n11, . . . ,

n1l be defined as before, with r0 = n10 = 0.
The (i, j)th entry of �|rl under the BCD(p) is

σij =
⎧⎨
⎩

λij |rl − ϑi|rlϑj |rl , if i < j and rk−1 < i < j ≤ rk,
ϑi|rl (1 − ϑi|rl ), if i = j ,
0, otherwise,

where ϑi|rl and λij |rl are given by Lemma 4.3.

Although one can compute �|n and �|rl exactly using Theorem 4.1, a′
n in (4.1)

remains unknown at each interim inspection, since a portion of the data is unob-
served. One would have to interpolate sequentially the remaining unknown data
points in order to have a value for a′

n and an approximation for (4.1). Interpolating
the unknown observations by sampling with replacement the known observations
is one way to obtain a value for a′

n. In our simulations with data generated from
two normal distributions, L = 3, n = 350, n1 = 174 and assignments following
the BCD(3/4), the approximate information fraction at the first interim look with
r1 = 250 and n11 = 126 was 0.3791, compared to the true information of 0.3759.
At the second interim look with r2 = 300 and n12 = 148, the approximate infor-
mation fraction was 0.6380, compared to the true information of 0.6382.

We also simulate the probability of type I error in an example. For this purpose,
we generate a sample of n = 350 observations from N(1,0.9) and simulate treat-
ment assignments from BCD(p = 3/4). We plan L = 3 interim looks: at r1 = 250,
r2 = 300 and r3 = 350. The observed number assigned to treatment 1 at each look
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TABLE 3
Mean (SD) of simulated α for an α = 0.05 upper tail sequential test over a Monte Carlo sample size

of 1000, Nc = 2500, interpolating the unknown observations by sampling with replacement

Look l rl n1l tl αl
∗ d̂l α̂

Look 1 250 126 0.3617 0.0011 1709
Look 2 300 148 0.6248 0.0121 1688
Look 3 350 174 1 0.0373 1501 0.0495 (0.0043)

∗αl = α∗(tl )−α∗(tl−1)
1−α∗(tl−1)

.

was n11 = 126, n12 = 128 and n13 = 174. We compute the boundary values using
the algorithm in Section 3. Table 3 gives the estimated type I error rate (α̂) and
standard deviation over 1000 replications for this sequential conditional test. The
probability of type I error is preserved with low variability.

5. Conclusions. We have provided a computational method to approximate
conditional randomization tests, which can be extended to clinical trials that incor-
porate sequential monitoring. The key is to determine certain conditional probabil-
ities from the particular randomization procedure. These techniques apply to any
restricted randomization procedure of the form φj+1 = Pr(Tj+1 = 1|N1(j)) and
for which closed form conditional probabilities can be obtained. We have derived
the exact conditional distribution of N1(n), given N1(j), for Efron’s BCD(p) us-
ing combinatoric arguments, also the conditional variance–covariance matrix of T,
which allows computation of the information fraction.

The class of generalized biased coin designs (GBCD) [Wei (1978)] does not
have a known form for the exact conditional distribution, and this remains an open
problem. For the sequential monitoring of conditional tests using the GBCD with
one interim look, Zhang and Rosenberger (2008) derived the joint asymptotic dis-
tribution of the interim and the final test statistics, which allows for an asymptotic
test.
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pendix A (proof of Theorem 2.2), Appendix B (proof of Lemma 3.1), Appendix C
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