
The Annals of Statistics
2011, Vol. 39, No. 6, 3234–3261
DOI: 10.1214/11-AOS937
© Institute of Mathematical Statistics, 2011

ASYMPTOTIC PROPERTIES OF THE SEQUENTIAL EMPIRICAL
ROC, PPV AND NPV CURVES UNDER

CASE-CONTROL SAMPLING1

BY JOSEPH S. KOOPMEINERS AND ZIDING FENG

University of Minnesota and Fred Hutchinson Cancer Research Center

The receiver operating characteristic (ROC) curve, the positive predictive
value (PPV) curve and the negative predictive value (NPV) curve are three
measures of performance for a continuous diagnostic biomarker. The ROC,
PPV and NPV curves are often estimated empirically to avoid assumptions
about the distributional form of the biomarkers. Recently, there has been a
push to incorporate group sequential methods into the design of diagnostic
biomarker studies. A thorough understanding of the asymptotic properties
of the sequential empirical ROC, PPV and NPV curves will provide more
flexibility when designing group sequential diagnostic biomarker studies. In
this paper, we derive asymptotic theory for the sequential empirical ROC,
PPV and NPV curves under case-control sampling using sequential empirical
process theory. We show that the sequential empirical ROC, PPV and NPV
curves converge to the sum of independent Kiefer processes and show how
these results can be used to derive asymptotic results for summaries of the
sequential empirical ROC, PPV and NPV curves.

1. Introduction. Several recent papers have discussed the application of
group sequential methodology to diagnostic biomarker studies [Tang, Emerson
and Zhou (2008), Tang and Liu (2010), Pepe et al. (2009)]. Group sequential study
designs (i.e., study designs with multiple interim analyses) provide an opportu-
nity to improve the efficiency of diagnostic biomarker studies by allowing stud-
ies to terminate early when the candidate marker is clearly superior or inferior
to established markers or historical levels of marker performance. Many group
sequential methods assume the existence of a test statistic with an independent
increments covariance structure [Jennison and Turnbull (2000)]. A thorough un-
derstanding of the asymptotic properties of the sequential empirical ROC, PPV
and NPV curves and, specifically, verifying that their summary measures have an
independent increments covariance structure, would provide great flexibility when
designing group sequential diagnostic biomarker studies.

Diagnostic biomarkers are used to classify a patient as a case or a control. A di-
chotomous biomarker results in either a positive test, indicating that the subject
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should be classified as a case, or a negative test, indicating that the subject should
be classified as a control. Many biomarkers are measured on a continuous scale
and a threshold must be defined in order to translate a continuous biomarker into
a positive or negative test result. Let D be a Bernoulli random variable indicat-
ing disease status with prevalence ρ and let X be a biomarker value with condi-
tional distribution F(x|D = 1) ≡ FD(x) and F(x|D = 0) ≡ FD̄(x), where FD(x)

is the distribution function for the cases and FD̄(x) is the distribution function
for the controls. Furthermore, we define F(x) ≡ FD(x) + (1 − ρ)FD̄(x) to be the
biomarker distribution function for the entire population. Without loss of gener-
ality, assume that larger biomarker values are more indicative of disease. For a
threshold c, a biomarker value X is translated into a positive test result if it is
greater than c and a negative test result if it is less than or equal to c.

The receiver operating characteristic (ROC) curve summarizes the classification
accuracy of a continuous diagnostic biomarker [Pepe (2003)] by reporting the true
positive fraction (TPF) and the false positive fraction (FPF) for all possible cut-offs
of the marker. For a threshold c, TPF(c) = P [X > c|D = 1] and FPF(c) = P [X >

c|D = 0]. The ROC curve is defined as

ROC(c) = {(TPF(c),FPF(c)), c ∈ (−∞,∞)}
and can alternately be expressed as

ROC(t) = SD(S−1
D̄

(t)), t ∈ (0,1),(1.1)

where SD(x) = 1 − FD(x) and SD̄(x) = 1 − FD̄(x). ROC(t) can be interpreted as
the TPF corresponding to a FPF of t . Alternately, one might be interested in the
inverse of the ROC curve,

ROC−1(v) = SD̄(S−1
D (v)), v ∈ (0,1).(1.2)

ROC−1(v) is indexed by the TPF and can be interpreted as the FPF corresponding
to a TPF of v.

The predictive accuracy of a dichotomous biomarker can be summarized by
the positive predictive value (PPV) and negative predictive value (NPV). The PPV
and NPV curves were proposed as an extension of PPV and NPV to continuous
markers [Moskowitz and Pepe (2004), Zheng et al. (2008)]. For a threshold c,
PPV(c) = P [D = 1|X > c] and NPV(c) = P [D = 0|X ≤ c]. The PPV and NPV
curves are defined as PPV(c) and NPV(c) for all c ∈ (−∞,∞). In practice, PPV
and NPV curves are indexed by a summary of the marker distribution rather than a
generic threshold [Moskowitz and Pepe (2004), Zheng et al. (2008)]. In this paper,
we consider the PPV and NPV curves indexed by the FPF and the percentile value
in the entire population.

The ROC, PPV and NPV curves are commonly estimated nonparametrically to
avoid making assumptions about the form of FD(x) and FD̄(x). This is particularly
important in the case of the ROC, PPV and NPV curves because we are often
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interested in regions of the curve that correspond to the tails of these distributions.
For example, a biomarker must possess a high specificity in order to be clinically
useful in a low disease risk population screening setting, which corresponds to the
upper tail of the biomarker distribution among controls.

Our understanding of the empirical ROC curve is enhanced by knowledge of its
asymptotic properties. Hsieh and Turnbull (1996) showed that the empirical ROC
curve converges to the sum of two independent Brownian bridges. The asymptotic
normality of summary measures of the empirical ROC curve, such as the area
under the ROC curve or a point on the ROC curve, can be derived from their work.
To our knowledge, no asymptotic theory is available for the empirical PPV and
NPV curves.

Tang, Emerson and Zhou (2008) showed that a family of weighted area under
the ROC curve (wAUC) statistics has an independent increments covariance struc-
ture. It would be beneficial to show that this assumption holds for a larger class
of summaries of the ROC curve. In this paper, we develop asymptotic theory for
the sequential empirical ROC, PPV and NPV curves. Our results allow us to de-
velop distribution theory for other summaries of the ROC curve and to develop
distribution theory for summaries of the PPV and NPV curves.

2. Notation and definitions. Before beginning our discussion of the sequen-
tial empirical ROC, PPV and NPV curves, we provide definitions of the sequen-
tial empirical estimates for the underlying distribution and quantile functions. Let
XD,1,XD,2, . . . ,XD,nD

be i.i.d. marker values for the cases with distribution func-
tion, FD(x), and XD̄,1,XD̄,2, . . . ,XD̄,nD̄

be i.i.d. marker values for the controls
with distribution function, FD̄(x). Furthermore, let rD and rD̄ refer to the propor-
tion of case and controls, respectively, that are observed at a given time point. The
sequential empirical estimate of FD(x) is defined as

F̂D,rD(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 ≤ rD <
1

nD

,

1

[rDnD]
[rDnD]∑

i=1

1{XD,i ≤ x}, −∞ < x < ∞,
1

nD

≤ rD ≤ 1,

and the sequential empirical estimate of F−1
D (t) is defined as

F̂−1
D,rD

(t) =

⎧⎪⎪⎨
⎪⎪⎩

XD,1,[rDnD], if t = 0,0 ≤ rD ≤ 1,

XD,k,[rDnD], if
k − 1

[rDnD] < t ≤ k

[rDnD] ,

1 ≤ k ≤ [rDnD],0 ≤ t ≤ 1,

where XD,1,[rDnD],XD,2,[rDnD], . . . ,XD,[rDnD],[rDnD] are the sequential order
statistics of the biomarker values for the cases. The sequential empirical estimates
of SD(x) and S−1

D (t) are defined as ŜD,rD(x) = 1 − F̂D,rD(x) and Ŝ−1
D,rD

(t) =
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F̂−1
D,rD

(1 − t). The sequential empirical estimates for the control population are
defined in an analogous fashion. The sequential empirical estimates of FD(x) and
FD̄(x) lead to a natural definition of the sequential empirical estimates of F(x)

and F−1(t),

F̂rD,rD̄
(x) = ρF̂D,rD(x) + (1 − ρ)F̂D̄,rD̄

(x)

and

F̂−1
rD,rD̄

(t) = inf{x : F̂rD,rD̄
(x) ≥ t},

where ρ is assumed to be known. F̂rD,rD̄
(x) is a linear combination of F̂D,rD(x)

and F̂D̄,rD̄
(x) and is therefore indexed by both rD , the proportion of cases observed

at a given time point, and rD̄ , the proportion of controls observed at a given time
point.

Throughout this paper, we let 0 < a < b < 1, 0 < c < 1, 0 < d < 1 and make
the following assumptions:

(A1) FD(x) and FD̄(x) are continuous distribution functions with continuous
densities fD(x) and fD̄(x), respectively,

(A2) fD(x) > 0 for x ∈ (sup{x :FD(x) = 0}, inf{x :FD(x) = 1}),
(A3) fD̄(x) > 0 for x ∈ (sup{x :FD̄(x) = 0}, inf{x :FD̄(x) = 1}),
(A4) nD

nD̄
→ λ > 0 as nD → ∞ and nD̄ → ∞, that is, the ratio of cases to

controls converges to a constant that is greater than 0.

The asymptotic results in Section 3 make use of the Kiefer process. The Kiefer
process, K(t, r), is a two-dimensional, mean-zero Gaussian process with covari-
ance

Cov(K(t1, r1),K(t2, r2)) = (t1 ∧ t2 − t1t2)(r1 ∧ r2),

where ∧ represents the minimum. The Kiefer process behaves like a Brownian
bridge in t and Brownian Motion in r .

The remainder of this paper proceeds as follows. In Section 3, we develop
asymptotic theory for the sequential empirical ROC, PPV and NPV curves. First,
we generalize the work of Hsieh and Turnbull (1996) to the sequential empirical
ROC curve by showing that the sequential empirical ROC curve converges to the
sum of independent Kiefer processes. Next, we develop asymptotic theory for the
sequential empirical PPV and NPV curves indexed by the FPF by writing them as
functions of the sequential empirical ROC curve. Finally, we follow the approach
of Pyke and Shorack (1968) to develop asymptotic theory for the PPV and NPV
curves indexed by the percentile value of the marker distribution. We validate our
asymptotic results by simulation in Section 4 and illustrate how they can be used
to design group sequential diagnostic biomarker studies in Section 5. We conclude
with a discussion in Section 6.
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3. Asymptotic results.

3.1. The sequential empirical ROC curve. In this section, we provide asymp-
totic results for the sequential empirical ROC curve. Results for the inverse of the
sequential empirical ROC curve are nearly identical; we direct the reader to an as-
sociated technical report for details [Koopmeiners and Feng (2010)]. The sequen-
tial empirical ROC curve, ̂ROCrD,rD(t), is defined by substituting the sequential
empirical estimates of SD(x) and SD̄(x) into (1.1), yielding

̂ROCrD,rD̄
(t) = ŜD,rD(Ŝ−1

D̄,rD̄
(t)),

and for ease of notation, we define

RrD,rD̄
(t) ≡ n

−1/2
D [nDrD](̂ROCrD,rD̄

(t) − ROC(t)
)
.

The primary result in this section provides asymptotic theory for RrD,rD̄
(t). By

developing asymptotic theory for RrD,rD̄
(t), we are also able to develop asymptotic

theory for functionals of RrD,rD̄
(t) as a special case. Theorem 3.1 establishes the

convergence of RrD,rD̄
(t) to the sum of independent Kiefer processes.

THEOREM 3.1. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. As nD → ∞ and nD̄ → ∞

RrD,rD̄
(t) →d K1(ROC(t), rD) + λ1/2 rD

rD̄

(fD(S−1
D̄

(t))

fD̄(S−1
D̄

(t))

)
K2(t, rD̄)

uniformly for t ∈ [a, b], rD ∈ [c,1] and rD̄ ∈ [d,1] where K1 and K2 are indepen-
dent Kiefer processes.

A proof of Theorem 3.1 can be found in the Appendix. Theorem 3.1 gener-
alizes the results of Hsieh and Turnbull (1996) to the sequential empirical ROC
curve. The proof of Theorem 3.1 is similar to the proof found in Hsieh and Turn-
bull (1996) but our proof relies on the more powerful sequential empirical pro-
cess theory. Sequential empirical process theory generalizes asymptotic theory for
the standard empirical process by introducing a parameter for time. In doing so,
asymptotic results for the sequential empirical process involve the Kiefer process.
Using properties of the Kiefer process, we are able to easily derive asymptotic
results for summaries of the sequential empirical ROC curve and verify that the
independent increments assumption holds in many cases. Furthermore, we can re-
cover Hsieh and Turnbull’s result as a special case of Theorem 3.1 by letting rD
and rD̄ both equal 1.
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COROLLARY 3.2. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. As nD → ∞ and nD̄ → ∞,

R1,1(t) →d B1(ROC(t)) + λ1/2
(fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

)
B2(t)

uniformly for t ∈ [a, b] where B1 and B2 are independent Brownian bridges.

PROOF. Immediate from Theorem 3.1 and by noting that K(t,1) =d B(t).
�

An advantage to studying the asymptotic behavior of the sequential empirical
ROC curve at the process level, rather than a single point on the sequential empir-
ical ROC curve, is that we are able to study the joint behavior of multiple points
on the ROC curve. Corollary 3.3 provides a normal approximation for a vector of
points on the sequential empirical ROC curve.

COROLLARY 3.3. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. For t1, t2, . . . , tJ ∈ (0,1), rD,1, rD,2, . . . , rD,J ∈ (0,1] and rD̄,1, rD̄,2, . . . ,

rD̄,J ∈ (0,1], a vector of arbitrary points on the sequential empirical ROC curve,

(̂ROCrD,1,rD̄,1
(t1), ̂ROCrD,2,rD̄,2

(t2), . . . , ̂ROCrD,J ,rD̄,J
(tJ )), is approximately multi-

variate normal with

̂ROCrD,j ,rD̄,j
(tj ) ∼ N

(
ROC(tj ), σ

2
̂ROCrD,j ,r

D̄,j
(tj )

)
, j = 1,2, . . . , J,

where

σ 2
̂ROCrD,j ,r

D̄,j
(tj )

= ROC(tj )(1 − ROC(tj ))

nDrD,j

+
(fD(S−1

D̄
(tj ))

fD̄(S−1
D̄

(tj ))

)2 tj (1 − tj )

nD̄rD̄,j

and

Cov[̂ROCrD,i ,rD̄,i
(ti), ̂ROCrD,j ,rD̄,j

(tj )]

= (rD,i ∧ rD,j )(ROC(ti) ∧ ROC(tj ) − ROC(ti)ROC(tj ))

nDrD,irD,j

+
(fD(S−1

D̄
(ti))

fD̄(S−1
D̄

(ti))

)(fD(S−1
D̄

(tj ))

fD̄(S−1
D̄

(tj ))

)(rD̄,i ∧ rD̄,j )(ti ∧ tj − ti tj )

nD̄rD̄,irD̄,j

.

PROOF. Immediate from Theorem 3.1. �
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Corollary 3.3 provides the asymptotic covariance for two points at different lo-
cations and different times on the sequential empirical ROC curve. This allows us
to fully specificy the joint sequential distribution of multiple points on the ROC
curve, which allows us to design group sequential diagnostic biomarker studies
where multiple points on the ROC curve are treated as multiple endpoints of
a group sequential study. For example, we might be interested in ROC(t1) and
ROC(t2), where t1 is chosen for high specificity to rule patients in for work up and
t2 is chosen for high sensitivity to rule out patients for invasive work.

Our interest in the sequential empirical ROC curve is motivated by the need to
design group sequential diagnostic biomarker studies. Our ability to design group
sequential diagnostic biomarker studies would be enhanced by showing that sum-
maries of the sequential empirical ROC curve have an independent increments
covariance structure. The simplest summary of the ROC curve is a point on the
ROC curve, ROC(t). ROC(t) can be interpreted as the sensitivity at a specificity
of 1 − t . Corollary 3.4 shows that the sequential empirical estimator of ROC(t) is
asymptotically normal and has independent increments when divided its variance.

COROLLARY 3.4. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. For t ∈ (0,1) and J stopping times, (̂ROCrD,1,rD̄,1
(t), ̂ROCrD,2,rD̄,2

(t), . . . ,

̂ROCrD,J ,rD̄,J
(t)), is approximately multivariate normal with

̂ROCrD,i ,rD̄,i
(t) ∼ N

(
ROC(t), σ 2

̂ROCrD,i ,rD̄,i
(t)

)
, i = 1,2, . . . , J,

and

Cov[̂ROCrD,i ,rD̄,i
(t), ̂ROCrD,j ,rD̄,j

(t)]
= Var[̂ROCrD,j ,rD̄,j

(t)] = σ 2
̂ROCrD,j ,r

D̄,j
(t)

, ri ≤ rj ,

where σ 2
̂ROCrD,j ,r

D̄,j
(t)

is defined as in Corollary 3.3.

PROOF. Immediate from Corollary 3.3. �

Asymptotic theory for other summary measures of the ROC curve, such as the
area under the curve or the partial area under the curve, can also be derived from
Theorem 3.1. This illustrates the flexibility of Theorem 3.1. By developing dis-
tribution theory for the sequential empirical ROC curve, we are able to derive
distribution theory for summaries of the ROC curve as a special case.
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3.2. The sequential empirical PPV and NPV curves indexed by the false posi-
tive fraction. In this section, we consider the sequential empirical PPV and NPV
curves indexed by the false positive fraction, t . The PPV and NPV curve indexed
by the false positive fraction can be written as a function of the ROC curve and their
asymptotic properties can be derived using the results from Section 3.1. Asymp-
totic results for the PPV and NPV curve indexed by the true positive fraction, v,
can similarly be derived by writing the PPV and NPV curve as a function of the
inverse of the ROC curve but are not presented in this paper. The interested reader
is directed to Koopmeiners and Feng (2010) for details.

The PPV and NPV curves indexed by the false positive fraction are defined
as PPV(t) = P [D = 1|X > S−1

D̄
(t)] and NPV(t) = P [D = 0|X ≤ S−1

D̄
(t)] for all

t ∈ (0,1) and can be written as functions of the ROC curve as follows:

PPV(t) = ROC(t)ρ

ROC(t)ρ + t (1 − ρ)
(3.1)

and

NPV(t) = (1 − t)(1 − ρ)

(1 − ROC(t))ρ + (1 − t)(1 − ρ)
.(3.2)

The sequential empirical estimators of PPV(t) and NPV(t) are defined be plugging
the sequential empirical estimator of ROC(t) into (3.1) and (3.2), yielding

P̂PVrD,rD̄
(t) =

̂ROCrD,rD̄
(t)ρ

̂ROCrD,rD̄
(t)ρ + t (1 − ρ)

and

N̂PVrD,rD̄
(t) = (1 − t)(1 − ρ)

(1 − ̂ROCrD,rD̄
(t))ρ + (1 − t)(1 − ρ)

.

From this point forward, we only consider P̂PVrD,rD̄
(t) and note that results for

N̂PVrD,rD̄
(t) are nearly identical. Again, for ease of notation, we define

PrD,rD̄
(t) ≡ n

−1/2
D [nDrD](P̂PVrD,rD̄

(t) − PPV(t)
)
.

We begin by using the results of Section 3.1 to derive asymptotic theory for
PrD,rD̄

(t). Theorem 3.5 establishes the convergence of PrD,rD̄
(t) to the sum of

two independent Kiefer processes.

THEOREM 3.5. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. As nD → ∞ and nD̄ → ∞
PrD,rD̄

(t) →d

(
t (1 − ρ)ρ

(ROC(t)ρ + t (1 − ρ))2

)

×
(
K1(ROC(t), rD) + λ1/2 rD

rD̄

(fD(S−1
D̄

(t))

fD̄(S−1
D̄

(t))

)
K2(t, rD̄)

)
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uniformly for t ∈ [a, b], rD ∈ [c,1] and rD̄ ∈ [d,1] where K1 and K2 are indepen-
dent Kiefer processes.

The proof of Theorem 3.5 relies on writing PrD,rD̄
(t) as a function of RrD,rD̄

(t)

PrD,rD̄
(t) =

(
̂ROCrD,rD̄

(t)ρ

̂ROCrD,rD̄
(t)ρ + t (1 − ρ)

− ROC(t)ρ

ROC(t)ρ + t (1 − ρ)

)

× (
̂ROCrD,rD̄

(t) − ROC(t)
)−1

RrD,rD̄
(t)

and applying the results of Theorem 3.1. The first term converges to(
t (1 − ρ)ρ

(ROC(t)ρ + t (1 − ρ))2

)
and RrD,rD̄

(t) converges to the sum of two independent Kiefer process by Theo-
rem 3.1. A formal proof of Theorem 3.5 can be found in Koopmeiners and Feng
(2010).

From Theorem 3.5, we can prove analogous results to Corollaries 3.3 and 3.4 for
the sequential empirical PPV curve indexed by the FPF. Namely, that an arbitrary
vector of points on the sequential empirical PPV curve follows a multivariate nor-
mal distribution and the sequential empirical estimate of a point on the PPV curve
is approximately normally distributed with an independent increments covariance
structure. We leave the formal statement of these corollaries for the Appendix but
present the form of the covariance between two arbitrary points on the sequential
empirical PPV curve:

Cov[P̂PVrD,i ,rD̄,i
(ti), P̂PVrD,j ,rD̄,j

(tj )]

=
(

ti(1 − ρ)ρ

(ROC(ti)ρ + ti(1 − ρ))2

)(
tj (1 − ρ)ρ

(ROC(tj )ρ + tj (1 − ρ))2

)

× Cov[̂ROCrD,i ,rD̄,i
(ti), ̂ROCrD,j ,rD̄,j

(tj )].
PPV(t) is a function of ROC(t) and, therefore, distribution theory for a vector of
points on the PPV curve can also be derived using the delta method and Corol-
lary 3.3.

Asymptotic theory for the fixed-sample empirical PPV curve indexed by the
FPF, which was previously unavailable, can be derived as a special case of The-
orem 3.5 by letting rD and rD̄ equal 1. The fixed-sample empirical PPV curve
converges to the sum of independent Brownian bridges

P1,1(t) →d

(
t (1 − ρ)ρ

(ROC(t)ρ + t (1 − ρ))2

)

×
(
B1(ROC(t)) + λ1/2

(fD(S−1
D̄

(t))

fD̄(S−1
D̄

(t))

)
B2(t)

)
,
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which allows us to derive a normal approximation for the empirical estimate of a
point on the PPV curve

P̂PV1,1(t) ∼ N

(
PPV(t),

(
t (1 − ρ)ρ

(ROC(t)ρ + t (1 − ρ))2

)2

σ 2
̂ROC1,1(t)

)
,

where σ 2
̂ROC1,1(t)

is defined as in Corollary 3.3.

3.3. The sequential empirical PPV and NPV curves indexed by the percentile
value. Finally, we consider the PPV and NPV curves indexed by the proportion
of the population that are classified as negative, u, and positive, 1 −u. In this case,
the PPV and NPV curves are defined as PPV(u) = P [D = 1|X > F−1(u)] and
NPV(u) = P [D = 0|X ≤ F−1(u)] for all u ∈ (0,1). Under this indexing, the PPV
curve can be written as

PPV(u) = SD(F−1(u))ρ

1 − u
,(3.3)

and since the NPV curve can be written as

NPV(u) = u − ρ

u
+ 1 − u

u
PPV(u),(3.4)

it suffices to study the PPV curve when considering estimation of the NPV curve.
The sequential empirical estimator of PPV(u) is found by substituting the se-

quential empirical estimators of SD(x) and F(x), along with the known value of ρ,
into (3.3),

P̂PVrD,rD̄
(u) = ŜD,rD(F̂−1

rD,rD̄
(u))ρ

1 − u
,(3.5)

and the sequential empirical estimator of NPV(u) is found by substituting the se-
quential empirical estimator of PPV(u) into (3.4),

N̂PVrD,rD̄
(u) = u − ρ

u
+ 1 − u

u
P̂PVrD,rD̄

(u).(3.6)

Finally, we define,

PrD,rD̄
(u) = n

−1/2
D [nDrD](P̂PVrD,rD̄

(u) − PPV(u)
)

and

NrD,rD̄
(u) = n

−1/2
D [nDrD](N̂PVrD,rD̄

(u) − NPV(u)
)

for mathematical convenience. We begin by developing distribution theory for
PrD,rD̄

(u). Theorem 3.6 establishes the convergence of the sequential empirical
PPV curve to the sum of two independent Kiefer processes.
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THEOREM 3.6. Assume (A1)–(A4) hold and let fD(F−1(u))

f (F−1(u))
be bounded on

[a, b]. As nD → ∞ and nD̄ → ∞

PrD,rD̄
(u) →d −ρ(1 − ρ)

1 − u

fD̄(F−1(u))

f (F−1(u))
K1(FD(F−1(u)), rD)

+ ρ(1 − ρ)

1 − u

fD(F−1(u))

f (F−1(u))

√
λ
rD

rD̄
K2(FD̄(F−1(u)), rD̄)

uniformly for u ∈ [a, b], rD ∈ [c,1] and rD̄ ∈ [d,1] where K1 and K2 are inde-
pendent Kiefer processes.

The proof of Theorem 3.6 is complicated by the fact that ŜD,rD(x) and
F̂−1

rD,rD̄
(t) are correlated because F̂rD,rD̄

(x) is a linear combination of F̂D,rD(x)

and F̂D̄,rD̄
(x). In contrast, the sequential empirical ROC curve and the sequen-

tial empirical PPV curve indexed by the FPF are functionals of two independent
sequential empirical estimators, ŜD,rD(x) and Ŝ−1

D̄,rD̄
(t), which makes it easier to

show that RrD,rD̄
(t) and PrD,rD̄

(t) converge to the sum of independent Kiefer pro-

cesses. To account for the correlation between ŜD,rD(x) and F̂−1
rD,rD̄

(t), we follow
the approach of Pyke and Shorack (1968), who prove a similar result for two cor-
related, fixed-sample empirical processes. The proof of Theorem 3.6 can be found
in the Appendix.

Theorem 3.6 also establishes asymptotic theory for the sequential empirical
NPV curve because N̂PVrD,rD̄

(t) is a function of P̂PVrD,rD̄
(t). Corollary 3.7 es-

tablishes the convergence of NrD,rD̄
(t) to the sum of two independent Kiefer pro-

cesses.

COROLLARY 3.7. Assume (A1)–(A4) hold and let fD(F−1(u))

f (F−1(u))
be bounded on

[a, b]. As nD → ∞ and nD̄ → ∞

NrD,rD̄
(u) →d −ρ(1 − ρ)

u

fD̄(F−1(u))

f (F−1(u))
K1(FD(F−1(u)), rD)

+ ρ(1 − ρ)

u

fD(F−1(u))

f (F−1(u))

√
λ
rD

rD̄
K2(FD̄(F−1(u)), rD̄)

uniformly for u ∈ [a, b], rD ∈ [c,1] and rD̄ ∈ [d,1] where K1 and K2 are inde-
pendent Kiefer processes.

Corollary 3.7 is immediate from Theorem 3.6 by noting that

NrD,rD̄
(t) = 1 − u

u
PrD,rD̄

(t).
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As with the ROC curve and the PPV curve indexed by the FPF, Theorem 3.6 and
Corollary 3.7 allow us to develop distribution theory for summaries of the PPV and
NPV curve indexed by u. Distribution theory for a vector of points on the PPV or
NPV curve is left for the Appendix but we choose to highlight the joint distribution
of the sequential empirical estimate of a single point on the PPV or NPV curve.
Corollary 3.8 establishes that the sequential empirical estimate of a point on the
PPV or NPV curve is asymptotically normal and has independent increments when
divided by its variance.

COROLLARY 3.8. Assume (A1)–(A4) hold and let fD(F−1(u))

f (F−1(u))
be bounded on

[a, b]. For u ∈ (0,1) and J stopping times:

(A) (P̂PVrD,1,rD̄,1
(u), P̂PVrD,2,rD̄,2

(u), . . . , P̂PVrD,J ,rD̄,J
(u)), is approximately

multivariate normal with

P̂PVrD,i ,rD̄,i
(u) ∼ N

(
PPV(u), σ 2

P̂PVrD,i ,rD̄,i
(u)

)
, i = 1,2, . . . , J,

and

Cov[P̂PVrD,i ,rD̄,i
(u), P̂PVrD,j ,rD̄,j

(u)]
= Var[P̂PVrD,j ,rD̄,j

(u)] = σ 2
P̂PVrD,j ,r

D̄,j
(u)

, ri ≤ rj ,

where

σ 2
P̂PVrD,j ,r

D̄,j
(u)

=
(

fD̄(F−1(u))

f (F−1(u))
(1 − ρ)

)2

PPV(u)

(
ρ

1 − u
− PPV(u)

)

× 1

nDrD,j

+
(

fD(F−1(u))

f (F−1(u))
ρ

)2(
1 − PPV(u)

)(u − ρ

1 − u
+ PPV(u)

)

× 1

nD̄rD̄,j

.

(B) (N̂PVrD,1,rD̄,1
(u), N̂PVrD,2,rD̄,2

(u), . . . , N̂PVrD,J ,rD̄,J
(u)), is approximately

multivariate normal with,

N̂PVrD,i ,rD̄,i
(u) ∼ N

(
NPV(u), σ 2

N̂PVrD,i ,rD̄,i
(u)

)
, i = 1,2, . . . , J,

and

Cov[N̂PVrD,i ,rD̄,i
(u), N̂PVrD,j ,rD̄,j

(u)]
= Var[N̂PVrD,j ,rD̄,j

(u)] = σ 2
N̂PVrD,j ,r

D̄,j
(u)

, ri ≤ rj ,



3246 J. S. KOOPMEINERS AND Z. FENG

where

σ 2
N̂PVrD,j ,r

D̄,j
(u)

=
(

fD̄(F−1(u))

f (F−1(u))
(1 − ρ)

)2(
NPV(u) + ρ − u

u

)(
1 − NPV(u)

)

× 1

nDrD,j

+
(

fD(F−1(u))

f (F−1(u))
ρ

)2

NPV(u)

(
1 − ρ

u
− NPV(u)

)

× 1

nD̄rD̄,j

.

It is immediate from Theorem 3.6 and Corollary 3.7 that P̂PVrD,rD̄
(u) and

N̂PVrD,rD̄
(u) are asymptotically normal with an independent increments covari-

ance structure. By noting that

FD(F−1(u)) = 1 − 1 − u

ρ
PPV(u) = u

ρ

(
1 − NPV(u)

)
and

FD̄(F−1(u)) = 1 − 1 − u

1 − ρ

(
1 − PPV(u)

) = u

1 − ρ
NPV(u),

we can write the asymptotic variances of P̂PVrD,rD̄
(u) and N̂PVrD,rD̄

(u) as func-
tions of PPV(u) and NPV(u), respectively. This provides a better understanding
of the mean-variance relationship for the asymptotic distributions of P̂PVrD,rD̄

(u)

and N̂PVrD,rD̄
(u) and, perhaps, provides a form of the variance that is easier to

work with in practical situations (i.e., study design, estimating the standard error,
etc.).

An important component of Theorem 3.6 and Corollary 3.7 is that not only do
PrD,rD̄

(u) and NrD,rD̄
(u) converge to the sum of independent Kiefer processes, but

they both converge to the same two Kiefer processes. As a result, we are able to
derive the correlation between a point on the PPV curve and a point on the NPV
curve. Corollary 3.9 provides a bivariate normal approximation for a point on the
PPV and a point on the NPV curve.

COROLLARY 3.9. Assume (A1)–(A4) hold and let fD(F−1(u))

f (F−1(u))
be bounded on

[a, b]. For u1, u2 ∈ (0,1), (P̂PVrD,1,rD̄,1
(u1), N̂PVrD,2,rD̄,2

(u2)), is approximately
bivariate normally distributed with

P̂PVrD,1,rD̄,1
(u1) ∼ N

(
PPV(u), σ 2

P̂PVrD,1,r
D̄,1

(u1)

)
and

N̂PVrD,2,rD̄,2
(u2) ∼ N

(
NPV(u), σ 2

N̂PVrD,2,r
D̄,2

(u2)

)
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with

Cov[P̂PVrD,1,rD̄,1
(u1), N̂PVrD,2,rD̄,2

(u2)]

= (1 − ρ)2u1(1 − u2)

(1 − u1)u2

fD̄(F−1(u1))

f (F−1(u1))

fD̄(F−1(u2))

f (F−1(u2))

× (rD,1 ∧ rD,2)(1 − NPV(u1))PPV(u2)

nDrD,1rD,2

+ ρ2u1(1 − u2)

(1 − u1)u2

fD(F−1(u1))

f (F−1(u1))

fD(F−1(u2))

f (F−1(u2))

× (rD̄,2 ∧ rD̄,2)NPV(u1)(1 − PPV(u2))

nDrD,1rD,2
,

when u1 ≤ u2 and

Cov[P̂PVrD,1,rD̄,1
(u1), N̂PVrD,2,rD̄,2

(u2)]

= (1 − ρ)2 fD̄(F−1(u1))

f (F−1(u1))

fD̄(F−1(u2))

f (F−1(u2))

× (rD,1 ∧ rD,2)(1 − NPV(u2))PPV(u1)

nDrD,1rD,2

+ ρ2 fD(F−1(u1))

f (F−1(u1))

fD(F−1(u2))

f (F−1(u2))

× (rD̄,2 ∧ rD̄,2)NPV(u2)(1 − PPV(u1))

nDrD,1rD,2
,

when u2 ≤ u1, where σ 2
P̂PVrD,1,r

D̄,1
(u1)

and σ 2
N̂PVrD,2,r

D̄,2
(u2)

are defined as in Corol-

lary 3.8.

The case of a point on the PPV curve and a point on the NPV curve is presented
for simplicity but Corollary 3.9 can be extended to an arbitrary vector of points on
the PPV and NPV curves. Corollary 3.9 has obvious practical implications. It is
not uncommon to classify the bottom u1 × 100% of the population as “low-risk,”
the top (1 − u2) × 100% of the population as “high-risk” and the remainder of the
population as “moderate-risk.” In this case, one would be interested in the NPV of
the low-risk group and the PPV of the high-risk group. Corollary 3.9 provides the
joint convergence of these two estimates.

Finally, we note that asymptotic results for the fixed-sample empirical PPV and
NPV curves indexed by the percentile value of the marker distribution can be de-
rived as a special case of the results in this section. It is immediate from Theo-
rem 3.6 and Corollary 3.7 that the fixed-sample empirical PPV and NPV curves
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converge to the sum of independent Brownian bridges by letting rD and rD̄ both
equal 1. Furthermore, Corollary 3.8 provides a normal approximation for the fixed-
sample empirical estimate of a point on the PPV or NPV curve for the special case
when J = 1.

4. Finite sample properties. A simulation study was completed to assess the
finite sample properties of the results in Theorems 3.1, 3.5 and 3.6. We simulated
10,000 studies with nD̄ controls and nD cases. Biomarker values for the controls
were drawn from a standard normal distribution and biomarker values for the cases
were drawn from a normal distribution with mean and standard deviation equal
to 1. A prevalence of 0.2 was used for estimation of the PPV curve. Figure 1
presents the true ROC and PPV curves for this scenario. For each realization, we
calculated RrD,rD̄

(t), PrD,rD̄
(t) and PrD,rD̄

(u) and evaluated the expected value,
normality and covariance for various combinations of rD , rD̄ and t or u. Normality
was evaluated by providing a summary of information found in a normal q-q plot.
Instead of providing the entire plot, we provide the (simulated) probability of being
less than the 5th, 25th, 50th, 75th and 95th percentile of a normal distribution
with variance derived using the results in Theorems 3.1, 3.5 and 3.6. Similarly,
the simulated covariance matrices were compared to the theoretical covariance
matrices derived using the results in Theorems 3.1, 3.5 and 3.6.

Table 1 presents simulation results for RrD,rD̄
(t). The expected value was close

to 0 in all cases with only a small amount of bias observed when t = 0.2. The
probability of being less than the theoretical 5th and 95th percentile was close to
the nominal value for all sample sizes, while the probability of being less than
the 25th, 50th and 75th percentile was less than the nominal value with 50 cases
and 50 controls but approached the correct values as sample size increases. The
observed variance and covariance were less than expected with 50 cases and 50
controls but the observed covariance matrix approached the theoretical covariance
matrix in larger sample sizes. This phenomenon is likely due to the sample space
for ROC(t) being restricted to the unit interval. ̂ROC(t) is less likely to equal 0
or 1 as sample size increases and the normal approximation will be more accurate.

FIG. 1. True ROC and PPV curves for the scenario considered in Section 4.
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TABLE 1
Simulation results to evaluate the finite sample properties of Theorem 3.1. Presented are the expected value, simulated probability of being less than 5th,

25th, 50th, 75th and 95th percentile of the normal distribution, the simulated covariance matrix and the theoretical covariance matrix for RrD,rD̄
(t).

10,000 simulations were performed for each scenario

5th 25th 50th 75th 95th Observed Theoretical
Mean %tile %tile %tile %tile %tile covariance matrix covariance matrix

nD = 50, nD̄ = 50

R0.4,0.7(0.4) 0.01 0.05 0.17 0.46 0.63 0.98 0.1 0.117 0.079 0.103 0.104 0.129 0.081 0.104
R1,1(0.4) 0.02 0.07 0.2 0.44 0.74 0.97 0.318 0.104 0.262 0.322 0.104 0.26
R0.4,0.7(0.2) 0.03 0.04 0.22 0.47 0.73 0.96 0.161 0.201 0.171 0.225
R1,1(0.2) 0.05 0.04 0.2 0.47 0.68 0.93 0.544 0.563

nD = 100, nD̄ = 100

R0.4,0.7(0.4) 0.01 0.05 0.21 0.41 0.78 0.97 0.101 0.12 0.08 0.102 0.104 0.129 0.081 0.104
R1,1(0.4) 0.02 0.05 0.24 0.48 0.76 0.96 0.318 0.104 0.26 0.322 0.104 0.26
R0.4,0.7(0.2) 0.03 0.04 0.2 0.45 0.73 0.95 0.164 0.205 0.171 0.225
R1,1(0.2) 0.05 0.04 0.23 0.47 0.73 0.95 0.55 0.563

nD = 200, nD̄ = 200

R0.4,0.7(0.4) 0.01 0.06 0.22 0.44 0.7 0.96 0.104 0.121 0.081 0.102 0.104 0.129 0.081 0.104
R1,1(0.4) 0.02 0.05 0.25 0.48 0.72 0.95 0.317 0.104 0.259 0.322 0.104 0.26
R0.4,0.7(0.2) 0.03 0.04 0.25 0.5 0.7 0.94 0.168 0.212 0.171 0.225
R1,1(0.2) 0.05 0.05 0.23 0.46 0.72 0.95 0.555 0.563
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Similar results were observed for PrD,rD̄
(t) and PrD,rD̄

(u) but were omitted for
brevity.

5. Application. The results of Section 3 provide fundamental theory that al-
lows existing group sequential methodology to be applied to summaries of the
ROC, PPV and NPV curves. In this section, we present an example of how these
results can be used to design group sequential diagnostic biomarker studies. Our
application is presented in the context of a study to evaluate the diagnostic ac-
curacy of des-gamma carboxyprothrombin (DCP), a novel biomarker for the early
detection of hepatocellular carcinoma (HCC). A multi-center study was completed
to compare the diagnostic accuracy of DCP to that of alpha-fetoprotein (AFP), the
most widely used biomarker for the detection of HCC [Marrero et al. (2009)] but
in our application we will only consider the design of a study to compare DCP to
historical levels of diagnostic accuracy for AFP.

We consider a study to evaluate the predictive accuracy of DCP using the fol-
lowing novel design that makes use of the joint asymptotic theory for the PPV and
NPV curve derived in Section 3.8. Assume that the prevalence of HCC in the pop-
ulation of interest is 0.2. In this case, one might call the bottom 60% percent of
biomarker values “negative,” the top 10% of the biomarker values “positive” and
refer the remaining subjects for further evaluation. Under this scenario, we would
desire a high NPV for negative test results, NPV(0.6), and a high PPV for positive
test results, PPV(0.9). The NPV(0.6) for AFP is 0.92 and the PPV(0.9) is 0.82. To
determine if DCP improves on the predictive accuracy of AFP, we would test the
hypothesis,

H0: NPV(0.6) ≤ 0.9 or PPV(0.9) ≤ 0.8

versus

Ha: NPV(0.6) > 0.9 and PPV(0.9) > 0.8

using the test statistics, ZNPV(u1) and ZPPV(u2), where ZNPV(u1) is defined as

ZNPV(u1) = N̂PV(0.6) − NPV(0.6)0

σNPV(0.6)0

,

and ZPPV(u2) is defined in an analogous fashion.
We consider a group sequential design using the error spending approach pro-

posed by Hwang, Shih and De Cani (1990). The overall null hypothesis will only
be rejected if the null hypotheses for both NPV(0.6) and PPV(0.9) are rejected.
In the context of a group sequential study, this means that the study will stop early
to reject the null hypothesis if ZNPV(u1) and ZPPV(u2) both cross the boundary
for rejecting the null hypothesis but the study will stop early for futility if either
ZNPV(u1) or ZPPV(u2) cross the futility boundary. This implies that we do not need
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to adjust the type-I error rate to account for multiple endpoints but we do need
to consider the joint probability of rejecting the null hypothesis when determining
the power.

The sample size for our study is chosen to achieve 90% power under the alter-
native hypothesis NPV(0.6) = 0.95 and PPV(0.9) = 0.90. A closed-form formula
for determining the required sample size is not available. Instead, the sample size
for a fixed sample design is derived by numerically solving

P
(
ZNPV(u1) > Z1−α/2,PPV(u2) > Z1−α/2|NPV(u1) = 0.95,PPV(u2) = 0.90

)
for nD , where the joint distribution of ZNPV(u1) and ZPPV(u2) is derived by apply-
ing the delta method to the joint asymptotic normal distribution of N̂PVrD,rD̄

(u1)

and P̂PVrD,rD̄
(u2) found in Corollary 3.9. Assuming a one-to-one ratio of cases to

controls, 702 cases are required to achieve 90% power under the alternative hy-
pothesis. This sample size must be multiplied by an inflation factor to determine
the maximum sample size for a group sequential design (i.e., the sample size if
the study does not stop at the interim analyses) in order for the group sequential
design to maintain the same type-I error rate and power as the fixed-sample design
[Jennison and Turnbull (2000)]. Using the gsDesign package in R, we find that
the maximum sample size for group sequential studies with two, three and four
stopping times are 724, 737 and 745 cases, respectively. However, as illustrated in
the simulation which follows, the actual sample sizes required in group sequential
studies are generally smaller than these maximum values.

Table 2 presents simulation results using a fixed-sample design and group se-
quential designs with two, three and four stopping times. Biomarker values for the
controls were simulated from a standard normal distribution and biomarker values
for the cases were simulated from a normal distribution with mean and variance
chosen to achieve the desired value of NPV(0.6) and PPV(0.9). The advantages

TABLE 2
Simulation results to evaluate the operating characteristics of a study to evaluate the predictive

accuracy of DCP using a fixed-sample design and group sequential designs with two, three or four
stopping times. Presented are the probability of rejecting the null hypothesis and expected sample

size under the null and alternative hypotheses. 10,000 simulations were performed for each scenario

NPV(0.6) = 0.90 NPV(0.6) = 0.95 NPV(0.6) = 0.90 NPV(0.6) = 0.95
PPV(0.9) = 0.80 PPV(0.9) = 0.80 PPV(0.9) = 0.90 PPV(0.9) = 0.90

Stopping
times P(reject) E(nD) P (reject) E(nD) P (reject) E(nD) P (reject) E(nD)

J = 1 0.003 702 0.03 702 0.026 702 0.917 702
J = 2 0.004 432 0.026 492.4 0.024 489.5 0.924 624.5
J = 3 0.004 367.4 0.022 431.3 0.023 433 0.917 580.1
J = 4 0.002 340 0.023 410.7 0.024 417.2 0.911 571.1
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of group sequential designs are clear. The group sequential designs have simi-
lar type-I error rate and power to the fixed-sample design but with substantially
smaller expected sample sizes in all scenarios.

6. Discussion. In this paper, we derived asymptotic properties of the sequen-
tial empirical ROC, PPV and NPV curves. We first extended the work of Hsieh and
Turnbull (1996) to the sequential empirical ROC curve and used these results to
develop distribution theory for summaries of the sequential empirical ROC curve.
Next, we considered asymptotic theory for the sequential empirical PPV curve in-
dexed by the FPF and percentile value in the entire population. These results were
used to develop distribution theory for summaries of the sequential empirical PPV
curve. Asymptotic theory for the fixed-sample PPV curve, which was previously
unavailable, was developed as a special case.

This work was motivated by the desire to design group sequential diagnostic
biomarker studies. In Section 5, we illustrated how our results can be used to de-
sign group sequential diagnostic biomarker studies. Our simulation results clearly
illustrate the advantages of group sequential designs. In both cases, the group se-
quential designs have similar type-I error rate and power than the fixed-sample
designs but with substantially smaller expected sample size.

An advantage to our approach is that we are able to investigate the joint be-
havior of multiple points on the ROC and PPV curve. The primary endpoint of a
diagnostic biomarker study may be a single point on the ROC or PPV curve but
other points on the ROC or PPV curve may also be of interest. The results of The-
orems 3.1, 3.5 and 3.6 allow us to apply existing group sequential methodology
for analyzing multiple endpoints to scenarios where multiple points on the ROC
or PPV curve are of interest in a group sequential diagnostic biomarker study [Liu
and Hall (2001)].

We considered estimation of the sequential empirical ROC and PPV curve un-
der case-control sampling. The asymptotic properties of the sequential empirical
ROC and PPV curve under other sampling schemes are also of interest. We are cur-
rently working on extending the results of this paper to estimation of the sequential
empirical ROC and PPV curve under cohort and nested case-control sampling.

The theory developed in this paper applies to sequential testing of the diagnostic
accuracy of a continuous test. In many cases, diagnostic tests take the form of
multi-level ordinal data (cancer staging, for example). Methods exist extending the
ROC curve to ordinal data [Dorfman and Alf (1960)] but further work is needed to
verify that group sequential methods can be applied in these settings.

Response adaptive clinical trials have been proposed as a means to provide
greater flexibility when designing therapeutic clinical trials. Response adaptive
clinical trials adjust the design characteristics of the study (sample size, percent
randomized to each group, etc.) in response to outcomes for subjects enrolled ear-
lier in the study. Recently, Zhu and Hu (2010) showed that a class of test statistics
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from a response adaptive clinical trial converges to Brownian Motion when con-
sidered sequentially (similar to what we have shown for the emprical ROC, PPV
and NPV curves), which allows existing group sequential methodology to be ap-
plied to response adaptive clinical trials. Future work will be needed to consider
how response adaptive designs can be applied in the setting of group sequential
diagnostic biomarker studies.

APPENDIX: SUPPLEMENTARY RESULTS FOR SECTION 3

A.1. Supplementary results for Section 3.1.

PROOF OF THEOREM 3.1. First, note that

n
−1/2
D [nDrD](̂ROCrD,rD̄

(t) − ROC(t)
)

= n
−1/2
D [nDrD](ŜD,rD(Ŝ−1

D̄,rD̄
(t)) − SD(S−1

D̄
(t))

)
= n

−1/2
D [nDrD](ŜD,rD(Ŝ−1

D̄,rD̄
(t)) − SD(Ŝ−1

D̄,rD̄
(t))

)
+ n

−1/2
D [nDrD](SD(Ŝ−1

D̄,rD̄
(t)) − SD(S−1

D̄
(t))

)
.

The first term converges to a Kiefer process. We note that

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

|FD̄(F̂−1
D̄,rD̄

(t)) − t |

= nD̄

[nD̄d] sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

[nD̄d]
nD̄

|FD̄(F̂−1
D̄,rD̄

(t)) − t |

≤ nD̄

[nD̄d] sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

[nD̄rD̄]
nD̄

|FD̄(F̂−1
D̄,rD̄

(t)) − t |.

Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

|FD̄(F̂−1
D̄,rD̄

(t)) − t | →a.s. 0(A.1)

by the Glivenko–Cantelli theorems [Theorems 1.51 and 1.52 in Csörgő and
Szyszkowicz (1998)] and because

nD̄[nD̄d] → 1
d

. Furthermore, F−1
D̄

(t) will be con-

tinuous by (A1)–(A3) and will be uniformly continuous on [a, b]. Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

|F̂−1
D̄,rD̄

(t) − F−1
D̄

(t)| →a.s. 0.(A.2)

We note that due to the continuity of FD̄(x), S−1
D̄

(t) = F−1
D̄

(1 − t) and there-

fore (A.2) also applies to S−1
D̄

(t). From Corollary 1.A in Csörgő and Szyszkowicz
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(1998), (A.2) and the uniform continuity of the Kiefer process, we have

n
−1/2
D [nDrD](ŜD,rD(Ŝ−1

D̄,rD̄
(t)) − SD(Ŝ−1

D̄,rD̄
(t))

) →d K1(ROC(t), rD).(A.3)

The second term can be rewritten as

n
−1/2
D [nDrD](SD(Ŝ−1

D̄,rD̄
(t)) − SD(S−1

D̄
(t))

)

= n
−1/2
D [nDrD]

n
−1/2
D̄

[nD̄rD̄]
(SD(S−1

D̄
(SD̄(Ŝ−1

D̄,rD̄
(t)))) − SD(S−1

D̄
(t)))

SD̄(Ŝ−1
D̄,rD̄

(t)) − t

× n
−1/2
D̄

[nD̄rD̄](SD̄(Ŝ−1
D̄,rD̄

(t)) − ŜD̄,rD̄
(Ŝ−1

D̄,rD̄
(t))

)

+ n
−1/2
D [nDrD]

n
−1/2
D̄

[nD̄rD̄]
(SD(S−1

D̄
(SD̄(Ŝ−1

D̄,rD̄
(t)))) − SD(S−1

D̄
(t)))

SD̄(Ŝ−1
D̄,rD̄

(t)) − t

× n
−1/2
D̄

[nD̄rD̄](ŜD̄,rD̄
(Ŝ−1

D̄,rD̄
(t)) − t

)
.

By the mean value theorem, there exists a SD̄(S̃−1
D̄,rD̄

(t)) between SD̄(Ŝ−1
D̄,rD̄

(t))

and t such that

SD(S−1
D̄

(SD̄(Ŝ−1
D̄,rD̄

(t)))) − SD(S−1
D̄

(t))

SD̄(Ŝ−1
D̄,rD̄

(t)) − t
=

fD(S−1
D̄

(SD̄(S̃−1
D̄,rD̄

(t))))

fD̄(S−1
D̄

(SD̄(S̃−1
D̄,rD̄

(t))))
.

From (A.1), we know that SD̄(Ŝ−1
D̄,rD̄

(t)) →a.s. t , uniformly for t ∈ [a, b], rD ∈
[c,1] and rD̄ ∈ [d,1], and, therefore, SD̄(S̃−1

D̄,rD̄
(t)) →a.s. t , uniformly for t ∈

[a, b], rD ∈ [c,1] and rD̄ ∈ [d,1]. This, along with the uniform continuity of
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
, allows us to conclude that

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣∣fD(S−1
D̄

(SD̄(S̃−1
D̄,rD̄

(t))))

fD̄(S−1
D̄

(SD̄(S̃−1
D̄,rD̄

(t))))
− fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))

∣∣∣∣ →a.s. 0,

which implies

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

∣∣∣∣SD(S−1
D̄

(SD̄(Ŝ−1
D̄,rD̄

(t)))) − SD(S−1
D̄

(t))

SD̄(Ŝ−1
D̄,rD̄

(t)) − t

− fD(S−1
D̄

(t))

fD̄(S−1
D̄

(t))

∣∣∣∣(A.4)

→a.s. 0.
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For all rD̄ ∈ [d,1],

sup
a≤t≤b

|ŜD̄,rD̄
(Ŝ−1

D̄,rD̄
(t)) − t | ≤a.s.

1

[nD̄rD̄] .

Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

n
−1/2
D̄

[nD̄rD̄]|ŜD̄,rD̄
(Ŝ−1

D̄,rD̄
(t)) − t | ≤a.s.

1

n
1/2
D̄

and

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤t≤b

n
−1/2
D̄

[nD̄rD̄]|ŜD̄,rD̄
(Ŝ−1

D̄,rD̄
(t)) − t | →a.s. 0.(A.5)

From Corollary 1.A in Csörgő and Szyszkowicz (1998), (A.2) and the uniform
continuity of the Kiefer process, we have

n
−1/2
D̄

[nD̄rD̄](SD̄(Ŝ−1
D̄,rD̄

(t)) − ŜD̄,rD̄
(Ŝ−1

D̄,rD̄
(t))

) →d K2(t, rD̄).(A.6)

By (A.4), (A.5), (A.6) and noting that
n

−1/2
D [nDrD]

n
−1/2
D̄

[nD̄rD̄] → λ1/2 rD
rD̄

, we conclude that

n
−1/2
D [nDrD](SD(Ŝ−1

D̄,rD̄
(t)) − SD(S−1

D̄
(t))

)
(A.7)

→d λ1/2 rD

rD̄

(fD(S−1
D̄

(t))

fD̄(S−1
D̄

(t))

)
K2(t, rD̄).

Summing (A.3) and (A.7) gives the desired result. �

A.2. Supplementary results for Section 3.2.

COROLLARY A.1. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. For t1, t2, . . . , tJ ∈ (0,1), rD,1, rD,2, . . . , rD,J ∈ (0,1] and rD̄,1, rD̄,2, . . . ,

rD̄,J ∈ (0,1], a vector of arbitrary points on the sequential empirical PPV curve,

(P̂PVrD,1,rD̄,1
(t1), P̂PVrD,2,rD̄,2

(t2), . . . , P̂PVrD,J ,rD̄,J
(tJ )), is approximately multi-

variate normal with

P̂PVrD,j ,rD̄,j
(tj ) ∼ N

(
PPV(tj ), σ

2
P̂PVrD,j ,r

D̄,j
(tj )

)
, j = 1,2, . . . , J,

σ 2
P̂PVrD,j ,r

D̄,j
(tj )

=
(

t (1 − ρ)ρ

(ROC(t)ρ + t (1 − ρ))2

)2

σ 2
̂ROCrD,j ,r

D̄,j
(tj )
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and

Cov[P̂PVrD,i ,rD̄,i
(ti), P̂PVrD,j ,rD̄,j

(tj )]

=
(

ti(1 − ρ)ρ

(ROC(ti)ρ + ti(1 − ρ))2

)(
tj (1 − ρ)ρ

(ROC(tj )ρ + tj (1 − ρ))2

)

× Cov[̂ROCrD,i ,rD̄,i
(ti), ̂ROCrD,j ,rD̄,j

(tj )],

where σ 2
̂ROCrD,j ,r

D̄,j
(tj )

and Cov[̂ROCrD,i ,rD̄,i
(ti), ̂ROCrD,j ,rD̄,j

(tj )] are as defined

in Corollary 3.3.

PROOF. Immediate from Theorem 3.5. �

COROLLARY A.2. Assume (A1)–(A4) hold and let
fD(S−1

D̄
(t))

fD̄(S−1
D̄

(t))
be bounded on

[a, b]. For t ∈ (0,1) and J stopping times (P̂PVrD,1,rD̄,1
(t), P̂PVrD,2,rD̄,2

(t), . . . ,

P̂PVrD,J ,rD̄,J
(t)), is approximately multivariate normal with

P̂PVrD,i ,rD̄,i
(t) ∼ N

(
PPV(t), σ 2

P̂PVrD,i ,rD̄,i
(t)

)
, i = 1,2, . . . , J,

and

Cov[P̂PVrD,i ,rD̄,i
(t), P̂PVrD,j ,rD̄,j

(t)]
= Var[P̂PVrD,j ,rD̄,j

(t)] = σ 2
P̂PVrD,j ,r

D̄,j
(t)

, ri ≤ rj ,

where σ 2
P̂PVrD,j ,r

D̄,j
(t)

is defined as in Corollary A.1.

PROOF. Immediate from Corollary A.1. �

A.3. Supplementary results for Section 3.3.

PROOF OF THEOREM 3.6. The proof of Theorem 3.6 follows the proofs found
in Pyke and Shorack (1968). First, note that

n
−1/2
D [nDrD](ŜD,rD(F̂−1

rD,rD̄
(u)) − SD(F−1(u))

)
= n

−1/2
D [nDrD](FD(F−1(u)) − FD(F̂−1

rD,rD̄
(u))

)
+ n

−1/2
D [nDrD](FD(F̂−1

rD,rD̄
(u)) − F̂D,rD(F̂−1

rD,rD̄
(u))

)
.
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The first term can be rewritten as

n
−1/2
D [nDrD](FD(F−1(u)) − FD(F̂−1

rD,rD̄
(u))

)

= FD(F−1(F (F̂−1
rD,rD̄

(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u

× n
−1/2
D [nDrD](u − F̂rD,rD̄

(F̂−1
rD,rD̄

(u))
)

+ FD(F−1(F (F̂−1
rD,rD̄

(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u

× ρn
−1/2
D [nDrD](F̂D,rD(F̂−1

rD,rD̄
(u)) − FD(F̂−1

rD,rD̄
(u))

)

+ n
−1/2
D [nDrD]

n
−1/2
D̄

[nD̄rD̄]
FD(F−1(F (F̂−1

rD,rD̄
(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u

× (1 − ρ)n
−1/2
D̄

[nD̄rD̄](F̂D̄,rD̄
(F̂−1

rD,rD̄
(u)) − FD̄(F̂−1

rD,rD̄
(u))

)
.

We begin by showing that F(F̂−1
rD,rD̄

(u)) converges to u uniformly,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

|F(F̂−1
rD,rD̄

(u)) − u|

≤ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

|F(F̂−1
rD,rD̄

(u)) − F̂rD,rD̄
(F̂−1

rD,rD̄
(u))|

+ sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

|F̂rD,rD̄
(F̂−1

rD,rD̄
(u)) − u|.

We note that

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

|F(F̂−1
rD,rD̄

(u)) − F̂rD,rD̄
(F̂−1

rD,rD̄
(u))|

≤ nD

[nDc] sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

[nDrD]
nD

|FD(F̂−1
rD,rD̄

(u)) − F̂D,rD(F̂−1
rD,rD̄

(u))|

+ nD̄

[nD̄d] sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

[nD̄rD̄]
nD̄

|FD̄(F̂−1
rD,rD̄

(u))

− F̂D̄,rD̄
(F̂−1

rD,rD̄
(u))|

→a.s. 0,

by the Glivenko–Cantelli theorems [Theorems 1.51 and 1.52 in Csörgő and
Szyszkowicz (1998)], along with the fact that nD[nDc] → 1

c
and

nD̄[nD̄d] → 1
d

. For all
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rD, rD̄ ∈ (0,1] × (0,1],
sup

a≤u≤b

|u − F̂rD,rD̄
(F̂−1

rD,rD̄
(u))| ≤a.s.

(
ρ

[rDnD] ∨ 1 − ρ

[nD̄rD̄]
)
.

Therefore,

sup
c≤rD≤1

sup
d≤rD̄≤1

sup
a≤u≤b

|u − F̂rD,rD̄
(F̂−1

rD,rD̄
(u))|

≤a.s.

(
ρ

[nDc] ∨ 1 − ρ

[nD̄d]
)

→ 0,

which implies that

sup
c<rD≤1

sup
d<rD̄≤1

sup
a≤u≤b

|F(F̂−1
rD,rD̄

(u)) − u| →a.s. 0.(A.8)

We note that (A.8) also implies that FD(F̂−1
rD,rD̄

(u)) and FD̄(F̂−1
rD,rD̄

(u)) converge

uniformly to FD(F−1(u)) and FD̄(F−1(u)), respectively, which can be seen by
noting that the difference between FD(F̂−1

rD,rD̄
(u)) and FD(F−1(u)) will always

have the same sign as the difference between FD̄(F̂−1
rD,rD̄

(u)) and FD̄(F−1(u)).

By the mean value theorem, there exists F(F̃−1
rD,rD̄

(u)) between u and

F(F̂−1
rD,rD̄

(u)), such that

FD(F−1(F (F̂−1
rD,rD̄

(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u
= fD(F−1(F (F̃−1

rD,rD̄
(u))))

f (F−1(F (F̃−1
rD,rD̄

(u))))
.

The uniform continuity of fD(F−1(u))

f (F−1(u))
, combined with the fact that

F(F̃−1
rD,rD̄

(u)) →a.s. u

uniformly, allows us to conclude

sup
c<rD≤1

sup
d<rD̄≤1

sup
a≤u≤b

∣∣∣∣fD(F−1(F (F̃−1
rD,rD̄

(u))))

f (F−1(F (F̃−1
rD,rD̄

(u))))
− fD(F−1(u))

f (F−1(u))

∣∣∣∣ →a.s. 0.(A.9)

For all rD, rD̄ ∈ (0,1] × (0,1],
sup

a≤u≤b

n
−1/2
D [nDrD]|u − F̂rD,rD̄

(F̂−1
rD,rD̄

(u))|

≤a.s.

(
ρ

n
−1/2
D

∨ [nDrD]
[nD̄rD̄]

1 − ρ

n
−1/2
D

)
.

Therefore, as nD → ∞ and nD̄ → ∞,

sup
0<rD≤1

sup
0<rD̄≤1

sup
a≤u≤b

n
−1/2
D [nDrD]|u − F̂rD,rD̄

(F̂−1
rD,rD̄

(u))| →a.s. 0.
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Combining this result with (A.9) allows us to conclude that

FD(F−1(F (F̂−1
rD,rD̄

(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u
n

−1/2
D [nDrD](u − F̂rD,rD̄

(F̂−1
rD,rD̄

(u))
)

→a.s. 0.

Corollary 1.A in Csörgő and Szyszkowicz (1998), (A.9) and the uniform continuity
of the Kiefer process allow us to conclude

FD(F−1(F (F̂−1
rD,rD̄

(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u

× ρn
−1/2
D [nDrD](F̂D,rD(F̂−1

rD,rD̄
(u)) − FD(F̂−1

rD,rD̄
(u))

)
(A.10)

→d

fD(F−1(u))

f (F−1(u))
ρK1(FD(F−1(u)), rD)

and

n
−1/2
D [nDrD]

n
−1/2
D̄

[nD̄rD̄]
FD(F−1(F (F̂−1

rD,rD̄
(u)))) − FD(F−1(u))

F (F̂−1
rD,rD̄

(u)) − u

× (1 − ρ)n
−1/2
D̄

[nD̄rD̄](F̂D̄,rD̄
(F̂−1

rD,rD̄
(u)) − FD̄(F̂−1

rD,rD̄
(u))

)
(A.11)

→d

√
λ
rD

rD̄

fD(F−1(u))

f (F−1(u))
(1 − ρ)K2(FD̄(F−1(u)), rD).

The second term converges in distribution to a Kiefer process

n
−1/2
D [nDrD](FD(F̂−1

rD,rD̄
(u)) − F̂D,rD(F̂−1

rD,rD̄
(u))

)
= −n

−1/2
D [nDrD](F̂D,rD(F̂−1

rD,rD̄
(u)) − FD(F̂−1

rD,rD̄
(u))

)
(A.12)

→d −K1(FD(F−1(u)), rD)

by Corollary 1.A in Csörgő and Szyszkowicz (1998). Summing (A.10), (A.11) and
(A.12) gives the desired result. �

COROLLARY A.3. Assume (A1)–(A4) hold and let fD(F−1(u))

f (F−1(u))
be bounded on

[a, b]. For u1, u2, . . . , uJ ∈ (0,1), rD,1, rD,2, . . . , rD,J ∈ (0,1] and rD̄,1, rD̄,2, . . . ,

rD̄,J ∈ (0,1], a vector of arbitrary points on the sequential empirical PPV curve,

(P̂PVrD,1,rD̄,1
(u1), P̂PVrD,2,rD̄,2

(u2), . . . , P̂PVrD,J ,rD̄,J
(uJ )), is approximately mul-

tivariate normal with

P̂PVrD,j ,rD̄,j
(uj ) ∼ N

(
PPV(uj ), σ

2
P̂PVrD,j ,r

D̄,j
(uj )

)
, j = 1,2, . . . , J,
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with

Cov[P̂PVrD,1,rD̄,1
(u1), P̂PVrD,2,rD̄,2

(u2)]

= (1 − ρ)2u1

(1 − u1)

fD̄(F−1(u1))

f (F−1(u1))

fD̄(F−1(u2))

f (F−1(u2))

× (rD,1 ∧ rD,2)(1 − NPV(u1))PPV(u2)

nDrD,1rD,2

+ ρ2u1

(1 − u1)

fD(F−1(u1))

f (F−1(u1))

fD(F−1(u2))

f (F−1(u2))

× (rD̄,2 ∧ rD̄,2)NPV(u1)(1 − PPV(u2))

nDrD,1rD,2
,

when u1 ≤ u2 and

Cov[P̂PVrD,1,rD̄,1
(u1), P̂PVrD,2,rD̄,2

(u2)]

= (1 − ρ)2u2

(1 − u2)

fD̄(F−1(u1))

f (F−1(u1))

fD̄(F−1(u2))

f (F−1(u2))

× (rD,1 ∧ rD,2)(1 − NPV(u2))PPV(u1)

nDrD,1rD,2

+ ρ2u2

(1 − u2)

fD(F−1(u1))

f (F−1(u1))

fD(F−1(u2))

f (F−1(u2))

× (rD̄,2 ∧ rD̄,2)NPV(u2)(1 − PPV(u1))

nDrD,1rD,2
,

when u2 ≤ u1, where σ 2
P̂PVrD,1,r

D̄,1
(u1)

is defined as in Corollary 3.8.

PROOF. Immediate from Theorem 3.6. �
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